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Abstract

This paper investigates the incompressible limit of a system modelling the growth of
two cells population. The model describes the dynamics of cell densities, driven by pressure
exclusion and cell proliferation. It has been shown that solutions to this system of partial
differential equations have the segregation property, meaning that two population initially
segregated remain segregated. This work is devoted to the incompressible limit of such
system towards a free boundary Hele Shaw type model for two cell populations.
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1 Introduction

Diversity is key in biology. It appears at all kind of level from the human scale to the microscopic
scale, with million of cells types; each scales impacting on the others. During development, the
coexistence of different cells types following different rules impact on the growth of tissue and
then on the global structures. In a more specific case, this can be observed in cancerous tissue
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with the invasion of tumour cells in an healthy tissue creating a abnormal growth. Furthermore,
cancerous cells are not playing all the same roles. They can be proliferative or quiescent depend-
ing of their positions, ages, . . . To study the influence of these diverse cells on each others from
a theoretical view, we introduce mathematical model for multiple populations. In this paper
we are interesting in the global dynamics and interactions of the two populations, meaning that
we focus specifically on continuous models.

In the already existing literature on macroscopic model, we distinguish two categories. The
most common ones involved partial differential equations (PDE) in which cells are represented by
densities. These models have been widely used to model growth of tissue [10, 29], in particular
for tumor growth [1, 7, 9, 15]. Another way to model tissue growth is by considering free
boundary models [16, 17, 20]. In these models the tissue is described by a domain and its
growth and movement are driven by the motion of the boundary. The link between these two
types of model has been been made via an incompressible limit in [21, 22, 24, 26, 27, 28]. This
link is interesting as both models have their advantages. On the one hand PDE relying models,
also called mechanical models, are widely studied with many numerical and analytical tools.
On the other hand free boundary models are closer to the biologic vision of the tissue and allow
to study motion and dynamics of the tissue. This paper aims to extend the link between the
mechanical and the free boundary models, in the case of multiple populations system.

In the specific case of multiple populations, several mathematical models have been already
introduced. In particular in population dynamics, the famous Lotka-Volterra system [23] models
the dynamics of a predator-prey system. This model has been extended to nonlinear diffusion
Lotka-Volterra systems [3, 4, 5, 8]. For the tumor growth modelling (see e.g. [13]), some models
focus on mechanical property of tissues such as contact inhibition [6, 2, 19] and mutation [18].
They have been extended to multiple populations [18, 30]. Solutions to these models may have
some interesting spatial pattern known as segregation [5, 11, 25, 30].

The two cell populations system under investigation in this paper is an extension on a
simplest cell population model proposed in [10, 27]. Let n(x, t) be the density of a single
category of cell depending on the position x ∈ Rd and the time t > 0, and let p(x, t) be the
mechanical pressure of the system. The pressure is generated by the cell density and is defined
via a pressure law p = P (n). This pressure exerted on cells induces a motion with a velocity
field v = v(x, t) related to the pressure through the Darcy’s law. The proliferation is modelled
by a growth term G(p) which is pressure dependent. With this assumption, the mathematical
model reads

∂tn+∇ · (nv) = nG(p), on Rd × R+,

v = −∇p, p = P (n).

In [22, 24, 26, 27, 28], the pressure law is given by P (n) = γ
γ−1n

γ−1 which allows to recover the
porous medium equation. However, in many tissues, cells may not overlap, implying that the
maximal packing density should be bounded by 1. To take into account this non-overlapping
constraint, the pressure law P (n) = ε n

1−n has been taken in [21]. This latter choice of pressure
law has also been taken in the present paper. For this one population model, it has been
showed in [21], that at the incompressible limit, ε→ 0 (or γ → +∞ depending on the pressure
expression), the model converges towards a Hele-Shaw type free boundary problem.

The previous model has the particularity to derive from the free energy

E(n) =

∫
R
P (n(x))dx.

as a gradient flow for the Wasserstein metric. Using this property we derive a model for two
species of cells. Let us denote n1(x, t) and n2(x, t) the two cell densities depending on the

2



position x ∈ Rd and the time t > 0. We assume that the pressure depends on the total density
n = n1 + n2. As the pressure depends on a parameter ε, we introduce this dependancy in the
notation. We define the free energy for the two cell populations by,

E(nε) =

∫
R
P (n1ε(x) + n2ε(x))dx.

Restricting to the one dimensional case, the system of equation deriving from this free energy
is then defined by,

∂tn1ε − ∂x(n1ε∂xpε) = n1εG1(pε), (1)

∂tn2ε − ∂x(n2ε∂xpε) = n2εG2(pε), (2)

pε = P (nε) = ε
nε

1− nε
, (3)

nε = n1ε + n2ε, (4)

with G1, G2 the growth functions, and pε the pressure.
The existence of solution for system (1)-(4) has been proven in [6, 2] for a compact domain

(−L,L) with L > 0, with Neumann homogeneous boundary condition. In particular, it is shown
that at a fix ε > 0, given initial conditions n1

ini
ε and n2

ini
ε satisfying,

∃ ζ0 ∈ R such that n1
ini
ε = nini

ε 1x≤ζ0 and n2
ini
ε = nini

ε 1x≥ζ0 , (5)

and
n1

ini
ε , n2

ini
ε ≥ 0 and 0 < A0 ≤ n1

ini
ε + n2

ini
ε ≤ B0 (6)

then there exists ζε ∈ C([0,∞)) ∩ C1((0,∞)) such that

n1ε(t, x) = nε(t, x)1x≤ζε(t) and n2ε(t, x) = nε(t, x)1x≥ζε(t), (7)

and n1ε and n2ε respectively satisfy (1) on {(t, x), x ≤ ζε(t)} and (2) on {(t, x), x ≥ ζε(t)}. In
addition nε = n1ε + n2ε is solution to:

∂tnε − ∂x(nε∂xpε) = nεG1(pε) on {(t, x), x ≤ ζε(t)},
∂tnε − ∂x(nε∂xpε) = nεG2(pε) on {(t, x), x ≥ ζε(t)},
nε(t, ζε(t)

−) = nε(t, ζε(t)
+),

ζ ′ε(t) = −∂xp(t, ζε(t)−) = −∂xp(t, ζε(t)+),

∂xnε(±L, 0) = 0 for t > 0.

(8)

In [2], the reaction term is not the same than in this paper, however it is easy to see that there
proof can be extended to our system under a set of assumptions for the growth functions which
will be defined latter in this paper.

The aim of this paper is is to study the incompressible limit ε→ 0 for the two populations
systems. When the two species are not in contact, the system is equivalent to the one population
model [21], this is why we limit ourself in this paper to the case where the two populations are
initially in contact. To use the solutions defined in [2], we restrict the space to a compact
domain (−L,L) with L > 0 and assume (5) and (6) are verified. Outside the domain (−L,L),
the system will be equivalent to the one population model.

We firstly remark that by adding (1) and (2), we get,

∂tnε − ∂x(nε∂xpε) = n1εG1(pε) + n2εG2(pε) in (−L,L). (9)
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Multiplying by P ′(nε) we find an equation for the pressure,

∂tpε − (
p2
ε

ε
+ pε)∂xxpε − |∂xpε|2 =

1

ε
(pε + ε)2(n1εG1(pε) + n2εG2(pε)) in (−L,L). (10)

Formally, passing at the limit ε→ 0, we expect the relation,

−p2
0∂xxp0 = p2

0(n10G1(p0) + n20G2(p0)) in (−L,L).

In addition, passing formally to the limit ε→ 0 into (3), it appears clearly that (1− n0)p0 = 0.
We consider the domain Ω0(t) = {x ∈ (−L,L), p0(x, t) > 0}, then, from the latter identity,
n0 = 1 on Ω0. Moreover, from the segregation property, we have n1εn2ε = 0 when the two
densities are initially segregated. Passing to the limit ε→ 0 into this relation implies n10n20 = 0.
Then we may split Ω0(t) into two disjoint sets Ω1(t) = {x ∈ (−L,L), n10(x, t) = 1} and
Ω2(t) = {x ∈ (−L,L), n20(x, t) = 1}. Formally, it is not difficult to deduce from (10) that when
ε→ 0, we expect to have the relation

−p2
0∂xxp0 =

{
p2

0G1(p0) on Ω1(t),

p2
0G2(p0) on Ω2(t).

Then we obtain a free boundary problem of Hele-Shaw type: On Ω1(t), we have n10 = 1 and
−∂xxp0 = G1(p0), on Ω2(t), we have n20 = 1 and −∂xxp0 = G2(p0).

The outline of the paper is the following. In Section 2 we expose the main results of this
paper, which are the convergence of the continuous model (1)-(4) when ε → 0 to a Hele-Shaw
free boundary model, and uniqueness for this limiting model. Section 3 is devoted to the
proof of these main results. The proof on the convergence relies on some a priori estimate and
compactness techniques. We use Hilbert duality method to establish uniqueness of solution to
the limiting system. Finally in Section 4, we present some numerical simulations of the system
(1)-(4) when ε is going to 0 and simulations of a specific application on tumor spheroid growth.

2 Main results

In this paper we aim to prove the incompressible limit ε→ 0 of the two populations model with
non overlapping constraint (1)-(4) in one dimension. We first introduce a list of assumptions
on the growth terms and the initial conditions. For the growth, we consider the following set
of assumptions:

∃Gm > 0, ‖G1‖∞ ≤ Gm, ‖G2‖∞ ≤ Gm,
G′1, G

′
2 < 0, and ∃P 1

M , P
2
M > 0, G1(P 1

M ) = 0 and G2(P 2
M ) = 0,

∃ γ > 0, min( inf
[0,P 1

M ]
|G′1|, inf

[0,P 2
M ]
|G′2|) = γ,

PM := max(P 1
M , P

2
M ), ∃ gm ≥ 0, min

(
inf

[0,PM ]
G1, inf

[0,PM ]
G2

)
≥ −gm.

(11)

The set of assumptions on the growth rate is standard and similar to the one in [21]. The
parameters P 1

M and P 2
M are called homeostatic pressures which represent the maximal pressure

that the tissue can handle before starting dying. For the initial datas, we assume that there
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exists ε0 > 0 such that, for all ε ∈ (0, ε0), for all x ∈ (−L,L),

0 ≤ n1
ini
ε , 0 ≤ n2

ini
ε , nini

ε = n1
ini
ε + n2

ini
ε , 0 < A0 ≤ nini

ε ≤ B0, ∂xn
ini
ε (±L) = 0,

∃ ζ0 ∈ (−L,L) such that n1
ini
ε = nini

ε 1x≤ζ0 and n2
ini
ε = nini

ε 1x≥ζ0 ,

pini
ε := ε

nini
ε

1− niniε
≤ PM := max(P 1

M , P
2
M ),

max(‖∂xn1
ini
ε ‖L1(−L,L), ‖∂xn2

ini
ε ‖L1(−L,L)) ≤ C,

∃nini
1 , nini

2 ∈ L1
+(−L,L), such that ‖n1

ini
ε − nini

1 ‖L1(−L,L) → 0

and ‖n2
ini
ε − nini

2 ‖L1(−L,L) → 0, as ε→ 0.

(12)

These initial conditions imply that n1
ini
ε and n2

ini
ε are uniformly bounded in W 1,1(−L,L).

Notice also that the existence of ζ0 being the interface between the two species implies that the
two populations are initially segregated.

From [2], we recover that at a fix ε > 0 under assumption (11), given initial conditions
n1

ini
ε and n2

ini
ε satisfying (12), then there exists ζε ∈ C([0,∞)) ∩ C1((0,∞)) such that n1ε

and n2ε verify (7) and n1ε and n2ε respectively satisfy (1) on {(t, x), x ≤ ζε(t)} and (2) on
{(t, x), x ≥ ζε(t)}. In addition nε = n1ε + n2ε is solution to (8).

Remark 1. Considering n1ε and n2ε defined previously, we have for i = 1, 2

∂tniε = ∂tnε(t, x)1x≤ζε(t) + nεζ
′
ε(t)δx=ζε(t).

Given (8), for all ϕ ∈ C∞c (−L,L) we compute, for i = 1, 2∫
R
∂tniεϕ dx =

∫ ζε(t)

−∞
∂tnεϕ dx+ nε(t, ζε(t))ζ

′
ε(t)ϕ(ζε(t))

=

∫ ζε(t)

−L
∂x(nε∂xpε)ϕ dx+

∫ L

−L
niεGi(pε)ϕ dx+ nε(t, ζε(t))ζ

′
ε(t)ϕ(ζε(t))

=−
∫ ζε(t)

−L
nε∂xpε∂xϕ dx+ nε(t, ζε(t))∂xpε(t, ζε(t))ϕ(ζε(t))

+

∫ L

−L
niεGi(pε)ϕ dx− nε(t, ζε(t))∂xpε(t, ζε(t))ϕ(ζε(t))

=

∫ L

−L
niε∂xpε∂xϕ dx+

∫ L

−L
niεGi(pε)ϕ dx

=

∫ L

−L
(∂x(niε∂xpε) + niεGi(pε))ϕ dx.

Hence n1ε and n2ε are weak solutions to (1) and (2) on (−L,L) respectively. This result will
be used in the following.

Considering this particular solution, we are going to show the incompressible limit ε → 0
for system (1)-(4). The main result is the following

Theorem 1. Let T > 0, QT = (0, T ) × (−L,L). Let G1, G2 and (n1
ini
ε ), (n2

ini
ε ) satisfy

assumptions (11)–(12). After extraction of subsequences, the densities n1ε, n2ε and the pressure
pε, solutions defined in (7)-(8), converge strongly in L1(QT ) as ε → 0 towards the respective
limit n10, n20 ∈ L∞([0, T ];L1(−L,L)) ∩ BV (QT ), and p0 ∈ BV (QT ) ∩ L2([0, T ];H1(−L,L)).
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Moreover, these functions satisfy, for all (t, x) ∈ QT ,

0 ≤ n10(t, x) ≤ 1, 0 ≤ n20(t, x) ≤ 1, (13)

0 < A0e
−gmt ≤ n0(t, x) ≤ 1, 0 ≤ p0 ≤ PM , (14)

∂tn0 − ∂xxp0 = n10G1(p0) + n20G1(p0), in D′(QT ), (15)

where n0 = n10 + n20, and

∂tn10 − ∂x(n10∂xp0) = n10G1(p0), in D′(QT ), (16)

∂tn20 − ∂x(n20∂xp0) = n20G2(p0), in D′(QT ), (17)

complemented with Neumann boundary conditions ∂xp0(±L) = 0. Moreover, we have the rela-
tions

(1− n0)p0 = 0, (18)

and

n10n20 = 0, (19)

and the complementary relation

p0

(
∂xxP0 +

∫ t

0
(n10G1(p0) + n20G2(p0)) ds+ nini0 − 1

)
= 0. (20)

where P0 is defined by P0(t, x) =
∫ t

0 p0(s, x)ds.

Remark 2. Introducing the set Ω0 = {p0 > 0}, we deduce that on Ω0 we have

−∂xxP0 =

∫ t

0
(n10G1(p0) + n20G2(p0)) ds+ nini

0 − 1.

Deriving with respect to t, we find formally

−∂xxp0 = n10G1(p0) + n20G2(p0).

We recognise the Hele-Shaw model. Noticing also that taking t = 0 into the relation (20), we
recover the expected relation pini

0 nini
0 = pini

0 .

The proof of this convergence result is given in Section 3. It is straightforward to observe
that adding (1) and (2) provides an equation on the total density similar to the one found in the
one species case [21, 27]. Then we use a similar strategy for the proof relying on a compatness
method. However the presence of the two populations generate some technical difficulties. To
overcome them, we use the segregation property. Notice that this paper is written in the specific
case where the two species are separated by one interface, but could be generalised to many
interfaces. Using the segregation of the species we are able to obtain a priori estimates on the
densities, the pressure and their spatial derivatives. Compactness in time is deduced thanks to
the Aubin-Lions theorem. The proof of convergence follows from these new estimates. However,
the lack of estimates on the time derivative makes obtaining the complementary relation difficult,
then we are not able to recover the usual relation but the one stated in (20) which may be seen
as an integral in time of the usual one as explained in the above remark.

To complete the result on the asymptotic limit of the model, an uniqueness result for the
Hele-Shaw free boundary model for two populations is provided in Proposition 1 in §3.4. The
proof of this uniqueness result for the limiting problem is based on Hilbert’s duality method.
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3 Proof of the main results

This section is devoted to the proof of Theorem 1, whereas in Section 3.4 the uniqueness of the
solution to the Hele Shaw system is established. We first establish some a priori estimates.

3.1 A priori estimates

3.1.1 Nonnegativity principle

The following Lemma establishes the nonnegativity of the densities.

Lemma 1. Let (n1ε, n2ε, pε) be a solution to (1) and (2) such that n1
ini
ε ≥ 0, n2

ini
ε ≥ 0 and

Gm <∞. Then, for all t ≥ 0, n1ε(t) ≥ 0 and n2ε(t) ≥ 0.

Proof. To show the nonnegativity we use the Stampaccchia method. We multiply (1) by 1n1ε<0

and denote |n|− = max(0,−n) for the negative part, we get

1n1ε<0∂tn1ε − 1n1ε<0∂x(n1ε∂xpε) = 1n1ε<0n1εG1(pε).

With the above notation, it reads

∂t|n1ε|− − ∂x(|n1ε|−∂xpε) = |n1ε|−G1(pε).

We integrate in space, using assumption (11) and ∂xpε(±L, t) = p′ε(nε)∂xnε(±L, t) = 0, we
deduce

d

dt

∫ L

−L
|n1ε|−dx ≤

∫ L

−L
|n1ε|−G1(pε)dx ≤ Gm

∫ L

−L
|n1ε|−dx.

Then we integrate in time, ∫ L

−L
|n1ε|− dx ≤ eGmt

∫ L

−L
|n1

ini
ε |− dx.

With the initial condition n1
ini
ε > 0 we deduce n1ε > 0. With the same method we can show

that if n2
ini
ε > 0 we have n2ε > 0.

Remark 3. We notice that the positivity gives a formal proof of the segregation of any solution
of (1)-(4). Indeed, defining rε = n1εn2ε and multiplying (1) by n2ε, (2) by n1ε and adding, we
obtain the following equation for rε,

∂trε − ∂xrε ∂xpε − 2rε∂xxpε = rε(G1(pε) +G2(pε)).

Given that rini
ε = 0, we get that rε = 0 at all time.

3.1.2 A priori estimates

To show the compactness result we establish a priori estimate on the densities, pressure and
their derivatives. We first compute the equation on the total density. As shown earlier n1ε and
n2ε are respectively weak solutions of (1) and (2). By summing the two equations we deduce
that nε is a weak solution of (9). Notice that this equation can be rewritten as,

∂tnε − ∂xxH(nε) = n1εG1(pε) + n2εG2(pε), (21)

with H(n) =
∫ n

0 uP ′(u)du = P (n)− ε ln(P (n) + ε) + ε ln ε.
We establish the following a priori estimates

7



Lemma 2. Let us assume that (11) and (12) hold. Let (n1ε, n2ε, pε) be a solution to (1)–(4).
Then, for all T > 0, and t ∈ (0, T ), we have the uniform bounds in ε ∈ (0, ε0),

n1ε, n2ε in L∞([0, T ];L1 ∩ L∞(−L,L));

0 ≤ pε ≤ PM , 0 < A0e
−gmt ≤ nε(t) ≤

PM
PM + ε

≤ 1.

Moreover, we have that (n1ε)ε and (n2ε)ε are uniformly bounded in L∞([0, T ],W 1,1(−L,L)) and
(pε)ε is uniformly bounded in L1([0, T ],W 1,1(−L,L)).

Proof. Comparison principle.
The usual comparison principle is not true for this system of equations. However we are

able to show some comparison between the total density and nM defined by nM = PM
ε+PM

where
PM is defined in (12). We deduce from (21) that

∂t(nε − nM )− ∂xx(H(nε)−H(nM )) ≤ n1εG1(P (nε))− nM1x≤ζε(t)G1(PM )

+ n2εG2(P (nε))− nM1x≥ζε(t)G2(PM ),

where we use the monotonicity of G1 and G2 from assumption (11).
Notice that, since the function H is nondecreasing, the sign of nε −mε is the same as the

sign of H(nε)−H(mε). Moreover,

∂xxf(y) = f ′′(y)|∂xy|2 + f ′(y)∂xxy,

so for y = H(nε) − H(nM ) and f(y) = y+ the positive part, the so-called Kato inequality
reads ∂xxf(y) ≥ f ′(y)∂xxy. Thus multiplying the latter equation by 1nε−nM>0 and given (7) we
obtain

∂t|nε − nM |+ − ∂xx|H(nε)−H(nM )|+ ≤ (nε − nM )1x≤ζε(t)G1(P (nε))1nε−nM>0

+(nε − nM )1x≥ζε(t)G2(P (nε))1nε−nM>0

+nM (G1(P (nε))−G1(P (nM )) +G2(P (nε))−G2(P (nM )))1nε−nM>0.

Since the function P is increasing and G1 and G2 are decreasing (see (11)), we deduce that the
last term is nonpositive. Then, integrating on (−L,L) and using ∂xnε(±L, t) = 0, we deduce

d

dt

∫ L

−L
|nε − nM |+ dx ≤ ∂x|H(nε)−H(nM )|+(L, t)− ∂x|H(nε)−H(nM )|+(−L, t)

+

∫ ζε(t)

−L
(nε − nM )1nε−nM>0G1(P (nε)) dx

+

∫ L

ζε(t)
(nε − nM )1nε−nM>0G2(P (nε)) dx

≤ Gm

∫ L

−L
|nε − nM |+ dx.

Then, integrating in time, we deduce∫ L

−L
|nε − nM |+ dx ≤ eGmt

∫ L

−L
|nini
ε − nM |+ dx = 0.

L∞ bounds.
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From (12), we have pini
ε ≤ PM . Since the function P is inscreasing, we have nini

ε ≤ nM .
With the above comparison principle, we conclude that nε ≤ nM . We deduce easily with the
non-negativity principle (1) that 0 ≤ pε ≤ PM , 0 ≤ n1ε ≤ nM and 0 ≤ n2ε ≤ nM .

Estimates from below.
From above, we deduce that the pressure is bounded by PM . Hence, using assumption (11)

we deduce
∂tnε − ∂xxH(nε) = n1εG1(P (nε)) + n2εG2(P (nε)) ≥ −nεgm.

Let us introduce nm := A0e
−gmt. We deduce

∂t(nm − nε)− ∂xx(H(nm)−H(nε)) ≤ −(nm − nε)gm.

As above, for the comparison principle, we may use the positive part and the Kato inequality
to deduce

∂t|nm − nε|+ − ∂xx|H(nm)−H(nε)|+ ≤ −|nm − nε|+gm.

Integrating in space and in time as above, we deduce that |nm − nε|+ = 0.
L1 bounds of nε, n1ε, n2ε and pε.
Integrating (21) on (−L,L) and using the nonnegativity of the densities from Lemma 1 as

well as the Neumann boundary conditions, we deduce

d

dt
‖nε‖L1(−L,L) ≤ Gm‖nε‖L1(−L,L).

Integrating in time, we deduce

‖nε‖L1(−L,L) ≤ eGmt‖nini
ε ‖L1(−L,L).

Since n1ε ≥ 0 and n2ε ≥ 0, we deduce the uniform bounds on ‖n1ε‖L1(−L,L) and on ‖n2ε‖L1(−L,L).
From the relation (3), we deduce pε = nε(ε + pε). Moreover, the bound pε ≤ PM :=

max(P 1
M , P

2
M ) implies

‖pε‖L1(−L,L) ≤ (ε+ PM )

∫ L

−L
|nε| dx ≤ CeGmt‖nini

ε ‖L1(−L,L).

L1 estimates on the x derivatives.
Recalling (7), we can refomulate (9) by

∂tnε − ∂xxH(nε) = nεG(pε, t, x) (22)

with G(p, t, x) = G1(p)1x≤ζε(t) +G2(p)1x≥ζε(t). The space derivative of this growth function is
given by,

∂xG(p, t, x) = (G1(p)−G2(p))δx=ζε(t) +G′1(p)∂xp1x≤ζε(t) +G′2(p)∂xp1x≥ζε(t).

We derive (22) with respect to x,

∂t∂xnε − ∂xx(∂xH(nε)) = ∂xnεG(pε, t, x) + nε(G1(pε)−G2(pε))δx=ζε(t)

+ nε(G
′
1(pε)1x≤ζε(t) +G′2(pε)1x≥ζε(t))∂xpε.

We multiply by sign(∂xnε) = sign(∂xpε) and use the Kato inequality,

∂t|∂xnε| − ∂xx(|∂xH(nε)|) ≤ |∂xnε|G(pε, t, x)

+ nε(G1(pε)−G2(pε))δx=ζε(t)sign(∂xinε)

+ nε(G
′
1(pε)1x≤ζε(t) +G′2(pε)1x≥ζε(t))|∂xpε|.

9



We integrate in space on (−L,L). Using the fact that max[0,P 1
M ]G

′
1 ≤ −γ < 0 and max[0,P 2

M ]G
′
2 ≤

−γ < 0 (see (11)) and that ∂xH(nε)(±L, t) = H ′(nε)∂xnε(±L, t) = 0,

∂t

∫ L

−L
|∂xnε| dx ≤ Gm

∫ L

−L
|∂xnε| dx− γ

∫ L

−L
nε|∂xpε| dx

+ nε(t, ζε(t))|G1(pε(t, ζε(t))−G2(pε(t, ζε(t))|.

Using Gronwall’s lemma and the uniform bound on nε and G1 and G2 (see (11)), we deduce
that, for all t > 0,

‖∂xnε(t)‖L1(−L,L) + γ

∫ t

0

∫ L

−L
nε|∂xpε| dxds ≤ CeGmt

(
‖∂xnini

ε ‖L1(−L,L) + 1
)
. (23)

This conclude the proof for the estimate on ∂xnε. Then,

‖∂xpε‖L1(−L,L) =

∫ L

−L
|∂xpε| dx =

∫ L

−L

ε

(1− nε)2
|∂xnε| dx.

We split the latter integral in two: either nε ≤ 1/2 and then ε
(1−nε)2 ≤ C; either nε ≥ 1/2,

‖∂xpε‖L1(−L,L) ≤ C
∫
nε≤1/2

|∂xnε| dx+

∫
nε≥1/2

|∂xpε| dx

≤ C
∫
nε≤1/2

|∂xnε| dx+ 2

∫
nε≥1/2

1

2
|∂xpε| dx

≤ C‖∂xnε(t)‖L1(−L,L) + 2

∫
nε≥1/2

nε|∂xpε| dx.

Then, we integrate in time and we deduce using (23)

‖∂xpε‖L1(QT ) ≤ C ′eGmT (‖∂xnε‖L1(−L,L)+1).

Hence we have an uniform bound on ∂xpε in L1(QT ). To recover the estimate on ∂xn1ε and
∂xn2ε we deduce from (7),

∂xn1ε = ∂xnε1x≤ζε(t) + nεδx=ζε(t),

∂xn2ε = ∂xnε1x≤ζε(t) − nεδx=ζε(t).

So

‖∂xn1ε‖L1(−L,L) =

∫
x≤ζε(t)

∂xin1ε dx+ nε(t, ζε(t)) ≤ ‖∂xnε‖L1(−L,L) + ‖n1ε‖∞,

and

‖∂xn2ε‖L1(−L,L) =

∫
x≥ζε(t)

∂xin2ε dx− nε(t, ζε(t)) ≤ ‖∂xnε‖L1(−L,L) + ‖n2ε‖∞

This concludes the proof.

3.1.3 L2 estimate for ∂xp

Lemma 3 (L2 estimate for ∂xp). Let us assume that (11) and (12) hold. Let (n1ε, n2ε, pε) be
a solution to (1)–(4). Then, for all T > 0 we have a uniform bound on ∂xpε in L2(QT ).
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Proof. For a given function ψ we have, multiplying (4) by ψ(nε),

∂tnεψ(nε)− ∂x(nε∂xpε)ψ(nε) = (n1εG1(pε) + n2εG2(pε))ψ(nε).

Integrating on (−L,L), we have

d

dt

∫ L

−L
Ψ(nε) dx+

∫ L

−L
nε∂xnε · ∂xpεψ′(nε) dx =

∫ L

−L
(n1εG1(pε) + n2εG2(pε))ψ(nε) dx,

where Ψ is an antiderivative of ψ. We choose ψ(n) = ε(ln(n) − ln(1 − n) + 1
1−n) so that

nεψ
′(nε) = P ′(nε). Inserting the expression of ψ, we get

d

dt

∫ L

−L
εnε ln

( nε
1− nε

)
dx+

∫ L

−L
|∂xpε|2dx ≤ Gm

∫ L

−L
εnε

∣∣∣∣ln(nε)− ln(1− nε) +
1

1− nε

∣∣∣∣ dx.
After integrating in time and using the expression of the pressure (3), we have∫ L

−L
εnε ln

(pε
ε

)
dx−

∫ L

−L
εnini
ε ln

(
nini
ε

1− nini
ε

)
dx+

∫ T

0

∫ L

−L
|∂xpε|2 dxdt

≤ Gm
∫ T

0

∫ L

−L

(
εnε

∣∣∣ ln(pε
ε

)∣∣∣+ pε

)
dx.

Then, to prove that ∂xpε ∈ L2(QT ), we are left to find a uniform bound on
∫ L
−L εnε| ln(pεε )|dx.

Using the expression of pε in (3), we have∫ L

−L
εnε| ln

(pε
ε

)
| dx ≤

∫ L

−L
εnε| ln pε| dx+ ε ln(ε)

∫ L

−L
nε dx

≤
∫ L

−L
(1− nε)pε| ln pε| dx+ ε ln(ε)

∫ L

−L
nε dx

Since nε is bounded in L1, the second term of the right hand side is uniformly bounded with
respect to ε. Moreover given that 0 ≤ pε ≤ PM and x 7→ x| lnx| is uniformly bounded on
[0, PM ], we get ∫ L

−L
(1− nε)pε| ln(pε)| dx ≤ C

∫ L

−L
1pε>0 dx ≤ 2LC.

This concludes the proof.

3.2 Proof of theorem 1

3.2.1 Convergence

In the last paragraph we have found a priori estimates for the densities and their space deriva-
tives. To use a compactness argument, we need to obtain estimates on the time derivative. To
do so, we are going to use the Aubin Lions theorem [31].

According to Lemma 3, n1ε∂xpε and n2ε∂xpε are in L2(QT ). Moreover thanks to Lemma 2,
we have that n1εG1(pε) and n2εG2(pε) are uniformly bounded in L∞([0, T ];L1 ∩ L∞(−L,L)),
so ∂tn1ε and ∂tn2ε are uniformly bounded in L2([0, T ],W−1,2(−L,L)). We also have n1ε and
n2ε bounded in L1([0, T ],W 1,1(−L,L)). Since we are working in one dimension, we have the
following embeddings

W 1,1(−L,L) ⊂ L1(−L,L) ⊂W−1,2(−L,L).
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The Aubin Lions theorem implies that {u ∈ L1([0, T ],W 1,1
loc (−L,L)); u̇ ∈ L2([0, T ],W−1,2(−L,L))}

is compactly embedded in L1([0, T ], L1(−L,L)). So we can extract strongly converging subse-
quences n1ε and n2ε in L1(QT ). The convergence of the pressure follows from the same kind of
computation.

3.2.2 Limit model

From the above results, up to extraction of subsequences, (n1ε)ε, (n2ε)ε, and (pε)ε converge
strongly in L1(QT ) and a.e. towards some limits denoted n10, n20, and p0, respectively. More-
over, due to the uniform estimate on (∂xpε)ε in L2(QT ) from Lemma 3, we may extract a
subsequence, still denoted (∂xpε)ε, which converges weakly in L2(QT ) towards ∂xp0. Passing to
the limit in the uniform estimates of Lemma 2 gives (13) and n10, n20, n0, p0 belongs to BV (QT ).

Then, we recall that

∂tnε − ∂xx(pε − ε ln(pε + ε)) = n1εG1(pε) + n2εG2(pε).

From the uniform bounds on pε, we get,

ε ln ε ≤ ε ln(pε + ε) ≤ ε ln(PM + ε).

Thus, the term in the Laplacian converges strongly to p0. Then, thanks to the strong conver-
gence of nε and pε, we deduce that in the sense of distributions

∂tn0 − ∂xxp0 = n10G1(p0) + n20G2(p0).

Moreover, let φ ∈ W 1,α(QT ) with φ(T, x) = 0 (α > 2) be a test function. We multiply
equation (1) by φ and integrate using the Neumann boundary conditions, we get

−
∫ T

0

∫ L

−L
n1ε∂tφdtdx−

∫ L

−L
n1

ini
ε (x)φ(0, x) dx+

∫ T

0

∫ L

−L
n1ε∂xpε∂xφdxdt

=

∫ T

0

∫ L

−L
n1εG1(pε)φdxdt.

Due to the strong convergence of n1ε and pε, we can pass easily to the limit ε→ 0 into the first
term of the left hand side and into the term in the right hand side. For the second term, we use
the assumptions on the initial data to pass into the limit. For the third term, we can pass to
the limit in a product of a weak-strong convergence from standard arguments, then we arrive
at

−
∫ T

0

∫ L

−L
n10∂tφdtdx−

∫ L

−L
nini1 (x)φ(0, x) dx+

∫ T

0

∫ L

−L
n10∂xp0∂xφdxdt

=

∫ T

0

∫ L

−L
n10G1(p0)φdxdt,

for any test function φ ∈W 1,α(QT ). Then we obtain the weak formulation of (16) with Neumann
boundary conditions on p0. We proceed by the same token to recover (17).

Passing into the limit in the relation (1− nε)pε = εnε implies

(1− n0)p0 = 0.

We can also pass to the limit for the segregation and deduce n10n20 = 0. To conclude the proof
of Theorem 1, we are left to establish the relation (20).
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3.3 Complementary relation

In this section we want to pass to the limit in the equation for the pressure (10). However, this
task can not be performed easily since we only have uniform estimates on the gradient of n and
p, whereas we need strong convergence of the gradient to pass to the limit in (10). Then we
propose to work on the time antiderivative. Let us denote qε = pε − ε ln(pε + ε). Then, we have
proved above that qε → p0 strongly as ε→ 0, and

∂tnε − ∂xxqε = n1εG1(pε) + n2εG2(pε). (24)

Let us introduce Qε a time antiderivative of qε, Qε(t, x) :=
∫ t

0 qε(s, x) ds. From the strong

convergence of qε, we deduce that Qε → P0 :=
∫ t

0 p0(s, x) ds as ε → 0. By a simple time
integration of (24), we have

∂xxQε = nε − nini
ε −

∫ t

0
(n1εG1(pε) + n2εG2(pε)) ds. (25)

From Lemma 2, we deduce that ∂xxQε is uniformly bounded in L1 ∩ L∞([0, T ] × (−L,L)).
Moreover, using the relation qε = pε − ε ln(pε + ε), we get

∂t∂xQε = ∂xqε =
pε

pε + ε
∂xpε.

From the uniform bound on ∂xpε in L2(QT ) in Lemma 3, we deduce that the sequence (∂t∂xQε)ε
is uniformly bounded in L2([0, T ]×(−L,L)). Thus we have obtained that the sequence (∂xQε)ε is
uniformly bounded in H1([0, T ]×(−L,L)). We deduce from the compact embedding of H1(QT )
into L2(QT ) that we can extract a subsequence, still denoted (∂xQε)ε, converging strongly in
L2(QT ) and weakly in H1(QT ) towards a limit denoted ∂Q. Since Qε → P0 as ε→ 0, we deduce
∂Q = ∂xP0.

Thus, we can pass to the limit ε→ 0 into the equation (25). We obtain

n0 − nini
0 − ∂xxP0 =

∫ t

0
(n10G1(p0) + n20G2(p0)) ds.

Multiplying by p0 and using the relation p0n0 = p0, we deduce the complementary relation (20).
This concludes the proof of Theorem 1.

3.4 Uniqueness of solutions

In this section, we focus on the uniqueness of solutions to the limiting problem (15)–(19). We
first observe that from (15) and (19), we have

∂tn0 − ∂xx(n0p0) = n10G1(p0) + n20G2(p0), in D′(QT ). (26)

Since we have the segregation property given by (19), we deduce that the support of n10 and
of n20 are disjoints. Then, by taking test functions with support included in the support of n10

or of n20 in the weak formulation of (26), we deduce that

∂tn10 − ∂xx(n10p0) = n10G1(p0), in D′(QT ), (27)

∂tn20 − ∂xx(n20p0) = n20G2(p0), in D′(QT ). (28)

We are going to prove that system (27)–(28) complemented with the segregation property (19)
and the relation (18) admits an unique solution. More precisely our result reads:
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Proposition 1. Let us assume that assumptions (11) on Gi, i = 1, 2 holds. There exists a
unique solution (n10, n20, p0) to the problem (27)-(28)-(18)-(19) with 0 ≤ ni0 ≤ 1 for i = 1, 2.

Proof. We follow the idea developped in [27] and adapt the Hilbert’s duality method. Consider
two solutions (n10, n20, p0) and (ñ10, ñ20, p̃0) of the system (27)-(28)-(18)-(19). Making the
difference and denoting qi = ni0p0 and q̃i = ñi0p̃0, for i = 1, 2, we have

∂t(n10 − ñ10)− ∂xx(q1 − q̃1) = n10G1(p0)− ñ10G1(p̃0), in D′(QT ),

∂t(n20 − ñ20)− ∂xx(q2 − q̃2) = n20G2(p0)− ñ20G2(p̃0), in D′(QT ).

We first observe that on the set {n10 > 0} ∩ {p0 > 0}, we have q1 = p0 from (18). Hence we
have n10G1(p0) = n10G1(q1). The same observation holds for the other terms in the right hand
side of these latter equations. For any suitable test functions ψ1 and ψ2, we have, for i = 1, 2,∫∫

QT

[
(ni0 − ñi0)∂tψi + (qi − q̃i)∂xxψi + (ni0Gi(qi)− ñi0Gi(q̃i))ψi

]
dxdt = 0. (29)

This can be rewritten as, for i = 1, 2,∫∫
QT

(ni0 − ñi0 + qi − q̃i)
(
Ai∂tψi +Bi∂xxψi +AiGi(qi)ψi − CiBiψi

)
dxdt = 0, (30)

where

Ai =
ni0 − ñi0

ni0 − ñi0 + qi − q̃i
, Bi =

qi − q̃i
ni0 − ñi0 + qi − q̃i

, Ci = −ñi0
Gi(qi)−Gi(q̃i)

qi − q̃i
,

and we define Ai = 0 as soon as ni0 = ñi0 and Bi = 0 as soon as qi = q̃i, whatever is the value
of their denominators. It is shown in Lemma 4 below that, for i = 1, 2, we have 0 ≤ Ai ≤ 1,
0 ≤ Bi ≤ 1, 0 ≤ Ci ≤ γ.

The idea of the Hilbert’s duality method consists in solving the dual problem, which is
defined here by, for any smooth function Φi, i = 1, 2,{

Ai∂tψi +Bi∂xxψi +AiGi(qi)ψi − CiBiψi = AiΦi, in QT ,

∂ψi(±L) = 0 in (0, T ), ψi(·, T ) = 0 in (−L,L).
(31)

If such a system admits a smooth solution, then, by choosing ψi as a test function in (30), we
get ∫∫

QT

(ni0 − ñi0 + qi − q̃i)AiΦi dxdt = 0.

From the expression of Ai, we deduce∫∫
QT

(ni0 − ñi0)Φi dxdt = 0,

for any smooth function Φi, i = 1, 2. It is obvious to deduce the uniqueness for the density.
Uniqueness for the pressure will follow from (29).

However, the dual problem (31) is not uniformly parabolic and its coefficients are not smooth.
Then, in order to make this step rigorous, a regularization procedure is required. It can be done
exactly as in [27, p 109-110]. For the sake of completeness of this paper, this regularizing
procedure is recalled in Appendix A.

Lemma 4. Under assumptions (11), we have 0 ≤ Ai ≤ 1, 0 ≤ Bi ≤ 1, 0 ≤ Ci ≤ γ, for i = 1, 2.
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Proof. We observe that, for i = 1, 2, ni0 > ñi0 implies qi ≥ q̃i. Indeed, either ñi0 = 0 and then
q̃i = 0 ≤ qi, or 0 < ñi0 < 1 and then from the segregation property (19) we have ñ0 = ñi0 and
from the relation (1− ñ0)p̃0 = 0 we deduce that p̃0 = 0, thus q̃i = 0 ≤ qi. Similarly, for i = 1, 2,
ñi0 > ni0 implies q̃i ≥ qi. By setting Ai = 0 whenever ñi0 = ni0, we conclude that 0 ≤ Ai ≤ 1.

By the same token, we show that, for i = 1, 2, qi ≥ q̃i implies ni0 ≥ ñi0. Indeed, from
qi = ni0p0 > 0, we deduce that ni0 > 0 which implies n0 = ni0, and then p0 > 0 implies from
(18) that ni0 = 1 ≥ ñi0. Hence, 0 ≤ Bi ≤ 1.

Finally, the bound on Ci is a direct consequence of the fact that Gi is nonincreasing and
Lipschitz (see (11)) and that 0 ≤ ñi0 ≤ 1.

4 Numerical simulations

4.1 Numerical scheme

The numerical simulations are performed using a finite volume method similar as the one pro-
posed in [12, 14]. The scheme used for the conservative part is a classical explicit upwind
scheme. To facilitate the reading of this paper, we recall here the scheme used. We divide the
computational domain into finite-volume cells Cj = [xj−1/2, xj+1/2] of uniform size ∆x with

xj = j∆x, j ∈ {1, ...,Mx}, and xj =
xj−1/2+xj+1/2

2 so that

−L = x1/2 < x3/2 < ... < xj−1/2 < xj+1/2 < ... < xMx−1/2 < xMx+1/2 = L,

and define the cell average of functions n1(t, x) and n2(t, x) on the cell Cj by

n̄βj (t) =
1

∆x

∫
Cj

nβ(t, x) dx, β ∈ {1, 2}.

The scheme is obtained by integrating system (1)-(2) over Cj and is given by

n̄k+1
βj

= −
F kβ,j+1/2 − F

k
β,j−1/2

∆x
+ n̄k+1

βj
Gβ(pkj ) for β = 1, 2, (32)

where F kβ,j+1/2 are numerical fluxes approximating −nkβukβ := −nkβ∂x(pkβ) and defined by:

F kβ,j+1/2 = (ukβj+1/2
)+n̄kβj + (ukβj+1/2

)−n̄kβj+1
, β ∈ {1, 2},

where

uβ
k
j+1/2 =

 −
pkj+1 − pkj

∆x
, ∀j ∈ {2, ...,Mx − 1},

0, otherwise ,

with the discretized pressure

pkj =
εnkj

1− nkj
, nkj = n̄k1j + n̄k2j .

We use the usual notation (u)+ = max(u, 0) and (u)− = min(u, 0) for the positive part and,
respectively, the negative part of u. Neumann boundary conditions are also implemented at the
boundaries of the computational model.

In order to illustrate the time dynamics for the model, we plot in Fig 1 the densities computed
thanks to the above scheme for ε = 1 at different times : (a) t = 0, (b) t = 0.1, (c) t = 0.3, (d)
t = 0.6, (e) t = 1 and (f) t = 2. For this numerical simulation, the densities are initialized by

nini
1 (x) = 0.98 1[−L;0.25](x) and nini

2 (x) = 0.98 1[0.25;L](x), (33)
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with L = 5, and the growth rates are defined by

G1(p) = 10(1− p/2) and G2(p) = 10(1− p). (34)

We recall that we have defined the parameters P 1
M and P 2

M as the values of the pressure for
which the growth functions vanish (see (11)). In this case their numerical values are given by
P 1
M = 2 and P 2

M = 1. Then, we define

N1
Mε = p−1(P 1

M ) =
P 1
M

ε+ P 1
M

and N2
Mε = p−1(P 2

M ) =
P 2
M

ε+ P 2
M

. (35)

Since the growth functions are different, clearly N2
Mε < N1

Mε.
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Figure 1: Densities n1 (red), n2 (blue) and pressure p as functions of position x at different
times: a) t = 0, (b) t = 0.1, (c) t = 0.3, (d) t = 0.6, (e) t = 1 and (f) t = 2; in the case ε = 1
with the initial densities and growth rate defined by (33)-(34).

In Fig 1 the red and blue species are initially segregated and equal to 0.5. At first the
dynamics is driven by the growth term, so the two species grow and reach their respective
maximal packing values N1

Mε and N2
Mε. Once this value is reached (t = 1, 2 on both panel

(ii), (iii) and (iv)), we observe two phenomena. First a bump is created on the left side of the
interface, in the domain of n2. This bump help the total densities to stay continuous, as it
joins the two maximal densities. It also means that, at the interface, the pressure is going to
be higher than the limit pressure P 2

M . Then the derivative of the pressure at the interface is
positive, which induces a motion of the interface representing the fact that the red species n1

pushes the blue species n2. This motion of the interface is the second phenomenon which is
observed.
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4.2 Influence of the parameter ε

In order to illustrate our main result on the limit ε→ 0, we show, in this section, some numerical
simulations of the model (1)-(2) when ε goes to 0. We also compare with the analytical solution
of the limiting Hele-Shaw free boundary model. To perform these simulations we use the
numerical scheme (32) complemented with the initial condition (33) and the growth function
(34). For the limiting model, we use the initial conditions

nini
1 (x) = 1[−L;0.25](x) and nini

2 (x) = 1[0.25;L](x),

and the growth function (34). The analytical expressions of the solution to the limiting Hele-
Shaw system is computed in [14].

Fig 2 displays the time dynamics of the densities for different values of ε: (a) ε = 1, (b)
ε = 0.1, (c) ε = 0.01, and (d) ε = 0.001, along with solution to the Hele-Shaw system (e). For
all simulations, the densities are plotted at times t = 0.5, t = 1 and t = 1.5.

We observe in Fig. 2 that the time dynamics of the numerical solutions is similar for each
case and follows the dynamics presented above for the case ε = 1. The main difference observed
is the maximal packing value N1

Mε and N2
Mε. Indeed since the maximal packing values are

given by (35), when ε → 0, the maximal packing value converges to 1. This is consistent with
the numerical results shown in Fig. 2. In addition we observe that as ε decreases the stiffness
of the densities increases. In overall we observe that as ε → 0 densities converge to Heaviside
functions.

4.3 Particular solutions: tumor spheroid

One interested application of this study is tissue development. Since we consider a system with
two populations of cells, we can for example consider the case of tumour with proliferative cells,
whose density is denoted n2, and quiescent cells, whose density is denoted n1.

Solution of the limiting Hele-Shaw problem. We assume that initially the tumor is a
spheroid centered in 0 and is composed by a spherical core representing the quiescent cells
surrounded by a ring representing the proliferative cells. Then, we are looking for particular
solution of the limiting Hele-Shaw problem (1)-(2) under the form:

n1(t, x) = 1Ω1(t)(x) with Ω1(t) = {n1(x, t) = 1} = B[−R1(t),R1(t)],

n2(t, x) = 1Ω2(t)(x) with Ω2(t) = {n2(x, t) = 1} = B(−L,L) \B[−R1(t),R1(t)].

The radius R1(t), with R1(t) < L, is computed according to the geometric motion rules{
R′1(t) = −∂xp(R1(t)),

R1(0) = R0
1,

where p is the solution of

−∂xxp = n1G1(p) + n2G2(p) in Ω1(t) ∪ Ω2(t).

Such functions n1 and n2 are solutions to the limiting Hele-Shaw problem (1)-(2). Indeed by
differentiating the densities, in the distributional sense, we get,

∂tn1 = R′1(t)(δx=R1(t) − δx=−R1(t)),

∂x(n1∂xp) = (δx=R1(t) − δx=−R1(t))∂xp+ 1[−R1(t),R1(t)]∂xxp.
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(e) Hele-Shaw system

Figure 2: Densities n1 (red), n2 (blue) as functions of position x at different times: (i) t = 0.5,
(ii) t = 1, (iii) t = 1.5; and for different values of ε: (a) ε = 1, (b) ε = 0.1, (c) ε = 0.01, (d)
ε = 0.001, (e) Hele-Shaw system.
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Since R′1(t) = −∂xp(R1(t)), it follows that

∂tn1 − ∂x(n1∂xp) = 1[−R1(t),R1(t)]G1(p) = n1G1(p).

By applying the same computation on n2 we get,

∂tn2 − ∂x(n2∂xp) = n2G2(p).

Analytical solution. As this paper is reduced to the case of dimension 1, we can compute
the exact solution of the limiting Hele-Shaw problem (1)-(2) with this initial configuration for
some simple expression of the growth terms G1 and G2. For instance, let us suppose that the
growth terms are linear,

G1(p) = g1(P 1
M − p) and G2(p) = g2(P 2

M − p).

This choice means that as the pressure increases, the tumor will grow more slowly, until the
pressure reach a critical value (P 1

M or P 2
M depending of the species) where the growth rate takes

negative values, modelling the apoptosis of cells. The solution of the pressure equation is given
by,

p(x, t) =

{
(P 1

M − P 2
M )
√
g2 sinh(

√
g2(R1(t)−L)) cosh(

√
g1x)

λ on Ω1(t),

(P 1
M − P 2

M )
√
g1 cosh(

√
g2(x−L)) sinh(

√
g1R1(t))

λ on Ω2(t).

with

λ =
√
g1 cosh(

√
g2(R1 − L)) sinh(

√
g1R1)−√g2 sinh(

√
g2(R1 − L)) cosh(

√
g1R1),

Computing the derivatives at the interface R1(t) we deduce that,

R′1(t) = −√g1g2(P 1
M − P 2

M )
sinh(

√
g2(R1(t)− L)) cosh(

√
g1R1(t))

λ
. (36)

We are interested in the study of the evolution of R1 in time, in function of the parameters
g1, g2, P

1
M , P

2
M . Given that 0 ≤ R1(t) ≤ L, it is straightfoward that λ ≤ 0. From (36), we

deduce that the sign of R′1(t) ≥ 0 is the same as the sign of P 1
M − P 2

M .

Numerical simulations Finally we show some simulations of the mechanical problem for
the case of spheroid tumor growth. We run the simulations with ε = 0.01 as we have shown in
Section 4.2 that the simulations are close enough from the free boundary model. We consider
two populations with the same space configuration as at the beginning of this section,

n1 = 0.5 1B[−R1(t),R1(t)]
and n2 = 0.5 1B[−L,L]\[−R1(t),R1(t)]

,

with
R1(0) = 0.5 and R2(0) = 1.5.

We fix the parameter ε to the value 1. The growth rates are going to defined the dynamics of
the two populations. In the first example, we choose growth functions such that we observe
death of the inner species n1, which corresponds to the apoptosis of one population of cells.
The growth functions are defined by

G1(p) = 10(1− p) and G2(p) = 10(1− p/2), (37)
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(a) Case 1
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(b) Case 2

Figure 3: Densities n1 (red), n2 (blue) and p (black) as functions of position x for different
growth function at different times: (i) t = 0.3, (ii) t = 0.6, (iii) t = 1, (iv) t = 1.5.

In a second example we display an example where the species n1 grows and pushes the sur-
rounding species n2.

G1(p) = 10(4− p) and G2(p) = 10(1− p/2). (38)

In Fig 3, we display the time dynamics of the densities of these two examples at different
time step: (i) t = 0, (ii) t = 0.1, (iii) t = 0.3, (iv) t = 0.6, (v) t = 1. It illustrates the two
different behaviours mentionned above by (37) and (38). In Fig 3 (a) the red species grows and
the blue species disappears since the pressure in the domain is bigger that P 1

M . In Fig 3 (b),
the blue species pushes the red species and propagates.
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A Uniqueness of solutions: Regularized dual problem

In this appendix we prove rigorously Proposition 1 using a regularization procedure for the dual
problem 31. We follow closely the ideas in [27, p 109-110] which are recall here for the sake of
completness of this paper. Since the coefficients Ai, Bi are not strictly positive and not smooth,
then we need to regularize the problem 31. For i = 1, 2, let Aki , B

k
i , Cki and Gki be sequences of

smooth functions such that,

‖Ai −Aki ‖L2(QT ) <
αi
k
,

1

k
< Aki ≤ 1,

‖Bi −Bk
i ‖L2(QT ) <

βi
k
,

1

k
< Bk

i ≤ 1,

‖Ci − Cki ‖L2(QT ) <
δ1,i

k
, 0 ≤ Cki ≤M1,i, ‖∂tCki ‖L1(QT ) ≤ K1,i,

‖Gi(qi)−Gki ‖L2(QT ) <
δ2,i

k
, |Gki | < M2,i, ‖∂xGki ‖L2(QT ) ≤ K2,i,

for some constant αi, βi, δ1,i, δ2,i,M1,i,M2,i,K1,i,K2,i. For any smooth function Φi, i = 1, 2, we
consider the following regularised dual system,{

∂tψ
k
i +

Bki
Aki
∂xxψ

k
i +Gki ψ

k
i − Cki

Bki
Aki
ψki = Φi, in QT ,

∂xψ
k
i (±L) = 0 in (0, T ), ψki (·, T ) = 0 in (−L,L).

(39)

As the coefficients
Bki
Aki

for i = 1, 2, are positive, continuous and bounded below away from zero,

the dual equation is uniformly parabolic in QT . Then we can solve it and we denote ψki the
solution of (39). This solution ψki is smooth and can be used as a test function in (30).

Using (30) and (39), for i = 1, 2,∫∫
QT

(ni0 − ñi0)Φi dxdt = I1,i − I2,i − I3,i + I4,i,

where

I1,i =

∫∫
QT

(ni0 − ñi0 + qi − q̃i)
Bk
i

Aki
(Ai −Aki )(∆ψki − Cki ψki ) dxdt,

I2,i =

∫∫
QT

(ni0 − ñi0 + qi − q̃i)(Bi −Bk
i )(∆ψki − Cki ψki ) dxdt,

I3,i =

∫∫
QT

(ni0 − ñi0)(Gi(qi)−Gki )ψki dxdt,

I4,i =

∫∫
QT

(ni0 − ñi0 + qi − q̃i)Bi(Ci − Cki )ψki dxdt.

We intend to show that at the limit k → +∞, Ij,i converges to 0 for j = 1, 2, 3, 4 and i = 1, 2.
To show the convergence, we are going to find estimates on ψki and its derivative:

• As ψki is solution of (39) with Cki nonnegative and Gki uniformly bounded, from the
maximum principle we get,

‖ψki ‖L∞(QT ) ≤ κ1,

where κ1 is independent of k.
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• Multipling (39) by ∂xxψ
k
i − Cki ψki and integrating on Ω× (t, T ), we get

1

2
‖∂xψki (t)‖2L2(−L,L) +

∫∫
Ω×(t,T )

Bk
i

Aki
|∂xxψki − Cki ψki |2 dxdt = −

∫ L

−L
(Cki

(ψki )2

2
)(t) dx

+

∫∫
(−L,L)×(t,T )

(
− ∂tCki

(ψki )2

2
−Gki |∂xψki |2 − ψki ∂xGki ∂xψki + Cki G

k
i (ψ

k
i )2

+ψki ∂xxΦi − ΦiC
k
i ψ

k
i

)
dxdt

≤ K
(

1− t+

∫ T

t
‖∂xψki (s)‖2L2(−L,L)ds

)
,

(40)

with K a constant independent of k. By using Gronwall lemma we get the following
bound,

sup
0≤t≤T

‖∂xψki ‖L2(QT ) ≤ κ2,

with κ2 independent of k.

• Using (40), we get

‖
(Bk

i

Aki

)1/2
(∂xxψ

k
i − Cki ψki )‖L2(QT ) ≤ κ3,

with κ3 independent of k.

We use these bounds to prove the convergence of the integrals Ij,i for j = 1, 2, 3, 4 and i = 1, 2.
We get,

I1,i = K̃

∫∫
QT

Bk
i

Aki
|Ai −Aki ||∂xxψki − Cki ψki | dxdt ≤ K̃‖(

Bk
i

Aki

)1/2
(Ai −Aki )‖L2(QT )

≤ K̃k1/2‖(Ai −Aki )‖L2(QT ) ≤ K̃αk−1/2

I2,i = K̃

∫∫
QT

|Bi −Bk
i ||∂xxψki − Cki ψki | dxdt ≤ K̃‖(

Aki k
1/2

Bk
i

)1/2
(Bi −Bk

i )‖L2(QT )

≤ K̃k1/2‖(Bi −Bk
i )‖L2(QT ) ≤ K̃βk−1/2,

I3,i =

∫∫
QT

|ni0 − ñi0||G1(q1)−Gki ||ψki | dxdt ≤ K̃‖(Gi(qi)−Gki )‖L2(QT ) ≤ K̃
δ2,i

n
,

I4,i = K̃

∫∫
QT

Bi|Ci − Cki ||ψki | dxdt ≤ K̃‖(Ci − Cki )‖L2(QT ) ≤
K̃

n
.

where K̃ is a contant independent of of k. It justifies that limk→+∞ Ij,i = 0 for j = 1, 2, 3, 4 and
i = 1, 2. Then

lim
k→+∞

∫∫
QT

(ni0 − ñi0)Φi dxdt = 0,

for any smooth function Φi for i = 1, 2. This implies that n10 = ñ10 and n20 = ñ20. Then, we
deduce from (29), ∫∫

QT

[
(qi − q̃i)∂xxψi + ni0(Gi(qi)−Gi(q̃i))ψi

]
dxdt = 0.

By using ψi = qi − q̃i, we recover qi = q̃i for i = 1, 2. It concludes the proof.
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