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An electron density (ED)-based methodology is developed for the automatic identification of in-
termolecular interactions using pro-molecular density. The expression of the ED gradient in terms
of atomic components furnishes the basis for the Independent Gradient Model (IGM). This model
leads to a density reference for non interacting atoms/fragments where the atomic densities are
added whilst their interaction turns off. Founded on this ED reference function that features an
exponential decay also in interference regions, IGM model provides a way to identify and quan-
tify the net ED gradient attenuation due to interactions. Using an intra/inter uncoupling scheme,
a descriptor (δginter) is then derived that uniquely defines intermolecular interaction regions. An
attractive feature of the IGM methodology is to provide a workflow that automatically generates
data composed solely of intermolecular interactions for drawing the corresponding 3D isosurface
representations.

1 Introduction

Non-covalent interactions (NCI) are responsible for many prop-
erties of condensed phases, including for instance the 3-
dimensional arrangement that the biological polymers adopt
(DNA double helix, proteins). They also play a key role in ligand-
protein bio-molecular recognition in the field of drug-design. This
class of interactions spans a wide variety of attraction and repul-
sion forces between atoms or molecules, including van der Waals
(vdW) interactions and hydrogen-bonds. Beyond the standard ex-
isting topological analysis tools of the chemical bond (AIM1,2and
ELF3), in 2010, Johnson et al. presented a new approach, the
so-called NCI analysis.4 Also based on the electron density (ED)
topology, this method enables the identification and visualization
of regions of weak interactions in the 3D real space by providing
chemically intuitive iso-surfaces of the reduced density gradient,
s (also referred to as RDG):
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s =
1

2(3π2)1/3

|∇∇∇ρ(r)|
(ρ(r))4/3

. (1)

where ρ represents the ED and |∇∇∇ρ(r)| stands for the norm of
the ED gradient vector. Initially introduced in DFT developments,
s(ρ) has long been used to incorporate corrections to the homo-
geneous electron gas in the expression of exchange correlation
functionals. The needed input data for this calculation is the elec-
tron density ρ and its gradient, collected at each point of a grid
encompassing the two interacting molecules. In order to differen-
tiate repulsive from attractive interactions the sign of the second
eigenvalue λ2 of the ED Hessian matrix is required.4

In the absence of interactions, s(ρ) shows an overall aρ−1/3

shape. In an isolated atom, far from the nucleus, both ρ4/3 (de-
nominator) and its gradient (numerator) are very small. But be-
cause the former approaches zero more rapidly than the latter,
their ratio grows exponentially in the atomic tail, so that it tends
to infinity at very low density values. Similarly, in high-density re-
gions, towards the nuclei, ρ4/3 dominates over the gradient and
accordingly, s(ρ) steadily decreases. In molecular systems, the
2D plot of s(ρ) exhibits new features. Deviations from the expo-
nential decay can be observed. Mapping them back to real space,
these points highlight 3D regions associated with molecular inter-
actions by chemists. Covalent bonds are identified by troughs of
RDG at large densities while spikes at low densities reveal non-
covalent interactions, such as vdW contacts or hydrogen-bonds.

Until the recent work of Boto et al.5, the reduced density gra-
dient was perceived as a DFT parameter measuring the inho-
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mogeneity of the system (a correction to uniform electron gas).
R. Boto et. al. recently presented an interpretation of s(ρ) in
terms of the bosonic kinetic energy density since s2(ρ) is pro-
portional to the ratio of two kinetic energies : τw/τT F (τw is the
von Weizsäcker kinetic energy density, τT F is the homogeneous
electron gas kinetic energy density). More precisely, τw(ρ) =

1/8|∇∇∇ρ(r)|2/ρ(r) is the kinetic energy density of a many-electron
system behaving as bosons (without the constraint of the Pauli
exclusion principle ).6 It is a non homogeneous lower boundary
for the total kinetic energy density scaled by τT F (r) = CF ρ(r)5/3,
CF = 3/10(3π2)2/3 to turn off the first order electron density de-
pendence of the kinetic energy density. The new interpretation
given by Boto et al. makes an interesting connection between s(ρ)
and chemical bonding through the kinetic energy density concept
known to play a critical role upon bond formation.

The NCI methodology was implemented by one of the au-
thors,7 allowing to plot the reduced density gradient s(ρ) versus
ED from either quantum mechanical ED or from pro-molecular
densities. The latter densities are the sum of atomic densities,
without the relaxation induced by the molecular potential.8,9

This non-relaxed ED is calculated at a given point, (x,y,z), by
summing the spherically averaged neutral atomic densities ρi cen-
tered at the atomic positions (xi,yi,zi): ρ(x,y,z) = ∑N

i=1 ρi(ri). In
the program NCIPLOT-1.0, for the first 18 elements of the periodic
table, the isolated atomic density ρi is obtained from a linear com-
bination of simple exponential functions: ρi(ri) = ∑ns

j=1 ai, je−bi, jri

with ai, j and bi, j (both having positive values) adjusted to closely
fit spherically averaged ab initio ED for atom i for each atomic
shell j. The ED x component of the gradient follows from this
definition (similar equations apply to components y and z):

∂ρ

∂x
=

N

∑
i=1

∂ρi

∂x
=

N

∑
i=1

xi− x
ri

ns

∑
j=1

ai, jbi, je−bi, jri (2)

where ri refers to the radial distance from atom i. However, s(ρ)
does not allow an ab-initio separation in intramolecular and in-
termolecular interactions, which is of crucial importance in the
analysis of big systems. For instance, when studying the interac-
tions between a ligand and a protein, it is obvious that the protein
itself involves internal hydrogen-bonds and van der Waals inter-
actions that mix with the ligand-protein interactions in the NCI
plot. The initial NCI approach does not provide an “absolute”
way to separate these contributions. In the original code, this
problem is addressed by means of a density threshold value used
to discard the grid nodes for which more than a fraction (default
value is 0.95) of the total pro-molecular density comes from only
one molecule. This limit is however arbitrary.

Another difficulty concerns the integration of quantities
over NCI regions. Actually, recent applications of NCI tackle
the problem of finding a relationship between NCI regions
and energetic properties.10,11 These approaches involve the
integral of local quantities over the space representing the
interactions. To identify this region, J. Contreras-García proposes
a multiple-stage approach.10,12 First, both the monomer and
dimer NCI 2D plots are determined. Next, the lower edge
of the monomer plot is splined. Then, only the points of the

dimer plot lying below this upper-limit are considered for the
integration. However, this approach has a major drawback. In
the general case, a heterodimer is considered leading to two
reference splines. As a result, the border delimiting the NCI
region in the plot of the interacting system is no longer well
defined. Another approach to find the relationship between
stabilization energy and ED topological features was developed
by G. Saleh et al.11 They performed the integration of the kinetic
energy density over NCI grid points having a RDG value below
a given threshold (s=0.5). However, the choice of isosurface
is arbitrary and ignores some grid points in the interaction region.

In this study, we propose a way to solve these issues for pro-
molecular densities by accurately defining the intermolecular in-
teraction region in the 2D NCI plot s(ρ). Starting on a very sim-
ple diatomic case, we focus on the origin of the trough associated
with the interaction in the NCI plot. This preliminary approach
leads to a deeper understanding of the concept of interaction in-
volved in the NCI methodology. The effect on several local in-
dexes for intermolecular interactions is analysed. Consequently,
we develop a new pro-molecular approach able to identify and
isolate the interactions between molecules or, more generally, be-
tween user-defined fragments.

2 Methodological approach
2.1 The Independent Gradient Model

The function s was initially chosen over other gradient function-
als due to its better enhancement of non-covalent features (see
S.I. in Ref.4). The gradient collapse in the s(ρ) plots plays a key
role in the success of identifying interactions. It is then impor-
tant to look closer at the origin of this feature. The emergence of
opposed sign in the sum of (eqn (2)) will determine or not the
apparition of s(ρ) drops. However, talking about a "drop" implic-
itly involves that there is a reference clear to the human eye. In
this contribution, we undertake the search of such reference.

In a molecular system the atoms represent electron density
sources. In regions between two sources there is a crucial atten-
uation in the total gradient such that the numerator of s(ρ) sud-
denly reaches lower values than those found in the corresponding
non-interacting system having the same electron density. And this
is so even at the pro-molecular level. This non-interacting system
corresponds to a virtual reference in which the individual terms
involved in the expression of ∇∇∇ρ are added up in absolute value
(eqn (3)), yielding |∇∇∇ρ IGM | as an upper limit to ∇∇∇ρ with IGM
standing for the Independent Gradient Model.(

∂ρ

∂x

)IGM

=
N

∑
i=1

∣∣∣∣∣∂ρi

∂x

∣∣∣∣∣= N

∑
i=1

|xi− x|
ri

ns

∑
j=1

ai, jbi, je−bi, jri (3)

This is made apparent in Fig 1 for a molecular system made of
two nitrogen atoms. While the two atomic contributions ∂ρA

∂x and
∂ρB
∂x add up at point (1) in (eqn (2)) for atoms A and B, respec-

tively, they have opposite signs at point (2). A similar concept had
been developed by Wilson and Goddard13 for orbital pairs hav-
ing opposite gradients leading to the principle of orbital contra-
gradience needed for a chemical bond to be formed. When con-
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Fig. 1 schematic representation of pro-molecular atomic electron
densities ρA and ρB for inter-nuclear regions and outside the atomic
contact zone.

sidering the sum of all individual atomic gradients at one point,
this interference phenomenon weakens the total gradient. This
explains the fact that bond critical points appear already at the
promolecular level, with quantum interference usually just mod-
ulating their final position and properties. The gradient collapse
can be assessed with respect to the gradient vector ∇∇∇ρ IGM ob-
tained without interference, i.e. by adding the absolute values of
every atomic contribution at point 2 while considering the same
total ED ρ in equation (3). The molecular system associated with
the IGM model is thus virtual. Each atom preserves its initial dis-
tance ri to the grid node during the calculation but the destructive
interference of gradients is turned off.
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Fig. 2 (a) sIGM(ρ) (dashed blue line), s(ρ) (solid red line, atomic
behavior with dotted red line), and deviation δ s between them (black
line) (b) |∇∇∇ρ IGM | (blue dashed), |∇∇∇ρ| (red), and corresponding difference
|∇∇∇ρ IGM |− |∇∇∇ρ| (black). Properties calculated along the inter-nuclear axis
for N2 with the zero set at the BCP.

Thus, we can define a new index referred to as sIGM based on
|∇∇∇ρ IGM |, the norm of the ED gradient calculated within the In-
dependent Gradient Model. Fig 2 illustrates this new function
(in blue color, dashed line) for the nitrogen system. Since the
interference between NA and NB is disabled in this independent
gradient model, sIGM is always greater or equal to s, the largest
deviation occurring at the bond critical point (BCP). In the atomic
region both functions are superposed whereas a deviation is ob-
served in the contact zone. An accurate definition of the interac-
tion region results when plotting the difference, δ s (black line on
Fig 2):

δ s = sIGM− s (4)

By plotting the numerators of sIGM and s (right panel of Fig
2), although both decrease when moving towards the BCP, |∇∇∇ρ|
decays faster than |∇∇∇ρ IGM |. This is the reason why δ s and
δg = |∇∇∇ρ IGM | − |∇ρ∇ρ∇ρ| functions have the same shape. It emerges
from this short analysis that troughs in the 2D plot of s are caused
at the pro-molecular level by ED gradient collapses that can also

be detected and quantified by computing the new descriptor δg:

δg = |∇∇∇ρ
IGM |− |∇∇∇ρ| (5)

δg relies on the independent gradient model which provides
an upper limit corresponding to a situation where the gradient
interference is always constructive. In the following, for the sake
of simplicity, this reference will be referred to as "non-interacting"
reference. This ensures that non-zero values of δg exclusively cor-
respond to molecular interaction situations (intra- or intermolec-
ular). Within this approach, the presence or not of opposite signs
terms in the components expression giving |∇∇∇ρ| serve to define
the nature of the region. Thus, points where all terms forming
component ∂ρ/∂x have the same sign are outside the interaction
region. In contrast, points inside the interaction region give rise
to partial or total cancellation in |∇∇∇ρ|. This cancellation will de-
pend on the relative position of atoms (their densities) and their
chemical hardness (exponential exponents).

A deeper understanding of the physical meaning of δg can be
achieved from a simple exponential model. Assuming two inter-
acting atoms A and B (an extension of the situation described in
Fig 1), whose tails can be described by an exponential with char-
acteristic exponents α and β , respectively, their densities, ρi(x)
along the bonding direction, x, will be given by:

ρA = e−α(x−xA) (6)

ρB = e−β (xB−x) (7)

where we have assumed that atom A is at xA and atom B at xB

(xA<xB) and only the bonding direction is taken into considera-
tion for the sake of clarity. Hence, the density gradient is given by
∇∇∇ρ = −αρA +βρB, so that the position of the bond critical point
is given by: αρA = βρB. The analytic expression for δg depends
on the location of the point studied:

• before the BCP (i.e. within A’s Bader basin):αρA > βρB and
δg = 2βρB = 2∇∇∇ρB

• after the BCP (i.e. within B’s Bader basin):αρA < βρB and
δg = 2αρA = 2∇∇∇ρA

In other words, comparing density gradients with and without
interference gives rise to a quantity, δg, which highlights in each
Bader atom the penetration of the density from the neighboring
one.

2.2 The descriptor’s dimension

The starting point and rational for this descriptor is the idea that
interaction zones are regions of space where atomic electron den-
sities interfere.14,15 From what we have seen in Section 2.1, these
regions can be defined comparing the sign of the different pro-
molecular atomic ED gradient components which contribute to
the resulting gradient |∇∇∇ρ|.

Several descriptors have been introduced in the literature in
which the atomic overlapping region is detected thanks to the
deviations of the ED from the single-exponential behavior nor-
mally observed in monoatomic regions (e.g. NCI peaks).4,16,17
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This ability to detect the interacting region descends from the ∇∇∇ρ

term, although different dimensions are obtained upon division
by ρn (e.g. n=0 in ∇∇∇ρ; n=1 in LED16; n=4/3 in NCI4).

The exponent n determines the features obtained in the analy-
sis. In NCI, the Thomas-Fermi scaling gets rid of the electron den-
sity dependence, which is convenient to observe all interactions
on the same grounds. Thus, a very low value of s will enable to
visualize all interactions around the BCPs. However, it makes the
s(ρ) absolute value not characteristic of the molecular regions. In-
deed, the s value will not enable to distinguish strong from weak
interactions. Moreover, if high density cutoffs are used, undesir-
able atomic features will also appear18. Hence, within the NCI
framework, a preliminary visual inspection of the 2D s(ρ) plot is
necessary to check whether a point deviates from the exponential
reference behavior.

Other non-dimensionless quantities have been proposed, e.g.
LED,16,19 which also identify deviation from exponential behav-
ior. These provide dimension dependent quantities, which thus
depend on the electron density. Hence, on the one hand they give
very different magnitudes in the core and the valence, but on the
other hand, this dependence enables to identify the region. The
δg descriptor belongs to this family.

Along this contribution we will mainly focus on s, g and τw

(introduced above). In the latter case, we define δk as

δk = |τ IGM
w |− |τw|=

1
8
(∇∇∇ρ IGM)2− (∇∇∇ρ)2

ρ
(8)

2.3 Automatic detection of intermolecular interactions
Calculating the δg gradient-based descriptor for two interacting
species A and B will detect and isolate all gradient interferences
irrespective of whether they are associated with intramolecular
(or even interatomic, in between different shells) or intermolec-
ular interactions. However, the independent gradient model can
be adapted in such a way that only the interactions between the
two molecules cancel while intramolecular gradient features are
preserved by splitting the sum over atoms in (eqn (3)) in two
intramolecular building-blocks:(

∂ρ

∂x

)IGM,inter

=

∣∣∣∣∣ NA

∑
i=1

∂ρi

∂x

∣∣∣∣∣+
∣∣∣∣∣ NB

∑
i=1

∂ρi

∂x

∣∣∣∣∣ (9)

Again, the associated molecular system is virtual. Each inter-
acting partner preserves its initial geometry and atoms interact
within each molecule but no grid node lie between these two vir-
tual fragments. In this “IGM,inter” model, only the intermolec-
ular interactions are canceled. Therefore, uncoupling the intra-
and intermolecular contributions leads to:

δginter = |∇∇∇ρ
IGM,inter|− |∇∇∇ρ| (10)

δ sinter = sIGM,inter− s (11)

δkinter = kIGM,inter− k (12)

so that

δgintra = |∇∇∇ρ
IGM |− |∇∇∇ρ

IGM,inter| (13)

δ sintra = sIGM− sIGM,inter (14)

δkintra = kIGM− kIGM,inter (15)

with δg = δgintra +δginter and similar for s and k.
All computations were carried out with the NCIgpu code for

pro-molecular ED.20 Full geometry optimizations were performed
at the B3LYP/6-311++G** level of theory in gas phase using the
Gaussian 09 package.21 All minima were carefully characterized
through harmonic frequency analysis (stationary points with no
imaginary frequencies).

3 Results and discussion
To explore the possibilities provided by the various descriptors,
we first analyze the water dimer. As can be seen in Fig 3a, super-
position of s(ρ) and |∇∇∇ρ| on the same graph clearly shows that the
gradient carries the information on the interaction, the division
by ρn (n≥1) amplifying the signal in NCI and LED. Compared to
the standard NCI plot, using the |∇∇∇ρ|IGM gradient norm instead
of |∇∇∇ρ| in the calculation of s(ρ), but using the same value of ρ,
leads to a new NCI plot (sIGM(ρ), panel (b) ) without any spike:
this is our interaction-less reference. This 2D plot has the over-
all shape characteristic of a system without any interaction in the
NCI index representation, nor covalent interactions neither weak
interactions. This supports the idea that, given a grid node, taking
the real ED but considering the independent gradient model pro-
vides suitable gradient reference for all kind of situations in the
NCI plot representation within the pro-molecular approximation:
a non-interacting reference which moreover enables to identify
intermolecular or intramolecular cases. Furthermore, the uncou-
pling scheme we propose in order to specifically remove the in-
termolecular troughs in s(ρ) delivers the expected result in Fig 3c
where the sharp spike associated with the hydrogen-bond in the
standard NCI plot of the water dimer is now eliminated whereas
the intramolecular bond remains.

Let’s now compare the results of the IGM reference on the dif-
ferent descriptors. The δg descriptor is plotted as a function of the
signed ED (sign(λ2)ρ) in panel (d) of Fig 3. It displays a broad
spike in the high-density, high-δg region associated with covalent
bonds whilst the hydrogen-bond is revealed at low-density, low-
δg values by two small and sharp spikes known to correspond to
attractive and repulsive contributions on the s(ρ) plot. This makes
sense since larger gradient interferences are expected in covalent
regions compared to non-covalent ones. Due to the dimension of
∇∇∇ρ analyzed in the previous section, δg has different values at the
various BCPs, hence the magnitude of δg will be larger the more
|∇∇∇ρ| collapses (i.e. in stronger bonds). This means that the value
of δg itself can be used to distinguish bond types, just like in the
case of LED. Moreover, thanks to the IGM,inter splitting scheme,
an automatic detection of inter- and intramolecular interactions
can be processed (panels (e) and (f), respectively). This approach
has its drawback, since the pro-molecular approach fails for cova-
lent bonds. However, as a first order approximation, it enables to
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Fig. 4 Evolution of (s, δ s) or (∇∇∇ρ, δg) along the reaction path of the water dimer dissociation.
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distinguish intra from intermolecular bonds in big systems, which
is the main aim of this work. We will dwell on how to adapt this
model to relaxed densities in future contributions.

In Fig 4, we examine the behavior of the s function subjected
to the IGM model reference as we stretch the hydrogen bond.
A well-delimited covalent region is observed in the resulting δ s
function. At low density, a peak associated with the hydrogen-
bond is observed. But in addition, an extremely sharp and very
large spike invariably appears near ρ = 0, irrespective of the
dimer separation distance. This undesired feature results from
the mathematical form of δ s and is explained in more details in
ESI. In contrast, the δginter representation results in well delim-
ited spikes at low ED regions (bottom of Fig 4) with peaks grad-
ually vanishing as the H· · ·O dimer distance increases. This de-
scriptor is visually more appealing for the IGM approach, so we
will continue our analysis of intermolecular interactions within
the IGM model with δginter.

Fig. 5 Comparison between isosurfaces (isovalues in a.u.) for the water
dimer; δginter(ρ) at (a) δginter = 0.034, (b) δginter = 0.012 and s(ρ) at (c)
s = 0.4, (d) s = 0.74 and δkinter(ρ) at (e) δkinter = 0.012, (f) δkinter = 0.005;
color coding in the ED range −0.05 < sign(λ2)ρ <+0.05 a.u.

The next logical step is to use the data from the 2D plot of
δginter(ρ) (Fig 3e) to build 3D plots depicting isosurfaces that
represent intermolecular interactions (Fig 5a and 5b obtained for
two different isocontour values). By definition, these surfaces en-
close the BCP. δginter surfaces can be colored according to the
standard NCI approach. That is, the sign of the second eigen-
value of the ED hessian matrix is used to differentiate between
attractive and repulsive situations in regions of the δginter(ρ) sur-
face where the local electronic charge concentrate (λ2 < 0) or is
depleted (λ2 > 0) perpendicular to the interatomic line. As in
the case of s(ρ), δginter is centered around the BCP. It gives rise
to a coherent picture with stabilizing interactions mainly accumu-
lated in the center of the envelop (i.e., the BCP shows the greatest
density and λ2 < 0, although not directly apparent in Fig 5a and
b showing isosurfaces enclosing that BCP). The shape of δginter

differs however from that of s(ρ) displayed in panels c and d. In-
deed, not dividing by ρ4/3 in δginter alters the shape of the peaks
leading to broader and slightly convex isosurfaces. This is not due
to the IGM model. Indeed, δ sinter (s subjected to the IGM model)
is shown to lead to a narrow isosurface in the interaction region
like s(ρ) does (as explained in ESI, see Fig S2b).

Finally, the δkinter isosurface of the water dimer is displayed
in Fig 5e and 5f for two different isovalues. δkinter provides the
release in kinetic energy density τw, within the bosonic model, in
going from our IGM model to the real system. We observe here
that the most significant drops in kinetic energy τw with respect
to the IGM model expand over a greater volume along the H · · ·O
hydrogen bond due to the division by ρ in τw. The δkinter 2D plot
employed to draw the associated isosurface for the water dimer
is given in Electronic Supplementary Information (Fig S1). It is
worth noting that, though a division by ρ is performed in the
calculation of δk, this descriptor does not lead to an artifact as
described earlier in this paper for the δ s descriptor near ρ = 0.
The reason is that the numerator of δk approaches zero more
rapidly than ρ does in that case.

Fig. 6 Intramolecular weak interaction in ethane-1,2-diol; (a) |∇∇∇ρ| 2D
plot; (b) |∇∇∇ρ|IGM (c) δg (d) δk, (e) AIM bond critical points (purple) 22, (f)
δg(ρ) = 0.016 a.u. isosurface, (g) δk(ρ) = 0.005 a.u. isosurface; color
coding in the ED range −0.03 < sign(λ2)ρ <+0.03 a.u.

Similarly to the reduced density gradient used in the NCI ap-
proach, δg can also reveal interactions beyond the presence of
critical points.23 This fact is illustrated in the case of the ethane-
1,2-diol on Fig 6. The BCPs in the molecule are reported on Fig
6e (small purple spheres) and do not reveal any critical point be-
tween the hydroxyl groups. This is confirmed by the plot of |∇∇∇ρ|
which never falls to zero in the low ED region around ρ = 0.02 a.u.
(Fig 6a). However, a small peak shouldering in the main covalent
spike occurs at low δg (δk) low ED values, revealing this interac-
tion on the 2D plot (Fig 6c and 6d). The corresponding isosurface
appear between the hydroxyl groups demonstrating the ability of
the δg and δk descriptors to evidence weak interactions in the
absence of critical point. It is to be noticed that moving from the
δg to the δk descriptor slightly alters the 2D plot representation,
leading to peaks less well-characterized. The δginter (δkinter) de-
composition scheme was not used here (ethanediol) to directly
extract this weak interaction in an automatic way because this is
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an intramolecular contact and we wanted to avoid the definition
of arbitrary fragments. This interaction was not found within AIM
(analysis of ∇∇∇ρ) when only looking at BCPs. However, with IGM,
∇∇∇ρ (the basis of AIM) allows for recovering very weak intramolec-
ular interactions if we consider ∇∇∇ρ deformations.

These new descriptors can also describe van der Waals (vdW)
interactions. We now extend the analysis to the heterodimer dis-
played in Fig 7 which bears different kinds of weak interactions
(intra- and intermolecular). Two pairs of spikes appear in the
2D plot of δginter for this complex, associated with hydrogen-
bond and vdW contacts, both in the attractive and repulsive parts.
The hydrogen-bond spike emerges at δginter value significantly

Fig. 7 Intermolecular hydrogen-bonding and van der Waals contacts in
a complex formed by two molecules bearing hydroxyl and amino groups;
(a) δginter/δkinter 2D plots, (b) δginter(ρ) = 0.015 isosurface, (c)
δkinter(ρ) = 0.004 isosurface, (d) s(ρ) = 0.3 isosurface; color coding in
the ED range −0.05 < sign(λ2)ρ <+0.05 a.u.

greater than for van der Waals contacts, mainly for the attractive
part, linking these results to the familiar concept of interaction
strength. As already indicated above, the δkinter 2D plot is less in-
formative than the δginter because spikes are separated to a lesser
extend (panel (a) of Fig 7). In particular, van der Waals interac-
tions appear as small shoulderings drowned out by the prominent
hydrogen-bond peak in the δkinter representation. 3D isosurfaces
obtained with either δginter or δkinter are shown in Fig 7 (panels b
and c, respectively). As previously observed for the water dimer,
the δginter and δkinter isosurfaces have comparable shape. Simi-
larly to the water dimer example, they denote regions resembling
those obtained within the parent standard NCI approach (panel
d). However, δginter and δkinter display vdW isocontours which
are more pronounced and hence well-delimited (les pixelated)

than s isosurfaces. As above-explained (and detailed in Fig S2b
of ESI), s(ρ) produces narrower isosurfaces due its mathematical
form which strengthens points of low ED compared to δg (or even
δk).

Unlike s(ρ) and as discussed above for LED, the δginter and
δkinter descriptors are not dimensionless. Hence we can directly
use their values on the plot to compare their density at the BCP.
Fig 8 shows 2D plots of four hydrogen bond dimers of varying
strengths.
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Fig. 8 δkinter 2D plots and δkinter = 0.047 a.u. isosurfaces colored
according to a BGR scheme over the range -0.1 < sign(λ2)ρ < 0.1 a.u.,
for 4 dimers: (a) PH3 · · ·H2O, (b) water, (c) HF · · ·HCN, (d) HF · · ·NH3;
structures optimized at the DFT(B3LYP) 6-311++G** level of theory.

The same δkinter scale has been deliberately chosen for the sake
of comparison. Besides the PH3 · · ·H2O complex, envelopes of
comparable size are obtained for the other dimers. In that se-
ries of 4 dimers, we observe that the peak heights are related
to the dimer stabilization energies obtained from CCSD(T) ab
initio calculations (see Tab 1).24 The values fit rather well to a
linear correlation for δginter as well as for δkinter. This is not sur-
prising since δkinter behaves similarly to δginter. Actually, using
a simple exponential model of two interacting atoms A and B,
equations 6 and 7, a linear relationship can be established at BCP
between both descriptors (see ESI). Moreover, this result is con-
sistent with the commonly admitted correlation between hydro-
gen bond strength and topological indicators at BCP such as the
ED itself or its Laplacian (∇2ρ).25,26 For these four complexes,
using dispersion-corrected DFT functionals (M06-2X or wB97XD)
does not alter the conclusions. Actually, using these functionals
hardly changes the geometry and issued δginter and δkinter values
obtained with promolecular density at BCP (see Tab S1 in ESI).

To conclude, we present in Fig 9 four results obtained on a com-
plex involving a kinase and a bis-azaindole derivative. Panel (a)
represents the s function achieved with a density fraction thresh-
old of either 90% or 95%, respectively. In the standard NCI ap-
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Table 1 H-bond length d and properties at the bond critical point
(represented by the point of highest value in the 2D plot of Fig 8); ρ,
δginter and δkinter in a.u.; ∆E in kcal.mol−1

Complex d(Å) ρ δginter δkinter ∆E
PH3 · · ·H2O 2.65 0.016 0.027 0.054 -2.5a

H2O · · ·H2O 1.93 0.032 0.060 0.148 -5.0b

HCN · · ·HF 1.84 0.044 0.090 0.189 -7.5b

HF · · ·NH3 1.68 0.063 0.121 0.258 -12.6b

a CCSD(T)-F12a/VQZ-F12. 27

b CCSD(T)/CBS+REL+CV 28

proach with pro-molecular ED, applying such a ratio threshold is
the only way to attempt discarding nodes corresponding to in-
tramolecular interaction situations (for which the density comes
mostly from one single molecule). As can be seen, the same gen-
eral shape of the 2D plot is obtained. Of course, depending on the
specified threshold value, some differences occur on the 2D plot,
however this translates into relatively small discrepancies (not re-
ported here) onto the 3D plot in panel (b). The natural threshold
(0.90 - 0.95) is what is proposed in NCIplot. Although choos-
ing a threshold value remains an arbitrary decision, this thresh-
old range is appropriate to identify non covalent interactions. In
contrast, the δ inter

g descriptor (2D plot in panel (c)) uniquely de-
fines interaction isosurfaces (see panel (d)). Comparing the two
descriptors s and δginter, we observe that (as previously under-
lined) the δginter isocontours are thicker, more pronounced and
well-delimited. Again, this is not due to the IGM approach but it
results from the specific mathematical form of s(ρ) compared to
the δg one.

From a practical point of view, the IGM workflow exhibits some
advantages compared to the original s(ρ) analysis. Actually, there
is no need to differentiate grid points associated to intermolecu-
lar situations from other (undesired) points corresponding to in-
tramolecular regions by using an arbitrary pro-molecular ED frac-
tion threshold as proposed in NCIplot. It is worth noting that the
program is able to filter weak intramolecular interactions (h-bond
and ring closure interactions) from the data without any specific
manipulation in the input parameters. Finally, this also clearly
constitutes an advantage for integration schemes summing prop-
erties over the interaction region,10 which is now well identified
and isolated in real space with the δginter descriptor.

4 Summary and future outlook
In this paper, we propose a new concept to accurately extract
the signature of the intermolecular interactions present in an NCI
plot. This model is founded on a reference ED featuring an ex-
ponential decay characteristic of non-interacting atoms (Indepen-
dent Gradient Model). We demonstrate that it allows identifying
and quantifying deviations from the exponential decay region of
the plot s(ρ) in the NCI approach. The model is also applied to
other local descriptors such as the electron gradient, leading to
δg. Since the gradient is density dependent, δg has the advan-
tage of taking non-zero values only when ED interference occur
between interacting atoms, going down to zero when the distance
between fragments goes to infinity. The analysis of a simple expo-
nential model of δg shows that the IGM model reveals the elec-

Fig. 9 Biphosphorylated kinase IGF1-R (PDBID 3LVP) in complex with
a bis-azaindole inhibitor; for the sake of clarity atoms and secondary
structures are not colored; (a) standard NCI plot obtained with grid
nodes discarded when at least 90% (green) or 95% (red) of the total
pro-molecular density comes from one molecule; (b) s = 0.5 a.u.
isosurfaces (ρi/ρ = 0.95) (c) δginter 2D plot; (d) δginter = 0.009 a.u.; all
isosurfaces are colored according to a BGR scheme over the ED range
−0.07 < sign(λ2)ρ < 0.07 a.u.

tron density interpenetration within AIM basins. The Weizäcker
kinetic energy density has also been subjected to the IGM model
leading to the descriptor δk that exhibits 3D isosurfaces similar to
those obtained with the δg descriptor.

The possibilities offered by the IGM approach and issued de-
scriptors is illustrated on several molecular complexes involving
hydrogen-bonding and van der Waals interactions. An attractive
feature of the IGM methodology coupled to a given local descrip-
tor is to provide a workflow that automatically generates data
composed solely of intermolecular interactions for drawing the
corresponding 2D and 3D representations. The user no longer
needs to choose an iso-value (usually system dependent) in a way
that produces well-separated domains. Neither is the application
of ED cutoffs required. As a consequence, the IGM approach over-
comes difficulties to define NCI regions within integration proce-
dures.

In this paper, only the pro-molecular density is considered to
obtain the ED. Indeed, the separation into atomic contributions is
only possible in an strict sense in pro-molecular densities. How-
ever, these ED have shown to provide similar results to relaxed
ones as far as non covalent interactions are concerned. Moreover,
since the intra/intermolecular differentiation is done point-wise,
it can be used as a first approximation in relaxed densities: each
point is classified in intra/intermolecular and the relaxed RDG
calculated accordingly. This option will be considered in future
publications along with more accurate schemes. We hope to
extend our calculations soon to an orbital-based ED gradient
casting the density expression in a form that is most effective for
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using the IGM model. Several ways can be considered ranging
from the approximation of Mulliken to more recent sophisticated
models such as the concept of quasi-atomic orbitals.29,30
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