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Impact of Propagation Losses on Fault Location

Accuracy in Full Transient-Based Methods
Andrea Cozza, Senior Member, IEEE, Shao-yin He, Member, IEEE, Yan-zhao Xie, Senior Member, IEEE

Abstract—This paper studies how propagation and termination
losses affect full transient-based fault location techniques. Their
accuracy is discussed in terms of both location uncertainty,
caused by a limited spatial resolution, and systematic errors,
caused by a bias in the fault-location metrics. This last case
is proven to be by far likelier when propagation losses are
higher than the dissipation in line termination loads. Two
different location metrics are studied, namely correlation and
normalized projection, as found in the literature, with correlation
proven to be unbiased, since it benefits from two location
mechanisms, namely frequency and time-decay matching of a
line resonances, as opposed to projection, which only relies on

the former mechanism. A numerical analysis of realistic lossy
overhead lines confirms theoretical predictions about biased fault
location and loss of spatial resolution and the role played by the
frequency content of transient data. When applied to the modal
analysis of a three-phase transmission line, these results help
explaining why faults are located with widely variable accuracy
depending on their distance and the bandwidth of the recorded
transient, confirming that wide-band transient sampling does not
necessarily results in the best location accuracy.

Index Terms—Fault location, transmission lines, location ac-
curacy, propagation losses, modal theory.

I. INTRODUCTION

T
HE location of faults such as phase-to-ground shunt

connections can be estimated from the transients they

generate, recorded by one or multiple probes monitoring the

ends of a line [1], [2]. Traveling-wave methods (TWM) use the

early-time portion of these transient signals in order to estimate

a fault position, relying on differences in the time of arrival

of successive echoes of a fault-initiated surge. A number of

variants have been developed during the last decades, mainly

divided into single- and multiple-ended methods [3]–[11].

As opposed to TWM, an alternative group of location

methods has more recently been developed, using the entirety

of transients recorded by a single probe. They can therefore be

referred to as full transient-based methods (TBM) and share

the idea of locating a fault by measuring the similarity between

measured and reference (typically simulated) transients signals

[12]–[21]. TBM have been shown to present some advantages

compared to TWM, as discussed at the end of [13]. Among

them, the ability of TBM to provide accurate fault location

(Corresponding author : A. Cozza.).
S.-Y. He, Y.-Z. Xie, are with the State Key Laboratory of Electrical In-
sulation and Power Equipment, School of Electrical Engineering, Xi’an
Jiaotong University, Xi’an 710049, China (email: shaoyin.he@xjtu.edu.cn;
yzxie@xjtu.edu.cn).
A. Cozza is with the Group of Electrical Engineering - Paris (GeePs), Cen-
traleSupelec, Univ. Paris-Sud, Université Paris-Saclay, Sorbonne Universites,
UPMC Univ Paris 06, 3 & 11 rue Joliot-Curie, Plateau de Moulon 91192
Gif-sur-Yvette CEDEX, France (email: andrea.cozza@ieee.org).

[22], [23] without relying on high-speed sampling, while

monitoring transients from a single end of a line.

The mechanisms underpinning their high location accuracy

were theoretically explained in [24], firmly linking spatial

resolution to the degree of resonance of a transmission line

subject to a shunt fault. As such, propagation losses should

be expected to have a significant impact on fault location

accuracy, since they act as a damping mechanism, thus limiting

a line’s resonances.

The main drawback of TBM is the need for a collection

of reference transients corresponding to tested, or candidate,

fault positions. The results of TBM are usually presented as if

location metrics should be expected to reach their maximum

value at a single position close to the fault, but to the best

of our knowledge this has not been proven to be a general

property. Furthermore, the effects of losses on fault location do

not appear to have been formally studied, making it difficult to

understand and predict how they affect fault location accuracy.

Results of a limited comparative analysis on the effects of

propagation losses were discussed in [25], showing that they

may indeed lead to erroneous fault locations.

One of the goals of this paper is to explain what mechanisms

in TBM enable an accurate fault location and under what

conditions erroneous fault positions may occur. The paper

especially focuses on the role played by losses in this respect,

showing that even in case of relatively weak propagation losses

it is possible to observe a bias, with faults inaccurately located

much closer to the probe than in reality.

The paper starts by discussing in Sec. II the two similarity

metrics found throughout the literature, namely projection and

correlation, based on full-transient recording. The problem

of location ambiguity is addressed in Sec. IV, by studying

the location mechanisms of transient similarity, based on the

line resonance models summarized in Sec. III. Significant

differences in the accuracy of correlation- and projection-

based location are pointed out, depending on propagation

and termination losses. Sec. V argues about the importance

of compensating a fault surge spectrum, in order to avoid a

low-frequency bias, that would systematically hinder accurate

location properties. Numerical results for a single–phase lossy

overhead line in Sec. VI support theoretical predictions, among

which the risk of ambiguous location when using projection

rather than correlation metrics and the marginal benefits of

extending tests over frequencies above a few tens of kHz.

These conclusions are extended in VII to a three-phase line,

where a modal analysis helps explaining why the accuracy

of a fault location may significantly differ depending on the

fault distance and the bandwidth over which its transient is
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Fig. 1. Single-line model considered in the theoretical analysis. ΓT and ΓS

represent the reflection coefficients of the transformer and the shunt fault,
respectively.

recorded. These results have direct practical implications in

the improvement of TBM fault location techniques, by pro-

viding a general framework for understanding the conditions

warranting accurate results, in particular for distant faults.

II. MEASURING SIMILARITY

The scenario studied throughout this paper is represented

in Fig. 1, based on a uniform single-phase transmission line,

terminated at its left end by a power transformer, where a

probe monitors the appearance of transient signals.

TBM work by measuring the similarity between the mea-

sured transient generated by a fault at a distance L, e.g.,

the voltage1 vm(t;L) measured by a probe2, and reference

transients vm(t; L̂), obtained either by means of numerical

simulations or collections of experimental data, corresponding

to potential faults at a set of distances L̂. Their similarity can

be measured from their projection

P(L, L̂) =
[

vm(t;L)
∣

∣

∣
vm(t; L̂)

]

=

∫

dt vm(t;L)vm(t; L̂),

(1)

with brackets used as a short-hand notation. As done in

previous work about similarity [12]–[14], both measured and

reference transient signals will be assumed to be synchronized

to their rising fronts, e.g., thanks to transient-based triggering.

The results of projection need to be normalized with respect

to a reference, in order to offer a quantitative reading. Two

choices are found in the literature and compared in this paper.

An a posteriori normalization with respect to the maximum

value of the projection, i.e., a global normalization

Pn(L, L̂) =
P(L, L̂)

max
x

|P(L, x)| , (2)

is found in electromagnetic time-reversal (EMTR) methods

[15], [16]. A local normalization

ρ(L, L̂) =
P(L, L̂)

√

P(L,L)P(L̂, L̂)

(3)

is applied in correlation-based methods [12]–[14], i.e., adopt-

ing a position-dependent paradigm. Assuming transients to

have a negligible average value, (3) corresponds to the cor-

relation coefficient. Correlation metrics can also be applied to

EMTR, as shown in [16].

1alternatively, transient currents could also be monitored.
2assumed to present a linear response, potentially frequency dependent,

allowing to convert its output signal into the transient that originated it.

Fault positions are then estimated as the set of positions L̂
yielding maximum similarity, which could include more than

one viable position.

III. FAULT-TRANSIENT THEORY FOR A SINGLE-PHASE LINE

The accuracy of fault location metrics (2) and (3) is first

studied for single-phase lines in Secs. IV and VI. The rationale

for this choice is twofold: first, single-phase line models have

a practical importance of their own, as they are represent

widely used lines such as in low-voltage distribution networks,

monopole high-voltage DC lines and high-voltage coaxial

cables used both in underground and submarine lines [26,

Sec. 5]; second, their afford simple yet detailed models for

which general conclusions can be drawn. These will be shown

to apply also to the more complex case of three-phase lines,

where a modal analysis is necessary, as shown in Sec. VII.

A model of transient generation and its relationship with

a fault’s location can be derived based on transmission-line

theory [27]. With reference to Fig. 1, a shunt fault is found at

a distance L, assumed to have a significantly lower impedance

than the characteristic impedance of the line, thus practically

severing the line into two parts: for the sake of simplicity, the

line will be approximated to have a length L, with negligible

energy transmitted across the fault. The fault is modelled as

generating a surge (or fault) signal vf (t), which will afterward

travel along the two sections of the line. The fault surge is

described as a step function, with a finite rise time Tr to reach

its maximum value Vo

vf (t) = Vo

(

1− e−t/Tr

)

, (4)

and a Fourier spectrum

Vf (ω) =
Vo/Tr

jω(jω + 1/Tr)
, (5)

where ω is the angular frequency3.

The interactions of the fault surge signal with the line

terminations are modelled by means of equivalent reflection

coefficients, ΓT = |ΓT | exp(jϕT ) for the transformer and

ΓS = |ΓS | exp(jϕS) for the shunt fault. Both can be expected

to have a modulus close to one, with the transformer pre-

senting an equivalent input impedance much higher than the

characteristic impedance of the line [1], [3]. Transmission-line

theory states that the transient voltage vm(t;L) measured by

the probe at the left end of the line in Fig. 1 has a Fourier

spectrum [27]

Vm(ω;L) = Vf (ω)(1 + ΓT )e
−γLH(ω;L), (6)

with

H(ω;L) =
(

1− ΓTΓSe
−2γL

)−1
. (7)

Neglecting the contribution from H(ω), (6) represents the

direct-path transfer function between fault and probe, where

γ(ω) = α(ω) + jβ(ω), with β(ω) = ω/v(ω) the propagation

constant, v(ω) the propagation speed and α(ω) the line at-

tenuation constant. As recalled in the previous section, both

3later dropped for the sake of compactness
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measured and reference transient signals are assumed to be

synchronized to their rising fronts, reducing (6) to

Vm(ω;L) = Vf (ω)(1 + ΓT )e
−αLH(ω;L). (8)

The function H(ω) represents the resonant response of

the portion of line between fault and probe, accounting for

its closed-loop behavior, i.e., multiple reflections over its

terminations. H(ω) has an infinite set of conjugate complex

poles, giving rise to individual responses ψ(ω;ωm),

H(ω) =

∞
∑

m=1

2

Tm

jω + 1/τm

(jω + 1/τm)2 + ω2
m

=

∞
∑

m=1

2

Tm
ψ(ω;ωm)

(9)

with

ωm = (2mπ + ϕS + ϕT )/Tm (10a)

τm =
Tm

2αL− ln Γ
(10b)

the angular frequency and decay time of its m-th order reso-

nance, respectively, with Γ = |ΓTΓS | and Tm = 2L/v(ωm)
the round-trip delay time along the line [24]. In (10b), the

term 2αL models propagation losses, while − lnΓ models

dissipation in the line termination impedances. Although both

have an equivalent effect on (10b), Section IV will show

that depending on their ratio the location accuracy can be

significantly affected.

For the line to sustain resonances, and therefore enable

accurate fault location, it is necessary that τm & Tm, hence

2αL− lnΓ . 1. Under these conditions, the spatial resolution

Dc afforded by a single resonance was shown in [24] to

directly depend on losses as

Dc = λm
2αL− ln Γ

2π
, (11)

where λm is the wavelength associated to the m-th resonance.

Of practical importance for later discussions is the case

of dominant propagation losses, i.e., for 2αL ≫ − lnΓ, for

which the decay time

τ(ω) ≃ 1/α(ω)v(ω) (12)

no longer depends on the line length, i.e., the fault distance.

IV. LOCATION AMBIGUITY:SINGLE-RESONANCE ANALYSIS

The possibility of location ambiguity when using similarity

metrics is here discussed. The analysis will be restricted

to the case of data covering only a single resonance of

the line. The rationale for this choice was established in

[24] by showing that the location properties of projection

metrics are determined by the mismatch between the individual

resonances of the measured and reference fault transients.

These resonances are here proven to also contain the seeds of

inaccurate fault location. These results will serve as guidelines

in the interpretation of projection and correlation fault location

metrics in the more general conditions discussed in Secs. VI

and VII.

Systematic location errors can be identified by means of the

location ambiguity function

Ap(L, L̂) =

∣

∣

∣

∣

∣

Pn(L, L̂)

Pn(L,L)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

P(L, L̂)

P(L,L)

∣

∣

∣

∣

∣

, (13)

here defined for the projection metric (2). Ideally, Ap(L, L̂) <
1, ∀L̂ 6= L, with the fault position unambiguously identified

by the global maximum of Pn(L). Two non-ideal cases may

occur in practice: 1) if Ap(L, L̂) = 1 also for values of

L̂ 6= L, the interpretation of the location metric would

become ambiguous, with multiple candidate positions where

Pn reaches the same peak amplitude; 2) a worse condition is

encountered if Ap(L, L̂) > 1, since in this case the actual fault

position would not even be considered as a viable candidate,

because Pn(L̂) > Pn(L) for L̂ 6= L.

A. Projection

The projection (1) can be transposed in the frequency

domain thanks to Parseval theorem, applying it to (8) for a

narrow bandwidth centered at ωo, yielding

P(L, L̂) ≃ e−α(L+L̂)|Vf (ωo)|2
∫

dω H⋆(ω;L)H(ω; L̂),

(14)

where the term (1+ΓT )
2 is dropped for compactness, having

no bearing on the following derivation.

Over the tested bandwidth the actual and reference lines

will be assumed to present a single resonance at ωp and

ω̂p, respectively, each associated to a decay time τ and τ̂ ,

as defined in (10). Close resonant frequencies4 can be found

also in case L̂ 6= L, as implicit in (10a), a potential cause of

ambiguity discussed in Sec. VI.

From (9)

P(L, L̂) ≃ 4
e−α(L+L̂)

T T̂
|Vf (ωo)|2 [ψ(ω;ωp) |ψ(ω; ω̂p) ] ,

(15)

with T = 2L/v(ωo) and T̂ = 2L̂/v(ωo), assuming

v(ωp), v(ω̂p) ≃ v(ωo).
The projection is more easily computed in the time domain,

based on the time-domain resonance response ψ(t;ωp) =
exp(−t/τ) cos(ωpt). Hence,

[ψ(ω;ωp) |ψ(ω; ω̂p) ] =

∫

dt e−t/τ̄ cos(ωpt) cos(ω̂pt)

≃ τ̄/2

1 + (2π∆f τ̄)2
(16)

where ∆f = (ωp−ω̂p)/2π is the frequency mismatch between

the resonances of the actual and reference lines and

τ̄ =
(

τ−1 + τ̂−1
)−1

=
τ τ̂

τ + τ̂
. (17)

The resonance mismatch ∆f is better appreciated if expressed

in terms of the coherence bandwidth of the actual line, Bc =
1/πτ , which measures the spectral selectivity (or resolution)

of a single resonance [24]. Hence,

2π∆f τ̄ = η∆f/Bc (18)

with

η = 2
τ̄

τ
=

2τ̂/τ

1 + τ̂/τ
, (19)

where η ∈ [0, 2] and η = 1 for τ̂ = τ .

4but of different order
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Fig. 2. Location ambiguity function Ap(L, L̂) for the projection, for
Γ = |ΓSΓT | = 0.95, evaluated from (20) for (a) matched resonances, i.e.,
∆f/Bc = 0 and (b) ∆f/Bc = 1 for a single resonance. Only results within
the range [0.1, 10] are shown.

The location ambiguity function (13) can now be computed

from (15)-(19), yielding

Ap(L, L̂) ≃ η
L

L̂

eα(L−L̂)

1 + (η∆f/Bc)
2 (20)

and is shown in Fig. 2. The term η∆f/Bc in the denominator

effectively reduces the projection, and therefore the ambiguity,

as soon as a resonance mismatch exists between the actual and

tested line responses. But this property alone is not sufficient

to guarantee that the exact fault position is identified, since a

resonance match can be observed also for L̂ 6= L.

Necessary conditions for systematic location errors are

found from (20) by requiring Ap(L, L̂) > 1, thus for a)

ηL/L̂ > 1, i.e., testing positions closer to the probe than

the actual fault or b) exp(αL) > 1, which is expected for

significant propagation losses. Two different regimes can be

identified, depending on whether propagation losses are either

negligible or dominant with respect to termination losses.

1) Low propagation-loss regime, αL≪ − lnΓ: In this case

exp(αL) ≃ 1, while (10b) holds that τ̂ /τ = L̂/L, hence

Ap(L, L̂) ≃
2

1 + L̂/L

e−αL̂

1 + (η∆f/Bc)
2 , (21)

with Ap(L, L̂) ≤ 2, reaching its upper limit for L̂ ≪ L. A

bias therefore exists for the projection in locating a fault at

shorter distances than its actual position, unless the resonance

mismatch is significant enough to offset this bias. Unfortu-

nately, for L̂≪ L this mechanism becomes ineffective, since

the resonance mismatch is reduced by η ≃ 2L̂/L ≪ 1, thus

with Ap > 1 even for large resonance mismatches.

This effect is visible in Fig. 2(b), where a resonance

mismatch ∆f/Bc = 1, while producing a non-negligible

reduction of Ap(L, L̂), still has a clear bias towards L̂ < L.

2) High propagation-loss regime, αL ≫ − lnΓ: When

testing positions L̂ such that αL̂≫ − ln Γ, then τ̂ /τ ≃ 1, in-

dependently from the actual distances L and L̂, as highlighted

in (12). As a result, η ≃ 1 and

Ap(L, L̂) ≃
L

L̂

e−α(L̂−L)

1 + (∆f/Bc)
2 . (22)

The condition αL ≫ − lnΓ does not necessarily imply that

exp(αL) > 1, since Γ ≃ 1, and − lnΓ ≪ 1. Yet, in this

Fig. 3. Location ambiguity function Aρ(L, L̂) for the correlation, for
Γ = |ΓSΓT | = 0.95, evaluated from (25) for (a) matched resonances, i.e.,
∆f/Bc = 0 and (b) ∆f/Bc = 1, for a single resonance.

case Ap is unbounded, because of the term L/L̂ in (22). This

change of behavior in Ap is clearly visible in Fig. 2, where

Ap grows more rapidly for L̂ < L than in the previous case

of negligible propagation losses.

When testing positions such that αL̂ ≪ − ln Γ a different

behavior is expected, since now τ̂ /τ ≃ −2αL̂/ lnΓ ≪ 1, and

Ap(L, L̂) ≃ −4αL

ln Γ

eαL

1 + (η∆f/Bc)
2 . (23)

In this case the location ambiguity function no longer depends

on the position tested, but only on the actual fault position.

The further the fault, the stronger the bias towards positions

closer to the probe, a situation potentially made worse by the

term exp(αL).

B. Correlation

From (13), the ambiguity function of the correlation metric

(3) is

Aρ(L, L̂) =

∣

∣

∣

∣

∣

ρ(L, L̂)

ρ(L,L)

∣

∣

∣

∣

∣

=
∣

∣

∣ρ(L, L̂)
∣

∣

∣ , (24)

implying that systematic errors cannot occur in this case, since

|ρ(L, L̂)| ≤ 1 and ρ(L,L) = 1 by definition. Nonetheless,

location ambiguity may still be observed, with |ρ(L, L̂)| = 1
for L̂ 6= L.

Proceeding as in the case of the projection, applying (15)-

(19) to (3) yields

Aρ(L, L̂) =
2
√

τ̂ /τ

1 + τ̂ /τ

1

1 + (η∆f/Bc)
2 . (25)

Both projection and correlation ambiguity functions share

resonance mismatch as the main location mechanism, but cor-

relation comes with a further mechanism, represented by the

first fraction in (25), which measures the matching between the

decay times τ and τ̂ of the actual and reference line responses.

Correlation can be close to one only if both resonances and

decay times are matched, as shown in Fig. 3. As for projection,

correlation too presents a different behavior depending on the

propagation loss regime.
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1) Low propagation-loss regime: In this case τ̂/τ ≃ L̂/L,

thus the correlation will directly measure a mismatch between

the estimated and the actual fault locations, even for perfectly

matched resonances. This property is visible in Fig. 3(a), as a

strip of high correlation around the fault position, with Aρ ≥
0.95 for L̂/L ∈ [0.52, 1.9]. Any resonance mismatch would

then significantly lower the ambiguity, as visible in Fig. 3(b),

as opposed to the projection, which would still suffer from a

bias towards L̂≪ L.

2) High propagation-loss regime: For αL, αL̂ ≫ − lnΓ
correlation can no longer rely on the decay-time mismatch

to locate a fault, since in this case (12) holds that τ̂ ≃ τ ,

independently from L̂ and L. This phenomenon is visible in

Fig. 3(a), where Aρ ≃ 1 as soon as the resonance frequencies

of the actual and reference lines match, even when testing

fault positions L̂ significantly different from the actual one,

L. Still, Fig. 3(b) shows that Aρ < 1 as soon as resonances

are mismatched.

V. SURGE-SPECTRUM EQUALIZATION

The analysis in Sec. IV assumed operating over a bandwidth

narrow enough for the fault surge spectrum Vf (ω) to be

regarded as constant. This is not an option in practical config-

urations, since Vf (ω), as clear from (5), is highly dispersive,

introducing a disproportionate emphasis on low frequencies,

eroding the contribution of high-frequency information, which

may afford a better spatial resolution [24].

The standard choice in the literature is to directly measure

the similarity between reference and measured transient sig-

nals [12]–[14]. It is therefore necessary to have access to a

reasonably accurate model for the fault surge vf (t), in order to

produce estimates of the transient signals vm(t; L̂), typically

by means of numerical simulations. This same information

could be used more effectively in order to estimate the line

resonant response H(ω;L) starting from the measured fault

transient, applying an inverse-filter equalization which, in its

simplest form, reads

Ĥ(ω;L) = Vm(ω)/Vf (ω). (26)

It is thus possible to measure the similarity between transfer

functions by computing their projection

P(L, L̂) =
[

Ĥ(ω;L)
∣

∣

∣H(ω; L̂)
]

(27)

and the respective correlation location metric. As proven in

Sec. VI, equalization is not beneficial because it gives access

to an assumed better accuracy at higher frequencies, but rather

because it reduces the influence of low frequencies where the

line may not yet resonate, a configuration which would result

in a very poor location accuracy (cf. Sec. VI).

It is worth noticing that it has recently been shown in [16]

that a precise knowledge of the surge spectrum Vf (ω) is not

necessary, and that a partial equalization is sufficient in order

to significantly improve location accuracy.

VI. SINGLE-PHASE OVERHEAD LINE

The predictions and conclusions drawn in Sec. IV are first

validated for the case of a single-phase overhead line, above
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Fig. 4. Propagation losses for the overhead line studied in Section VI. The
second vertical axis on the right shows the maximum fault distance Lmax

required for the line to potentially resonate.

a lossy ground. A low-impedance shunt fault is found at

a distance L, approximatively acting as a termination as in

Fig. 1, a configuration for which (8) provides an accurate

model of the transient recorded by a probe. The line consists

of an aluminium conductor of radius 15 mm, 14.1 m above a

homogeneous soil with relative electric permittivity ǫg = 10
and conductivity σg = 10 mS/m.

Propagation losses are expected to be highly frequency

dependent, and thus require an accurate modeling of the line

per-unit-length parameters. In this respect, we have opted to

use the model presented in [28], which improves approximate

models such as Carson’s. This choice is fundamental in order

to accurately reproduce the rapidly increasing propagation

losses expected for the ground mode, as opposed to the choice

of fixed-parameter models, likely leading to underestimating

the impact of propagation losses. The model presented in [28]

will also be applied in Sec. VII to a three-phase overhead line.

The line’s left end, where the transient voltage is measured,

is terminated by an impedance ZT = 10 kΩ, representing the

high input impedance of a power transformer at frequencies

above 1 kHz [1], and a shunt fault of impedance ZS = 10 Ω is

found at the right end, corresponding respectively to reflection

coefficients |ΓT | ≃ 0.89 and |ΓS | ≃ 0.97, below 500 kHz; the

termination loss factor is − lnΓ = − ln |ΓTΓS | ≃ 0.15. The

line attenuation is shown in Fig. 4, together with the maximum

distance Lmax necessary for the line to support resonances,

approximatively identified by the condition 2αLmax = 1.

These results indicate that fault surge information above 500

kHz would likely be inaccessible apart in case of faults less

than 4 km away from the probe.

Three fault distances were considered, namely L = 0.5, 2
and 16 km, for a fault surge described by (5), with a rise

time Tr = 50 µs. Projection and correlation metrics were then

computed for 5000 test positions L̂, ranging from 0.1 to 20

km, for both transient spectra and the line transfer functions,

as discussed in Sec. V. The main goal being to compare the

location accuracy of both metrics, depending on propagation

losses and the bandwidth of the recorded transient data.

Fig. 5 shows the resonant response of the line, as defined

in (7), for the 1-500 kHz frequency range, as a function of the

fault distance L. The first line resonance is found to be about

four times stronger than the second one, thus playing a domi-

nant role in the fault spectra and the location metrics. Higher-
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Fig. 5. Resonant response of the overhead line, as a function of fault distance.

order resonances appear to become increasingly damped by

propagation losses, and could hardly contribute to improve

the location accuracy.

Knowing propagation and termination losses, the spatial

resolution enabled by a single resonance can be predicted from

(11). Fig. 6 shows that for faults more than 1 km away from the

probe the spatial resolution would not improve by extending

the tested frequency bandwidth beyond about 50 kHz, due

to increasingly high propagation losses. The resonant-line

limit, corresponding to the condition 2αL − ln Γ = 1, ap-

proximatively identifies the maximum frequency below which

the spatial resolution is expected to improve by accessing

a larger bandwidth during the transient recording, i.e., by

increasing the sampling rate. This boundary covers the first

three resonances of the line in Fig. 5. The results in Sec. VI-A

support these theoretical predictions.

A. Line transfer functions

Results for the similarity between transfer functions are

discussed first, since in this case there is no emphasis from

the surge spectrum on low frequencies, leading to a simpler

interpretation of the results.

Transients are first supposed to be recorded over the band-

width from 1 to 50 kHz. Fig. 7(a) shows that a fault at 0.5 km

is poorly located, since in this case none of the line resonances
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Fig. 6. Single-resonance spatial resolution predicted by (11) for the overhead
line, with the limits for a resonant line (2αL − lnΓ = 1) and negligible
propagation loss regime (2αL = − ln Γ) shown. These results assume a
resonance match and should thus be regarded as a best-case prediction.

is accessible, as confirmed by Fig. 5. The projection presents a

peak around 1.2 km, where the first resonance first appears in

the 1-50 kHz bandwidth, while it takes a significantly lower

value over the fault position, where only the lower end of

the resonance tail is accessible. No such bias is observed for

the correlation, thanks to the local normalization taking into

account the actual norm of the transfer functions. The strongly

reduced spatial resolution of the correlation is also explained

by the fact that only decay-time matching is available in this

case, as discussed in Sec. III.

Both metrics correctly located a fault at 2 km, having now

access to the first line resonance. For a fault at 16 km the

spatial resolution is significantly reduced, in accordance with

the results estimated in Fig. 6.

A secondary peak is observed in Fig. 7(c) when simulating

a tested fault distance L̂ = 16/3 ≃ 5.3 km, since in this

case the actual and tested lines have their respectively second

and first resonances matched at 10.4 kHz, as visible in Fig.

5. As explained in Section IV-A, the normalized projection

should be expected in this case to present a higher peak for

L̂ < L. In fact, the peak at 5.3 km is smaller than the one at 16

km because only one of the two line resonances is matched,

thus reducing the overall projection. A similar phenomenon is

found for the fault at 2 km, with a secondary peak at 2× 3 =
6 km. While these two secondary peaks occur for the same

reason, their amplitudes is unequal: the peak at 5.3 km for

a fault at 16 km is significantly larger, almost reaching the

same value as at the actual fault position. This bias was indeed

predicted in Sec. IV-A for the projection for L̂ < L , while

the correlation does not present any such bias.

The results obtained applying the same analysis to data

covering the 1-500 kHz range are shown in Fig. 8. Several

notable differences are observed. At 0.5 km the fault is now

located with high accuracy, since two line resonances are now

accessible. The spatial resolution, close to ±50 m, agrees with

Fig. 6, while a secondary peak is observed for the projection at

about 180 m, due to two resonances matching around 350 kHz.

The intensity of the secondary peaks in the projection

increases for faults at larger distances, creating the potential

for ambiguity due to multiple viable locations where at least

two resonances match, as in Fig. 8(b). For a fault at 16 km,

the projection presents several peaks less than 3 km from the

probe, caused by several resonance matches, as visible in Fig.

5. These results confirm that the risk of a systematic error

increases with the fault distance, as soon as propagation losses

increase.

Furthermore, although the bandwidth increases tenfold, the

spatial resolution does not improve significantly for a fault at

2 km, while at 16 km it rather worsens, consistently with the

results in Fig. 6. The main effect of an increased bandwidth

is the appearance of secondary peaks closer to the probe, due

to new accessible resonances for shorter tested distances, as

clear from Fig. 5.

The correlation is not affected by any of these phenomena,

with systematically lower secondary peaks. Nonetheless, it

presents ambiguity as soon as the conditions for a high

propagation-loss regime are met (cf. Sec. IV-B). Fig. 9(a)

shows results for the correlation for a fault at 8 km, when
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Fig. 7. Location results of projection and correlation metrics for three faults at a distance of (a) 0.5 km, (b) 2 km and (c) 16 km along an overhead line,
using line transfer functions over a 1-50 kHz bandwidth.
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Fig. 8. Location results of projection and correlation metrics for three faults at a distance of (a) 0.5 km, (b) 2 km and (c) 16 km along an overhead line,
using line transfer functions over a 1-500 kHz bandwidth.
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Fig. 9. Location results for a fault at (a) 8 km and (b) 16 km, for correlation
applied to line transfer functions data below 500 kHz, restricted to frequencies
higher than 1, 10, 30 and 50 kHz, where high propagation-loss conditions are
expected, highlighting increasing location ambiguity.

access to low frequency data is limited, thus relying on

higher-order resonances subject to higher propagation losses:

the correlation decays less away from the fault. For a more

distant fault at 16 km, higher propagation losses are ex-

pected: Fig. 9(b) shows clear signs of ambiguity even for the

correlation. It is therefore important to minimize the tested

bandwidth, avoiding contributions from higher frequencies,

where propagation losses exceed those in the line terminations.

Fig. 6 shows the maximum frequency below which negligible

propagation losses can be expected. Attempting to locate a

fault at higher frequencies, ambiguity must be expected: at 8

km, this degradation occurs above 10 kHz.

B. Transient signals

When directly applying projection and correlation metrics to

transient signals, as done in the literature, the surge spectrum

Vf (ω) is expected to highly emphasize the lower end of the

frequency range. Results obtained for data covering the 1-

500 kHz bandwidth in Fig. 10 present a dramatic loss of

accuracy. Clearly, the reason for these results is to be found in

the dominant contribution of the 1 kHz region, where Fig. 5

shows that no resonance is accessible for faults less than 10 km

from the probe, explaining the poor accuracy in Fig. 10. Even

under these degraded conditions, the correlation reaches its

peak value at the correct fault positions, thanks to its additional

location mechanism based on the decay time τ .
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It could be expected that increasing the minimum frequency

from 1 to 10 kHz should partially reduce this issue and thus

improve the location accuracy. The effects of this change are

shown in Fig. 10 as grey lines: while the correlation benefits

from it with an improved spatial resolution, the projection

displays peaks at erroneous positions for a fault at 0.5 and

8 km. In both cases, starting at either 1 or 10 kHz, the spatial

resolution is significantly worse than when using transfer

functions over a narrower bandwidth, between 1 and 50 kHz

(cf. Fig. 7). This comparison demonstrates the benefits of using

a priori information about the surge signal to estimate the line

transfer functions, as argued in Sec. V.

Surge equalization is therefore not intended to give access

to high frequency information which, as proven in the previous

section, would not necessarily provide a better accuracy, but

rather to avoid that contributions at lower frequencies out

of resonance drown out contributions from higher-frequency

resonances that would otherwise provide an accurate fault

location.
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Fig. 11. Three-phase line configuration: (a) cross section (b) single-phase
to ground fault. The ends of each phase are terminated by a load with an
impedance ZT = 10 kΩ, while the fault has an impedance ZS = 10 Ω.

VII. THREE-PHASE OVERHEAD LINE

The analysis for a single-phase line has clarified the physical

mechanisms behind the location accuracy of TBM and the

risk of location errors in lossy lines. In practice, the vast

majority of power-transmission lines are based on three-

phase configurations. Fig. 11(a) shows the cross-section of

the transmission line studied in this section, a 10 kV overhead

power distribution line commonly employed in China. The

single-phase configuration studied in Sec. VI was chosen to

correspond to one of the lower conductors of this three-phase

line, in order to allow a direct comparison.

This section sets out to verify that the phenomena identified

in the case of a single-phase line also apply to three-phase

lines. To this end, some implications of the modal propagation

theory are discussed in Sec. VII-A, covering the role of ground

and aerial modes, while Sec. VII-B explains how shunt faults

alter the propagation along a three-phase line in a significantly

different way with respect to a single-phase line. Sec. VII-C

presents results confirming that the risk of location ambiguity

is still governed by the same phenomena identified in Sec. IV

and presents strong similarities with the case of a single-phase

line. Sec.VII-D focuses on the spatial resolution of correlation-

based fault location, explaining why it can significantly change

depending on the fault distance and the tested bandwidth,

thanks to insights brought by modal theory.

While shunt faults can take a number of different configu-

rations, appearing across phases as well as toward the ground

[2], this section will only focus on the case of a single-phase-

to-ground fault, occurring on phase c, as in Fig. 11(b). This

configuration is the most likely shunt fault found in practice [2,

Sec. 3]. Clearly, the procedure used for this analysis can also

be applied to other kind of faults, e.g., phase-to-phase faults:

a thorough comparison of how each fault affords a different

location accuracy is out of the scope of the present paper,

which is instead focused on the impact of a line’s losses.

The line under consideration has a length LT = 50 km and

runs above a flat homogeneous ground, with relative electric

permittivity ǫg = 10 and conductivity σg = 10 mS/m. The

line conductors have a radius equal to 15 mm and are assumed

to be made of aluminium. The three-phase line is terminated

at both ends by power transformers, modelled by termination

impedances ZT = 10 kΩ [1] applied to each conductor, while
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the shunt fault has an impedance ZS = 10 Ω.

A. Modal propagation theory

Signal propagation along a multi-conductor line is better

understood through a modal description, where signals are

represented as a linear combination of voltage and current

patterns, or modes [27]. The modal representation can be

derived by solving the following eigenvalue problem

(Y(ω)Z(ω))T(ω) = T(ω)γ2(ω) (28)

where Y(ω) and Z(ω) are the per-unit-length admittance and

impedance matrices of the line. The columns of matrix T(ω)
correspond to the eigenvectors of the matrix Y(ω)Z(ω), while

their eigenvalues are found in the diagonal matrix γ
2(ω).

The per-unit-length matrices were computed by means of the

model described in [28], also applied to the single-phase line

discussed in Sec. VI.

The voltages of each overhead conductor at a distance x,

Va(x) through Vc(x), can be arranged in the voltage vector

V(x) = [Va(x), Vb(x), Vc(x)]
T; a current vector I(x) can be

defined in a similar way. Modal propagation theory states that

the evolution of voltage and current vectors along a uniform

line can be expressed in terms of modal current vectors I±m0

V(x) = ZcT
[

P+(x)I+m0 +P−(x)I−m0

]

(29a)

I(x) = T
[

P+(x)I+m0 −P−(x)I−m0

]

(29b)

where P±(x) = exp(∓γx) are the forward (+) and backward

(−) modal propagators. The characteristic impedance matrix

is defined as Zc = ZTγ
−1T−1. The diagonal matrix γ

contains the complex propagation constants of each mode

and is defined as the principal square root of the eigenvalue

matrix γ
2, to ensure passivity. In the following discussions, the

first eigenvalue and eigenvector will correspond to the ground

mode, and the remaining two to aerial modes.

Fig. 12 shows the propagation attenuation for these modes

for the line in Fig. 11, up to 500 kHz. The attenuation

of each mode is obtained by computing the modulus of

the diagonal terms in the forward propagator P+(x), i.e.,

exp(−Re γix), i ∈ [1, 3]. The distance Lmax on the right-

hand scale indicates the maximum distance beyond which

propagation losses would be sufficient to make the line non-

resonant, as described in Sec. VI. Ground-mode losses are

very similar to those displayed in Fig. 4 for a single-phase

line with ground return, but slightly higher above 100 kHz.

Results shown in the rest of this section were computed by

means of an in-house transmission-line code based on modal

theory. On top of the possibility to include accurate high-

frequency ground loss models as [28], it provides direct access

to modal quantities, upon which our analysis is based.

B. Interaction and dissipation from terminations and faults

The marked difference in ground- and aerial-mode prop-

agation losses should be expected to lead to a significantly

different behavior in the location ambiguity of correlation-

and projection-based metrics. As proven in Sec. IV, location

ambiguity becomes likelier as soon as propagation losses

exceed those in the line terminations and the fault. Besides,

as propagation losses increase, (11) predicts that the spatial

resolution afforded by a line resonance should be expected to

worsen, as the length of the resonant line increases.

Unfortunately, it is not possible to directly transpose the

theory presented in Sec. III for a single-phase line to the

case of a three-phase line. Line resonances now involve a

complex combination of modal patterns, which travel along the

line at different speeds and rates of attenuation. Furthermore,

discontinuities such as terminations and faults do not act

independently on each line mode, and may further couple

ground and aerial mode contributions, as proven in this section.

The existence of this modal coupling implies that it would be

incorrect to expect that this complexity could be simplified

by filtering out the ground mode, as often done in transient

monitoring.

Transient signals propagating toward any discontinuity are

only partially reflected back. Expressing the impinging signals

through their modal-current vector I+m, the reflected modal-

current vector I−m can be expressed in terms of the modal

reflection matrix ΓD , such that I−m = ΓDI+m, where ΓD =
T−1(ZD + Zc)

−1(ZD − Zc)T; ZD is the impedance matrix

of the discontinuity.

For the line in Fig. 11, the modal reflection matrix, evaluated

at 10 kHz, is

ΓT ≃





0.82 0 0
0 0.95 0
0 0 0.95



 (30)

and thus acts on each mode separately, i.e., similarly to the

case of the single-phase line seen in Sec. III. The ground mode

is subject to significantly higher termination losses than aerial

modes.

Conversely, the reflection matrix ΓS for the 10 Ω fault in

Fig. 11 is

ΓS ≃





−0.64 0.12 −0.19
0.44 −0.080 0.13
−0.78 0.14 −0.23



 . (31)

The fact that ΓS is a full matrix means that the fault couples

the three modes together. In particular, the first column of

ΓS measures how a ground mode impinging onto the fault is

reflected back with roughly similar intensity across all three
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modes, whereas the two other columns, concerning aerial-

mode reflection, have significantly smaller coefficients. Hence,

upon the very first interaction with the fault, the ground mode

would partially transfer energy to the aerial modes.

A better understanding of how this fault affects the modal

mix is gained by looking into the eigendecomposition of ΓS ,

which yields its eigenvectors {wi}, i ∈ [1, 3]

(w1|w2|w3) ≃





0.58 −0.32 −0.24
−0.39 −0.29 0.24
0.70 −0.90 0.94



 (32)

and eigenvalues {λi} = {Γo, 0, 0}, with Γo = −0.95,

establishing that ΓS has rank one. Hence, representing the

impinging modal currents as a linear combination of the

eigenvectors {wi}

I+m =

3
∑

i=1

αiwi (33)

the modal currents reflected by the fault would be given by

I−m = Γoα1w1, hence the fault would respond by reflecting a

fixed modal current mix, proportional to w1, independently of

the one impinging on the fault. In case the line terminations

reflected back this pattern unaltered towards the fault, this

same pattern would undergo a reflectivity equal to -0.95, i.e.,

very close to that observed for the single-phase line discussed

in Sec. VI. Conversely, impinging currents described by any

linear combination of w2 and w3 would result in no reflection

from the fault, travelling unaffected through it. This strong

difference in the behavior of the fault explains the existence

of two groups of resonances: a) section resonances, where a

significant fraction of energy is trapped in one of the sections

in which the line is divided by the fault, where the fault

presents a strong reflectivity and b) whole-line resonances,

where the fault presents a much weaker interaction with the

transient. In both cases, it is no longer possible to assume a

negligible transmission across the fault, as done for a single-

phase line. By the same token, it is therefore clear that it would

be wrong to interpret fault reflectivities smaller than one in ΓS

as a signature of power loss, as done in Sec. III.

It is therefore incorrect to expect a unique value for the loss

factor contributed by the fault, as it now depends on the modal

mix, which furthermore changes over time as the ground

mode decays more rapidly than aerial modes. Nonetheless,

it is possible to derive bounds for the fraction of power

dissipated within the fault, as explained in Appendix A. For

a transient impinging onto the fault, the fraction of dissipated

power is between 0 and 8%, indicating that at least 92% of

the power is partially reflected and transmitted through the

fault and will therefore further interact with it, thus actively

contributing to the line resonances. This figure suggests an

effective reflectivity larger than
√
0.92 ≃ 0.96, thus similar to

the single-phase reflectivity.

Fig. 13 shows ground- and aerial-mode contributions to the

transfer function between the fault and a probe at the left end

of phase c. It can be noticed how the most strongly excited

resonances still present a sensitivity to the fault position

similar to that in Fig. 5 for a single-phase configuration, with
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Fig. 13. Modulus of the transfer functions between a fault and a probe on
phase c, showing contributions from (a) ground and (b) aerial modes.

frequencies of resonance inversely proportional to the fault

distance. Such dependence requires that part of the transient

be trapped within the left section of the line, subject to strong

reflection from the fault, or section resonances. But another

set of resonances now appears at much lower frequencies,

which could only be sustained if the full length of the line

were involved. Moreover, these resonances appear to be more

strongly supported by aerial modes, coupling only partially

to the ground mode. As a result, they do not present any

significant difference in their average intensity even for faults

at 50 km, as opposed to the ground-mode contribution, which

rapidly decreases with the fault distance (cf. Fig. 12).

Fig. 14 shows these same transfer functions in detail for

three fault distances. For a fault at 2 km from the probe, two

sets of interlaced resonances are visible in Fig. 14(a): a set with

a periodicity of about 74 kHz, corresponding to a resonant

line about 2 km long (section resonances), and another with a

periodicity of about 3 kHz, consistent with a resonant line 50

km long (whole-line resonances). A very similar behavior is

observed for ground- and aerial-mode contributions, explained

by the eigendecomposition (32). For a fault at 16 km, the

ground-mode contribution becomes relegated at frequencies

below 200 kHz, where section resonances can be still distin-

guished, with a reduction by a factor eight in their periodicity,

proportional to the change in the fault position, passing from 2

km to 16 km. At higher frequency, only whole-line resonances

are observed. This trend becomes clearer for a fault at 48 km,

where the aerial modes are dominant above 75 kHz. It can be

noticed how whole-line resonances approximatively maintain

the same periodicity independently from the fault position.

This does not mean that it does not affect them: the transfer

functions in Fig. 14 present significantly different patterns that

TBM can exploit to locate a fault, as proven in Sec. VII-C.

C. Fault location and ambiguity

Only fault metrics between transfer functions are discussed,

since the case of transients was already proven in Sec. VI

to be less effective and potentially inaccurate. The numerical

analysis mirrors that presented in Sec. VI-A for a single-phase

line, for the sake of a simpler comparison. Only results for data



11

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

ground mode aerial modes

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

(a)

(b)

(c)

Fig. 14. Transfer function between a fault and a probe at the left end of phase c, showing contributions from ground and aerial modes, for a fault at a distance
of: (a) 2 km, (b) 16 km and (c) 48 km.
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Fig. 15. Location results of projection and correlation metrics for three faults at a distance of (a) 2 km, (b) 16 km and (c) 48 km along the three-phase
overhead line in Fig. 11, using line transfer functions over a 1-50 kHz bandwidth.
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Fig. 16. Location results of projection and correlation metrics for three faults at a distance of (a) 2 km, (b) 16 km and (c) 48 km along the three-phase
overhead line in Fig. 11, using line transfer functions over a 1-500 kHz (black lines) and 50-500 kHz (grey lines) bandwidth.
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collected at the phase c are shown, since no major difference

was observed with the other phases.

Fig. 15 presents the correlation metric for faults at 2, 16

and 48 km from the probed end, using data limited to 50 kHz.

Overall, the correlation presents no ambiguity, while the pro-

jection has spurious peaks increasing in intensity as the fault

gets further from the probe. These results compare well with

those shown in Fig. 7 for a single-phase line. This agreement

is explained by the fact that the ground mode dominates the

transfer functions below 50 kHz (cf. Fig. 14). For a fault at

48 km, a clear location bias is observed for the projection,

which reaches its maximum at 16 km, explained by matching

resonance frequencies and the increasing propagation losses at

this distance, as predicted in Sec. IV-A.

Similar conclusions are reached when comparing results

for a fault at 2 km in Fig. 16(a) and Fig. 8(b), based on

data extending to 500 kHz. In fact, in this case the ground

mode still dominates the transfer function between the fault

and the probe. But Fig. 14(b) shows that at 16 km the

ground mode is expected to be mostly contributing below

200 kHz, with high-frequency data now dominated by aerial

modes. This difference shows up in Fig. 16(b), where the

location ambiguity now subdues with respect to the case of a

single-phase line. The spatial resolution also presents a clear

improvement, thanks to the lower propagation losses of the

aerial modes. For a fault at 48 km a very strong bias occurs

for the projection, with a peak observed at 160 m, due to high-

frequency resonances overlapping with those of a candidate

fault tested at 160 m from the probe.

The beneficial role of whole-line resonances becomes ap-

parent when filtering out low-frequency data where the ground

mode dominates. Results in grey color in Fig. 16, computed

from data covering 50-500 kHz, prove that the correlation

performance dramatically improves for faults at 16 and 48

km distance, where the ground-mode contribution reaching

the probe at the left-end termination is negligible. On the other

hand, projection ambiguity worsens. It is worth noting that the

spatial resolution for a fault at 48 km is in this case similar

to that of a fault at 2 km from the probe, where the ground

mode dominates.

D. Bandwidth and spatial resolution of the correlation metric

The correlation in Figs. 15 and 16 displays very different

spatial resolutions depending on the fault distance and tested

bandwidth. These results can be understood only through the

lens of modal theory. In light of the analysis presented in

Sec. VII-B, for faults close to the probe, the ground mode is

expected to dominate, as confirmed by Fig. 14(a), similarly to

a single-phase line. Hence, as shown in Fig. 6 for a single-

phase line, increasing the tested bandwidth would not improve

the spatial resolution indefinitely, as propagation losses rapidly

increase with the frequency. Fig. 17(a) supports this interpre-

tation, with the spatial resolution steadily improving up to 200

kHz, but presenting only a minor improvement when extended

to 500 kHz, consistently with the results in Fig. 6.

For further faults this situation is reversed, with high-

frequency contributions, mostly due to aerial modes, now
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Fig. 17. Spatial resolution of the transfer-function correlation for the three-
phase line in Fig. 11, depending on the tested bandwidth (expressed in kHz
for each curve) and a fault at (a) 2 km, (b) 16 km and (c) 48 km distance.

displaying negligible propagation losses even at 500 kHz. Fig.

17(b) shows how, for a fault at 16 km, the spatial resolution

is more significantly improved for high-frequency data, e.g.,

covering the 200-500 bandwidth, than when including low-

frequency contributions which, at such large distances, are

deeply affected by propagation losses. The same conclusions

apply to the results in Fig. 17(c), for a fault at 48 km, where the

spatial resolution related to the ground mode keeps worsening.

The fact that aerial modes yield a similar resolution for a

fault at either 16 and 48 km, is consistent with their negligible

propagation losses over 50 km, as expected from (11). This

notwithstanding, even restricting transient monitoring to aerial-

mode contributions, propagation losses would eventually result

in a degradation of location accuracy, as soon as they exceed

termination losses.

VIII. CONCLUSIONS

This paper has studied the accuracy of fault-location meth-

ods based on the computation of similarity between measured

full transient signals and reference results. It was shown under

what conditions increasing propagation losses may lead to

the appearance of spurious fault positions, creating ambiguity

in the interpretation of fault-location results, in particular
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when using projection-based metrics rather than correlation.

The better performance of correlation was explained by the

existence of an additional complementary location mechanism,

relying on the decay time of the line resonances.

The first conclusion from this work is that similarity metrics

based on projections should be avoided as soon as propaga-

tion losses become comparable to dissipation in termination

impedances, since they may result in a biased fault location.

As a further practical consequence for lossy single-phase

lines, e.g., ground-return overhead lines and coaxial cables, it

is not necessarily an effective solution to sample transients at

the highest possible rate, since as the maximum frequency in-

creases: a) propagation losses very rapidly increase, frustrating

the expected advantage of an improved location accuracy; b)

it becomes likelier that tested fault positions close to the probe

share some of the resonances of the line under test, planting

the seeds for location ambiguity.

Finally, the analysis of a three-phase line has provided some

insight in their complex behavior, proving how a single-phase-

to-ground fault couples ground and aerial modes, steering the

transient propagation to generate section and whole-line reso-

nances. Depending on the relative contributions of ground and

aerial modes, spatial resolution was confirmed to significantly

change, depending on the fault distance from the probe and the

tested bandwidth. The risk of location bias was also confirmed

in three-phase lines to be higher for projection-based metrics

when propagation losses increase.

These results explain under what conditions fault-location

methods based on the similarity between measured and ref-

erence transients can be expected to be accurate. Propaga-

tion losses have been theoretically predicted, and numerically

confirmed, to explain both the loss of resolution and the risk

of a biased location. Less intuitively, termination losses were

shown to introduce a threshold effect, so that depending on the

specific configuration of a line, propagation losses may lead

to a varying degree of loss of accuracy.

Future work will focus on the practical implications of these

observations, in particular to understand how to take advantage

of section and whole-line resonances to improve the fault

location accuracy of TBM. As the modal analysis introduced

in Sec. VII-B has shown, the nature of the fault has a direct

impact on the properties of fault transients. Limitations to the

accuracy of fault location might therefore vary across different

faults.

APPENDIX

This appendix discusses how to estimate the fraction of

power dissipated within a fault along a three-phase line. Con-

sider a vector of currents I+ propagating along the line where

the fault is found. The power associated to this excitation is

Pi = Re {(I+)HV+} = (TI+m)H(RcTI+m)

= (I+m)HTHRcTI+m = (I+m)HQI+m
(34)

where Rc = ReZc, while Q is Hermitian for the line shown

in Fig. 11.

Upon its interaction with a fault characterized by a modal

reflection matrix ΓS , a portion Pr of the impinging power

Pi will be reflected, while a portion Pt will be transmitted

through the fault and continue propagating along the line.

The reflected power is found similarly to (34)

Pr = (I−m)HV− = (TΓSI
+
m)H(RcTΓSI

+
m)

= (I+m)HΓH
SQΓSI

+
m.

(35)

The fraction Pr/Pi of reflected power depends on the relative

excitation of the modes, as witnessed by the quadratic form

of Pi and Pr. It is nevertheless possible to bound Pr/Pi by

first making a change of base, expressing it as a function of

the vector x = CI+m, instead of I+m, where the matrix C is

the found by means of the Cholesky expansion Q = CHC.

It is now possible to express Pr/Pi as a Rayleigh quotient

Pr

Pi
=

xHKH
r Krx

xHx
(36)

where Kr = CΓSC
−1. The bounds of Rayleigh quotients are

then given by the smallest and largest eigenvalues of the matrix

KH
r Kr. Noticing that this matrix is Hermitian, its eigenvalues

will necessarily be real and positive.

The fraction of transmitted power Pt/Pi can be found

following the same procedure, substituting Kr with Kt =
C(1+ΓS)C

−1. The fraction of power dissipated by the fault

is therefore bounded by

1− λ0 ≤ 1− Pr

Pi
− Pt

Pi
≤ 1− λ2 (37)

with λ0 and λ2 respectively the maximum and minimum

eigenvalues of the matrix KH
r Kr +KH

t Kt.
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