Homogenous nuclear magnetic resonance probe using the space harmonics suppression method - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Journal of Sensors and Sensor Systems Année : 2020

Homogenous nuclear magnetic resonance probe using the space harmonics suppression method

Résumé

Nuclear magnetic resonance imaging (MRI) has became an unavoidable medical tool in spite of its poor sensitivity. This fact motivates the efforts to enhance the nuclear magnetic resonance (NMR) probe performance. Thus, the nuclear spin excitation and detection, classically performed using radio-frequency coils, are required to be highly sensitive and homogeneous. The space harmonics suppression (SHS) method, already demonstrated to construct coil producing homogenous static magnetic field, is used in this work to design radio-frequency coils. The SHS method is used to determine the distribution of the electrical conductive wires which are organized in a saddle-coil-like configuration. The theoretical study of these SHS coils allows one to expect an enhancement of the signal-to-noise ratio with respect to saddle coil. Coils prototypes were constructed and tested to measure 1H NMR signal at a low magnetic field (8 mT) and perform MRI acquired at a high magnetic field (3 T). The signal-to-noise ratios of these SHS coils are compared to the one of saddle coil and birdcage (in the 3 T case) of the same size under the same pulse sequence conditions demonstrating the performance enhancement allowed by the SHS coils.

Domaines

Electronique
Fichier principal
Vignette du fichier
jsss-9-117-2020.pdf (2.53 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02520306 , version 1 (07-01-2021)

Identifiants

Citer

Pauline de Pellegars, Liu Pan, Rahima Sidi-Boulenouar, Eric Nativel, Michel Zanca, et al.. Homogenous nuclear magnetic resonance probe using the space harmonics suppression method. Journal of Sensors and Sensor Systems, 2020, 9 (1), pp.117-125. ⟨10.5194/jsss-9-117-2020⟩. ⟨hal-02520306⟩
226 Consultations
74 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More