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Abstract—Multivariate Generalized Gaussian Distributions
(MGGD) are a rich class of multivariate distributions, which
have gained importance across many engineering applications
(image processing, computer vision, radar and biomedical signal
processsing). Unfortunately, estimating the parameters of MGGD
leads to non-linear matrix equations, whose solution becomes
unpractical in high-dimensional problems, or when dealing with
very large datasets. To overcome this difficulty, the present
paper proposes a new method for online estimation of MGGD
parameters, called the Riemannian Averaged Natural Gradient
(RANG) method. The RANG method is suitable for application
with high-dimensional and large datasets, since it requires modest
memory and computational resources. The present paper formu-
lates this new method, and presents some computer simulations,
to showcase its performance. It is seen that, while the RANG
method makes less exhaustive use of available data, it still
achieves identical performance, to classical maximum-likelihood
estimation, for sufficiently large datasets.

I. INTRODUCTION

Multivariate Generalized Gaussian distributions (MGGD)
were originally introduced in [1]], and further studied in [2],
[3]. They have attracted much attention due to their numerous
applications. They are used in image processing, to model
the distribution of wavelet and curvelet coefficients [24], and
for image denoising [25]], context-based image retrieval [26],
image thresholding [27] and texture classification [28]]. They
also find applications in radar signal processing [29], video
coding and denoising [30], and biomedical signal processing
[32].

Across these applications, the estimation of the parame-
ters of MGGD is a recurrent and often important problem.
In particular, MLE (Maximum Likelihood Estimation) was
studied in [[13]-[16]], with several FP (Fixed-Point) algorithms
proposed in [17]-[20]. While these algorithms are applicable
to moderate-sized datasets, they do no scale well for high-
dimensional or large datasets. To deal with this issue, the
present paper introduces a new method for online estima-
tion of the parameters of MGGD. This new method, called
the Riemannian Averaged Natural Gradient (RANG) method,
requires modest memory and computational resources, yet
still achieves the same performance as maximum likelihood
estimation, when dealing with sufficiently large datasets.

The RANG method is motivated by recent progress in the
field of Riemannian stochastic optimization. This started in
2013, with the Riemannian stochastic gradient method [6],
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which sparked several developments [7]], [8]], [16]. Here, these
more theoretical developments are used in an applied context,
in order to guarantee the following properties.

The RANG method, being an online method, requires
modest memory and computational resources, and is therefore
applicable with high-dimensional and large datasets. This
method still achieves the same performance as maximum
likelihood estimation, for sufficiently large datasets. In prac-
tice, the RANG method does not require the user to spend
additional time tuning its parameters, and the time that it takes
to converge is only very weakly affected by the choice of
initialization.

The following Section [Ml] states the problem of online
estimation of MGGD parameters, and provides some back-
ground on the Riemannian geometry of MGGD. Section [II|
describes the RANG method and explains its motivation, by
first considering a simpler method of online estimation, here
called the Riemannian natural gradient (RNG) method. Finally,
Section [[V] presents computer simulations which showcase the
performance and desirable properties of the RANG method.

II. PROBLEM STATEMENT AND BACKGROUND

A. The problem of online estimation

The present paper introduces an original method for online
estimation of Multivariate Generalized Gaussian Distributions
(MGGD). Here, an MGGD is given by its probability density
function [4]
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for x € RP, where u € RP is the expectation, ¥ € P, is
the scatter matrix, and 8 € (0,+o00) is the shape parameter
(P, denotes the space of p X p symmetric positive definite
matrices). The normalizing constant C,(3) is given by
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where I'(-) is the gamma function. For a dataset X =
(x1,---,xn) generated from an MGGD density , the
expectation i is easily estimated, by taking the arithmetic mean
of Xy. Therefore, in the following, w is assumed to be known
and equal to zero, and the focus is on estimating the couple
0 = (%, 3), whose true value will be denoted 8* = (X*, 5*).

[z,

Cp(ﬁ) = 2



Maximum-likelihood estimation of the true value 8* of 0
amounts to finding the global maximum of the function

N
0) = > t(zn]0) 3)
n=1
where ¢(x|0) is the log-likelihood function

(z|0) = log C(B) —

for § = (3, B). Often, this is reduced to a fixed point problem,
and solved iteratively [21]].
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In general, there are two difficulties, which stand in the
way of applying numerical optimization methods (gradient
ascent, Newton method, efc), to the problem of maximizing
(3). First, since it is necessary to respect the constraint that 3 is
a symmetric positive definite matrix, this is a highly non-linear
constrained maximization problem. Second, if IV is quite large,
then numerical maximization methods will require excessively
large memory and computational resources.

The present paper proposes to deal with the first difficulty
by employing the Riemannian geometry of the space P,
(of p x p symmetric positive definite matrices). The second
difficulty will be resolved by resorting to online estimation.
Roughly, online estimation involves an update formula F
that requires only one sample z,; for each iteration and
eventually converges to the true value 6*, with a speed of
convergence which is suitable for practical applications.

Ont+1 = F(Tnt1,0n, Ynt1)
(5)

0, — 0 when n — oo

where v,,+1 is the update step size and its choice conditions
the speed of convergence. To define this formula F we need to
recall some useful background about the Riemannian geometry
of P, in the following Paragraph

B. The Riemannian geometry of Py

Using the Riemannian geometry of P, will guarantee that
all computations are intrinsic, in the sense that they automati-
cally produce matrices which are symmetric positive definite,
and there is no need to perform any additional checks in order
to verify this constraint is respected. When the dimension p is
large, such checks can be especially cumbersome.

The space P, is an open subset of the vector space S,
of p x p real symmetric matrices. Therefore [10], P, is a
differentiable manifold of dimension p(p+1)/2. Moreover, for
each ¥ € P, the tangent space to P, at ¥, denoted TP, is
naturally identified with Sp,.

The starting point is to equip P, with the information
metric of the MGGD model [11] [12]]. For each ¥ € P,
this defines a scalar product on the tangent space 7%7P,, given
by [12]

(u,v)y, = Litr (£7 '8 ') + Lr(S ') (S ') (6)

for u,v € TxPp ~ S,, where I; = %(Af ﬁ) and I, =
A . B
W(1—5> with A= 2 (2 + ).

In turn, this metric defines a Riemannian exponential
map [10]]. For each ¥ € P, and u € TxP,, this computes

a new point Expy(u) which automatically belongs to P,.
Roughly, this new point results by moving away from X in
the direction of u, along a geodesic curve of the metric (6).
Here, the following formula holds [22] [23]]

Expy(u) = S exp(E u) (7)

where exp is the matrix exponential. Now, equation (/) is the
main ingredient in the formula F discussed in

As for any Riemannian metric [10], the Fisher information
metric also defines a Riemannian distance on P,. For any g
and X1 in P,, this is called Rao’s information distance between
Yo and 34, defined as

d?(20,%1) = Iltr{[log(E(TlEl)]z} ®
1z {or log(55 5]

where log is the symmetric matrix logarithm function.

III. ONLINE ESTIMATION OF MGGD

Based on the above concepts, the present section proposes
an online algorithm to estimate the parameters of MGGD,
which requires modest memory and computational resources,
and is therefore applicable with large or high-dimensional
datasets. This feature is not available in previously proposed
methods [[13]]-[20]]. For preparation, the simpler case where (3
is known will be considered.

A. RNG estimation for known (8

From definition @ of the information metric, it is possible
to compute the natural gradient (or information gradient) [34],
of ¢(z|) in (@), with respect to . This turns out to be

vz, 8) = - [h’m _ ;} 5
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where S, = x2", and h(y LyB with y = 2 "S "'z, For
lack of space, the derlvatlon of @) cannot be given here.

Combining the natural gradient (9) with equation (7) pro-
vides the update formula F, required in (5). Precisely, this is
defined as follows

St = Expy, (Y1 VE (@0s1[S0, ) (10)

with step sizes v, = —3= where a € (0, 00). This stochastic
Riemannian Natural Gradient (RNG) method is stated as
follows:

Algorithm 1 RNG for estimation of ¥ with known

Input: a dataset X = {zy,---
Output: the estimator PIK

, TN}, an initial guess Yo;

1. forn=1,- —1do

2: Compute the natural gradient V', inf U(2ns1|En, B) b
equation (9);

3: Compute ¥,,41 by equation (T0);

4: end for

5: X4 XN,

For any a > 1/2, this algorithm can achieve the optimal
non-asymptotic rate of convergence

E [d*(2,,2%)|8"] < 1)
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in terms of the information distance @]), where K is some

positive constant. Moreover, it is asymptotically efficient,
which means it achieves the same performance as maximum
likelihood estimation, when N becomes large [8]. These
fast rate and asymptotic efficiency hold for all values of
(mathematically, this means they hold even when the objective
function (3) is non-concave with respect to the metric (6)).

In theory, the RNG method can be extended to the case
where [ is unknown, using the information metric derived
for this case in [13]]. However, this information metric is
very complicated, and its geodesics are not known explicitly.
The computations required for the RNG method then become
excessively complex and numerically unstable.

To overcome this problem, a novel solution is considered
in the following section [lII-B| under the name of RANG
(Riemannian Averaged Natural Gradient) method.

B. RANG estimation for unknown (3

As mentioned above, calculating the information metric of
the complete model (that is, for both 3 and ) is a bad choice.
The most straightforward idea is to find an online method
which does not require this information metric. Guided by
this idea, the present paragraph proposes an alternating online
method.

At first, assuming [ is known, this method updates X, using
the natural gradient @ Then, assuming Y is known, it updates
5, using the natural gradient with respect to 5.

Here, the natural gradient with respect to /3 is given by [[13]]

Vi (]S, 6) = 1 Vat(a]S.B) 12)
where
Val(alS,8) = LI, P)
_ %-FZ‘%[\IIO(%)—FlogQ] (13)
—3y” log(y)
I = E|[&UlS,8) %5, 0)]
= {ie(B) 0 (3) £ [0+ u (3)]
I [(ln<2>> +Wo(1+ &) [In(4) + Wo(1 + 2)]
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where y was defined in @]), and ¥y, ¥; are the digamma and
trigamma functions [33]. Now, since ( is a real number, the
update rule similar to (I0) reduces to

= B + gV U(@ns1|Zn, Bn) (15)

where ag is the step size, which will be maintained constant.

Indeed, for the case of unknown (3, the rate no more holds
for a decreasing step size. In this way, to have a sufficiently
fast algorithm, constant step size is a better choice. For the
same reason, the step size for X is also replaced by a constant,
denoted ax;. Then,

ﬁn+1

Sit = Bxpy, (asVES Lens1[Sn, 6n)) (16)

Maintaining constant step sizes guarantees an agressive global
search strategy. However, in this case, it becomes necessary to
stabilize the new update rules and (I6). This is done using
an online Riemannian averaging step, similar to [7].

The output of this online Riemannian averaging step is a
new sequence (3, 3,), obtained from the outputs (2n, Bn)

of (T3) and (I6), as follows

~ n s 1
n = n n 17
Brt+1 +1ﬂ + n+1ﬂ +1 (17)

- 1
En+1 = Expi” o lEXpE (En+1) (]8)
In other words, BnJr 1 is the weighted average of f,, and Brt1-
On the other hand, X, is the geodesic weighted average of

>, and 41 [7).
Accordingly, the following algorithm is proposed.

Algorithm 2 RANG for estimation of 3 and (8
Input: a dataset X = {z1,---

, TN}, an initial guess (X9, Bo)

and (2056) (ZO7AB0)A
Output: the estimator X, (3;
forn=1,--- ,N—1do

Calculate the gradients by QD and [Q

Update ¥, 41 and (41 by an

Take the average for X, and 6n+1 by and .
end for

EHENandﬁeﬁN,

AN Rl > e

This algorithm displays a fast rate of convergence, to the
true value 6* = (X*,8*), with little to no effect from the
choice of initial guess. Experimental results of this method
are presented in the following section.

IV. SIMULATION RESULTS
A. Simulations with known 3

Consider first the case where 5 is known, corresponding
to Figure [T] showcases the asymptotic efficiency of the
RNG method. This figure was generated from a dataset X
where N = 10%. The matrices in this dataset are of size p x p
where p = 7. The step sizes 7, in were taken to be
Yo = %, so that a = 1. Asymptotic efficiency is clearly
shown by the fact that the estimation error from the RNG
method coincides with the estimation error of MLE, where the
MLE is implemented by RDG [9] (Riemannian Deterministic
Gradient) and FP [20] (Fixed point) method, around the point
of 50000 data samples.

Figure [2] shows that the RNG method reaches the same
rate of convergence (TT), whether the objective function is
concave (8 = 4) or non-concave (8 = 1 / 3). In either case, the
slope of the error curve, in log-log plot, is ultlmately constant
and equal to —1, corresponding to the upper bound = in .

Figure [3] compares the time consumption of the RNG
method, with that of MLE estimations implemented by RDG
and FP. Under the condition of ensuring the same performance,
as the sample size increases, the time consumption of MLE
increases significantly, compared with the RNG method. Thus,
the RNG method has equivalent performance to MLE, but with
significantly less time consumption.



B. Simulation with unknown (3

When the parameter § is unknown, the RANG method of
is used. Here, the dataset Xy has N = 2 x 106 samples,
with matrices of size p x p where p = 7. The chosen step size
is ag = ax = 0.001, which performs robustly in this case.
Figure ] showcases the speed of convergence obtained using
this algorithm.
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Fig. 1. Comparison of the efficiency between RDG, FP and RNG.
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Fig. 3. Comparison of the time consumption between RDG, FP and RNG.

V. CONCLUSION

This paper has addressed the problem of online estima-
tion of the parameters of Multivariate Generalized Gaussian

-8 ‘ ‘ ‘
0 0.5 1 1.5 2
Number of samples n 106
(a) Error variation of ¥ parameter
2

0 0.5 1 1.5 2
Number of samples n 108

(b) Error variation of 3 parameter

Fig. 4. RANG algorithm for an unknown S

Distributions. Although this problem has strong motivation,
from applications to large or high-dimensional datasets, it
has not received sufficient attention in the literature. To deal
with this situation, two algorithms have been proposed, the
RNG algorithm for estimation in the case of known shape
parameter, and the RANG algorithm, for estimation in the
case of unknown shape parameter. These algorithms rely on
the information geometry of multivariate generalized Gaussian
distributions, and the idea of Riemannian averaging of the
outputs of a Riemannian natural gradient method with constant
step size. It has been shown, through computer experiments,
that these algorithms achieve the same asymptotic perfor-
mance as maximum likelihood estimation, while requiring
significantly less computation time. This reflects their reduced
complexity, which makes them suitable for applications where
there are significant restrictions on computational and memory
resources.
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