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Abstract

The estimation of the worst case execution time (WCET) of a reactive system on a
given architecture is an important goal for time-critical systems. However, it cannot
be achieved exactly, because of the complexity of modern architectures, the unde-
cidability of most program analysis problems, and the need of taking into account
the actual environment in which the system is intended to work. As a consequence,
two approaches are possible: extensively testing the system with realistic input sce-
narios (dynamic method) provides an under-approximation of the WCET, while a
guaranteed over-approximation can be obtained by applying static analysis of soft-
ware and hardware. Comparing the results of both approaches and reducing the gap
between them is interesting to assess the quality of the static analysis, and to decide
when further refinements are useless. In this paper, we propose a methodology and
a combination of tools to assess the result of software static analysis in the case of
reactive programs. In order to permit a meaningful comparison, we perform a dy-
namic analysis using a cycle accurate simulator based on the same hardware model
as the one used for static analysis. Moreover, we use an existing quite sophisticated
framework to conduct the generation of reactive input scenarios, in order to track
the worst case. This methodology and the use of associated tools is illustrated on a
small but realistic example.
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1 Introduction

A reactive system execution consists of a sequence of reactions, triggered either periodically or by external
events. At each reaction, the system acquires inputs, updates its internal state, and produces outputs. The
program that implements a reaction is usually called the transition (or step) function. Reactive systems are
often referred to as safety critical, or hard real-time, meaning that missing a deadline must be considered
as a functional failure. Thus, it is of great importance to know the Worst Case Execution Time (WCET)
of the transition function: it allows to check whether the systems meets its timing constraints and helps to
dimension its hardware requirements.

1.1 Static and dynamic WCET estimation

To get some knowledge on the WCET, one can use dynamic methods: the system is tested intensively to
obtain a Measured Worst Case Execution Time (MWCET ). This method is unsafe by nature: no matter how
intensive is the testing, there is no guarantee that the actual WCET has been reached. Nevertheless, this
approach is widely used in industry, where the MWCET is generally corrected by some empirical factor
to obtain a reference WCET. On the other hand, static methods based on the joint analysis of the soft-
ware and the hardware, provide an Estimated Worst Case Execution Time (EWCET ), which is a guaranteed
upper-bound of the actual WCET. Such safe estimations suffer from several sources of over-approximation,
performed to scale-up or to cope with undecidability.

1. Hardware abstraction. The hardware behavior cannot be precisely known, because of ever-increasing
complexities (caches, pipelines), and the uncertainty on the initial hardware state. The estimation uses
simplified and pessimistic hardware models.

2. Software abstraction. The exact runtime behavior of the software cannot be precisely known either: the
set of possible executions is overestimated as it depends on unknown data values (e.g., execution paths
made impossible because of test conditions).

In this paper, we focus on assessing the imprecision of EWCET due to software abstraction.

1.2 Assessing the Overestimation

Measuring the WCET overestimation precisely is as hard as computing the actual WCET. However, MWCET
and EWCET , obtained with dynamic and static methods respectively, give a guaranteed interval for the actual
WCET, as illustrated in Figure 1. The relative size of this interval can be measured by an over-estimation
ratio:

ρ = (EWCET −MWCET )/MWCET

This ratio is useful for several users. The designer of a static analyzer is interested in a quantitative estima-
tion of the precision of the analyzer. It is also useful for reactive systems designers to assess the realism of
the evaluated WCET, or to know when it is useless to try to improve it.

1.3 Tightening the overestimation ratio

Two ways for reducing ρ are:

1. decrease the EWCET , with more precise static analysis;

2. increase the MWCET , with more thorough test generation.

Numerous works are dedicated to the first one. This paper focuses on the second approach, and aims at
reducing the under estimation via more intensive and sophisticated testing techniques.
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Figure 1: Assessing the Overestimation

1.4 Assessing Software Abstractions of Reactive Programs requires fine-grained
Environment Models

The execution of a reactive system consists of a sequence of reactions. Each reaction applies a transition
function T to input values I and to a memory M (whose initial value M0 is known), and returns output
values O and the new value of the internal memory; at the ith reaction, (Oi,Mi+1) = T (Ii,Mi) (cf Figure 2).
Feeding T with fixed or random values for both I and M is irrelevant: the expected WCET is the one
of T applied to valid input values and reachable memory states only. Providing valid inputs is complex,
because reactive systems modify their environments: since reactive systems operate in closed loop with
their environment, the outputs of a given reaction may influence future inputs. Moreover, the WCET may
occur for some specific and rare cases: it may correspond to a memory state Mk reachable after a particular
and long input history. The probability to obtain randomly the WCET in this case can be infinitely small,
and some guiding in the input generation is necessary.

Ideally, input sequences that trigger costly states should be discovered automatically by a program
analysis. However, such analysis is not always possible nor tractable. Providing manually such sequences
is tedious and requires a deep expertise on the system. We propose to help the system expert to generate
this sequence by using Lutin [23], a programming language dedicated to the modeling and simulation
of reactive systems environments. Designed for testing purposes, Lutin programs can define the set of
forbidden input sequences using constraints relating inputs, outputs, and memories. Then an arbitrary
number of valid input sequences can be automatically generated at random. If some more guidance is
needed to put the system in some particular state, system experts can define stochastic scenarios.

1.5 The Assessment Methodology

Once the transition function is available, we compute the EWCET using static analysis tools, and the MWCET
by running random but valid (w.r.t. to inputs) simulations. If the resulting ρ is small enough, we are
done. Otherwise, before trying to enhance the EWCET with more costly heuristics, we need to think about
the following question: can random inputs trigger costly parts of the transition function? If not, we can
provide directly a triggering sequence of inputs. Or we can use a looser language/random-based approach,
by adding more constraints, and defining stochastic scenarios.
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Figure 2: A transition function of a reactive program

1.6 The Experimental Setup
To compute the EWCET , we use the OTAWA framework [1], that supports the management of binary code
in general (object code loading, instructions decoding, etc.), and static WCET estimation in particular. To
compute the MWCET , we use OSIM (OTAWA SIMulator), a cycle-accurate simulator that we have developed
on purpose, and that is based on the OTAWA framework. The rationale for using a simulator is manifold.

• Simulating rather than executing is technically much lighter and versatile.

• The actual execution platform is not always available when developing the software; and when it is,
measuring faithfully the cycle numbers is complicated (probe-effect).

• It permits to assess the software abstractions more easily. Indeed, by sharing the hardware model,
differences between the dynamic and the static estimation can not be due to hardware abstractions.
Moreover, both tools provide profiling information on the same internal representation of the program
(CFG). The user can observe that a sub-procedure is never executed, or that there is a huge difference
between some loop bound estimated statically, and the number of iterations actually observed during
simulations.

1.7 Contributions
This paper proposes a methodology and a tool-set to assess program analyses that compute safe WCET
estimations, and to enhance the MWCET with more thorough test generation. The new part of this tool-set is
the simulation tool OSIM, connected to LUTIN to simulate program environments. The paper also presents
a tutorial of the LUTIN language which illustrates the methodology on a new representative case study. The
paper also presents a new use of the LUTIN language: search for longest execution paths.

1.8 Paper organization
Section 2 describes the OTAWA WCET estimation framework, and how it has been extended to compute a
MWCET . Section 3 presents a first set of fully automated experiments. Those experiments highlight the need
for more elaborated input generation methods. The one we propose is based on the synchronous approach;
therefore the necessary background on the synchronous approach and the LUTIN language is surveyed in
Section 4. Section 5 illustrates the methodology on a representative case study, where LUTIN is used to
drive the simulation towards more precise MWCET . Section 6 discusses some related work.

2 Assessing WCET Estimation
WCET estimation is classically categorized into dynamic and static methods. In dynamic methods, ex-
ecution time estimation is obtained from programs that are executed with a variety of input scenarios.
This approach does not guarantee that the worst case is found (unless all of possible inputs and hardware
configurations can be tested, which is seldom possible).

Static methods require formal models for the software and the hardware (micro-architecture). The
hardware model must reflect both the functional and the temporal behaviors. Because of the complexity
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Figure 3: OTAWA framework

of the hardware and the software, models necessarily contain conservative abstractions, by considering an
over-approximation of the set of actual executions.

The following sub-section briefly presents the OTAWA static analyzer, and how it has been extended to
set up OSIM (Otawa SIMulator), a cycle-accurate simulator that uses the same hypothesis on the underlying
micro-architecture.

2.1 Background: WCET Estimation with OTAWA

OTAWA [1] is an open source framework that is able to perform execution time analysis, as sketched in
Figure 3. First, the binary code to analyze is transformed into a Control Flow Graph (CFG). Each CFG
consists of an entry block, an exit block, and a set of Basic Blocks (BBs). Each BB contains a sequence
of instructions, and BBs are connected via edges representing the control flow of the program. Each finite
path between the entry and the exit block represents a potential execution.

The Value Analysis gathers and infers semantic information on the program in order to prune away
execution paths that are semantically infeasible. This analysis must at least provide an upper bound for
each loop in the CFG, in order to reject any infinite execution. It may be applied to the binary code, but
often require the source code which is generally simpler to analyze. It may also exploit information given
by the user: bounds for complex loops or recursions, or input ranges. All information are integrated as
annotations into the CFG (Annotated CFG).

The Micro-architectural Analysis makes use of a model of the hardware. Its goal is to associate to
each BB a temporal information, basically a local WCET. This part is highly configurable in OTAWA, via
hardware models files defining the instruction set, the decoding pipeline, the memory hierarchy and cache
policy. In this paper, we use a simple platform model based on a ARM7-LPC2138 architecture (3-stages
pipeline), and a simple memory model without cache.

The path analysis takes the CFG with the temporal information (local WCET for each BB) and the flow
information (e.g., loop bounds) and computes the worst execution path in the CFG, leading to the maximal
execution time. This phase implements the Implicit Path Enumeration Technique [19], where the search of
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Figure 4: OSIM framework

the worst path is expressed as an Integer Linear Program (ILP).

2.2 Execution Time Measurement with OSIM

Dynamic WCET estimation may seem quite straightforward: the program is executed on the actual archi-
tecture, for a variety of input scenarios, while measuring the execution time. However, things are more
complicated. First, it is not always possible to run and measure programs on the actual hardware platforms
either because the hardware is not (yet) available, or because it does not provide any facility to count cycles.
Moreover one has to define precisely what should be the variety of scenarios: it must contain only feasible
input sequences and be large and exhaustive enough to get close to the worst case.

The tool OSIM has been designed for this purpose, and is a contribution of this work. This section
briefly presents its main characteristics; a more detailed description can be found in a technical report [11].
OSIM is an hardware simulator based on the OTAWA framework that provides all the necessary facilities
such as binary loading, decoding and instruction set simulation. The organization of OSIM is depicted in
Figure 4. The Structural Simulator (SS) models the control flow in the processor in a cycle accurate manner.
It is developed in SystemC [8], a technology widely-used to perform cycle accurate simulations efficiently
(more efficiently than VHDL-based simulations). The SS is generic and is configured via resource files to
specify the characteristics of the processor and the memory (e.g., pipeline stages, memory layers, caches).
This hardware description is exactly the one used by OTAWA, namely, a simple ARM7 architecture, with
a 3-stages pipeline: fetch, decode, and execute. For this particular architecture, the temporal behavior is
simple: the Fetch and Decode stages count for 1 cycle; the Execute stage blocks the pipeline for a variable
number of cycles, depending on the type of instruction; moreover, in case of branching instructions, the
pipeline flush is simulated by a penalty of few cycles (depending on the exact instruction). The instructions
are virtually performed, by calling the instruction set simulator.

The instruction set simulator (ISS) is generated automatically by OTAWA facilities. The goal of the ISS
is to store and manage the functional state of the hardware: the Register file, and the Memory. Typically,
a register “r1” is implemented as a field “R1” in the Register file structure. Since the temporal behavior
is captured at the SS level, the simulation in the ISS is purely functional: for instance, a binary instruction
like “add r1,r1,r2” is translated in a simple statement “R1 += R2;”.

2.3 Plug Lutin into OSIM

The objective of this work is to assess the result of the static WCET estimator such as OTAWA on a par-
ticular reactive program. The idea is to connect a simulator (OSIM) to an input generator that provide all
necessary external input data. The objective is to be able to generate realistic and interesting scenarios
for reactive programs. To be realistic, scenarios must at least satisfy some simple assumptions on input
ranges, or on events exclusion. To be interesting, they also have to guide, as far as possible, the generation
towards executions that are close to the worst case. Thanks to the LUTIN language, the user can program
the generation of input scenarios. This guided test technology is presented in sections 4.3 and 4.4. The
interactions between OSIM and LUTIN, sketched-up in Figure 4, are as follows:

• The input generator (e) loads the LUTIN program.
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File MWCET EWCET ∆ ρ%
clash 56 56 0 0
expand 108 108 0 0
concat 128 128 0 0
const 56 56 0 0
extern 45 45 0 0
extern_fun 45 45 0 0
model 121 121 0 0
package 61 61 0 0
rec_nodes 324 324 0 0
unsafe_ext 38 38 0 0
fby 189 190 1 0.5
arrow 298 300 2 0.7
condact 426 428 2 0.5
red 171 173 2 1.2
dble_delay 417 420 3 0.7
merge 164 167 3 1.8
tuple 67 70 3 4.3
ck5 390 394 4 1
ck4 179 184 5 2.7
ck7 200 205 5 2.4
current 186 193 7 3.6
pusher 652 660 8 1.2
enum 228 236 8 3.4
ck6 362 371 9 2.4
expand2 280 289 9 3.1
ck3 318 328 10 3
carlights 1 465 1 477 12 0.8

File MWCET EWCET ∆ ρ%
ck2 390 403 13 3.3
matrice2 501 515 14 2.8
diese 229 243 14 6.1
fill 1 691 1 705 14 0.8
red2 569 583 14 2.5
stopwatch 1 141 1 156 15 1.3
mapinf 538 558 20 3.7
boolred 232 254 22 9.5
matrice 1 636 1 660 24 1.5
PCOND 1 463 1 502 39 2.7
minus 1 606 1 652 46 2.9
mapiter 1 528 1 576 48 3.1
modes3x2 1 164 1 221 57 4.9
with 157 231 74 47.1
struct 338 422 84 24.9
model2 3 124 3 233 109 3.5
map 889 1 099 210 23.6
is_stable 3 592 3 920 328 9.1
real 430 1 113 683 158.8
multiclock 599 1 653 1 054 176
iter 12 987 14 308 1 321 10.2
sincos 1 842 4 862 3 020 164
heater 4 102 7 224 3 122 76.1
rec_node 5 119 9 020 3 901 76.2
poly 11 482 14 927 3 445 30
speed 18 774 23 023 4 249 22.6
convertible 57 726 106 242 48 584 84.3

Table 1: The OTAWA and OSIM WCET estimations, in cycle numbers, on LUSTRE benchmark programs.
OSIM is used with random inputs. Column 2 contains the measured Worst Execution Time (MWCET ), ob-
tained among the 10 000 simulation steps. Column 3 contains the WCET upper-bound (EWCET ) computed
by OTAWA. Column 4 and 5 contain the difference (∆) and the percentage ratio (ρ%) between column 3
and 2. This table is sorted out according to column 3.

• The simulator loads the binary program in the (simulated) memory (c), and the simulation starts by
fetching the first instruction.

• Instructions are then handled by the classical pipeline fetch/decode/execute. During the execution, local
data are read from and stored to the Register file (a) and the simulated Memory (b).

• The inputs of the simulated programs are mapped in memory at specific memory addresses. Each time
the query of such an external data is recognized (i.e., at the beginning of the transition function), the
input generator (e) provides a value randomly chosen among those that are compliant with the scenario.

• In the same manner, at the end of the transition function, program outputs are mapped at specific ad-
dresses, which can be read by the Lutin program. This value can then be used by the input generator to
produce valid or interesting values in the next step of the simulation. This point is important and specific
to our framework; the test is performed in a closed loop: the program outputs may influence the validity
of forthcoming program inputs.
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2.4 WCET Estimation Differences

An important characteristic of the approach is that the analysis with OTAWA and the simulation with OSIM
are based on the same model of the architecture: they have the same information on the execution time
of each instruction, pipeline stages, memory load and store. Comparing results from both methods is then
easier to interpret, when one wants to assess the effect of software abstractions of the WCET estimation.

When OSIM and OTAWA use the same assumptions on realistic inputs, the worst case execution time
measured by OSIM is necessarily smaller or equal than the WCET estimated by OTAWA. The possible dif-
ference between the two results may come from both sides (overestimation by OTAWA and underestimation
by OSIM):

• Since OTAWA must guarantee an upper-bound to the WCET, any uncertainty in the abstraction must
lead to a pessimistic choice.

• On the other hand, as any testing method, OSIM may miss the actual worst input scenario.

In this work, we focus on software uncertainty rather than hardware uncertainty. We have therefore chosen
a simple architecture that limits the influence of the hardware, and makes the influence of input data and
execution paths more visible.

3 A Quantitative Experiment with fully automatic generation of
random inputs

This Section presents an automated experiment conducted on a set of publicly available LUSTRE pro-
grams3. Then follows a discussion on the experiment interests and limitations. The goal is to show, on one
hand, that for simple programs, the worst case scenario may be found without any user effort; and on the
other hand, some work is necessary for more complex programs, which motivates the rest of the paper.

The experiment consists of applying the tools presented in Section 2 without any human intervention. A
dedicated website4 explains how to reproduce it. OTAWA is already an automated tool, but OSIM requires an
executable model of the environment to feed the simulated program inputs. We automate this by generating
simple programs which produce random input values. Actually, this simple push-button approach can be
effective at triggering costly paths in the program CFG. In Table 1, the difference (∆) between the static
and the dynamic approaches is often very small for this benchmark. A zero-valued ∆ means that we have
actually found the actual WCET – for a given architecture abstractions, and provided that all the generated
input sequences are legal. Some programs are simple, since part of this LUSTRE program suite is made of
programs written to illustrate a single LUSTRE concept at a time.

Bigger differences can be due to the pipeline analysis in presence of conditional structures (if/then/else,
loops). Indeed, during the static analysis, abstract domains are used to represent the set of possible values
efficiently, which lead to over-approximations at joint points. Note that loops and control structure are
widely used in floating point libraries which explains the large cycle ratio (ρ) for some programs (real,
sincos, speed, multiclock).

A big ρ can be helpful to hint when some unexpected software over-approximations occur. But, as ex-
plained in the introduction and in Section 2.4, in the case of reactive programs, it does not necessarily means
that the static analyses was bad. It may also mean that costly paths can not be straightforwardly triggered
during simulations. As a matter of fact, it is the case for the LUSTRE program named convertible,
which is referenced at the end of Table 1. Before illustrating in Section 5 the use of the synchronous lan-
guage LUTIN to better simulate the synchronous program convertible, Section 4 recaps the necessary
concepts of the synchronous languages.

3https://github.com/jahierwan/lustre-examples
4https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/tree/master/osim-lutin

https://github.com/jahierwan/lustre-examples 
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/tree/master/osim-lutin
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4 Background: Synchronous Languages and Tools
A reactive system is an assembly of hardware and software that runs in closed-loop with an environment.
Its execution is made of sequences of reactions. Each reaction consists of acquiring inputs, computing
outputs and memories (step), and providing outputs. The synchronous approach helps designers to program
the reactive step function by several means: dedicated programming languages, formal verification, and
automated testing.

4.1 Languages and Code generation
Synchronous languages [2, 9, 17] help to design reactive systems by generating a step function, that is
correct by construction with respect to the following aspects:

Bounded Memory and execution time. In order to guarantee a bound on the memory usage, synchronous
languages have no dynamic data-structure; to guarantee a bound on the execution time, they have no general
while loop (for loops are possible if the number of iterations is known at compile-time). Such language
restrictions also facilitate the WCET analysis.

Concurrency and determinism. Synchronous programs are made of modular unit (often called nodes)
that run concurrently and communicate instantaneously without blocking (synchronous broadcast). Nodes
operate over streams of values. Nodes are automatically scheduled using data dependencies. Instantaneous
data dependency loops are rejected at compile-time to prevent deadlocks at runtime. Accepted programs
are compiled into a deterministic single-step function made of statically-scheduled tasks – generally in C.
The step function can be embedded inside an OS-free system to ensure time and functional determinism.
This is essential for critical systems, to guarantee that what you simulate (or prove) during the development
phase is what you execute in the final embedded device.

Clocks. By default, in data-flow programs, all expressions are executed at each step. They yield to binary
code with no branch – which simplifies the WCET analysis. Yet, there is a way to prevent a computation to
occur via the use of clocks. A clock is a Boolean that defines the instant when another variable is present.
The clock of each variable must be declared, and the clock-consistency is checked at compile-time. For
instance, consider the Lustre node speed below (used in Section 5), that computes the speed (of a vehicle
with wheels) out of two sampled inputs: (1) Rot, which is true each time the wheel has performed a
complete rotation; and (2) Tic, which is true each time some external physical clock has emitted a signal
indicating that some constant amount of time elapsed (e.g., 100 ms)5.

node speed(Rot, Tic: bool) returns (Speed:real);
var
TicOrRot:bool; SampledSpeed:real when TicOrRot

let
TicOrRot = Tic or Rot;
SampledSpeed = compute_speed(Rot when TicOrRot,

Tic when TicOrRot);
Speed = current(SampledSpeed);

tel

In this node, TicOrRot defines the instants when speed (SampledSpeed) should be updated.
Hence, the only role of the speed node is to sample the input of compute_speed (using the when
operator), and then to over-sample its output (using the current operator). This way, the costly compu-
tations of compute_speed only occur when either Tic or Rot is true.

4.2 Formal verification
Despite guarantees provided by language restrictions and compiler analysis, synchronous programs can
contain functional errors. Formal verification of temporal safety properties can be carried out via the use

5https://github.com/jahierwan/lustre-examples/tree/master/verimag-v6/examples/speed.lus

https://github.com/jahierwan/lustre-examples/tree/master/verimag-v6/examples/speed.lus
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of synchronous observers [10, 25]. The idea is to define the program expected properties by means of a
synchronous program that inputs (observes) the program inputs/outputs trace, and returns a Boolean that
states whether the trace is correct or not. Trace recognizers are simpler to define than trace generators
(that compute outputs out of inputs), and generally lead to orthogonal and more abstract descriptions. As
most program properties are not true in any environment, hypotheses on the environment should be made.
Synchronous observers defining the set of valid environment traces can be used again. The static analysis
tool then explores the state-space of the synchronous product of the program, its environment, and the
properties, and tries to prove that no bad state exists. Synchronous observers can formalize any safety
property; and the same language can be used for the program, the properties, and the environment [21, 24].

Formal verification can also be used to enhance WCET estimation, by identifying execution paths that
are semantically infeasible. In synchronous programs, clocks, that state when to execute a piece of code,
have a strong influence on the WCET. Detecting mutually exclusive clocks can help to lower drastically
the EWCET [22].

4.3 Automated black-box Testing
The idea of the LURETTE testing tool [15] is to re-use the observers-based formalization when the verifica-
tion is too difficult because of state explosion or undecidability. The observers of expected properties can
automate the test decision and play the role of the test oracle. Environment observers are used to generate
the input stimuli: a Boolean-numeric solver that chooses values that satisfy the observer. Because LUSTRE
is not well-suited to express sequential scenarios, nor to assign scenario probabilities, a dedicated language,
LUTIN, was designed [23, 13, 14].

LUTIN shares with LUSTRE (most of) the syntax, the logical view of time, the structuring into concur-
rent data-flow nodes, and the synchronous non-blocking broadcast semantics. The two main differences
are that (1) LUTIN has some control statements to describe sequential scenarios and assign probabilities,
and (2) that LUTIN programs may stop.

4.4 The LUTIN language
We now present enough of the LUTIN syntax and semantics for the reader to understand the examples of
Section 5. LUTIN programs are made of two levels. The control level (or trace level) randomly chooses a
constraint; and the constraint level randomly chooses values out of the chosen constraint.

More precisely, control level statements belong to a regular language over an alphabet made of con-
straints. Constraints are randomly chosen (control-level non-determinism) from choices (|), sequences
(fby), and Kleene stars (loop). A constraint is a relation between input, output, local, and memory
variables. This relation is made of classical logic operators (not, and, or), comparisons (≤), and nu-
meric expressions. Known values (inputs, memories) are propagated into the constraint, which is given
to a Boolean-numeric solver6. If it is satisfiable, one solution is drawn which provides a value to outputs
and locals (constraint-level non-determinism). If the elected constraint is not satisfiable, a new constraint
is asked to the control-level (backtrack on choices). We now illustrate how those two levels interact using
small examples. Consider the node between below, that outputs a real value x between l and h.

node between(l, h: real)
returns (x: real) = (l<=x and x<=h)

If “l > h”, the constraint has no solution, and the program stops without producing any value.
If “l <= h”, x is chosen uniformly in the interval [l,h] for the first step, and then the program stops.
If one wants to write programs that generate more steps, one has to use a fby or a loop control-level
statement. For example, the program below binds the output x to the input init at the first step, and then
generates values between l and h, as long as “l < h”, for the remaining steps.

node between_init(init,l,h:real) returns (x:real) =
{ x = init } fby

6The current solver only handles linear arithmetic.
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loop { l < x and x < h }

Hence, LUTIN programs which bodies is reduced to “loop true” generate random values forever
for all their outputs. Such programs are straightforward to generate automatically and were actually used
in the automated experiment presented in Section 3.

The one_two node below illustrates weighted choices. A weight is an integer value attached to the
branch of a choice (|int:), that indicates the relative probability of this branch to be chosen. Here, the
second branch has a weight of 3, and is thus 3 times more probable than the first branch with a weight of
one. Finally, this program binds x to 1 with a probability of 0.25, and to 2 with a probability of 0.75, and
this behavior is repeated infinitely since no constraint can fail here.

node one_two() returns (x:real) =
loop { |1: x=1 |3: x=2 }

Several programs can be executed in parallel with the &> operator. For instance, in “t1 &> t2”, the
LUTIN interpreter chooses a constraint c1 from t1 and c2 from t2. If “c1 and c2” is satisfiable, this
conjunction is used to produce values for the step. Otherwise, the interpreter backtracks and chooses other
constraints. To avoid code duplication, typed-macros can be defined via let/in statements:

let Between(x,l,h:real):bool = (l<x) and (x<h)
node up(init, delta:real) returns( x : real) =
{ x=init } fby
loop { Between(x, pre x, pre x+delta) }

The pre operator (as in Lustre) gives access to the previous value of a variable; pre x therefore
denotes a memory. The up node binds x to init at the first step; and for the remaining steps, x is
increased by a real value chosen in ]0;delta[. Another way to re-use code is by calling nodes via
run/in statements. Contrary to macros, that are simply inlined, run nodes use their own runtime instance,
executed synchronously. The computed output values of run nodes are injected into the context in scope,
as if they were inputs or memories.

node up_down(min,max,delta:real) returns (x:real) =
Between(x, min, max) fby
loop
exist lmin, lmax, ldelta : real in
run lmin := between(min, pre x) in
run lmax := between(pre x, max) in
run ldelta := between(0., delta) in
{
| run x := up(pre x, ldelta) in loop { x<lmax }
| run x := down(pre x, ldelta) in loop { x>lmin }
}

In the program up_down, the output x is first chosen in ]min,max[, and then the control enters an
infinite loop. In this loop, local variables are chosen using the between node. The local variable values
are propagated into the trace statement under scope (lines 7-10). Beside local variables definition, the loop
body is made of an equiprobable choice (| – no weight means a weight of 1) : if the first branch is chosen,
the node up is run, and the chosen value for x is injected into the constraint x < lmax. This constraint
is used to produce up_and_down values until x < lmax becomes unsatisfiable. The control-level then
backtracks and chooses the second branch of the choice, which run the down node (the dual of up) as long
as x remains greater than lmin. When this second branch of the choice fails, the control is given back
to the outer loop, that chooses new values for the locals, and a new branch for the choice. A 500-steps
simulation of use_up_and_down is graphically represented in Figure 5.

node use_up_down() returns (x:real) =
run x:= up_down(0.0, 100.0, 5.0)

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/blob/master/osim-lutin/expe/realGen.lut#L59
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Figure 5: A 500-steps simulation of use_up_down

LUTIN Non-determinism is based on pseudo-randomness, which means that bugs revealed using a
particular seed can be replayed7.

4.5 The synchronous approach and the WCET

The synchronous approach ensures time and functional determinism of the step function, that one tests
and proves correct during the development phases. It behaves exactly the same when executed in the final
embedded system. For time-triggered systems, one has to make sure that the step function execution time
is smaller than the period. For event-triggered systems, the step execution time should be smaller than the
reaction time of the environment. In any case, computing a tight WCET of the generated step function is
necessary.

5 A detailed Experiment

We now resume the discussion of Section 3, and illustrate the proposed methodology that relies on the
use of the synchronous language LUTIN to increase the MWCET and lower the WCET estimation ratio.
Like in Section 3, this experiment is automatically run using a Gitlab CI script, and can be reproduced by
anyone8. This section is also a tutorial demonstrating how to automate the stimulation of reactive systems.
It uses recent testing techniques, which rely on advances in language design and constraint solving (Binary
Decision Diagrams and convex polyhedra). This random-based language approach is being used with some
success in the industry [16].

The convertible (LUSTRE) program was designed to be realistic and to illustrate the importance of
being able to take the feedback loop into account. This section starts from an empty Lutin program (that
chooses all values at random) and shows how to refine it stepwisely by adding constraints and describing
stochastic scenario; it also reports on the effect of such refinements on the MWCET .

5.1 The Convertible Case Study

To illustrate the approach, we have designed a LUSTRE program meant to be embedded in a car, which
controls a retractable roof system and an anti-collision system. As both systems are not supposed to be
active simultaneously, it makes sense to embed them into the same hardware. The retractable roof system,
once activated, controls the roof motion speed, slowing it down when the roof is opened or closed at 95%.

7cf http://www-verimag.imag.fr/Lutin.html for a LUTIN manual and tutorial.
8https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/tree/master/osim-lutin

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/blob/master/osim-lutin/expe/realGen.lut
http://www-verimag.imag.fr/Lutin.html
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/tree/master/osim-lutin
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Figure 6: The convertible program. The Locked variable is true when the roof is in the locked state.
Speed is computed out of Tick and Rot by the speed node presented in Section 4.1. SMax is the
speed that triggers the anti-collision mode. h is a small constant used to avoid hysteresis between the run
and the anti_col states. roof_speed(Tick) and may_collide(Speed,Dist) are auxiliary
(costly) nodes not detailed here.

The anti-collision system, activated when the vehicle goes beyond a certain speed, uses the distance from
the vehicle at the front to emit an alarm. The system inputs are:

• Rot, which is true when the wheel has performed a rotation. Tick, which is true when a constant
period of time has elapsed. Rot and Tick are used to compute the vehicle Speed (cf Section 4.1).
Tick is also used to compute the percentage of roof opening.

• Parked is true when the vehicle is parked. OnOff is true when the driver asks to open or close the
roof. Done is true when the roof finishes to close or open.

• Start is true when the driver wants to start the vehicle. Dist is the distance to the vehicle at the front.

Start and OnOff comes from driver requests; the other inputs come from sensors. From inputs, the
program computes two outputs:

• Danger signals that the vehicle is too close to the front one (computed from Speed and Dist).

• RoofSpeed is a real that controls the speed of the roof.

This program is represented in Figure 6 using block-diagrams (sharp corners) and automata (rounded
corners). The complete LUSTRE program (250 loc) is part of public git repository3. Each sub-system has
different modes of computations, and each mode has different computation times. They are running in
parallel, but the costly modes are exclusive. The costly modes of the roof system goes on when the roof
is opening/closing to compute the roof speed by counting Tick; and the costly mode of the anti-collision
system is active when the vehicle exceeds some speed. Since the system ought to make sure that the roof
is not in motion when the vehicle runs, those two costly modes ought to be exclusive. To be efficient, the
automaton encoding heavily relies on LUSTRE clocks that allow to state when a computation should occur.

The LUSTRE V6 compiler generates from this program a 1500 loc C step function, which is compiled
using a gcc ARM cross-compiler. OTAWA analyzes the resulting binary using an ARM7 configuration
(LPC2138) and computes a worst case of 106 242 cycles. To compute this number of cycles, OTAWA
assumes that all inputs and all configurations of the program memories are possible.

5.2 Tightening the overestimation ratio

In order to assess the EWCET , engineers can perform simulations with OSIM, which measure the cycle
counts at each step, and look how far the longest simulation step is from the EWCET . It is a difficult and
tedious job to provide all the inputs for the simulation of reactive programs. LUTIN, which was designed
to model reactive programs environments for testing purposes, can be used in this context.

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/blob/master/osim-lutin/expe/convertible.lus
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Figure 7: Cycle counts distribution obtained with env1 and OSIM on a 10 000 steps simulation. The dotted
line (left, in blue) materializes the longest simulation. The dashed line (rigth, in red) represents the WCET
computed by OTAWA.

5.2.1 A fully random Environment

The simplest LUTIN environment is the one that has no constraint (true) for all instants (loop):

node env1() returns(
Dist:real; Start,Parked,Rot,Tick,OnOff,Done:bool) =
loop true

Hence, at each step, all output variables are chosen equi-probably at random – as we did in Section 3
to provide inputs to benchmark programs.

We run this env1 environment with the convertible step (transition) function via OSIM for 10 000
steps – which lasts a several minutes on a recent PC. Figure 7 shows the distribution of cycle counts for
each step function call. We can see that most of the steps last for either around 800 cycles, or around
45 000 cycles. A smaller group of steps lasts longer (around 57 000 cycles), and contains the longest one
that lasts 57 726 cycles.

5.2.2 Forbidding impossible inputs

Several hypotheses on the program inputs can be taken into account to refine the WCET estimations.

H1: The driver can start the vehicle and action the roof at the same time.

H2: As long as the the vehicle is parked, the wheel rotation sensor do not emit any event.

H3: As long as the the vehicle speed is not null, the car is not parked.

H4: As long as the roof is moving, the Done signal can not be emitted.



14 5 A DETAILED EXPERIMENT

By applying the method described in [22], the LESAR [24] model-checker can use those hypotheses to
discover infeasibility paths in the binary Control Flow Graph. More precisely, LESAR automatically finds
that states in_motion and anti_col (of Figure 6) are never active at the same time, as a consequence
of hypothesis H1. This information is translated into exclusion properties at the binary level, and taken into
account by OTAWA that gives an improved EWCET of 64 042 cycles (i.e., an improvement of 60%).

As far as the MWCET is concerned, one can formalize those four assumptions using the env2 LUTIN
program:

node env2(Speed,Roof_Speed:real) returns(
Start,Parked,Rot,Tick,OnOff,Done:bool; Dist:real) =
{

loop { not (OnOff and Start) } -- H1
&> loop { Parked => not Rot } -- H2
&> true fby loop {

( Speed > 0.0 => not Parked ) -- H3
and ( Roof_Speed > 0.0 => not Done ) -- H4
}

}

All hypotheses are executed in parallel branches – using the &> operator. The third and fourth assump-
tions begin with the true statement, which means that no constraint is used in the corresponding branches
during the first instant. This is necessary because they involve inputs, which are not available at the very
first step. Notice here the importance of the feedback loop again: it allows the environment to react to the
value of the vehicle speed, which is a program output. Such kind of input sequences can not be generated
offline.

During a 10 000 steps long simulation, the longest step of the convertible program using the env2
environment was made of 45 612 cycles (cf Figure 8). However, such simple environments (env1 and
env2) can not always trigger all the program corner cases. In this example, since the probability of having
a Rot is the same as having a Tick (and depending on the wheel girth and the step activation period), the
test engineer may never trigger the anti_col state. The vehicle would not move fast enough to switch
the anti-collision system on.

5.2.3 Defining scenarios to visit more paths

To obtain a better simulation-based estimation, we need to write scenarios that put the program into inter-
esting states. Here, the test engineer could design a deterministic program that performs enough rotations
per second to make the vehicle move fast enough to enter the anti_col state. However, that would not
be in the spirit of the language, where everything is random by default. It is better when designing envi-
ronment models to remain as loose as possible, giving a chance to the randomness to trigger corner cases –
which means, in a WCET perspective, to visit new paths in the control-flow graph.

let geneRotTick(Start,Rot,Tick,Danger:bool): trace =
let decel = { |5: not Rot |1: Rot } in
let accel = {{ |1: not Rot |5: Rot }

&> Start &> not Danger}
in
loop [50] not Rot fby
loop {
loop [0,300] accel fby
loop [0,300] decel fby
loop [60,300] not Rot

}

In geneRotTick, we first generate 50 steps where the only constraint is that Rot is false (line 6) to
model the fact that a vehicle is first parked for a while; then we enter an infinite loop (line 7), made of an
acceleration stage (line 8), followed by a deceleration stage (line 9), each stage lasting between 0 and 300

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/blob/master/osim-lutin/expe/env.lut
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/blob/master/osim-lutin/expe/env.lut
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Figure 8: Cycle counts distribution obtained with env2 and OSIM on a 10 000 steps simulation. The
dashed (rigth-most) line represents the WCET computed by OTAWA, with the path analysis described
in [22].
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Method used OSIM without OSIM with OTAWA
scenario (env1) scenarios (env3)

WCET 57 726 71 352 106 242

Table 2: The WCET estimations obtained without any hypothesis on the environment

steps. The deceleration stage is defined with the decel macro (line 2), which states that a Rot is 5 times
less likely to happen than not to happen, whereas in the accel macro (line 3), a Rot is 5 times more likely
to happen. The macro accel additionally enforces Start to be true (the “&>” operator conjuncts trace
expressions), to reflect the fact that a vehicle only moves when someone ask to start it on. The constraint
not Danger has a different nature, since Danger is an input; when Danger is true, the whole accel
constraint is false, and the acceleration loop is forced to exit.

Note the feedback loop here: when Danger is true, the accel mode is inhibited to model the fact that
the driver ought to stop accelerating when a danger arises; such behavior cannot be simulated offline. Even
if it seems less realistic, it might be interesting from the coverage point of view to remain longer in this
mode to explore more paths. A refinement could be to accept such behavior, but with a lower probability.

node env3(Danger:bool) returns (
Start,Parked,Rot,Tick,OnOff,Done:bool; Dist:real) =
run Dist := up_down(0.0, 500.0, 5.0) in

not (Start or Rot or Tick)
fby geneRotTick(Start, Rot, Tick, Danger)

The geneRotTick macro can then be used to define a third vehicle environment env3. Here, for
didactic purposes, we do not forbid impossible inputs as we do in Section 5.2.2. At the first instant, we
carefully avoid to use the geneRotTick macro, because it uses the Danger input, which is not avail-
able yet. In parallel of the generation of the outputs Start, Rot, and Tick, the node up_and_down
presented in Section 4.4 generates the distance (Dist) to the front vehicle. Figure 9 shows the distribution
of cycle counts obtained on 10 000 steps using this environment, which maximum is 71 352 cycles. This
simulation does not take into account any property on the environment, and in particular the exclusivity of
Start and OnOff. The results of this experiment is outlined and compared with the first one in Table 2.

5.2.4 Combining all environments

The env4 LUTIN program combines the constraints of env2 and env3, and produces a 60 371 cycles
simulated WCET (Figure 10).

node env4(Danger:bool;Speed,Roof_Speed:real) returns
(Start,Parked,Rot,Tick,OnOff,Done:bool; Dist:real) =
run Dist := up_down(0.0, 500.0, 5.0) in
{

not (Start or Rot or Tick)
fby geneRotTick(Start, Rot, Tick, Danger)

&> loop { not (OnOff and Start) } -- H1
&> loop { Parked => not Rot } -- H2
&> true fby loop {

( Speed > 0.0 => not Parked ) -- H3
and ( Roof_Speed > 0.0 => not Done ) -- H4

}
}

The results of the simulations performed by OSIM using LUTIN environments env2 and env4 on
the convertible program are summarized in Table 3. Note that the WCET obtained by simulation of an
environment that generates impossible inputs (where both OnOff and Start are true at the same instants)
overtakes the WCET computed by OTAWA and LESAR that takes into account the hypotheses on inputs.

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/blob/master/osim-lutin/expe/env.lut
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/blob/master/osim-lutin/expe/env.lut
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Figure 9: Cycle counts distribution obtained with env3 during a 10 000 steps simulation. The rigth-
most dashed line represents the WCET (in red) computed by OTAWA without taking into account any
environment property.

Method OSIM without OSIM with OTAWA
used scenario (env2) scenarios (env4) + LESAR

WCET 45 612 60 371 64 042

Table 3: The WCET estimations obtained by forbidding impossible inputs
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Figure 10: Cycle counts distribution obtained with env4 and OSIM on a 10 000 steps simulation. The
rigth-most dashed line represents the WCET computed by OTAWA, with the path analysis described in [22].
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This is precisely because those 2 numbers are not comparable that we present the results in 2 different
tables (Tables 2 and 3).

6 Related work
This work is related to the abundant literature on test input generation for reactive systems [3, 27]. Works
targetting WCET estimation uses random test generation and model-checking [26], genetic algorithm [20],
path clustering [5] or profiling [12]. All those works use (source or binary) code analysis to perform input
generation, while we focus on environment modeling and whether inputs are feasible and relevant, which
is complementary.

Performing dynamic WCET measurements with the help of a model of the environment is not common.
To our knowledge, the most similar approach is presented in [7]. The main difference with our work is that
the environment is described (and simulated) with Matlab-Simulink. Simulink is well suited for modeling
continuous time, deterministic, and physical environment. LUTIN which was designed for testing purpose,
is more suitable and versatile for describing and simulating stochastic scenarios: with a compact description
and a intensive automatic testing, the LUTIN framework can exercize automatically a lot of corner-case
configurations.

A main goal of this work is to assess the quality of the static WCET analyses, by performing simulations
using the same micro-architecture model. A similar idea exists in the Chronos tool [18], but the inputs are
provided manually. We argue here that for reactive systems (sometimes also named dynamic systems),
providing a static set of input traces is not sufficient, because of the program outputs may modify the
environment (feedback loop). It is therefore necessary to execute the program in a simulated reactive
environment.

Other methods aim at quantifying the precision of estimations based on the uncertainty of the hardware
analysis [4]. Usual hardware analyses (like caches) use categorization approach: some categories are
precise (always hit or miss) while others are not (not classified). The latter categories are often sources
of overestimation as the WCET analysis consider their worst time: the idea is then to compare WCETs
accounting the worst and the best time of these categories to qualify the precision.

7 Conclusion
We have presented a tool-based methodology to assess the quality of sofware abstractions used in the con-
text of static WCET estimation of reactive programs. We have developed OSIM to simulate an ARM7
platform using the same hardware description as in the static WCET tool OTAWA. Furthermore, we have
connected OSIM to an environment model using the existing LUTIN language. We have shown on a rep-
resentative reactive program that the environment model plays an important role in the measured WCET
estimation.

The tool-chain allows users to assess the work of the static analyzer for a given hardware model and a
given program. Note also that this approach can hint when there is a large over-approximation, but some
investigation is still needed to understand where it comes from. For this purpose, OSIM is able to decorate
the executable Control Flow Graph with the number of times each basic block and edge was taken.

Since OTAWA analyzes binary code, and LUTIN interacts with black-box programs, the tool chain can
be used with any kind of reactive programs. They may come from Scade or Simulink code generators for
example, or even be directly written in C.

The whole approach could be adapted to industrial static analysers such as ABSINT[6], provided that
they have a simulator. From the environment modeling point of view, test engineers could use the STIMU-
LUS workbench [16] that offers capabilities similar to LUTIN.
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