

Statistical study of non-adiabatic energization and transport in Kelvin-Helmholtz vortices 2 at Mercury Key words: Mercury's magnetosphere, Kelvin-Helmholtz instability, particle

Sae Aizawa, Dominique C. Delcourt, Naoki Terada, Nicolas André

▶ To cite this version:

Sae Aizawa, Dominique C. Delcourt, Naoki Terada, Nicolas André. Statistical study of non-adiabatic energization and transport in Kelvin-Helmholtz vortices 2 at Mercury Key words: Mercury's magnetosphere, Kelvin-Helmholtz instability, particle. Planetary and Space Science, 2020, 193, pp.105079. 10.1016/j.pss.2020.105079 . hal-02550570v1

HAL Id: hal-02550570 https://hal.science/hal-02550570v1

Submitted on 22 Apr 2020 (v1), last revised 15 Nov 2020 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Statistical study of non-adiabatic energization and transport in Kelvin-Helmholtz vortices
2	at Mercury
3	
4	Sae Aizawa[1][2], Dominique Delcourt[3], Naoki Terada[2], and Nicolas André[1]
5	
6	[1]Institut de Recherche en Astrophysique et Planétologie, CNRS-UPS-CNES, Toulouse,
7	France
8	[2] Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
9	[3]Laboratoire de Physique et Chimie de l'environment et l'espace, Université Orleans-CNRS,
10	Orleans, France
11	
12	Key words: Mercury's magnetosphere, Kelvin-Helmholtz instability, particle
13	acceleration, transport, planetary ion
14	
15	Abstract. Non-adiabatic energization and transport of planetary ions in the vicinity of Kelvin-
16	Helmholtz (KH) vortices at Mercury are statistically investigated using a
17	magnetohydrodynamic model combined with a test particle tracing technique. The
18	measurements from 'the MErcury Surface, Space ENvironment, GEochemistry, and Ranging
19	spacecraft show the signature of KH waves in the magnetospheric flanks, especially on the
20	duskside. We examine here the energization and transport of heavy ions of planetary origin
21	such as Na $^+$ associated with the growth of the KH instability on both the dawn and dusk sides
22	of the magnetosphere, and for both northward and southward interplanetary magnetic field
23	configurations. We find that in all cases picked up planetary ions in the magnetosphere can be
24	accelerated non-adiabatically with a level of acceleration larger on the dawnside. The transport

of ions is controlled by the convection electric field in the magnetosheath. The planetary ions

picked up in the duskside magnetosphere stagnate inside the magnetosphere where the KH waves have been mainly observed at Mercury and, hence, are not expected to escape. The present study indicates that these energized ions may likely stay inside the magnetosphere and sputter the planetary surface on the duskside preferentially, being the source of secondary neutrals from the planetary surface.

32 **1. Introduction**

The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) 33 spacecraft, the first orbiter around Mercury, was in orbit from March 11, 2011 until April 30, 34 2015. The many data collected provided in particular key information on the structure of the 35 36 magnetosphere as well as on the dynamics of the plasma environment around Mercury. A number of plasma processes similar to the ones identified at Earth have been reported: magnetic 37 reconnection and Flux Transfer Events (FTE) at the magnetopause [Slavin et al., 2009, 2010b, 38 2014; DiBraccio et al., 2013; Imber et al., 2014], substorm-like dipolarization events in the 39 magnetotail [e.g., Sundberg et al., 2012a, Imber et al., 2017; Dewey et al., 2017, 2018], and 40 Kelvin-Helmholtz (KH) vortices in the magnetospheric flanks [Boardsen et al., 2010; Sundberg 41 et al., 2011, 2012b; Liljeblad et al., 2014, 2016; Gershman et al., 2015]. Moreover, the 42 MESSENGER data have shown evidence of heavy ions of planetary origin in several regions 43 44 of Mercury's magnetosphere, those resulting from the ionization of exospheric neutrals by solar UV [Zurbuchen et al., 2011; Schriver et al., 2011a, b; Raines et al., 2011, 2013; DiBraccio et 45 al., 2013; Gershman et al., 2015]. These planetary ions can contribute to the mass loading and 46 structural stability of Mercury's environment, and can also drive original plasma processes. 47 Mercury, like Earth, has its own intrinsic magnetic field. Since this magnetic field is weaker 48 than the magnetic field of Earth, the size of Mercury's magnetosphere is relatively small. As a 49 result, the plasma processes at Mercury should occur faster, e.g., the Dungey plasma cycle at 50 51 Mercury lasts for a few minutes only while it lasts for a few hours at Earth [Siscoe et al., 1975; Slavin et al., 2010a]. In addition, the heavy ions of planetary origin have a scale comparable to 52 the scale of plasma processes due to their large gyration motion. Under these circumstances, 53 the ion motion and the electromagnetic field variations within the magnetosphere are strongly 54 coupled and thus the plasma processes at Mercury are expected to be affected by these coupling. 55 The interactions between the planetary heavy ions and the variable electromagnetic fields at 56

Mercury have been investigated by various authors. In particular, Delcourt et al. (2003) 57 investigated how magnetic field variations affect essentially the ion motion. They showed that 58 a dipolarization in the magnetotail can accelerate ions non-adiabatically by violating the first 59 adiabatic invariant (the magnetic moment μ). Aizawa et al. (2018) further investigated how 60 sudden electric field variations - E burst – occurring during the development of the KH 61 instability can also lead to non-adiabatic acceleration of ions. They show how these accelerated 62 ions can effectively sputter the planetary surface and produce secondary neutrals and ions that 63 populate both the exosphere and magnetosphere of Mercury. In addition, Gingell et al. (2015) 64 revealed that the presence of heavy planetary ions can modify the growth of the KH instability, 65 which was previously reported by MESSENGER observations [Gershman et al., 2015]. The 66 67 KH instability is a macroscopic instability that occurs at several planets' magnetopause and known to be an important process for mixing plasma of different origin under a particular 68 interplanetary magnetic field (IMF) configuration (e.g., northward for Earth and Mercury). 69 Indeed, when the instability fully developed, it forms large rolled-up KH vortices where 70 71 magnetic reconnection can occur.

In the present study, the non-adiabatic acceleration and related transport in both the 72 dawn and dusk flanks of the magnetosphere of Mercury during the development of the KH 73 74 instability are investigated in detail. Although Aizawa et al. (2018) already revealed that heavy ions can be accelerated by this process, the configuration they used was restricted to the dawn 75 side of the magnetosphere. Since MESSENGER observations show that a strong dawn-dusk 76 77 asymmetry on the KH occurrence at Mercury exists [Liljeblad et al., 2014], it appears necessary to extend the study of Aizawa et al. (2018) to the dusk side of the magnetosphere. The present 78 study focuses on the transport of ions due to the field variations and investigates in more details 79 80 the role of the convection electric field. In order to explore the dynamics of heavy ions, we performed the same numerical method that Aizawa et al. (2018) conducted, launching single 81

particle trajectory computations in the KH field obtained by MHD simulations. In addition, previous study considered only sodium ions whereas here we include other ions such as solar wind plasma, oxygen and potassium planetary ions, and discuss from a statistical analysis the dependence of the acceleration and transport of ions with their Larmor radius. In Section 2, we introduce our modeling approach and initial settings used. We detail the results of our simulations in Section 3 and discuss their interpretation in Section 4. Section 5 summarizes our conclusions.

89

90 **2. Field Configuration and Overview of ion behavior**

91 In order to investigate the dynamics of heavy ions of planetary origin under realistic conditions for Mercury, we adopt the same approach than the one used in Aizawa et al. (2018). 92 We trace the motion of particles in the KH field configurations obtained from MHD simulations. 93 94 A detailed description of the numerical scheme and conditions used can be found in Aizawa et al. (2018). In the present study, quantitative and systematic calculations were performed in 95 configurations representative for both the dawn and dusk sides of Mercury's magnetosphere. 96 All parameters are carefully chosen from observational data when available. In addition, various 97 ion species, not only Na⁺ but also 0^+ , K⁺ (heavy ions of planetary origin), H⁺, H⁺₂, (lighter 98 ions of planetary origin), and H^+ , He^{2+} (solar wind plasmas) are included in the present study, 99 100 as characterized by Zurbuchen et al. (2008). All ions are injected as picked up ions at given 101 times. The size of a simulation box in the x-direction, corresponding to the KH wavelength, is set to exactly 1.5 R_{M} where R_{M} is Mercury radius, and the size in the y-direction is taken as 12 $\,$ 102 R_M with a spatial resolution of 32.2 km (114 x 909 grids). The thickness of the magnetopause 103 (boundary layer) is ~ 515 km (referred to *2a* hereafter) as estimated in Gershman et al. (2015). 104 Ions are traced in the frame of the average motion of the KH wave, the periodical boundary 105 condition being set in the x-direction. All our parameter settings are summarized in Table 1. 106

107 The variations of all physical quantities across the magnetopause follow hyperbolic tangent108 profiles.

Although MESSENGER observations did not enable us to derive the magnetospheric 109 convection speed, we consider 300 km/s for the anti-sunward flow speed in the magnetosheath 110 111 and 50 km/s for the sunward flow speed in the magnetosphere as used in previous numerical studies [e.g., Seki et al., 2013; Fujimoto et al., 2007; Jia et al., 2015; Wang et al., 2010]. The 112 magnitude of the Bz magnetic field component does not vary across the magnetopause and was 113 constrained by MESSENGER data [e.g., Wang et al., 2010]. We set three different injection 114 times for ions so that we could investigate the characteristics of the ions dynamics during 115 116 different stages of the KH development. Illustrations of our simulation conditions are shown in Figure 1. Although the figure shows only a scale of +/- 1.0 R_M in the y-direction, actual 117 calculation domain is wide enough so that the gyration motions of all ions are closed within the 118 domain. In addition, although it appears visually that the development of the KH instability 119 120 seems to be different between the dawn and dusk side configurations studied here, we confirm that the growth of the KH instability is almost the same. This behavior may be due to the initial 121 perturbation that we used this time, i.e., white noise. Although the MHD approximation may 122 not be valid especially at the dawnside magnetopause of Mercury according to previous studies 123 [e.g., Paral and Rankin, 2013], we consider in the present study both the dawn and dusk sides 124 of the magnetosphere in order to globally understand the effect of a large convection electric 125 field on the ion dynamics and transport. In addition to a configuration with a northward IMF, 126 we also consider a configuration with a southward IMF so that we could explore the physical 127 128 mechanisms of energization and transport of ions more thoroughly.

An overview of the properties of Na⁺ ions for the northward IMF Case is shown in Figure 2. Here 10,000 ions were injected in three different regions as picked up ions. Blue dots represent individual ions in the magnetosheath, while magenta and yellow dots show individual

ions in the boundary layer (magnetopause) and magnetosphere region, respectively. The spatial 132 scale is normalized here by the radius of Mercury. Because the magnetopause (boundary layer) 133 is the transition layer for the physical quantities, only blue (magnetosheath) and yellow 134 (magnetosphere) dots are analyzed in this study. Initial ion positions were determined by a 135 given function and its distribution is shown in one of the right panels of Figure 2 at t = 32.2 [s]. 136 Because of the different directions of the large-scale convection electric field between the dawn 137 and dusk sides (see left panel of Figure 2), the ion distribution during the later stage of the 138 development of the KH instability is significantly different between the dawn and dusk sides. 139 In particular, a large ion density gap can be observed near the magnetopause on the dawnside, 140 141 while such a gap is not seen on the duskside. Moreover, ions of magnetospheric origin (yellow dots) can enter the magnetosheath region at t = 96.6 [s] due to the development of the KH 142 vortices on the dawnside, whereas those on the duskside could not cross the magnetopause. Still 143 on the dawnside, once ions penetrate inside the magnetosheath region, they seem to move freely 144 from the filament structure of the KH vortex. On the contrary, planetary ions picked up in the 145 magnetosheath (blue dots) did not penetrate into the magnetosphere. The situation is opposite 146 for the duskside configuration. Ions in the magnetosheath (blue dots) can enter inside the 147 148 magnetosphere region, whereas ions in the magnetosphere (yellow dots) penetrate less inside 149 the magnetosheath region compared to those in the case of the dawnside configuration.

150

3. Results 151

152

3.1 From magnetosphere to magnetosheath

Since all ions were injected as picked up ions, their initial energy depends on the energy 153 calculated from the ExB drift speed in each region. As such, the analysis and discussion should 154 be done separately. In this section, we focus on the ions picked up in the magnetosphere region 155 which are presented by yellow dots in Figure 2. Figure 3 shows the properties of Na⁺ ions for 156

the case of northward IMF at given times. Although all colored dots represent Na⁺ ions picked 157 up in the magnetosphere, different colors correspond to the different distances from the 158 magnetopause. Each color has an initial thickness of that of the magnetopause, 2a. For instance, 159 the region within +/- 0.1 R_M of the center of the boundary layer is defined as a magnetopause. 160 Magenta dots indicate ions initially picked up in the region 0.1 - 0.3 R_M from the magnetopause, 161 green dots represent the ions in the region of $0.3 - 0.5 R_M$ from the magnetopause, cyan 162 represents ions in the region of $0.5 - 0.7 R_M$ from the magnetopause, and yellow dots show the 163 ions in the region from 0.7 to 0.9 R_M from the magnetopause. The Na⁺ ions were injected with 164 a thermal energy of 1 eV at t = 32.2 [s], corresponding to the time when the KH instability 165 begins to develop. For simplicity, we chose 90 degree of pitch angle for all ions. At t = 128.8 166 [s], magenta and green dots on the dawnside seem to be distributed randomly and the 167 corresponding ions are transported to the magnetosheath region. On the other hand, no ions are 168 169 observed in the magnetosheath region on the duskside. This is because of the orientation of convection electric field. At t = 193.2 [s], ions on the dawnside are distributed throughout the 170 171 simulation box, showing that they are well mixed. In contrast, only a fewer ions are observed 172 in the magnetosheath region on the duskside, while they are well-mixed only inside the magnetosphere. The three bottom panels of Figure 3 shows, from top to bottom, the growth of 173 the KH instability, the number of energized ions, and the number of transport ions as a function 174 of time. The 2nd and 3rd panels indicate the occurrence rate, obtained by counting the number 175 of energized/transported ions and taking the ratio to the total number of ions in each region. For 176 instance, to obtain the data in the second panel, when a magenta ion is accelerated, and its 177 magnetic moment becomes $\mu/\mu_0 > 10$, it is counted as an energized ion. Next, the total number 178 of these ions is divided by the total number of ions initially injected in the magenta region. A 179 180 similar counting is applied for the third panel, where net transport means that an ion crosses the magnetopause and is located up to a distance of +2a from the magnetopause. For example, we 181

count an ion picked up in the $0.3 - 0.5 R_M$ region, colored by green for the case of the dawnside, as it crosses the magnetopause and is located above $-0.3 R_M$ in Figure 3. These rates were calculated at each computational time interval t_{com} = 10 (or t = 32.2 [s] in real time). Magenta, dark, and orange profiles in the 2nd and 3rd panels in Figure 3(b) correspond to the color dots represented in magenta and yellow, which are respectively, the closest region to and the farthest region from the magnetopause, respectively. Profiles for the properties of ions behavior colored by green and cyan are omitted here for readability.

189 Looking at Figure 3(b), we first find that non-adiabatic acceleration occurs on both the dawn and dusk sides, but ions are more significantly accelerated on the dawnside. The solid 190 191 and dashed lines refer to the dawn and dusk configurations in Figure 3. For example, 85% of 192 the ions are accelerated in the closest region to the magnetopause at dawn, while only 35% are seen at dusk. The starting time for acceleration closely matches the time of KH growth, 193 suggesting that the formation of KH vortices efficiently accelerate ions. We point out here that 194 ion transport here means that ions are observed in another region after crossing the 195 magnetopause. On the dawnside, we observe ions having moved in another region only under 196 the action of their gyration motion. We also observe ions with a large Larmor radius near the 197 magnetopause after having crossed the magnetopause during their one of their cyclotron motion. 198 This latter reason can lead to an oscillatory motion, which is illustrated in the bottom last panel 199 200 in Figure 3(b). The fact that there is no dashed line in the 3rd panel of Figure 3(b) indictes that no transport occurs from the magnetosphere to the magnetosheath side on the duskside. We 201 202 note the absence of ion transport even though the ions are energized. In the present analysis, we count all energized ions with $\mu/\mu_0 > 10$, thus some of them maybe even more energized. Ions 203 with $\mu/\mu_0 \sim 10$ may not cross the boundary but ions with $\mu/\mu_0 \sim 100$ may do so because of their 204 205 large Larmor radius and may in addition show the oscillation signature in the transport panel. To investigate this effect in more detail, we obtain the magnetic moment changes in the 206

energization and transport of ions picked up ion in the closest region to the magnetopause 207 (indicated by A and A' in Figure 3). Figure 4 shows the breakdown of energization and transport 208 of each range of the magnetic moment for the case of the closest region, as a function of time. 209 First of all, the major difference between the dusk and dawn sides in the figure is seen in the 210 energization profile. The left panel shows that energized ions have their magnetic moment 211 changing from 10 to 50 whereas profiles in the right panel show more dispersed magnetic 212 moment changes. On the duskside, 78 % of energized ions represented by the magenta profile 213 have their magnetic moment changing from 10 to 25, while the blue profile shows their 214 magnetic moment changing from 25 to 50. Figure 4 clearly shows that ions on the dawnside are 215 216 effectively accelerated, and the profile in the 3rd panel shows that the lower magnetic moment 217 change is also associated with some transport. The level of energization does not correspond to that of transport. The question that emerges here is why do we have effective acceleration and 218 transport on the dawnside, and fewer ions are significantly energized with no transport on the 219 duskside? To address this question, we selected model trajectories to understand the dawn-dusk 220 difference of the energization and transport of planetary ions. 221

Figure 5 shows two model trajectories of picked up sodium ions in the magnetosphere 222 for both (a) dusk and (b) dawn configurations. In this figure, we selected an ion with $\mu/\mu_0 < 10$ 223 at dusk as an example of limited energization and an ion with $\mu/\mu_0 > 100$ at dawn as an example 224 of efficient energization. From Top to bottom, we show the ion position in the y-direction with 225 226 arrows showing the electric field orientation, the electric field intensity that the ion experiences, 227 the magnetic moment which is normalized to the initial value, and energy. The electric field orientation shown on the 1st panel corresponds to the direction of the Lorentz force that ion 228 229 experiences. For example, in Figure 5(a) at t = 50 [s], green arrows point towards the magnetosheath side indicating that the ion is accelerated towards that side. In contrast, at t = 230 250 [s] in the same figure, green arrows point in the opposite direction of the electric field. At 231

this time, the ions are essentially accelerated towards the inside of the magnetosphere. Two 232 selected ions were initially injected at the same distance from the magnetopause. In figure 5(b), 233 the magnetic moment changes can be seen around the linear growth time (indicated by red 234 dashed line), and μ -jump occurred at t ~ 115 [s]. On the other hand, figure 5(a) does not show 235 such clear magnetic moment changes. By also checking snapshots of the properties of an ion 236 237 and the electric field that ion experiences, acceleration steps can be explained. At dawn, when the ions is just picked up in the magnetosphere, it is subject to normal gyration motion at first. 238 The ion may experience a small electric field variation with the development of KH instability 239 and thus the ion starts the polarization drift which gradually accelerates the ion (equivalent to 240 Larmor radius increases). This is an adiabatic acceleration. When the ion enters the initial 241 242 boundary layer region, here at t \sim 115 [s], the ion suddenly experiences a large electric field 243 towards the magnetosheath where the μ -jump occurred. After that, the ion keeps its gyration motion in the magnetosheath region. A model trajectory on the duskside presented in Figure 244 5(a) shows that although *E* burst-like signatures can be seen on the 2nd panel, the ion does not 245 gain a large amount of energy. Noting the direction of the electric field (green arrows at the 1st 246 panel), the *E* burst occurs when the ion moves against the electric field, and thus deceleration 247 occurs. Some ions are able to gain large energy such as the case of $\mu/\mu_0 \sim 30$ for instance, due 248 to the stronger electric field inside the rotating vortex (rotating electric field hereinafter), which 249 directs to the magnetosphere side, in the later stage of the KH development. Investigating other 250 251 model trajectories allow us to understand the transport of ions, which is controlled by the electric field configuration in the magnetosheath under northward IMF. 252

The magnetic reconnection generally occurs during the case of southward IMF, meaning that the configuration of the magnetopause will be more complicated, thus the KH instability less likely occurs. However, this case presents a good example of understanding the role of the large convection electric field. In this whole study, we perform the ideal MHD simulation with

the reversal magnetic field (from the magnetosheath to the magnetosphere, varies from - Bz to 257 + Bz) across the magnetopause with the same magnitude in the entire simulation domain. It 258 should be stressed here is that there is no magnetic reconnection so that we could have the KH 259 growth. In the dawnside configuration, we have a large electric field towards the magnetopause 260 in the magnetosheath region, while another small electric field points away from the 261 magnetopause in the magnetosphere. Conversely, in the duskside configuration, we have a large 262 electric field pointing away from the magnetopause in the magnetosheath region, and a small 263 electric field directed towards the magnetopause in the magnetosphere. As a consequence of 264 the southward IMF, ions picked up in the just adjacent region to the magnetopause, the 265 energized ratio is much higher than that of the case of northward IMF for all three heavy ion 266 species (O⁺, Na⁺, and K⁺). The energized ratio increases for both dawn and dusk sides in the 267 case of southward IMF compared to the case of northward IMF. The net electric field changes 268 across the magnetopause, i.e. the electric fields in the case of northward IMF cancel each other 269 whereas they add themselves up in the case of southward IMF, resulting in an effective 270 271 energization in the case of southward IMF. We also investigated the breakdown of energization in the same manner as for Northward Case. The breakdown contains the lower and higher 272 energized ions, and the amount of transport corresponding to the energization. In contrast, we 273 found that for highly energized ions, $\mu/\mu_0 > 100$, the energization increases in time due to the 274 rotating electric field component. On the contrary, although the magnetosheath electric field is 275 276 directed toward the magnetopause at dawn, the ions are transported to the magnetosheath which is inconsistent with our results for the case of northward IMF. The dawnside configuration 277 under the southward IMF provides the large rotating electric field inside the KH vortex pointing 278 to the magnetosheath region, leading significant ion energization and transport in the mixing 279 region of magnetosheath side. Under a southward IMF, signatures of energization and transport 280 of ions picked up in the magnetosphere region can be seen on both the dawn and dusk sides. In 281

both cases. ions are transported and there is no stagnation inside the magnetopause. Overall, ion transport starts at a later stage in the KH linear growth, being equivalent in both cases. Even though the large convection electric field affects the ion transport, they cannot cross the magnetopause layer without the development of the KH instability. However, in reality in the magnetospheric flanks exist additional components of the magnetic field, Bx and By, and this may lead to the effective transport of magnetospheric ions.

288

3.2 From magnetosheath to magnetoshere

Here we study the properties of ions picked up in the magnetosheath region. A 290 291 noticeable difference is the electric field which ions initially experience: ions picked up in the 292 magnetosheath imply that the ion might not experience a large *E* burst because of the other electric field intensity affecting the ion is small compared to the electric field in the 293 magnetosheath. The results for the northward IMF case are shown in Figure 6. We can first 294 notice that non-adiabatic acceleration does not occurs on both the dawn and dusk sides of the 295 magnetosphere (see 2nd panel of Figure 6(b)). Ions cannot be transported to the magnetosphere 296 on the dawnside, while moving outward from the magnetopause following the large electric 297 field in the magnetosheath. On the other hand, some ions can cross the magnetopause and move 298 299 inside the magnetosphere region on the duskside where they are well mixed even although they are not energized. This no energization feature can be understood due to the ions initially 300 experiencing a large electric field and thus they do not experience any stronger electric field 301 during their gyration motions. Ion transport on the duskside starts at the time corresponding to 302 the linear KH growth time and its depth of penetration seems to be the same order of the fluid 303 structure represented in black and gray color, suggesting that the formation of the KH vortex 304 plays a role in the transport of ions even though they initially have a large Larmor radius. 305

Mercury's exosphere extends to a few R_M [McClintok et al., 2008] and so many ions of exospheric origin can be picked up in the magnetosheath. Since these ions can have a large Larmor radius (approximately of the same order or more than the magnetopause thickness), these ions could penetrate inside the magnetosphere region. However, according to our results, without the x and y components of the magnetic field, it is difficult to cross on the dawnside. In addition, even if the ions were picked up in the duskside configuration, fewer ions were transported to the magnetosphere region compared to the results in the previous section.

313 Under southward IMF, a small number of ions can be energized and some transport on both the dawn and dusk sides can be seen. However, ion transport on the dawnside suddenly 314 starts when ions are injected at the beginning of the KH growth, not because of the development 315 of the KH instability but because of the effect of the large electric field itself. This leads to the 316 ion transport without KH instability. In this study, because the effect of the field variations due 317 to the development of the KH instability has been discussed, such an ion transport without the 318 319 KH growth should not be taken into consideration. Additional experiments were performed to see ion transport without the KH growth and similar transport could be seen in the dawnside 320 configuration. In addition, we found that the ion transport without the KH growth shows no 321 large time differences even when we take into account the distance from the magnetopause. If 322 we take into account of the ion transport without the KH growth, we can conclude that small 323 (negligible) energization on both sides and ion transport on the duskside occur due to the 324 development of the KH instability. Ion energization and transport occur significantly on both 325 sides because of the same directed electric field across the magnetopause. 326

327

328 **3.3 Properties of lighter ion species**

Compared to the properties of heavy ions of planetary origin, lighter ion species that were injected with initial energies of 0.047 eV (= 540 K) have different properties. Figure 7

shows the properties of lighter ions initially picked up in the magnetosphere for northward IMF. 331 These lighter species have a Larmor radius small enough compared to the magnetopause 332 thickness so that they can be treated as fluid, Although some ion energization can be seen after 333 the linear KH growth, no transport occurs. Our results indicate that the fine structure due to the 334 development of the KH instability causes acceleration. Although the scale of fine structures 335 cannot be characterized, it is proven by checking different species. Acceleration of hydrogen 336 ions is observed in the region closest to the magnetopause (in magenta) at t ~ 120 [s], whereas 337 it is observed at t \sim 140 [s] for protons with a smaller Larmor radius. Ion transport does not 338 occur either at dawn or dusk: it is influenced only within the expanded magnetopause (or called 339 mixing layer) due to the development of the KH instability. On the other hand, ions picked up 340 341 in the magnetosheath when the IMF is northward are not energized. Small transport on the duskside can be observed similar to heavy ions. As we discussed previously, because the 342 rotating components of the electric field work effectively on the energization and transport of 343 ions. When the IMF is southward we found that the energization starts earlier than when the 344 IMF is northward and that significant transport can be observed at both dawn and dusk. 345

Lighter ions picked up in the magnetosheath region are also observed to be energized and transported both at dawn and dusk. The main difference compared to the properties of heavy ions of planetary origin is the fact that lighter ions picked up in the magnetosheath region are signifivantly energized and transported when the IMF is southward. Indeed, because of their lighter masses, it is easier for them to be trapped inside KH vortices and be affected by small variations of the rotating electric field variations inside the structure.

352

353 4. Discussion

The summary tables of particle energization and transport of planetary ions for both northward and southward IMF are shown in Table 2. Generally, the level of energization is

superior when we have southward IMF, and always in the dawnside. In particular, the 356 energization and transport of heavy ions of planetary origin picked up in the magnetosphere are 357 illustrated in Figure 8. When the IMF is northward, we found that no acceleration of heavy 358 planetary ions picked up in the magnetosheath is observed and that ion transport from the 359 magnetosphere to the magnetosheath occurs only at dawn, while a small amount of heavy ion 360 transport in the opposite direction occurs at dusk because of the electric field orientation. 361 Because of their smaller Larmor radius, lighter ions behave magnetohydrodynamically. 362 Acceleration of lighter planetary ions picked up in the magnetosphere occurs at both dawn and 363 dusk but no transport towards the magnetosheath is observed. 364

On the other hand, when the IMF is southward, the energization and transport of both 365 366 heavy and lighter ions initially picked up in the magnetosphere to the magnetosheath occurs at both dawnside and dusks, whereas the energization of heavy ions initially picked up in the 367 magnetosheath appears negligible and there are only very little ions transported to the 368 magnetosphere, However, in this case, the heavy ion transport from the magnetosheath to the 369 magnetosphere at dawn can occur at dawn without the development of the KH instability. 370 Contrary to heavy ions, lighter planetary ions picked up in the magnetosheath can be accelerated 371 and transported due to the initial direction of the large electric field across the magnetopause. 372 373 Since they are light, they have a small Larmor radius and thus, they stay inside the KH vortices. Those lighter ions are affected by small electric variations within the KH vortex, leading to 374 efficient acceleration and transport. In the previously described cases, we have shown only two 375 species, sodium and hydrogen ions. We now discuss the dependence on Larmor radius for the 376 ion acceleration and transport. The different properties of heavy ions compared to lighter ions 377 indicates that there is a relationship between the size of the KH vortex (equivalent to the 378 magnetopause thickness) and the Larmor radius of the ion. Figure 9 shows the dependence of 379 Larmor radius for the energization of ions picked up in the magnetosphere region, especially in 380

the region closest to the magnetopause (in magenta in previous figures), for the northward IMF. 381 The x- and y-axes are scaled by ion Larmor radius normalized to the initial half magnetopause 382 thickness and the time where the energization reaches 30% normalized to the linear growth time 383 $(t \sim 90 [s])$. The red dashed line represents x = 1 and y = 1. The circle and triangle symbols are 384 used for the duskside and dawnside cases, respectively. We performed additional calculations 385 for helium, carbon, and iron ions. According to this figure, ions are less energized at dusk 386 compared to dawn. The acceleration of lighter species take place during a late stage of the KH 387 growth, whereas ions with a larger Larmor radius, such as Fe⁺ and K⁺, are accelerated just 388 after formation of the KH vortex. Though the oxygen ions seem to be accelerated effectively, 389 the Larmor radius dependence on the ion energization seems to vary gradually (see Figure 9). 390 391 A similar feature is observed for southward IMF. In this study, when the ions move farther than the distance of $0.3 R_M$ from the magnetopause we assume they are transported to the other 392 region. However, the lighter planetary species follow the background fluid structure (MHD-393 like) and background structure does not expand more than 0.3 R_M this time, they are not counted. 394 395 To first order, the number of planetary ions transported increases with increasing mass. For 396 example, for northward IMF 42% of carbon ions, doubly-charged iron ions and potassium ions, 44% of oxygen ions, and 41% of sodium ions are transported from the magnetosphere to the 397 398 magnetosheath at dawn, whereas in contrast none of the protons and hydrogen ions, and only 10% of helium ions are. For the southward IMF case, the corresponding values are 25% for 399 protons, 31% for hydrogen ions, 30% for oxygen and sodium ions, and 32% for potassium ions. 400 We may say that some threshold for MHD-like behavior can be set between helium and 401 hydrogen which can be seen in Figure 9. 402

After having discussed ion acceleration and transport within KH vortices, we now discuss the possibility of solar wind plasma entry inside the magnetosphere. Two different ion species, H⁺ and He⁺⁺ are included in our modeled solar wind. These ions were injected with

initial energies of 10 eV on the ExB frame at the simulation start time. Although H $^+$ can 406 originate both from the solar wind and from planetary ions, He⁺⁺ cannot be produced in the 407 Hermean environment, and thus the detection of He⁺⁺ can be used as a proxy for the entry of 408 solar wind plasmas inside the magnetopause. Previous results suggested that lighter ions cannot 409 410 be accelerated under northward IMF and that the small amount of solar wind penetration inside 411 the magnetosphere is expected because those lighter ions follow the background KH structure. In addition, because we assume a proton dominant background for the MHD simulation, the 1st 412 adiabatic invariant of H⁺ violation leads to the violation of the MHD approximation. Previous 413 studies on the KH instability did not discuss the limitation of the MHD approximation on the 414 nonlinear stage of the KH instability development because of its difficulty. However, when the 415 1st adiabatic invariant of H⁺ is not conserved, it is a clear signature of the MHD approximation 416 violation. Here, we discuss our results for both northward and southward IMF. In both cases, 417 we consider protons picked up in the magnetosheath region closest to the magnetopause. Their 418 Larmor radius normalized to the magnetopause thickness is 0.018, whereas the Larmor radius 419 of He⁺⁺ is ~ 0.026. In northward IMF case, similar to the behavior of lighter ions of planetary 420 origin, solar wind plasma can also be energized within KH waves. The energized ion ratio 421 becomes almost the same and corresponds to 20% of injected ions in the closest region to the 422 423 magnetopause. Conversely, no ion transport was found on either side. Considering ion injection time (here t = 0 [s]) and that acceleration happens at the same time on both the dawn and dusk 424 sides, fine structures created due to the KH vortex breaking accelerate H⁺ ions. Similar 425 behavior is observed for He $^{++}$, where the acceleration starts at t \sim 122 [s]. The time delay of 426 the energization start for protons is reasonably understood because they have twice smaller 427 different Larmor radius compared to that of He⁺⁺. Negligible ion transport has been observed 428 at t ~ 130 [s] for protons, and their transport starts before the acceleration starts. This transport 429 is understood as MHD-like transport, as the proton motion seems to follow the motion of fluid 430

background proton. In addition, the Larmor radius of He⁺⁺ is large enough not to follow the 431 fluid background. On the other hand, in Southward Case, both He $^{++}$ and H $^+$ show 432 qualitatively similar results. Ion energization and transport can be seen on both sides. The ion 433 energization starts at t \sim 110 [s] for H $^+~$ and t \sim 108 [s] for He $^{++}$. Moreover, ion transport 434 starts at t ~ 120 [s] for H⁺ and t ~ 120 [s] for He⁺⁺ in contrast to Northward Case. Ion 435 acceleration occurs both on the dawn and dusk sides with almost the same ratio, with ion 436 transport being more effective on the duskside. In addition, ion transport in Southward Case 437 starts at the same time as energization starts. This suggests that ions can be transported due to 438 acceleration from the rotational components of the electric field inside the KH vortex in the 439 same manner as for ions of planetary origin. Those results are summarized in Table 3. At same 440 441 time, the 1st adiabatic moment of a proton at t = 145 [s], for Northward Case, indicates that the MHD approximation is not valid anymore. Though our injected proton had different 442 characteristics as the background proton had, it implies that we need to consider the ion kinetics 443 at a later stage of the KH non-linear phase. In this study, we do not focus on this, however this 444 aspect could be studies in the future. Is it possible to have a solar wind plasma entry through a 445 KH vortex? Our results suggest that the ions can be transported magnetohydrodynamically, 446 meaning that the size of the solar wind plasma entry region is determined by the vortex size. 447 Especially, even if we do not have any magnetic reconnections, solar wind plasmas are subject 448 to enter into the magnetosphere region during southwards IMF due to the convection electric 449 field. 450

Combining all these results, we can show that the ions on the dawnside are less dense than the ions on the duskside under a northward IMF. Indeed, on the duskside, ions picked up in the magnetosphere cannot cross the magnetopause, and those in the magnetosheath can penetrate inside the magnetosphere. In order to be accelerated by variations of the electric field, the ions should be inside the magnetopause where the initial electric field is smaller than that

in the other region. Moreover, the energized and transported ratio in both sides is leveling off
in Figure 3 for instance, 85% (35%) of the energized ratio at dawn (dusk) in the closest region.
This seems to indicate that heavy ions are not affected by small-scale structures (so-called fine
structures) due to the breaking of KH vortices in the non-linear growth (saturation) phase of the
instability but we note that there fine structures have an effect on the acceleration of lighter
ions that have smaller Larmor radius.

462

463 **5. Conclusions**

Particle trajectory computations have been performed in a time-varying MHD model of 464 KH vortices in order to understand the properties of ions within KH vortices. First of all, we 465 466 revealed that the large-scale convection electric field plays an important role for the ion acceleration and transport. The results from both Northward and Southward cases showed that 467 the ion transport is well controlled by the electric field orientation in the magnetosheath having 468 a stronger electric field. Ions picked up in the magnetosphere are energized on both the dawn 469 and dusk sides under both northward and southward IMF. In particular, we found when the IMF 470 is southward that ions are efficiently accelerated within KH vortices due to the developed 471 electric field orientation inside the vortex. Regarding lighter ions, including the solar wind 472 473 plasmas, their Larmor radius is small enough compared to the magnetopause thickness and thus small enough not to be accelerated during the linear growth phase of the KH instability, 474 resulting in the MHD-like behavior. In their non-linear stage, KH vortices start to break and 475 make fine structures, whose scale becomes comparable to the Larmor radius. Ions can be 476 energized with these fine structures. Non-adiabatic energization of solar wind protons goes 477 beyond the limitation of MHD validation. In the later stage of the nonlinear phase, the ion 478 kinetics should be taken into account for physics. In this study, although we did not consider 479 any parallel component of the magnetic field to the wavenumber of KH and the existence of 480

ions already moving non-adiabatically, some general features should be detected by instruments 481 482 aboard a spacecraft. First, energized ions in the magnetosphere region on both the dawn and dusk sides with the development of the KH instability are an important feature. If we have a 483 wide range of plasma ion analyzer from a few eV to keV, ion acceleration should be observed 484 and thus, the energy distribution would be changed between the KH and non-KH events. The 485 FIPS instrument onboard MESSENGER had an energy range from 100 eV/e to 13 keV/e and, 486 therefore, was too limited to identify the acceleration process for picked up ions. The 487 BepiColombo mission now en route to Mercury includes a full set of more sophisticated 488 charged particle instruments. In particular, the MSA instrument onboard the MIO spacecraft 489 490 has a wider energy range that can cover the picked up ion acceleration theoretically found in this study, and with a wider FOV will be used for a better understanding of this non-adiabatic 491 energization and transport within KH vortices at Mercury. 492

493

494 Acknowledgments. The work of S. Aizawa was supported by the International Joint Graduate 495 Program in Earth and Environmental Sciences (GP-EES). The method used in this study is 496 referred to properly in the reference (e.g., Aizawa et al., 2018). Simulation data used in this 497 study is available in the link:

498 http://rosina1.irap.omp.eu/documents/PUBLICATIONS/AIZAWA/AIZAWA2020_PSS/.

- 499
- 500
- 501 502
- 503

504

506			
507			
508			
509			
510			
511			
512			
513			
514			
515			
516			
517			
518			
519			
520			
521			
522			
523			
524			
525			
526			
527			
528			
529			
530	REFERENCES		

- Aizawa, S., D. Delcourt, and N. Terada (2018), Sodium ion dynamics in the magnetospheric flanks of
 Mercury, *Geophys. Res. Lett.*, 45(2), 595–601, doi:10.1002/2017GL076586.
- 534 Boardsen, S. A., T. Sundberg, J. A. Slavin, B. J. Anderson, H. Korth, S. C. Solomon, and L. G.
- 535 Blomberg (2010), Observations of Kelvin-Helmholtz waves along the dusk-side boundary of
- 536 Mercury's magnetosphere during MESSENGER's third flyby, *Geophys. Res. Lett.*, 37, L12101,

537 doi:10.1029/2010GL043606.

- 538 Delcourt, D. C., S. Grimald, F. Leblanc, J. -J. Berthelier, A. Millilo, A. Mura, S. Orsini, and T. E. Moore
- 539 (2003), A quantitative model of the planetary Na⁺ contribution to Mercury's magnetosphere, Ann.

540 *Geophys.*, 21, 1723–1736, doi:10.5194/angeo-21-1723-2003.

- 541 Dewey, R. M., Slavin, J. A., Raines, J. M., Baker, D. N., & Lawrence, D. J. (2017). Energetic electron
- 542 acceleration and injection during dipolarization events in Mercury's magnetotail. Journal of
- 543 Geophysical Research: Space Physics, 122, 12,170–12,188. https://doi.org/10.1002/ 2017JA024617
- 544 Dewey, R. M., Raines, J. M., Sun, W., Slavin, J. A., & Poh, G. (2018). MESSENGER observations of
- fast plasma flows in Mercury's magnetotail. Geophysical Research Letters, 45, 10,110–10,118.
- 546 https://doi.org/10.1029/ 2018GL079056
- 547 DiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M.
- 548 Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon (2013), MESSENGER observations of
- 549 magnetopause structure and dynamics at Mercury, J. Geophys. Res., 118(3), 997–1008,
- 550 doi:10.1002/jgra.50123.
- Fujimoto, M., W. Baumjohann, K. Kabin, R. Nakamura, J. A. Slavin, N. Terada, and L. Zelenyi (2007),
 Hermean magnetosphere-solar wind interaction, *Space Sci. Rev.*, *132*(2–4), 529–550,
 doi:10.1007/s11214-007-9245-8.

- Gershman, D. J., J. M. Raines, J. A. Slavin, T. H. Zurbuchen, T. Sundberg, S. A. Boardsen, B. J.
 Anderson, H. Korth, and S. C. Solomon (2015), MESSENGER observations of multiscale KelvinHelmholtz vortices at Mercury, *J. Geophys. Res.*, *120*(6), 4354–4368, doi:10.1002/2014JA020903.
- Gingell, P. W., T. Sundberg, and D. Burgess (2015), The impact of a hot sodium ion population on the
 growth of the Kelvin-Helmholtz instability in Mercury's magnetotail, *J. Geophys. Res.*, *120*(7), 5432–
 5442, doi:10.1002/2015JA021433.
- 560 Imber, S. M., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, R. L. McNutt Jr., and S. C.

561 Solomon (2014), MESSENGER observations of large dayside flux transfer events: Do they drive

562 Mercury's substorm cycle?, J. Geophys. Res. Space Physics, 119, 5613–5623, doi:10.1002/

563 2014JA019884.

Imber, S. M., & Slavin, J. A. (2017). MESSENGER observations of magneto- tail loading and
unloading: Implications for substorms at Mercury. Journal of Geophysical Research: Space Physics,
122, 11,402–11,412. https://doi.org/10.1002/ 2017JA024332

Jia, X., J. A. Slavin, T. I. Gombosi, L. K. S. Daldorff, G. Toth, and B. van der Holst (2015), Global
MHD simulations of Mercury's magnetosphere with coupled planetary interior: Induction effect of the
planetary conducting core on the global interaction, *J. Geophys. Res.*, *120*(6), 4763–4775,
doi:10.1002/2015JA021143.

Liljeblad, E., T. Sundberg, T. Karlsson, and A. Kullen (2014), Statistical investigation of KelvinHelmholtz waves at the magnetopause of Mercury, *J. Geophys. Res.*, *119*(12), 9670–9683,
doi:10.1002/2014JA020614.

Liljeblad, E., T. Karlsson, T. Sundberg, and A. Kullen (2016), Observations of magnetospheric ULF
waves in connection with the Kelvin-Helmholtz instability at Mercury, *J. Geophys. Res.*, *121*(9), 8576–
8588, doi:10.1002/2016JA023015.

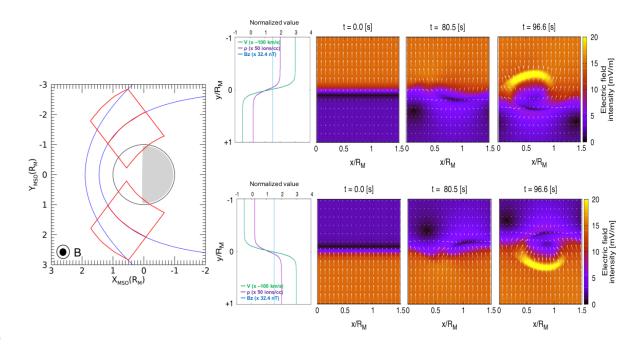
- 577 McClintock, W. E., E. T. Bradley, R. J. Vervack Jr., R. M. Killen, A. L. Sprague, N. R. Izenberg, and
- 578 S. C. Solomon (2008), Mercury's exosphere: Observations during MESSENGER's first Mercury
- 579 flyby, *Science*, *321*(5885), 92–94, doi:10.1126/science.1159467.

Paral, J., and R. Rankin (2013), Dawn-dusk asymmetry in the Kelvin-Helmholtz instability at Mercury, *Nat. Commun.*, *4*, 1645, doi:10.1038/Ncomms2676.

- 582 Raines, J. M., J. A. Slavin, T. H. Zurbuchen, G. Gloeckler, B. J. Anderson, D. N. Baker, H. Korth, S.
- 583 M. Krimigis, and R. L. McNutt Jr. (2011), MESSENGER observations of the plasma environment
- near Mercury, *Planet. Space Sci.*, 59(15), 2004–2015, doi:10.1016/j.pss.2011.02.004.
- 585
- Raines, J. M., D. J. Gershman, T. H. Zurbuchen, M. Sarantos, J. A. Slavin, J. A. Gilbert, H. Korth, B.
- J. Anderson, G. Gloeckler, S. M. Krimigis, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon (2013),
- 588 Distribution and compositional variations of plasma ions in Mercury's space environment: The first
- three Mercury years of MESSENGER observations, J. Geophys. Res., 118(4), 1604–1619,
- 590 doi:10.1029/2012JA018073.
- 591 Schriver, D., P. M. Trávníček, B. J. Anderson, M. Ashour-Abdalla, D. N. Baker, M. Benna, S. A.
- 592 Boardsen, R. E. Gold, P. Hellinger, G. C. Ho, H. Korth, S. M. Krimigis, R. L. McNutt Jr., J. M.
- 593 Raines, R. L. Richard, J. A. Slavin, S. C. Solomon, R. D. Starr, and T. H. Zurbuchen (2011a), Quasi-
- trapped ion and electron populations at Mercury, *Geophys. Res. Lett.*, *38*(23), L23103,
- 595 doi:10.1029/2011GL049629.
- 596 Schriver, D., P. M. Trávníček, M. Ashour-Abdalla, R. L. Richard, P. Hellinger, J. A. Slavin, B. J.
- 597 Anderson, D. N. Baker, M. Benna, S. A. Boardsen, R. E. Gold, G. C. Ho, H. Korth, S. M. Krimigis,
- 598 W. E. McClintock, J. L. McLain, T. M. Orlando, M. Sarantos, A. L. Spragur, R. D. Starr, (2011b),
- 599 Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications for
- 600 electron-stimulated desorption, *Planet. Space Sci.*, 59(15), 2026-2036, doi:10.1016/j.pss.2011.03.008.

- 601 Seki, K., N. Terada, M. Yagi, D. C. Delcourt, F. Leblanc, and T. Ogino (2013), Effects of the surface
- 602 conductivity and the IMF strength on the dynamics of planetary ions in Mercury's magnetosphere, *J*.
- 603 Geophys. Res., 118(6), 3233–3242, doi:10.1002/jgra.50181.
- 604 Siscoe, G. L., N. F. Ness, and C. M. Yeates (1975), Substorms on Mercury?, *J. Geophys. Res.*, *80*(31),
 605 4359–4363, doi:10.1029/JA080i031p04359.
- Slavin, J. A., et al. (2009), MESSENGER observations of Mercury's magnetosphere during northward
 IMF, Geophys. Res. Lett., 36, L02101, doi:10.1029/2008GL036158.
- 608 Slavin, J. A., B. J. Anderson, D. N. Baker, M. Benna, S. A. Boardsen, G. Gloeckler, R. E. Gold, G. C.
- Ho, H. Korth, S. M. Krimigis, R. L. McNutt Jr., L. R. Nittler, J. M. Raines, M. Sarantos, D. Schriver,
- 610 S. C. Solomon, R. D. Starr, P. M. Trávníček, and T. H. Zurbuchen (2010a), MESSENGER
- observations of extreme loading and unloading of Mercury's magnetic tail, *Science*, 329(5992), 665–
- 612 668, doi:10.1126/science.1188067.
- 613 Slavin, J. A., R. P. Lepping, C. -C. Wu, B. J. Anderson, D. N. Baker, M. Benna, S. A. Boardsen, R. M.
- Killen, H. Korth, S. M. Krimigis, W. E. McClintock, R. L. McNutt Jr., M. Sarantos, D. Schriver, S. C.
- 615 Solomon, P. Trávníček and T. H. Zurbuchen (2010b), MESSENGER observations of large flux
- 616 transfer events at Mercury, *Geophys. Res. Lett.*, 37(2), L02105, doi:10.1029/2009GL041485.
- 617 Slavin, J. A., G. A. DiBraccio, D. J. Gershman, S. M. Imber, G. K. Poh, J. M. Raines, T. H.
- Carbuchen, X. Jia, D. N. Baker, K. -H. Glassmeier, S. A. Livi, S. A. Boardsen, T. A. Cassidy, M.
- 619 Sarantos, T. Sundberg, A. Masters, C. L. Johnson, R. M. Winslow, B. J. Anderson, H. Korth, R. L.
- 620 McNutt Jr., and S. C. Solomon (2014), MESSENGER observations of Mercury's dayside
- magnetosphere under extreme solar wind conditions, J. Geophys. Res., 119(10), 8087–8116,
- 622 doi:10.1002/2014JA020319.

- Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer (1997), A new
 functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res.,
 102, 9497–9511, doi:10.1029/97JA00196.
- 626 Sundberg, T., S. A. Boardsen, J. A. Slavin, L. G. Blomberg, J. A. Cumnock, S. C. Solomon, B. J.
- 627 Anderson, and H. Korth (2011), Reconstruction of propagating Kelvin-Helmholtz vortices at Mercury's
- 628 magnetopause, *Planet. Space Sci.*, 59(15), 2051–2057, doi:10.1016/j.pss.2011.05.008.
- 629 Sundberg, T., S. A. Boardsen, B. J. Anderson, H. Korth, G. C. Ho, D. Schriver, V. M. Uritsky, T. H.
- 630 Zurbuchen, J. M. Raines, D. N. Baker, S. M. Krimigis, R. L. McNutt Jr., and S. C. Solomon (2012a),
- 631 MESSENGER observations of dipolarization events in Mercury's magnetotail, J. Geophys. Res.,
- 632 *117*(A12), A00M03, doi:10.1029/2012JA017756.
- 633 Sundberg, T., S. A. Boardsen, J. A. Slavin, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines,
- and S. C. Solomon (2012b), MESSENGER orbital observations of large-amplitude Kelvin- Helmholtz
- 635 waves at Mercury's magnetopause, *J. Geophys. Res.*, *117*(A4), A04216, doi:10.1029/2011JA017268.
- 636 Wang, Y.-C., J. Mueller, U. Motschmann, and W.-H. Ip (2010), A hybrid simulation of Mercury's
- magnetosphere for the MESSENGER encounters in year 2008, *Icarus*, 209(1), 46–52,
- 638 doi:10.1016/j.icarus.2010.05.020.
- Winslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., Baker, D.
 N., and Solomon, S. C. (2013), Mercury's magnetopause and bow shock from MESSENGER
 Magnetometer observations, *J. Geophys. Res. Space Physics*, 118, 2213–2227, doi:10.1002/jgra.50237.
- 642 Zurbuchen, T. H., J. M. Raines, G. Gloeckler, S. M. Krimigis, J. A. Slavin, P. L. Koehn, R. M. Killen,
- A. L. Sprague, R. L. McNutt Jr., and S. C. Solomon (2008), MESSENGER observations of the
- 644 composition of Mercury's ionized exosphere and plasma environment, *Science*, *321*(5885), 90–92,
- 645 doi:10.1126/science.1159314.


- 646 Zurbuchen, T. H., J. M. Raines, J. A. Slavin, D. J. Gershman, J. A. Gilbert, G. Gloeckler, B. J.
- Anderson, D. N. Baker, H. Korth, S. M. Krimigis, M. Sarantos, D. Schriver, R. L. McNutt Jr., and S.
- 648 C. Solomon (2011), MESSENGER observations of the spatial distribution of planetary ions near
- 649 Mercury, *Science*, 333(6051), 1862–1865, doi:10.1126/science.1211302.

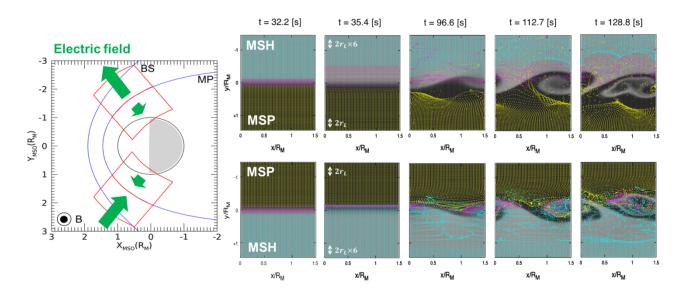
region	Magnetosheath (MSH)	Magnetosphere (MSP)			
Background H ⁺ number density	100 ions/cc	10 ions/cc			
Flow velocity (MSO)	- 300 km/s	+ 50 km/s			
Injected Planetary ion species (m/q)	H ⁺ (1), H ⁺ ₂ (2), O ⁺ (1	16), Na ⁺ (23), K ⁺ (39)			
Solar wind plasma in ExB frame (m/q)	H ⁺ (1), He ⁺⁺ (2)				
	H ⁺ (1), H ⁺ ₂ (2) : 0.047 eV	(540K) in Mercury frame			
Initial particle energy	0 ⁺ (16), Na ⁺ (23), K ⁺ (39) : 1 eV in Mercury frame				
	H ⁺ (1), He ⁺⁺ (2): 10 eV				
	in ExB frame				
Injection time	32.2 s, 80.5 s, 128.8 s				
Magnetic field (Bz)	+/- 48.7 nT	+ 48.7 nT			

Table 1. Summary of Parameter settings

654 Case

	IMF (Bz)	Magnetopause thickness	KH wavelength
Northward IMF	+ 48.7 nT	515 km	1.5 R _M
Southward IMF	- 48.7 nT	515 km	1.5 R _M

The left panel shows the location of the bow shock (BS) and magnetopause (MP) from models 662 by Slavin et al. (2009) for BS and Shue et al. (1997) for MP in MSO coordinates, respectively. 663 The parameters for those paraboloid are taken from Winslow et al. (2013). The two red boxes 664 delineate the area of the KH occurrence on both flanks of the magnetosphere of Mercury and, 665 therefore, our simulation domain. Initial profiles of normalized physical quantities and color-666 coded electric field intensity obtained from MHD modeling are shown on the right panel. White 667 arrows indicate the electric field orientation. The upper and lower color-coded panels 668 correspond to electric field maps at distinct simulation times during the evolution of the KH 669 670 instability on the dawn and dusk sides, respectively. Here we assumed that the solar wind is flowing tailward with a velocity of 300 km/s and that the magnetospheric convection flows 671 from the nightside to the dayside with a velocity of 50 km/s. Initial variations of physical 672 quantities across the magnetopause follow hyperbolic tangent profiles. The thickness of the 673


658

magnetopause is 515 km and the wavelength of the KH instability is set to 1.5 R_M km, which

675 is consistent with MESSENGER observations.

681

682

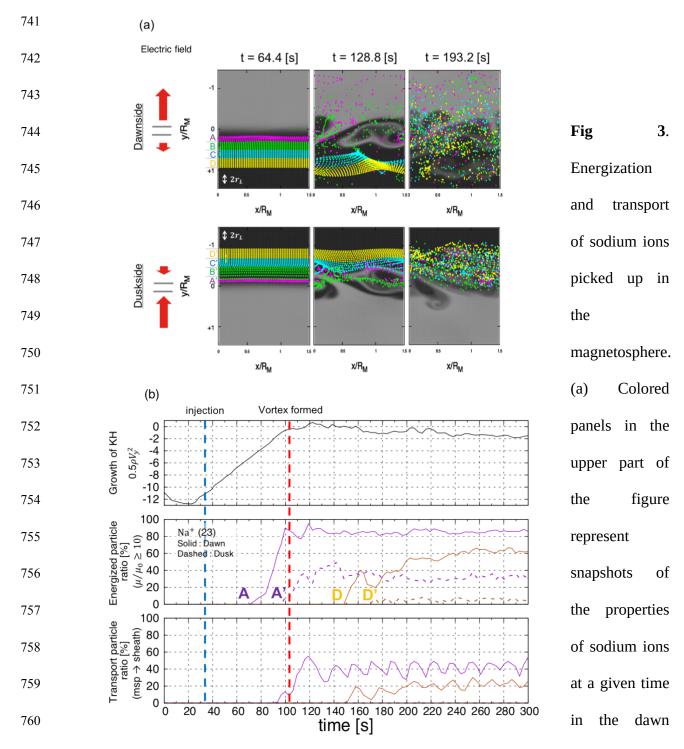
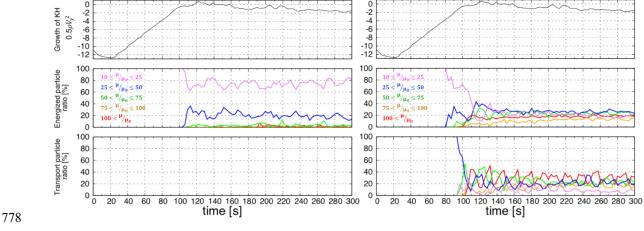
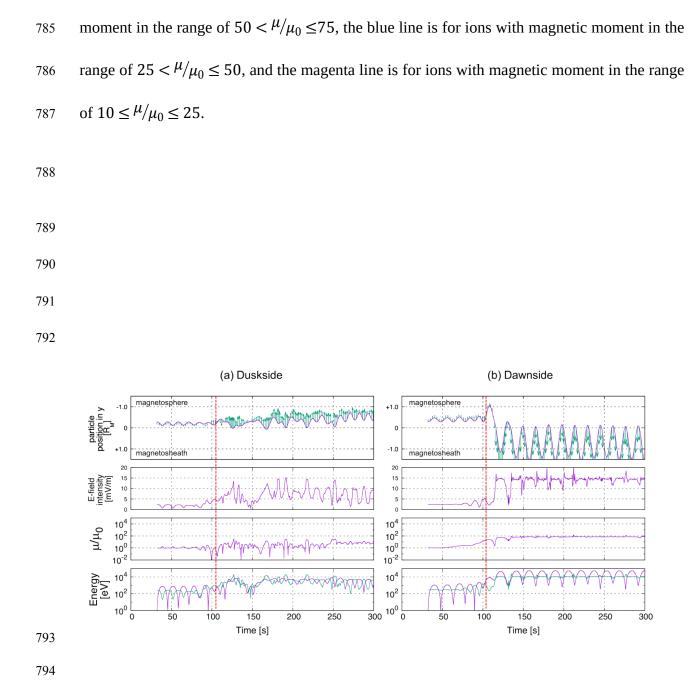

683

Fig 2. Properties of sodium ions at distinct simulation times during the development of the KH instability for the case of Northward IMF. Background grey scale color shows the proton number density (light (dark) colors indicate higher (lower) density). Yellow, magenta and cyan dots represent sodium ions picked up in the magnetosphere, magnetopause (boundary layer), and magnetosheath regions, respectively. The upper and lower panels show the dawn and dusk side configurations and the white arrows in the panels at t = 35.4 [s] indicate the Larmor radii of the sodium ions in each region. The electric field orientation and intensity is given in the left panel. Each ion is injected with an initial thermal energy of 1 eV as a picked up ion at t = 32.2

692 [s], which corresponds to the beginning of the KH growth.


693			
694			
695			
696			
697			
698			
699			
700			
701			
702			
703			
704			
705			
706			
707			
708			
709			
710			
711			
712			
713			
714			
715			

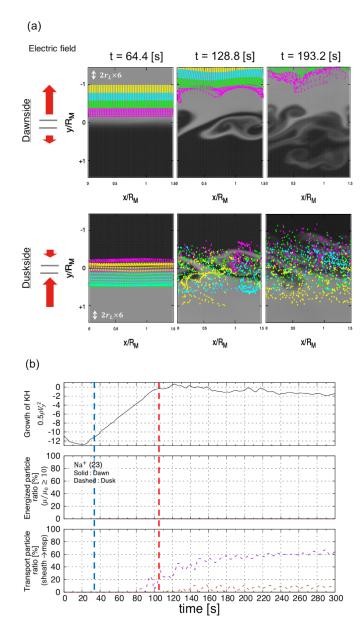
716			
717			
718			
719			
720			
721			
722			
723			
724			
725			
726			
727			
728			
729			
730			
731			
732			
733			
734			
735			
736			
737			
738			
739			
740			


(top) and dusk (bottom) configuration. The region in magenta (indicated by A and A') is the closest region to the magnetopause whereas the region in yellow (indicated by D and D') is the farthest region from the magnetopause. Each region has the same thickness as the magnetopause, i.e. *2a*. The white arrows indicate the Larmor radii of sodium ions at the time of injection. The initial direction of the electric field for each field configuration is given on the left. (b) The top

to bottom panels show the time series of the peak vertical kinetic energy as a proxy for the KH 766 growth, the ratio of energized ions ($\mu/\mu_0 > 10$) to the total number of ions in each region, and 767 the ratio of transported ions that entered the magnetosheath region ($y > -0.3 R_M$ at dawn and y 768 > + 0.3 R_M at dusk) to the total number of ions in each region. The magenta and yellow line 769 profiles refer to ions originating from the regions A, A' and D, D' in Fig. 3a, respectively. Solid 770 and dashed lines in the 2nd and 3rd panels are used for the dawn and dusk sides, respectively. 771 The vertical red dashed line shows the linear growth time of the KH. All ions are injected at t 772 = 32.2 [s] (the vertical blue dashed line) with an initial thermal energy of 1 eV. 773 774 775 776 777 Duskside Dawnside

779

Figure 4. Breakdown of ion energization and transport for ions initially picked up in the magnetosphere in the case of Northward IMF. The left (right) panel shows the results on the duskside (dawnside). Each colored line corresponds to a change in the magnetic moment of the ions. The red line shows ions energized with $\mu/\mu_0 > 100$, the orange line is for ions with



magnetic moment in the range of $75 < \mu/\mu_0 \le 100$, the green line is for ions with magnetic

Figure 5. Model trajectories at (a) dusk and (b) dawn. The red dashed line represents the linear growth time of the KH instability. From top to bottom, each panel shows the ion position in the y-direction with the electric field orientation (green arrows), the electric field intensity, the magnetic moment (normalized to the initial value), and the energy as a function of time.

799

801

802

Figure 6. Energization and transport of sodium ions picked up in the magnetosheath. Same format as the one used in Figure 3 except that transported ions now move in the opposite direction.

806

.

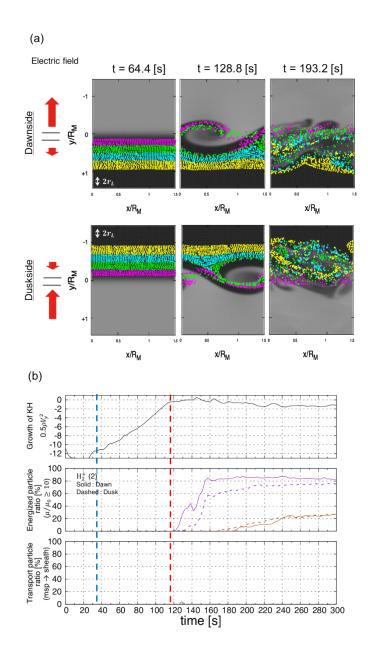
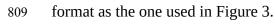
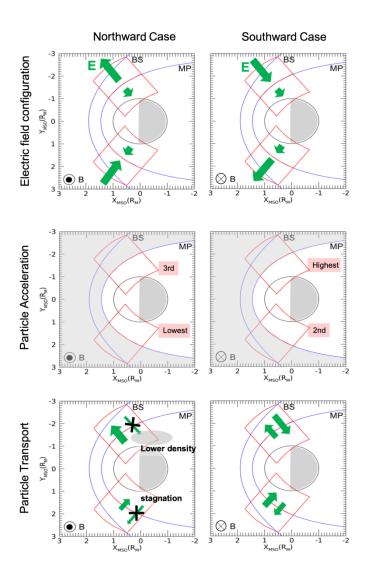



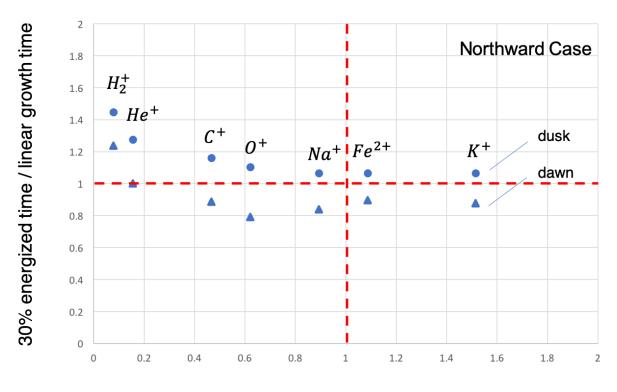
Figure 7. Energization and transport of hydrogen ions picked up in the magnetosphere. Same


826 (a) Northward IMF Case

IMF +Bz	Picked up in		dawn	dusk	comment
	MSH	h	×	×	
energization		1	×	×	MHD-like
	MSP	h	Ø	0	
		1	Ø	0	MHD-like
	MSH → MSP	h	×	0*	* transport can occur due to convection
transport		1	×	*	electric field
	MSP → MSH	h	0	×	
		1	×	×	

830 (b) Southward IMF Case

IMF -Bz	Picked up in		dawn	dusk	comment
	MSH	h	Δ	Δ	negligible
energization		1	0	0	
	MSP	h	Ø	Ø	
		1	Ø	Ø	
	MSH → MSP	h	` *	0	* transport can occur due to convection electric field
transport		1	0	0	
	MSP → MSH	h	0	0	
		1	0	0	


Table 2. Summary tables for the energization and transport of planetary ions (h for heavy ions, l for light ions) in the closest region to the magnetopause. (a) and (b) show the northward and southward IMF case, respectively. Each symbol, double circle, circle, and triangle indicates the level of energization and transport. A double circle is used when the level of energization (transport) is higher than 80%, whereas a triangle is used when those are lower than 20%. A circle represents its level between 20 - 80 %.

847

Figure 8. Illustration of general features of ion energization and transport of heavy ions of planetary origin (0^+ , Na⁺, and K⁺ in this study) for north and southward IMF cases. From top to bottom, each panel shows the initial large electric field configuration, ion acceleration, and ion transport in the x-y plane. The grey hashed area in the ion acceleration panel shows no energization.

853			
855			
854			
855			
856			
857			
858			
859			
860			
861			
862			
863			
864			
865			
866			
867			
868			

Larmor radius / half magnetopause thickness

Figure 9. Larmor radius dependence on the ion energization of ions picked up in the magnetosphere, which is the region closest to the magnetopause under the northward IMF. The area below the horizontal red dashed line corresponds to the linear growth stage and the area above is nonlinear growth phase of the development of the KH instability.

875

876

877

	Region	IMF Bz	dawn	dusk	comment
Energization	MSH	+	Ø	Ø	

		-	Ø	Ø	
Transport	MSH → MSP	+	×	×	MHD-like
		-	0	0	MHD-like

Table 3. The summary tables of energization and transport of solar wind.

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: