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Abstract

Solid contacts involving soft materials are important in mechanical engineering or biomechanics. Experimentally,
such contacts have been shown to shrink significantly under shear, an effect which is usually explained using adhesion
models. Here we show that quantitative agreement with recent high-load experiments can be obtained, with no
adjustable parameter, using a non-adhesive model, provided that finite deformations are taken into account. Analysis
of the model uncovers the basic mechanisms underlying shear-induced area reduction, local contact lifting being
the dominant one. We confirm experimentally the relevance of all those mechanisms, by tracking the shear-induced
evolution of tracers inserted close to the surface of a smooth elastomer sphere in contact with a smooth glass plate. Our
results suggest that finite deformations are an alternative to adhesion, when interpreting a variety of sheared contact
experiments involving soft materials.
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1. Introduction

Rough contacts are ubiquitous in both natural and engineering systems, and indeed, rough contact mechanics have
been actively investigated in the last decades (see e.g. Vakis et al. (2018) for a recent review). Most of the effort
has been devoted to the normal contact of frictionless interfaces (see Müser et al. (2017) for a comparison of various
modelling approaches to such a problem). However, recent experiments involving soft materials like polymers or
human skin have revealed complex changes to the contact morphology when a frictional rough contact is submitted to
an additional shear load. Not only is the overall real contact area significantly reduced (Sahli et al., 2018; Weber et al.,
2019), but it also becomes increasingly anisotropic (Sahli et al., 2019), two effects that have not been satisfactorily
explained yet. For both effects, smooth sphere/plane contacts have been shown to obey similar behaviour laws as
rough contacts (Sahli et al., 2018, 2019). It is thus appealing to start investigating anisotropic shear-induced area
reduction in such simpler, single sphere/plane contacts between smooth solids.

Experimentally, elastomeric sphere/plane contacts are known to evolve from a circular area under pure normal
load to a smaller, ellipse-like area in macroscopic sliding regime (Savkoor and Briggs, 1977; Waters and Guduru,
2010; Petitet and Barquins, 2008; Sahli et al., 2018, 2019; Mergel et al., 2019). So far in the literature, such an area
reduction during incipient tangential loading of a sphere/plane contact has been interpreted using adhesion models,
most of which are based on linear elastic fracture mechanics (Savkoor and Briggs, 1977; Johnson, 1996, 1997; Waters
and Guduru, 2010; Ciavarella, 2018; Papangelo and Ciavarella, 2019; Papangelo et al., 2019). Those fracture-based
models start with a JKR (Johnson-Kendall-Roberts, Johnson et al. (1971)) description of a frictionless, adhesive, linear
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elastic spherical contact, for which the pressure field at the contact’s periphery is locally that of a mode I (opening)
crack. The models continue noting that applying a tangential force Q to a fully stuck contact introduces a shear stress
field at the contact’s periphery which is that of a mode II (shear) crack. The contact radius a is then obtained by
equating the available mechanical energy at the contact’s periphery to a relevant fracture energy. In the oldest such
model (Savkoor and Briggs, 1977), the fracture energy was simply taken as the work of adhesion of the interface, w0.
This led to an area reduction much larger than observed experimentally, suggesting that the effective fracture energy
is much larger than w0. Subsequent models thus considered a fracture energy given by w0 f , with f >1 a mode-mixity
function describing the interaction between adhesion and friction at the crack tip, and accounting for the increased
energy dissipation due to, for instance, micro-slip within the sheared contact.

Fine-tuning of the amplitude and shape of f allowed to quantitatively reproduce experimental results on the area
reduction of smooth PDMS (PolyDiMethylSiloxane) spheres in contact against smooth glass plates (Ciavarella, 2018;
Papangelo and Ciavarella, 2019). Accounting for a second mode-mixity function describing the interaction between
mode I and mode III (antiplane shear) further allowed to reproduce the anisotropic properties of the area changes
(Papangelo et al., 2019). However, such agreement required at best to fit the amplitude of f (Ciavarella, 2018;
Papangelo and Ciavarella, 2019), at worst to interpolate the whole f functions from one experiment out of the set
to be reproduced (Papangelo et al., 2019). This limitation arises because our current understanding of the physical
mechanisms lumped into the mode-mixity functions, and more generally of the interactions between adhesion and
friction, remains unsatisfactory. For the same reason, other adhesion models, like the numerical ones of Mergel et al.
(2019); Kajeh Salehani et al. (2019); Mergel et al. (2020) or the theoretical one of McMeeking et al. (2020), also
require ad hoc descriptions of the local interfacial behaviour under coupled normal and tangential loading.

Surprisingly, simpler, adhesionless models based only on elasticity have not been proposed. This is partly histori-
cal, because the first experiments on shear-induced contact reduction (Savkoor and Briggs, 1977; Waters and Guduru,
2010) were mainly performed under small (or even negative) normal loads, for which adhesive stresses are expected
to dominate those due to indentation. Recent experiments at much higher normal loads (Sahli et al., 2018), for which
adhesive stresses are expected to be less prominent, suggest that the area reduction may also occur in the absence
of adhesion. Another possible reason for having overlooked elastic models is the nature of the materials used for
the experiments. They mainly considered elastomers, which are nearly incompressible, in contact with a rigid sub-
strate. In those conditions, the normal and shear stresses at the contact interface between linear elastic solids are
uncoupled (Johnson, 1985), so that the observed effect of the tangential load on the contact area is unexpected.

Here, we investigate the hypothesis that the shear-induced contact area reduction is an elastic effect enabled by
the nonlinear, finite-deformation behaviour of the elastomer. Recently, this possibility was suggested in Wang et al.
(2020), and some preliminary support was brought by Mergel et al. (2020) using 2D simulations, but it has never
been tested on 3D sphere/plane contacts. To fully test the hypothesis, we have developed a computational 3D model
that combines a hyperelastic bulk and a non-adhesive but frictional interface. The model suitably fits the macroscopic
experimental data from Sahli et al. (2018, 2019) and quantitatively reproduces the anisotropic evolution of contact
area, with no adjustable parameter (Section 2). Our results strongly suggest that the contact area reduction is governed
by the finite-deformation mechanics, with a dominating effect of local contact lifting and less pronounced effect of
micro-slip-induced in-plane deformation. We then present original experiments in which those two mechanisms can
indeed be directly observed and quantified (Section 3).

2. Finite-strain modelling of shear-induced contact area reduction

The finite-strain framework and the Tresca friction model are the two essential features of our model, and these are
combined with the finite-element method as a suitable spatial discretization scheme. Since the individual ingredients
of the model are rather standard, perhaps except for some details of the computational treatment, the model is only
briefly summarizeded in Section 2.1, and its detailed description is provided in Appendix A.

2.1. Computational model: finite-strain framework and Tresca friction

The contact problem under consideration, sketched in Fig. 1, corresponds to the normal and tangential loading
of a hyperelastic spherical solid in (adhesionless) frictional unilateral contact with a rigid plate. The finite-strain
framework employs the geometrically exact kinematics of finite deformations (Appendix A.1) and contact (Appendix
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A.2), as well as adequate constitutive descriptions of both the bulk elasticity of the sphere (Appendix A.1) and the
frictional behaviour at the contact interface (Appendix A.3).

rigid plate

rigid support

hyperelastic sample

(a)

trailing edgeleading edge

(b)

Figure 1: 2D sketch of the (3D) soft-sphere/rigid-plane contact under study. The initial (dashed lines) and deformed (solid lines) configurations are
shown for two stages: (a) under pure normal load P and (b) when an additional tangential displacement d is applied, giving rise to a tangential load
Q. In all subsequent figures, the leading (resp. trailing) edge is always on the left (resp. right) side.

Hyperelasticity is treated using the Mooney–Rivlin model, in the nearly incompressible version. Disregarding
compressibility and the related bulk modulus, the model (Eq. (A.3)) involves two parameters, µ1 and µ2, such that
µ = µ1 + µ2, with µ the shear modulus. In the following, we will consider two particular cases reducing to a single
parameter, µ: (i) the neo-Hookean model, for which µ2 = 0 and µ1 = µ, and (ii) an arbitrarily chosen other combination
of parameters, namely µ1 = µ2 = µ/2 (simply denoted as Mooney–Rivlin from now). Note that µ can be readily
determined for any particular experimental sphere/plane contact from the knowledge of the contact area, A0 = A(Q =

0), under a pure, known normal load, P.
For a wide range of tribological material pairs, the static friction force of sphere/plane contacts is measured to

be proportional to the contact area (see Sahli et al. (2018) and references therein). It is thus appealing to examine
the simplest friction model that automatically produces such a dependence, namely the Tresca friction model, which
is employed here (Appendix A.3). In the Tresca model, no slip occurs locally until the contact shear strength, σ,
is reached, and σ is assumed constant and independent on the normal contact traction. The Tresca model, even if
oversimplified, is expected to provide a reasonable approximation of the tangential stress distribution (at least) when
the static friction force, Qs, is reached. Note that σ can be measured in all experiments that monitor the contact area
(e.g., Savkoor and Briggs, 1977; Waters and Guduru, 2010; Sahli et al., 2018; Mergel et al., 2019), as the ratio of Qs
over As = A(Q = Qs).

The finite-element treatment of the contact problem at hand is described in Appendix A.4 and in Section S.1.1
in Supplementary Information. Note that the Tresca friction model may lead to significant convergence problems,
particularly when the interfacial shear strains are large, which will be the case in our simulations. To circumvent those
problems, a Prakash-Clifton-like regularization scheme (Appendix A.3) has been employed, which allowed our actual
computations to be successfully carried out for a relatively fine finite-element mesh.

We have applied our model to perform a direct quantitative comparison with the PDMS-sphere/glass-plate exper-
iments reported in Sahli et al. (2018, 2019). In particular, the geometry, boundary conditions and loading conditions
match the experimental ones. The elastomer sample (identical to that in inset of Fig. 10) is a cylinder, the top of which
features a spherical cap with a radius of curvature of 9.42 mm. It is fixed on a rigid support. The spherical cap is first
brought into normal contact with a rigid plate under constant normal load P (we chose four representative values of P
covering the whole range explored in Sahli et al. (2018): 0.27, 0.55, 1.65 and 2.12 N). The contact is then sheared by
pulling the plate horizontally with a constant velocity V = 0.1 mm/s.

A value of µ = 0.60 MPa was derived in a unique manner using the experimental values of P and A(Q = 0) (see
Appendix A.4). Similarly, a value of σ = 0.41 MPa was derived using the experimental values of As and Qs. Note
that the ratio σ/µ is significant, such that shear strains exceeding 50% are expected. This is far beyond the range of
validity of the small-strain theory, and linear elasticity in particular, so that the finite-strain framework used here is
actually essential. At those large strains, the mechanical behaviour of the elastomer used in the experiments of Sahli
et al. (2018, 2019) (Sylgard 184) is already well beyond its linear range (Nguyen et al., 2011; Maraghechi et al., 2020).

To further characterize the contact conditions, let us introduce the Hertzian contact radius aH = (3PR/(16µ))1/3,
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where the Poisson’s ratio ν = 0.5 has been assumed for simplicity. In the present conditions, the dimensionless ratio
aH/R varies between 0.098 and 0.195 for P = 0.27 N and P = 2.12 N, respectively, thus exceeding the usual range
of validity of the Hertz contact theory, aH � R (Johnson, 1985). For the shear loading, the relevant dimensionless
parameter is σ/µ.

(a)

(b)

(c)

(d)

Figure 2: Finite-element mesh used in the case of the highest normal load P = 2.12 N: (a) undeformed mesh, (b) zoom-in of the undeformed mesh,
(c) zoom-in of the deformed mesh after initial normal loading, (d) zoom-in of the deformed mesh at full sliding. The leading edge is on the left.

Figure 2 shows the finite-element mesh used in the case of P = 2.12 N (note that the size of the refined-mesh
region is adjusted to the normal load), and zoom-ins for select configurations. In particular, panel (d) illustrates the
deformation pattern for Q = Qs, showing a significant shear deformation in the subsurface layer and a non-uniform
in-plane deformation of the contact surface. The corresponding high mesh distortion, visible at the leading edge,
is due to the jump of the tangential contact traction, introduced by the Tresca model, and to the non-conforming
discretization of the contact area boundary (see related discussion in Section S.1.2).

2.2. Shear-induced contact area reduction
Using the computational model described above, we simulated the shear-induced contact area reduction in the

sphere/plane experiments of Sahli et al. (2018, 2019), for the two hyperelastic models (neo-Hookean and Mooney–
Rivlin). Typical results are reported in Fig. 3(a) which shows the concurrent evolutions of the tangential force, Q, and
the contact area, A, as a function of the displacement of the rigid plate, d. For comparison, the results corresponding
to linear elasticity are also included in Fig. 3, even if the range of strains expected in our conditions does not really
admit application of the small-strain framework.

Figure 3(a) shows that the three models yield drastically different predictions, both for the tangential force and for
the contact area. While the initial contact area at zero tangential force is hardly affected by the model, major differences
appear as the tangential force increases. A significant area reduction is predicted for both hyperelastic models, but it
remains negligible for the linear elastic model. This result already indicates that the finite-deformation framework is
actually a prerequisite to reproduce an area reduction of several tens of percents, as observed experimentally. Note that
the amplitude of the reduction is larger for the Mooney–Rivlin model (37% for P = 0.27 N) than for the neo-Hookean
model (28%), showing that the effect of the material model that governs the hyperelastic behaviour of the sample is
significant. Those very different final contact areas, combined with the very same contact shear strength, σ, explain
why the final friction force is significantly larger for the linear elastic model, and is also different for both hyperelastic
models.

Figure 3(b) synthesizes all results by showing, for all normal loads and all three elastic models, the contact area A
as a function of the tangential force Q. The absence of area reduction for the linear elastic model and the difference in
its amplitude for the two hyperelastic models is clearly evidenced. The fact that all curves end on the red line indicates
that a homogeneous shear stress distribution equal to the contact shear strength σ is suitably enforced at the onset of
gross sliding.
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Figure 3: Shear-induced contact area reduction predicted for various elastic models. (a) Concurrent evolution of the tangential force, Q (dots),
and the contact area, A (squares), as a function of the rigid plate displacement, d, for three different elastic models: linear elastic (dotted blue),
neo-Hookean (solid purple) and Mooney–Rivlin (dashed green). P = 0.27 N. (b) A vs Q, for the three elastic models and for the four normal loads.
The markers correspond to selected instants; the computations were carried out with a much finer time stepping. Solid straight red line: Q = σA.

0.5 mm

(a) (b) (c) (d)

Figure 4: Contact zone (shown in red in the frame attached to the moving rigid plate) at the onset of full sliding for P = 0.27 N. (a) Experiment (Sahli
et al., 2018) (this specific diagram has not been published in the reference). (b) Neo-Hookean model. (c) Mooney–Rivlin model. (d) Small-strain
linear elastic model. Dashed circles indicate the boundary of the initial contact zone, green regions denote the lifted area in the current (deformed)
configuration. The leading edge is on the left. The mesh-dependent features and secondary contact regions visible in panels (b)–(d) are commented
in Appendix A.5 and in Section S.1.2.

The differences between the various elastic models concern also the shape of the contact zone. In Fig. 4(b)–(d),
typical model predictions for the final contact shape are shown for the three elastic models (red regions). Although all
models start with an almost identical circular contact when Q = 0 (dashed lines), the final contact shape has significant
differences. The linear elastic model predicts a final contact which remains circular, with almost the same area as in
the initial configuration, consistently with the results of Fig. 3. The large area reduction in the Mooney–Rivlin model
occurs while keeping an essentially circular contact shape. In contrast, the neo-Hookean model leads to an ellipse-like
contact shape, with the size reduction occurring almost exclusively along the shear direction.

We are now in a position to compare quantitatively our model results to the experimental results of Sahli et al.
(2018, 2019). In Fig. 4, panel (a) shows the experimental counterpart of panels (b)–(d). It clearly appears that the
model that most closely matches the final shape in the experiments is the neo-Hookean model. In particular, both the
size and eccentricity of the ellipse-like contact shape is very-well captured. In the experiment, the radius of curvature
of the trailing edge is visibly smaller than that of the leading edge. In the model, this effect is also visible, but less
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Figure 5: Comparison of the model predictions obtained for the neo-Hookean model, for all normal loads, to the experimental results of Sahli et al.
(2018, 2019). (a) A vs Q. Solid straight red line: Q = σA. (b) Contact size along (`‖) and perpendicular to (`⊥) the shear loading direction vs Q.

pronounced. Also note that, in the experiments, the final contact region extends beyond the initial contact at the
leading edge, an effect which is weaker in the neo-Hookean model, and that will be further commented in Section 3.

The excellent agreement of the neo-Hookean model with experiments is further demonstrated in Fig. 5. Figure 5(a)
directly compares the predicted A(Q) curves with those of Sahli et al. (2018) (see their Fig. 2C), while Fig. 5(b)
compares the predicted contact sizes along and orthogonal to shear, `‖ and `⊥ respectively, with those of Sahli et al.
(2019) (see their Fig. 3b). In both cases, the amplitudes and shapes of the curves are well captured, although the
model slightly underestimates A and does not capture the slight increase of `⊥ observed in the experiments. Note that
a similarly good agreement has been obtained for an alternative model with different regularizations and numerical
implementations (see Appendix A.5 and Section S.1.3), thus showing the robustness of our results.

2.3. Elementary mechanisms of contact area reduction

In Section 2.2, we have shown that our neo-Hookean model provides, without any adjustable parameter, a very
good quantitative prediction of the shear-induced contact area reduction observed in experiments. On this model only,
we will now perform a thorough analysis of the simulation results to understand what are the elementary mechanisms
responsible for such a reduction.

Important qualitative insights can already be obtained from a careful inspection of Fig. 4(b). First, the green
region around the final contact zone corresponds to all nodes that were initially in contact, and which are not anymore
at the onset of macroscopic sliding. Those nodes have been lifted out of contact during the incipient loading phase,
due to the shear-induced deformations of the elastic sphere. This first elementary mechanism of area variations will
be named below “contact lifting” (or simply “lifting”). Second, small parts (hardly visible in Fig. 4(b)) of the final
contact are found outside the deformed initial contact region (shown as a green region in the current configuration).
These nodes were initially out of contact, but came into contact during the incipient loading phase. This second
elementary mechanism of area variations will be named “contact laying” (or “laying”). Finally, the third elementary
mechanism is related to inhomogeneous slip and in-plane deformation within the contact zone and leads to either
“in-plane compression” or “in-plane dilation”. Such deformations extend beyond the contact region, which explains
why the boundary of the green zone does not coincide with the dashed circle.

The existence of micro-slip in the model can be unambiguously identified in Fig. 6, where the evolution of the
contact during incipient loading is shown at five select tangential displacements of the rigid plate: d0 = 0, ds at the
onset of gross sliding and three intermediate configurations (di). The nodes of the elastic surface are labeled in red
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Figure 6: Evolution of the contact zones for (a) P = 0.27 N (d1, d2, d3: 35, 61, 81% of ds = 0.45 mm) and (b) P = 2.12 N (d1, d2, d3: 29, 58, 80%
of ds = 1.04 mm) shown in the frame attached to the moving rigid plate. Dashed circles indicate the boundary of the initial contact zone (at d0).
Blue and red regions denote the stick and slip zones, respectively. Green regions indicate the current (deformed) location of the initial contact zone
that has been lifted. The leading edge is on the left.

if they have undergone some local slip, and in blue if they are still stuck to the same point of the rigid plate. It can
be seen in Fig. 6 that the slip zone advances from the contact periphery towards the centre at the expense of the stick
zone until the stick zone vanishes and full sliding occurs. As also observed in the experiments (Sahli et al., 2019), the
contact zone and the stick zone have an elliptical shape, the related shear-induced anisotropy increases with increasing
displacement d and is higher for the lower normal loads.

Partial slip configurations as those seen in Fig. 6 are classically found (with a circular stick zone) in models of
sheared frictional linear elastic sphere/plane contact (Johnson, 1985; Barber, 2018). They typically correspond to het-
erogeneous slip fields, thus causing in-plane deformations. Figure 7 provides a detailed insight into this mechanism,
by showing the field of local surface dilation/compression. For each contact node i, its tributary area (i.e. the area
associated with the node, see also Section S.1.1) is computed both in the initial configuration (at d0), Ai

0, and in the
current configuration, Ai. The color map in Fig. 7 corresponds to the local surface dilation/compression, (Ai −Ai

0)/Ai
0.

Surface dilation is observed close to the leading edge while compression is observed close to the trailing edge, which
is consistent with the distribution of the σxx stress component shown in Fig. A.2(c). The decreasing green elliptical
region in the middle of the contact zone, in which the local surface dilation/compression is equal to zero, corresponds
to the stick zone in Fig. 6.

Figure 8 compares the individual contributions of all mechanisms (calculated as described in Appendix A.4) to
the total relative contact area change in the neo-Hookean model. For all normal loads, the model predicts that lifting
represents about 90–95% of the total shear-induced area reduction, and is thus the primary mechanism responsible for
it. The contributions of dilation and compression are individually significant, however, they essentially cancel out, so
that the in-plane deformation is responsible only for about 5–10% of the total area reduction. Contact laying is rarely
observed (if so, at the leading edge only), so that its contribution to the total area reduction is essentially negligible in
the model.

We emphasize that the relevant lifting in our neo-Hookean model is a local lifting due to shear deformations of the
elastic sample, rather than a shear-induced global lifting of the rigid plate. Such a global lifting, although existing in
our constant normal load setting, has been found to be only about 4% of the normal displacement associated with the
initial, purely normal loading. Thus, it is far from sufficient to explain the 15–30% area reduction observed in Fig. 8.

2.4. Qualitative role of finite deformations: half-space loaded by a tangential traction

To reach a general understanding of how finite deformations enhance anisotropic contact area reduction with
respect to the linear elastic case, we studied a simplified auxiliary problem: a nearly incompressible hyperelastic half-
space loaded by a homogeneous tangential traction qx (to mimick our Tresca model), applied over a circular area of
radius r. In the finite-element model, the half-space is truncated, and the computational domain is a cylinder of radius
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Figure 7: Evolution of the field of surface dilation/compression, (Ai − Ai
0)/Ai

0, shown in the frame attached to the moving rigid plate for (a)
P = 0.27 N and (b) P = 2.12 N, and for the same select displacements as in Fig. 6. Dashed circles indicate the boundary of the initial contact zone.
The leading edge is on the left.
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Figure 8: Evolution of the individual contributions of the various elementary mechanisms to the total relative area variation, ∆A/A0, as a function
of the rigid plate displacement, d, for (a) P = 0.27 N and (b) P = 2.12 N.

20r and height 20r. The displacements at the truncation boundary are prescribed to those of the Boussinesq–Cerruti
solution for a linear-elastic half-space loaded by a concentrated tangential force (Johnson, 1985).

Figure 9(a) shows the normal surface displacements induced by the tangential loading, for both the linear elastic
and neo-Hookean cases. Those displacements are the signature of a normal/tangential coupling. A non-vanishing
coupling is found in the linear elastic case because the material is only nearly incompressible. Still, the coupling
remains weak, explaining why a significant contact area reduction is not found for linear elasticity. In the neo-Hookean
case, for shear stresses similar to those used in the contact problem (qx/µ = 0.66 corresponds to qx = 0.4 MPa, close
to the value of σ used in our Tresca model), the normalized displacements are much larger, indicating a strong
normal/tangential coupling. The symmetry, which is characteristic for the linear-elastic model, is broken due to the
finite-deformation effects. In particular, large negative displacements occur at the trailing edge, explaining why lifting
has been found significant and localized at the trailing edge of the contact. Finally, the 2D map of the displacement
field in Fig. 9(b) clearly shows positive displacements in the direction orthogonal to shear. Such positive displacements
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found in the neo-Hookean case (resp. almost absent in the Mooney–Rivlin case, Fig. 9(c)) are presumably responsible
for the absence of lifting in the transverse direction, and thus for the contact anisotropy seen in Fig. 4(b) (resp. absent
in Fig. 4(c)).
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Figure 9: Normalized vertical surface displacement, ūz = uzµ/(qxr), for a nearly incompressible (ν = 0.49) half-space loaded by a homogeneous
tangential traction qx along the x-axis, over a circular area of radius r. (a) Profile along the symmetry plane. Solid lines: neo-Hookean model for
various qx/µ. Dashed line: (qx-independent) linear elastic case. (b,c) 2D maps within the (x, y)-plane for qx/µ = 0.66: (b) neo-Hookean and (c)
Mooney–Rivlin model. Spatial coordinates (x, y) refer to the current configuration.

3. Illustration experiment

In this section, we perform an illustration experiment, similar to those of Sahli et al. (2018, 2019) used to validate
the model in the previous section, in order to test whether the elementary mechanisms responsible for contact area
reduction in the model (lifting, laying and in-plane deformation) can also be identified experimentally. The strategy
is to incorporate particles close to the surface of the elastomer sphere and use them as tracers of the local motion of
the frictional interface during incipient tangential loading.

3.1. Experimental methods

The illustration experiment was performed on a laboratory-built experimental setup (see details in Section S.2.1)
adapted from those used in Sahli et al. (2018, 2019); Papangelo et al. (2019); Mergel et al. (2019), and sketched
in Fig. 10. The two main improvements consisted in (i) replacing the single beam cantilever with a double beam
cantilever and (ii) adding force sensors to measure the normal load. This setup is used to shear the interface between
a smooth glass plate and a cross-linked PDMS sample (nearly incompressible, E = 1.5 ± 0.1 MPa) with a smooth
spherical cap seeded with a layer of particles about 16 µm below the surface (see details in Section S.2.2). The
experiment presented here was performed under constant normal force P = 1.85 N. 19 s after the contact has been
created, a constant driving velocity V = 0.1 mm/s was imposed to the glass, over a total distance of 2 mm. The
evolution of the tangential force Q as a function of the displacement of the glass plate is shown in black in Fig. 11.
The incipient tangential loading of the interface reaches a maximum, denoted as the static friction force Qs, before a
full sliding regime during which Q < Qs.

Typical raw images of the contact interface are shown in Fig. 12(a–d) for four different displacements (already
shown in Fig. 11): d0 before any shear, ds the displacement at the static friction peak Qs, and two intermediate
displacements d1 and d2. The contact region corresponds to the biggest region of dark pixels. Figures 12(e–h) show
typical contours of the contact, the inner area of which defines the contact area, A. The evolution of A as a function
of the displacement imposed to the glass plate is shown in Fig. 11 (grey curve). Note that both curves in Fig. 11 show
the same qualitative behaviour as that in previous experiments in the literature (Waters and Guduru, 2010; Sahli et al.,
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Figure 10: Sketch of the opto-mechanical setup. The lower glass plate supporting the elastomer sample (inset) is attached to an optical table, while
the substrate (upper glass plate) is driven tangentially at constant velocity V , through a horizontal double cantilever. The tangential force along x
is measured at the right extremity of the cantilever. The contact interface is illuminated from the top (lighting system not shown) and imaged in
reflection with the camera. Inset: Sketch of the tracer-seeded, spherically-topped elastomer sample (blue, top).

Figure 11: Concurrent evolution of the tangential force Q (solid black curve, left axis) and of the contact area A (solid grey curve, right axis) as a
function of the imposed tangential displacement of the glass substrate. P = 1.85 N. V = 0.1 mm/s. Four values of the displacement are indicated,
which will be used in further figures.

2018; Mergel et al., 2019), indicating that the introduction of the particles into the elastomer sphere is not significantly
affecting the mechanical response of the interface. The oscillations observable in the A(d) curve in Fig. 11 originate
from so-called re-attachment folds (Barquins, 1985) occurring at the trailing edge of the contact.

The contact region is not uniformly dark, as in our previous sphere/plane experiments (Sahli et al., 2018, 2019;
Papangelo et al., 2019; Mergel et al., 2019), but is sprinkled with random bright spots which are due to light reflection
on the particles introduced close to the elastomer surface. By using a homemade tracking procedure (see details in
Section S.2.3), we were able to use those spots as tracers of the contact evolution and to generate a dataset in which
the x- and y-positions of each tracer is given for each image/time-step. Note that only the tracers at the vertical of the
contact regions are visible, so that they will be used not only to measure in-plane displacements but also to look for
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Figure 12: Image analysis. Top row: raw images of the contact interface at the four displacements shown in Fig. 11. Bottom row: corresponding
segmented images. (a, e): d0, (b, f): d1, (c, g): d2, (d, h): ds. In (a-d), the main dark region is the contact, bright spots are the particles, and the top
right dark region is a tracer drawn on the glass substrate to monitor its macroscopic motion. In (e-h), the contours are those of the contact (same
colors as in Fig. 11), the inner area of which defines the contact area; black spots correspond to the particles and are the tracked objects. Images
(a-d) are in the frame of the camera, while (e-h) are in the frame of the (moving) glass plate. The leading edge is on the left.

lifting and laying (see Sections 3.2.1 and 3.2.2 respectively).

3.2. Results and analysis
In this section, based on the results of the tracking procedure, we perform a thorough analysis of the tracers’

behaviour (appearance/disappearance and in-plane motion) to test the existence, in the experiments, of the elementary
mechanisms found to be responsible for contact area evolution in the model (see Section 2.3). We first demonstrate
that contact lifting and contact laying do occur, at opposite sides of the contact zone, and we quantify their amount
using Voronoi tessellation. Second, using Delaunay triangulation, we illustrate the progressive development of a
heterogeneous in-plane strain field within the contact area.

3.2.1. Contact lifting
The fact that only the particles at the vertical of the contact region can be seen opens the possibility to check

whether lifting occurs at the interface. Indeed, the signature of local contact lifting is a particle that disappears from
the image when reached by the moving contact periphery, meaning that a point of the elastomer initially in contact
with the glass has been lifted out-of-contact.

In practice, we looked for tracer trajectories that ended at a location closer than 20 pixels to the contact periphery.
Such tracers are represented in Fig. 13, either at their initial location (at d0, filled disks) or where their disappear (open
disks). A significant number of tracers are indeed lifted during the incipient tangential loading of the contact. The
large majority of them are found at the trailing edge of the contact, where points of the glass leave the contact. Two
of them are found at the leading edge of the contact, but are probably tracers initially close to the contact periphery
and disappearing due to noise in the images.

The color of each disk in Fig. 13 corresponds to the glass displacement at which the tracer disappears. It appears
that the colors of the filled disks are spatially organized, from blue (early disappearance) for the rightmost disks to
red (late disappearance) for the leftmost disks. Such a pattern indicates that lifting occurs through an inward front
propagation, starting from the trailing edge.

In order to quantify the amount of contact area that is lost due to lifting, we assigned a representative individual
area to each tracer. For this, we performed, in the initial image, a bounded Voronoi tessellation on the centroids of the
tracers, the boundary being the contact contour. Each tracer was thus assigned the area of its Voronoi cell. Then, for
each image, the lifted area is computed as the sum of the areas of the Voronoi cells of all lifted tracers. The evolution
of the lifted area along the experiment is shown in blue in Fig. 14. The evolution is stair-like, because each lifting
event increases abruptly the lifted area by a finite amount (the cell area). The estimated final lifted area represents
about 31% of the initial contact area.
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Figure 13: Measurement of the lifted and laid areas. Solid colored lines: contours of the contact at the four selected displacements (same colors as
in Figs. 11 and 12). Open (resp. filled) disks: position of the lifted particles when they disappear (resp. at d0). The symbol color corresponds to
the displacement at which the particle is lifted (same color code as for the contours). Grey cells: cells of the Voronoi tessellation at d0 associated
to lifted particles at ds. Filled (resp. open) diamonds: position of the laid particles at ds (resp. when they appear). The symbol color corresponds to
the displacement at which the particle are laid. Red cells: cells of the Voronoi tessellation at ds associated to laid particles at ds. The leading edge
is on the left.
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Figure 14: Contributions of the various mechanisms to the area variation. Relative area variation, ∆A/A0, vs the imposed displacement, d. Black:
reduction of the total contact area. Blue (resp. pink): area lost (resp. gained) by lifting (resp. laying), measured as in Fig. 13. Brown: area
variations due to slip-induced in-plane deformation, measured as in Fig. 15.

3.2.2. Contact laying
The mechanism of laying, i.e., points of the elastomer getting into contact with the glass upon shearing, can be

analyzed in a similar way as lifting. We performed the same analysis as in the previous section, but backward in time:
the first image considered was the one at the static friction peak (at ds), while the last one was the initial image (at d0).
Doing so, tracers appearing close to the contact periphery in forward time are detected as disappearing in backward
time.

The results of this analysis are shown in Fig. 13, where the locations of the laid tracers are shown either in the
final configuration (at ds, filled diamonds) or where they appear (open diamonds). All laid tracers are found at the
leading edge of the contact, beyond the initial contact region, consistently with Fig. 4a. Their color, evolving from
blue to red, corresponds to the stage at which they appear and is again spatially organized, indicating that contact
laying occurs through an outward front propagation starting at the leading edge of the contact. The amount of contact
area gained via laying is estimated using a bounded Voronoi tessellation performed in the final contact area (at ds). At

12



each instant, the laid area is counted as the sum of the areas of all laid tracers. In Fig. 13, the red cells correspond to
the area assigned to laying in the final image (at ds). The evolution of the area gained thanks to laying is shown in red
in Fig. 14. The final amount of laid area is about 9% of the initial contact area. Unlike lifting, the laying mechanism
seems to initiate only after a finite shear has been applied.

3.2.3. In-plane deformation
Interestingly, in the previous analyses of both contact lifting and laying, the filled and open markers have different

positions with respect to the glass substrate. This is a clear indication that slip occurs between the two instants: local
lifting is preceded by slip, while local laying is followed by slip. Slip is found to be roughly parallel, but opposed to
the glass motion, and occurs in both the leading and trailing regions of the contact.

This observation is consistent with a scenario of a micro-slip front propagating inward the contact region as shear is
increased, which is classical in sheared sphere/plane contacts, either rough (Prevost et al., 2013) or smooth (Chateau-
minois et al., 2010). In this scenario, which is also observed in the model results of Section 2.3, a peripheral slip region
progressively invades the contact, replacing a shrinking central stuck region. From the combination of backward slip
at the trailing edge and a stuck zone at the contact center, one expects in-plane compression of the elastomer in the
trailing half of the contact. Symmetrically, in-plane dilation is expected in the leading half. The overall effect of both
types of in-plane deformation must lead to a change in contact area that we estimated as follows.

We only considered the tracers present in the initial image and that could be followed during the whole experiment,
from d0 to ds, thus excluding the lifted and laid ones. We performed a Delaunay triangulation to mesh all those tracers
in the initial image, as shown as a gray network in Fig. 15. As shear increases, the tracers move relative to each other.
Keeping the same mesh, we follow the relative change of area of each initial Delaunay triangles, as an estimator of
local in-plane deformation.

Figure 15: Measurement of in-plane deformations. (a) Grey network: Delaunay tessellation based on all tracers surviving from d0 to ds. (b-d)
Snapshots of the evolution of the Delaunay cells (defined at d0) at: d1 (b), d2 (c) and ds (d). Solid lines are the contours of the contact at d0, d1,
d2 and ds with the same color code as in Figs. 11, 12(e-h) and 13. The color of each cell corresponds to its relative area change with respect to the
situation at d0 (see colorbar). Colder (resp. warmer) colors mean in-plane compression (resp. dilation).

Fig. 15 shows the evolution of the field of in-plane deformation as shear is increased (cold colors for compression,
warm ones for dilation). Before d1 no deformation is observed, presumably because the slip front has not reached yet
the fraction of initial contact covered by the Delaunay triangulation. Between d1 and d2, a compressed region sets in at
the trailing side of the contact; the absence of a detectable symmetrical dilated region on the leading side suggests that
the propagation of the slip front is not axisymmetrical, as usually considered in models of the incipient shear loading
of circular linear-elastic contacts (Barber, 2018). At ds, a heterogeneous slip-induced in-plane deformation field is
fully developed, with a large compression region on the trailing side and a smaller dilation region on the leading side.
Those field measurement are qualitatively consistent with previous measurements on a similar system, but made only
along the central line of the contact in steady-state sliding (Barquins, 1985).

The evolution under shear of the sum of the total area contained in the deforming Delaunay triangulation is
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shown in green in Fig. 14. This area remains essentially unchanged during the first half of the experiment, and then
progressively decreases by up to about 7% of the initial contact area.

4. Discussion

The model presented in Section 2 has been shown to capture quantitatively the experimental results of Sahli et al.
(2018, 2019) about the anisotropic shear-induced area reduction of sphere/plane elastomer contacts for relatively
large normal loads (Fig. 5). We emphasize that this agreement is obtained without any adjustable parameter, in the
sense that virtually all model parameters are set by independent measurements on the same experimental system.
Those parameters are: the geometry of the hyperelastic neo-Hookean sample, its shear modulus, and the contact shear
strength of the PDMS/glass interface. Note that the elastic bulk modulus (in our nearly incompressible framework), the
mesh size and the timescale in the regularized Tresca model are three purely numerical parameters, the precise values
of which have been checked to negligibly affect our results. In our opinion, such an absence of adjustable parameter
provides our model with a decisive comparative advantage with respect to competing models of shear-induced contact
area reduction. In particular, fracture-like adhesion-based models, in order to offer a good quantitative agreement
with experiments (Papangelo et al., 2019; Das and Chasiotis, 2020), require prescription of finely-tuned mode-mixity
functions (Papangelo and Ciavarella, 2019). Our 3D model also naturally captures the anisotropic evolution of the
contact shape, whereas most fracture-based adhesive models assume axisymmetry of the contact (see Papangelo et al.
(2019) for the only exception, to our knowledge).

The contact area behaviour of our neo-Hookean model has been validated using a competing finite-element model
based on different regularization options, meshing and solver (Appendix A.5). This good agreement demonstrates the
robustness of our model results to all implementation details.

The direct implication of our model is that finite-deformation effects and the non-linear elasticity of elastomers
are presumably the key ingredients explaining those experimental results, rather than viscoelasticity or adhesion.
Nevertheless, our model has only been applied to contacts submitted to relatively large normal load, in the new-
ton range (Sahli et al., 2018), while other experiments have used much smaller normal loads, in the millinewton
range (Savkoor and Briggs, 1977; Waters and Guduru, 2010; Mergel et al., 2019). For those lighter loads, adhesive
stresses may be of the order of, or even exceed, contact stresses, and non-linear elasticity may be not the only domi-
nant ingredient for shear-induced contact shrinking anymore. Identifying the normal load regimes in which adhesion
needs to be accounted for is an important goal for future contact mechanics models. In the following, we will restrict
our discussion to the high-load regime explored in the present study.

By comparing models assuming either small or finite strains (Fig. 3), we have shown that finite deformations is the
single model ingredient responsible for the significant shear-induced contact area reduction observed in sphere/plane
elastic contacts. Although the amplitude of the reduction significantly depends on the particular hyperelastic model
used (Fig. 3), the respective roles of hyperelasticity and of the exact geometrically non-linear kinematics are difficult
to disentangle. What is clear is that finite deformations induce a significant coupling of the normal and tangential de-
formation modes, which is lacking in the small-strain incompressible elasticity. Such a coupling generates substantial
vertical displacements which account both for a significant lifting localized at the trailing edge and for the marked
anisotropy of the final contact shape (Fig. 9).

We quantified, for the first time, the various elementary mechanisms by which area variations can occur: contact
lifting, contact laying and in-plane deformation. Our model results suggest that, in the experimental conditions used
in Sahli et al. (2018, 2019), local lifting is the dominant mechanism explaining the observed significant area reduction
and its anisotropy (Fig. 8). This conclusion is true for all normal loads explored, with the total reduction amplitude
being dependent on the normal load (as also observed experimentally). In future works, it would be interesting to
vary systematically all model parameters beyond the experimental range, to clarify their respective roles in the area
variations due to each of the three mechanisms.

The incipient shear-loading of smooth sphere/plane elastic contacts is characterized in the model by two propagat-
ing fronts: a lifting front at the contact periphery, and a non-circular micro-slip front within the contact. The existence
of those two different fronts, although explicitly acknowledged by some authors (Johnson, 1997; McMeeking et al.,
2020), has never been properly described in fracture-based adhesive models. Indeed, the additional energy dissipation
in the contact due to frictional micro-slip, and described via the mode-mixity function, is assumed to be located at the
contact periphery, and not within a growing, finite region of the contact.

14



The relevance of our model observations has been qualitatively confirmed by the original experimental results of
Section 3. Using an elastomer sphere seeded with tracers, we demonstrated that shear-induced anisotropic contact area
reduction is indeed accompanied by all three possible mechanisms. Although a higher areal density of tracers would
be desirable to reduce the measurement uncertainties (Appendix B), we could conclude that lifting is presumably the
dominant area reduction mechanism, also in the experiments. While experiments revealed a potentially larger contri-
bution of the laying and in-plane mechanisms, a definitive quantitative comparison with the model is hindered by the
finite experimental resolution. Also note that, due to the higher contact shear strength (0.53 rather than 0.41 MPa) and
smaller Young’s modulus (1.5 rather than 1.8 MPa) of the present experiments compared to those of Sahli et al. (2018,
2019), our numerical model could not converge in those more severe conditions, thus impeding direct comparison
between model and tracer-based experiments. Such a comparison is also an important challenge for future works.

Finally, the simplicity and generality of our model assumptions suggest that our results may be also relevant
to other systems than the elastomer sphere/plane contacts studied here. First, non-linear elasticity being a generic
feature of soft materials, from gels to human skin, we expect it to be a likely mechanism for contact area reduction
in all studies involving such materials. It would thus be interesting to re-interpret recent experiments like those
of e.g. Das and Chasiotis (2020) on polyacrylonitrile or those of Sahli et al. (2018); Sirin et al. (2019) on human
fingertips, from the standpoint of finite-deformation mechanics. Second, Sahli et al. (2018, 2019) argued that the
mechanisms of shear-induced anisotropic contact area reduction may be the same in millimetric sphere/plane contacts
and in individual micrometric junctions within rough contact interfaces. Such a similarity across scales suggests that
the present conclusions may also be used to further understand the shear behaviour of soft material multicontacts,
the modelling of which may require non-linear elasticity. This may in particular be an explanation for the fact that,
in Scheibert et al. (2020), a multi-asperity model based on linear elasticity failed to reproduce quantitatively the
multicontact results of Sahli et al. (2018).

5. Conclusion

We have developed the first non-adhesive, non-viscous model of shear-induced contact area reduction in soft
materials. Quantitative agreement with the recent experimental results of Sahli et al. (2018, 2019) on sphere/plane
elastomer contacts has been obtained, without adjustable parameter, using the Tresca friction law and the neo-Hookean
hyperelastic model. The necessary ingredients for this agreement are finite deformations and non-linear elasticity.

A detailed analysis of the model has revealed the elementary mechanisms responsible for contact area reduction.
Local contact lifting dominates, while in-plane dilation and compression, although significant, approximately cancel
each other. Those predicted mechanisms, and their relative contributions to area reduction, have been confirmed
experimentally by tracking tracers introduced in an elastomer/glass interface, and applying an original analysis to the
tracking data. The challenges associated with both the modelling and experimental approaches have been thoroughly
discussed.

All our results suggest a new perspective on the phenomenon of shear-induced contact area reduction in soft
materials. This currently highly debated topic has been dominated by interpretations based on a leading role of
adhesion. Here, instead, we suggest that finite-deformation effects and non-linear elasticity can be equally important,
all the more so as large normal loads are considered. Clarification of the validity domains where adhesion and/or finite
deformations need to be accounted for remains as a major open issue on the topic.
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Appendix A. Description of the finite-deformation model

Appendix A.1. Finite-strain framework
The finite-strain framework is standard, so only the basic notions are provided below for completeness, with the

scope limited to hyperelasticity. Two configurations of the body are considered: the reference configuration Ω and the
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current (deformed) configuration ω. The deformation that brings Ω to ω is described by the deformation mapping ϕ
such that x = ϕ(X), where X ∈ Ω and x ∈ ω denote the position of a material point in the respective configuration. The
deformation gradient is defined as F = Gradϕ, where Grad is the gradient with respect to the reference configuration
Ω.

Equilibrium equation in the strong form is written in the reference configuration Ω, and, in the absence of body
forces, reads

Div P = 0, P =
∂W
∂F

, (A.1)

where P is the first Piola–Kirchhoff stress tensor, Div is the divergence operator relative to the reference configuration
Ω, and the elastic strain energy W = W(F) specifies the constitutive response of a hyperelastic body.

The reference material model used in this work is the nearly-incompressible isotropic neo-Hookean model speci-
fied by W = WnH,

WnH(F) =
1
2
µ(Ī1 − 3) + Wvol(J), Wvol(J) =

1
4
κ
(
(J − 1)2 + (log J)2

)
, (A.2)

where Wvol(J) is the volumetric part of the elastic strain energy, J = det F, and Ī1 = tr b̄ is the invariant of b̄ = J−2/3b,
b = FFT. Material properties are here specified by the shear modulus µ and bulk modulus κ.

The neo-Hookean model is a special case of the Mooney–Rivlin model specified by W = WMR,

WMR(F) =
1
2
µ1(Ī1 − 3) +

1
2
µ2(Ī2 − 3) + Wvol(J), (A.3)

where Ī2 = 1
2 (Ī2

1 − tr b̄2) and µ = µ1 + µ2. The neo-Hookean model is recovered for µ2 = 0. The other particular case
of the Mooney–Rivlin model used in this study corresponds to µ1 = µ2 = µ/2, and is simply called Mooney–Rivlin in
all model results.

Appendix A.2. Contact with a rigid plane

The contact formulation briefly described below is limited to the case of contact with a rigid plane, which is
sufficient for the purpose of this work, see e.g. Wriggers (2006) for a more general presentation. The orientation of
the plane is specified by the outward unit normal ν, and the motion of the rigid plane is restricted to a translation, thus
ν̇ = 0.

Contact kinematics is specified by the normal gap gN and tangential slip velocity vT that are defined for each point
x on the potential contact surface γc = ϕ(Γc), where Γc denotes the contact surface in the reference configuration.
Here, the kinematic quantities are simply given by

gN = (x − xR) · ν, vT = (1 − ν ⊗ ν)(ẋ − ẋR), (A.4)

where xR denotes the current position of a fixed point on the rigid plane, and ⊗ denotes the diadic product.
The contact traction vector t is defined as the traction vector exerted by the body on the rigid plane. By the action-

reaction principle it opposes the traction vector acting on the body, so we have t = −σn, where σ is the Cauchy stress
tensor, n is the outward unit normal to the contact surface γc, and n = −ν whenever contact occurs. Note that t is a
spatial traction vector, i.e., it refers to a unit area in the current configuration. t is decomposed into its normal and
tangential parts relative to the rigid-plane normal ν, namely

tN = t · ν, tT = (1 − ν ⊗ ν)t, (A.5)

so that t = tNν + tT.
With the above definitions, unilateral contact conditions are expressed as:

gN ≥ 0, tN ≤ 0, gNtN = 0. (A.6)

The friction model is discussed in Appendix A.3.
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Finally, the virtual work principle, i.e., the weak form of the mechanical equilibrium, which is the basis for the
finite-element implementation, is expressed as:∫

Ω

P · Grad δϕ dV +

∫
γc

(tNδgN + tT · δgT)ds = 0 ∀ δϕ, (A.7)

where δϕ is the test function that vanishes on the part of the boundary of Ω on which the displacement is prescribed,
and we have δgN = ν · δϕ and δgT = (1 − ν ⊗ ν)δϕ (cf. Eq. (A.4)). Since tN and tT are spatial tractions, the contact
contribution, i.e., the second term in Eq. (A.7), is integrated over the contact surface γc in the current configuration.

Appendix A.3. Regularized Tresca friction model
In the Tresca friction model, the limit friction stress, called here the contact shear strength, σ, is constant and

independent of the normal contact traction tN (Fig. A.1(b)). The Tresca model can be written as:

‖tT‖ − σ ≤ 0, ‖tT‖vT = tT‖vT‖, (‖tT‖ − σ)‖vT‖ = 0, (A.8)

and the equations above hold in the case of active contact, i.e., for gN = 0. In the case of separation, i.e., for gN > 0,
the tangential traction vanishes, tT = 0. Note that, in view of the unilateral contact condition (Eq. (A.6)), penetration
(gN < 0) is not allowed.

(a) (b) (c)

Figure A.1: Sketch of three friction laws: (a) Coulomb with a friction coefficient f , (b) Tresca with a contact shear strength σ and (c) Coulomb–
Orowan with both a friction coefficient f and a contact shear strength σ.

The first condition in Eq. (A.8) is the limit friction condition. The second condition is the slip rule that implies
that the direction of the tangential (slip) velocity vT is that of the tangential traction tT. The third (complementarity)
condition controls the stick/slip state such that sticking contact (vT = 0) occurs when ‖tT‖ < σ and sliding (‖vT‖ > 0)
may occur only when ‖tT‖ = σ.

One feature of the Tresca model is that the tangential traction tT may suffer a jump at the instant of transition
between active contact and separation. This, in turn, may lead to significant convergence problems in the respective
computational scheme, for instance, in the framework of the finite-element method. Accordingly, a regularization
scheme has been developed, as described below, and employed in the actual computations. Note that an alternative
approach, based on the Coulomb–Orowan friction model (Fig. A.1(c)), has also been examined, and the respective
results are briefly presented in Appendix A.5, see also Section S.1.3. The Tresca model is the limit case of the
Coulomb–Orowan model for f → +∞.

In the regularization scheme adopted here, it is assumed that the tangential traction tT does not drop to zero
instantly after separation occurs but requires some characteristic time τ to gradually vanish. Accordingly, the following
simple evolution law is adopted in the case of separation (gN > 0):

ṫT =

−
σ

τ

tT

‖tT‖
for ‖tT‖ > 0,

0 otherwise,
(A.9)

so that the magnitude of the tangential traction tT decreases towards zero at a constant rate of σ/τ. A similar regu-
larization, leading to a kind of rate-and-state friction law, has been adopted by Cochard and Rice (2000) to regularize
the abrupt changes in friction associated with abrupt changes in the normal contact traction, see also Prakash and
Clifton (1993); Prakash (1998) for the experimental justification and respective constitutive modelling. Here, the
regularization is introduced purely for computational reasons.
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Appendix A.4. Finite-element model

Finite-element implementation has been performed using the AceGen/AceFEM system (Korelc and Wriggers,
2016). Eight-node hexahedral TSCG12 elements (Korelc et al., 2010) are used for the solid. The augmented La-
grangian method (Alart and Curnier, 1991) combined with nodal integration is used to enforce the unilateral contact
and friction conditions (Eqs. (A.6) and (A.8)), see Lengiewicz et al. (2011) for the respective automation and Ace-
Gen-based implementation. More details are provided in Section S.1.1.

The geometric parameters and material properties used in the simulations are directly taken from one of the
experimental datasets reported in Sahli et al. (2018) (smooth PDMS-sphere/bare-glass contact, see Fig. 2C therein).
The boundary conditions and the loading sequence also correspond to those in the experiment. The displacements are
fully constrained at the bottom surface of the elastomer sample (cf. Figs. 1 and 10), except for a rigid-body translation
in the z-direction so that the normal load P can be applied against a rigid plane representing the upper glass plate.
Subsequently, a constant tangential velocity of the rigid plane is prescribed along the x-direction while the normal
load P is kept constant. Further, the symmetry with respect to the y = 0 plane is exploited so that only one half of the
sample is effectively modelled with adequate boundary condition imposed on the symmetry plane.

The resulting finite-element mesh is shown in Fig. 2. The sample is discretized with about 100,000 hexahedral el-
ements, which gives approximately 380,000 degrees of freedom. The hanging-node technique is used to conveniently
refine the mesh in the vicinity of the potential contact surface, and the size of the refined-mesh region is adjusted to
the normal load. The contact surface comprises about 12,600 nodes with the size of the quadrilateral elements ranging
from 13 µm for P = 0.27 N to 25 µm for P = 2.12 N.

The elastic properties of the elastomer sample have been identified by matching the contact area obtained from
the computational model with neo-Hookean elasticity for the highest normal load (P = 2.12 N) and zero tangential
load (Q = 0) to that measured in the experiment. Assuming a nearly incompressible response with the Poisson’s
ratio ν = 0.49, the Young’s modulus has been identified as E = 1.80 MPa, which is fully consistent with the value
provided in Sahli et al. (2018), and corresponds to a shear modulus µ = 0.60 MPa. The relationship between the
parameters (E, ν) and (µ, κ) (cf. Eq. (A.2)) is given by µ = E/(2(1 + ν)) and κ = E/(3(1 − 2ν)). It can be seen in
Fig. 5 that, for the shear modulus determined as described above, the contact area at zero tangential load is correctly
represented in the whole range of normal loads for both the neo-Hookean and Mooney–Rivlin models. The fact that,
at the smallest loads, the models slightly underestimate the initial contact area is presumably due to the non vanishing
effect of adhesion in the experiments.

The value of the contact shear strength σ = 0.41 MPa in the Tresca model (Eq. (A.8)) is taken as the slope
of the best linear fit of the evolution of the static friction force, Qs as a function of the concurrent contact area,
As = A(Q = Qs) in the experimental dataset.

The Prakash-Clifton-like regularization parameter in the Tresca model is assumed to be τ = 0.2 s, a value which
has been checked to be small enough to have negligible influence on the results. The computations have been carried
out using an adaptive time stepping procedure. The typical number of resulting time increments was between 50 and
100, which corresponds to an average time increment of the order of 0.1 s. Note that the data points included in the
figures reported throughout Section 2 and Appendix A correspond to selected instants.

(a) σzz (b) σxz (c) σxx

Figure A.2: Sample finite-element simulations results: components of the Cauchy stress tensor in the deformed configuration at full sliding for the
neo-Hookean model. P = 2.12 N. All stresses indicated in the boxes are in MPa. The leading edge is on the left.
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Sample results of finite-element computations are provided in Fig. A.2. The maps of three selected components
of the Cauchy stress tensor are shown in the deformed configuration corresponding to full sliding at P = 2.12 N. The
σzz component is shown in Fig. A.2(a). Its value at the contact surface corresponds to the normal contact traction,
and the corresponding distribution has a typical Hertz-like appearance. The shear stress σxz is shown in Fig. A.2(b)
with a constant value at the contact surface, in agreement with the Tresca friction law. Finally, the σxx stress shown
in Fig. A.2(c) features zones of tensile and compressive stresses corresponding to surface dilation and compression,
respectively, as discussed in detail in Section 2.3.

The contributions of the individual mechanisms of area variations (lifting, laying and in-plane deformations), as
reported in Fig. 8, have been determined using the following procedure. First, the contact nodes are grouped into
six sets that are defined according to the contact state and local surface dilation/compression. Set S0 is determined
at d0, the remaining sets are determined at each current displacement d. The following sets are defined: S0 – nodes
in contact at d0, i.e., after applying the normal load; Sd – nodes currently in contact; Slift – lifted nodes, i.e., those
in S0 but not in Sd; Slay – new nodes in contact, i.e., those in Sd but not in S0; Scomp – nodes in S0 and in Sd, for
which the tributary area decreased, Ai < Ai

0; Sdil – nodes in S0 and in Sd, for which the tributary area increased,
Ai > Ai

0. The total initial and current areas of the nodes belonging to each set are defined as a0(S) =
∑

i∈S Ai
0 and

a(S) =
∑

i∈S Ai, so that, in particular, A0 = a0(S0) and A = a(Sd). Finally, the contributions to the total relative area
change, as shown in Fig. 8, are defined as: −a0(Slift)/A0 (lifting); a(Slay)/A0 (laying); (a(Sdil)− a0(Sdil))/A0 (in-plane
dilation); (a(Scomp) − a0(Scomp))/A0 (in-plane compression); (A − A0)/A0 (total reduction).

Appendix A.5. Validation of the finite-element model

The present contact problem is highly demanding computationally. Abrupt changes of contact forces have been
discussed in Appendix A.4. Moreover, the frictional shear strength σ is of the same order as the elastic shear modulus
µ, and the Tresca model implies that the corresponding high tangential tractions are applied step-wise at the contact
zone boundary. As a result, the solution exhibits mesh-dependent features that are visible in Figs. 4, 6, and 7 and are
illustrated in more detail in Section S.1.2. Additional studies have thus been performed to check the validity of the
finite-element results.

Firstly, we have carried out additional simulations for a twice coarser mesh, and we have checked that the results
are essentially identical to those obtained for the reference mesh and thus, in particular, are not affected by the mesh-
dependent features mentioned above, see Section S.1.2.

Secondly, we have performed independent computations using the Coulomb–Orowan model (Fig. A.1(c)) with
a very high friction coefficient, f = 10, as an alternative regularization of the Tresca model. The corresponding
computations have been carried out using ABAQUS 2020 finite-element package. The details of this alternative
model are provided in Section S.1.3. Sample results are provided in Fig. A.3 which shows that the predicted area
reduction is in agreement with the experimental data, thus supporting the findings obtained using the main model with
Tresca friction.

Appendix B. Uncertainties on the evaluation of area changes in the experiments

We identified 263 tracers strictly larger than 4 pixels in the initial image, on which the tracking procedure has
been applied. Out of them, only 31 were useful for the Voronoi analysis (i.e., corresponding either to lifted or laid
areas) and 94 for the Delaunay analysis. The average Voronoi area of the useful cells was thus about 0.18 mm2, i.e.,
about 1.54 % of the initial contact area. In practice, due to the randomness of the tracers’ locations, the individual
areas varied from 0.2 % to 4.0 % of the initial contact area. Because the Voronoi cells are the smallest area units in our
lifting analysis, the evolution rate of the estimated lifting area suffers from large fluctuations (see drops up to about
3–4 % of A0 in the blue curve of Fig. 14). In addition, the final estimate of the lifted area is actually an overestimate
because, for the latest lifted cells, the fraction of their area on the left of the tracer has not been really lifted yet. Both
effects would be reduced with a larger density of tracers, yielding a smoother curve with a smaller amplitude. The
very same discussion holds for our estimate of the laid area.

Concerning the estimate of in-plane deformation, the region probed by the Delaunay-based analysis is only a
fraction of the target region (the part of the initial contact that never lifts nor lays during the experiment). This is
apparent for instance on Fig. 15(a), with the white strip between the leading part of the contact contour and the
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Figure A.3: Contact area A as a function of the tangential force Q, as predicted for the Coulomb–Orowan model (solid lines and symbols). Dashed
lines are the corresponding experimental results from Sahli et al. (2018). Solid straight red line: Q = σA.

Delaunay triangulation. An analogous strip is also lost on the trailing side, between the Delaunay triangulation and
the lifted region. Those strips are due to the absence of tracers arbitrarily close to the contact contour. Because the
largest strains are precisely found on the periphery of the Delaunay triangulation (see Fig. 15(d)), the estimate of the
area lost by in-plane deformation may be subject to a significant error. The value of 7 % of area reduction due to this
mechanism must then be taken with caution.

Supplementary Information

S.1: Finite-element model: supplementary information

S.1.1: Finite-element implementation
For the finite-element discretization of the nearly-incompressible hyperelastic solid at hand, the eight-node hex-

ahedral TSCG12 element (Korelc et al., 2010) is used. The element employs the enhanced assumed strain (EAS)
formulation to circumvent volumetric and shear locking effects and has proven to perform very well in the contact
problems considered in this work. As a means of verification, selected simulations have been repeated using the F-bar
element (de Souza Neto et al., 1996), and the effect of the finite-element formulation has been found negligible.

Consistent with the discretization of the solid, the contact surface is discretized into four-node quadrilateral seg-
ments. Nodal quadrature is applied to the contact contribution in the virtual work principle (Eq. (A.7)) so that,
effectively, the contact and friction conditions are evaluated at the individual nodes of the contact surface. In this
formulation, the tributary area, Ai, is determined for each contact node, of the position xi in the current configuration,
according to (cf. Lengiewicz et al., 2011)

Ai =

Ki∑
k=1

1
4

∥∥∥(xi,a
k − xi) × (xi,a

k+1 − xi)
∥∥∥ , (B.1)

where xi,a
k denotes the current position of the contact node adjacent to the contact node xi (the adjacent nodes are

ordered clockwise), Ki is the number of adjacent nodes (Ki = 4 for a regular quadrilateral mesh on the contact
surface), and we have xi,a

Ki+1 = xi,a
1 to simplify the notation. The changes in the contact area can be traced by summing

up the tributary areas of the nodes that are in contact at a given instant. Recall that the contact contribution is evaluated
in the current configuration, and so is the nodal tributary area.
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The unilateral contact and friction conditions (Eqs. (A.6) and (A.8)) are enforced using the augmented Lagrangian
method (Alart and Curnier, 1991). In this method, the contact Lagrange multipliers are introduced as global unknowns,
and the resulting system of non-linear equations is solved simultaneously with respect to the nodal displacements and
Lagrange multipliers using the semi-smooth Newton method. As a result, the contact conditions are enforced in a
numerically exact manner.

The beneficial feature of the augmented Lagrangian method is that the contact/separation and stick/slip states
are uniquely defined at each global Newton iteration when the contact conditions (Eqs. (A.6) and (A.8)) are not yet
satisfied. In the time-discretized setting, a special treatment is, however, necessary when switching between the Tresca
friction model (Eq. (A.8)) and its regularization (Eq. (A.9)). In the direct approach resulting from the implicit time-
integration scheme, the current contact/separation state determined at each iteration is used to choose whether the
Tresca model (in the case of contact) or the regularization scheme (in the case of separation) is employed. However,
we have observed that this leads to severe convergence problems. Accordingly, solely with the aim to determine
whether to use the Tresca model or its regularization, the contact/separation state is here taken from the last converged
time step. Furthermore, an adaptive time-stepping procedure is applied, which conveniently alleviates the difficulties
caused by the high non-linearity of the problem.

Computer implementation has been performed using AceGen, a code generation system that employs the auto-
matic differentation (AD) technique (Korelc, 2009; Korelc and Wriggers, 2016), see also Lengiewicz et al. (2011) for
the details of the automation of the finite-element contact formulations. The computations have been performed in
AceFEM, a flexible finite-element environment that is interfaced with AceGen.

S.1.2: Supplementary results of finite-element computations
Further comparison of the neo-Hookean model predictions with the experimental results of Sahli et al. (2018) is

provided in Fig. S.1 which shows the concurrent evolution of the tangential force, Q, and the contact area, A, as a
function of the rigid plate displacement, d. The results correspond to those presented in Fig. 3(a) which shows A as a
function of Q. It can be seen that the dependence of Q on d is captured by the model with a good accuracy, particularly
at the initial stage of loading.
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(a) (b)

Figure S.1: Concurrent evolution of the tangential force, Q (dots), and the contact area, A (squares), as a function of the rigid plate displacement,
d, for the neo-Hookean model, and for: (a) P = 0.27 N, (b) P = 2.12 N. Results of finite-element computations (solid lines) are compared to the
experiment of Sahli et al. (2018) (dashed lines).

As discussed in the paper, the Tresca friction model with a high contact shear strength σ may lead to a significant
distortion of the finite-element mesh. As a result, the boundary of the contact zone may exhibit mesh-dependent
features, like those illustrated in Fig. S.2(a). Mesh-dependent features in the form of secondary contact regions are
also observed, see Fig. S.2(b), particularly at lower normal load P and higher tangential load Q (cf. Fig. 6). Since those
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separated contact spots have a small total area compared to that of the main contact region, they have been included
in all evaluations of the total contact area, A. In contrast, when we evaluated the contact sizes along and orthogonal to
shear, `‖ and `⊥ respectively, those separated spots have been excluded because they would have induced a significant
noise and error, especially on `‖ (see e.g. Fig. S.2(b)).

(a) (b)

Figure S.2: Illustration of mesh-dependent features associated with the Tresca model and high contact shear strength σ. (a) Left: expanded view
of Fig. 2(d) showing mesh distortion at the leading edge at P = 2.12 N ; right: corresponding contact area with a wiggled periphery. (b) Contact
area at two instants during gross sliding at P = 0.27 N showing small contact spots developing and evolving outside the main contact area.

With the aim to validate our results, we have carried out additional simulations using a finite-element mesh twice
coarser than that used in the main computations. We have checked that the results are essentially identical to those
obtained for the reference mesh and thus are not affected by the mesh-dependent features discussed above. This, in
particular, concerns the evolution of the contact area as a function of the tangential force, as shown in Fig. S.3. Due
to the high computational cost and significant convergence challenges, we were not able to solve the problem for a
twice finer mesh.

● ● ●
●

● ● ●●●●●●●●●■ ■ ■ ■ ■ ■ ■ ■ ■■■■■■■■■■■■

◆ ◆ ◆ ◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
▲ ▲ ▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

● ● ●
●

● ● ●●●●●●●●●●●■ ■ ■ ■ ■ ■ ■ ■■■■■■■■■■■■■

◆ ◆ ◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
▲ ▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

P=2.12 N

P=1.65 N

P=0.55 N

P=0.27 N

coarse mesh

fine mesh

0 1 2 3 4 5
0

2

4

6

8

10

12

Tangential force, Q [N]

A
re
a
of
co
nt
ac
t,
A
[m
m
2
]

Figure S.3: Contact area A as a function of the tangential force Q: effect of the mesh density. Red solid straight line: Q = σA.

S.1.3: Alternative model using Coulomb-Orowan friction
To test the robustness of the results obtained using the time-regularized Tresca friction model (Eq. (A.9)) additional

computations have been carried out using the Coulomb–Orowan model (Fig. A.1(c)) as an alternative regularization
approach. The friction coefficient in the Coulomb–Orowan model has been adopted equal to f = 10, which in practice
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was the highest achievable value leading to convergence. All geometrical and material parameters and boundary
conditions are otherwise the same as in the main (Tresca-based) model.

The unilateral contact and friction conditions were enforced using the penalty method. In particular, the tangential
tractions could reach the contact shear strength, σ, only when a slip distance of 0.3 % of the contact size was reached.
Such an elastic slip allowed to smoothly reach the final shear state and to converge faster. Using this approach, the
evolution of the contact area versus the tangential load can be consistently extracted, where the intermediate states
correspond to a progressive transition of the contact zone from the sticking to sliding state.

The corresponding computations have been carried out using ABAQUS 2020 finite-element package. The hypere-
lastic (neo-Hookean) solid was meshed with 8-node linear brick hybrid elements with reduced integration (C3D8RH).
In order to alleviate the issues related to the almost incompressible nature of the material and volumetric locking
problems, the hybrid formulation was used (Nguyen et al., 2011). The mesh was refined down to 30 µm in the vicinity
of the contact zone for all normal loads, leading to a total of nearly 145,000 hexahedral elements and about 580,000
degrees of freedom, see Fig. S.4(a).

(a)

x 

y 

z 

(b)
ds 1 mm

Figure S.4: Sample results obtained for the Coulomb–Orowan model. (a) Views of the mesh. (b) Contact morphology at ds (red) compared to the
initial contact (dashed circle), for P = 2.12 N.

The large-displacement formulation was employed to account for the various non-linearities and solved using
an implicit integration scheme based on the Newton–Raphson method. To overcome convergence problems, the
simulation was perfomed in two steps. In the first step, the normal load P was applied in frictionless conditions. In
the second step, the sliding velocity and the friction conditions were applied.

From a qualitative point of view, the predicted shape of the contact morphology, shown in Figure S.4(b) for the
full sliding configuration, is found consistent with that of the Tresca model (compare to Fig. 4(b)). An anisotropic
change is also observed with a stronger reduction at the trailing edge of the contact. Figure A.3 summarizes the
quantitative evolution of the contact area for the same four loading cases considered in the Tresca model. The predicted
area reduction is in good agreement with the experimental data and thus also with that obtained using the Tresca
model (Fig. 5(a)). Such a good correlation shows that the main model results are robust against the details of the
regularization method adopted.

The main limitation of the Colomb–Orowan model is that the contact shear strength σ cannot be reached at the
very periphery of the contact, where the local pressure remains smaller than σ/ f . In this region, the limiting shear
stress is set by the friction coefficient f rather than by the contact shear strength σ. As a consequence, the maximum
tangential force accessible in the simulations remains smaller than the product of σ with the contact area, and thus the
simulated curves do not reach perfectly the desired maximum tangential force, denoted as the red line in Fig. A.3.

S.2: Detailed experimental methods

S.2.1: Opto-mechanical test
We used a laboratory-built experimental setup in which the elastomer sample is fixed to an optical table, while

the glass substrate is attached at the extremity of a horizontal cantilever beam composed of two identical arms. The
cantilever has a stiffness 177 ± 1 N/m in the direction normal to the contact interface and is essentially rigid in the
direction parallel to the interface. To shear the elastomer/glass interface, the other extremity of the cantilever is pulled

23



horizontally by a linear motor (Newport LTA-HL) at a constant velocity V . The tangential force Q is measured via a
piezoelectric sensor (Kistler 9217A) placed between the motor and the cantilever. The normal force P is constant and
applied by adding a dead weight to the configuration in which the elastomer sphere just snapped into contact with the
glass due to adhesion. The latter configuration is reached by slowly translating vertically the whole cantilever. The
value of P is measured via four load cells (Futek) localized between the table and the elastomer sample. The tangential
and normal forces are digitized and recorded at a rate of 2 kHz with, respectively, 5 mN and 0.2 mN resolutions.

The contact interface is illuminated from above with a white LED panel and the contact area is monitored optically
in reflection mode, at 100 frames per second, using a CCD camera (Flare 2M360 MCL, 8 bits, 2048×1088 square
pixels) attached to a variable-zoom objective lens (Navitar 7000 type C). In the conditions of the experiments, each
pixel corresponds to a square of lateral size of 7.70 µm in the contact plane. True contact corresponds to dark pixels
(see e.g. Fig. 12(a–d)), because the light rays transmitted through the PDMS/glass interface are absorbed by a black
layer inserted at the bottom of the sample. The lighter gray background corresponds to out-of-contact regions where
a fraction of the light intensity is reflected back to the camera, at the interface between the bottom face of the glass
substrate and the air.

A homemade LabVIEW (National Instruments) routine was used to record the acquisitions of the forces, P and
Q, and a homemade MATLAB (The MathWorks, Inc.) software was used to synchronize the data with the images.

S.2.2: Elastomer and glass samples
The particle-filled cross-linked PolyDiMethylSiloxane (PDMS, Sylgard 184, Dow Corning) sample with a spheri-

cal cap was prepared as follows. The elastomer base and curing agent are respectively mixed in a 10:1 weight ratio and
degassed in a vacuum chamber to remove air bubbles introduced during mixing. Cross-linking is performed in two
steps. First, a drop of PDMS mixture is poured into a plano-concave glass lens with a radius of curvature of 9.42 mm
(Edmund Optics), spin-coated (SPIN 150, Spincoating) for 30 s at 2500 rpm and cured in an oven (Prolabo, Astel S.A.)
at 80◦C for 20 min, to obtain a thin cross-linked PDMS layer, approximately 16 µm thick. The exposed surface of this
layer is then sprinkled with silver particles, obtained from drying an Electrodag 1415M (Agar Scientific Ltd) diluted in
acetone. In a second step, the lens with the particle-seeded PDMS layer is placed at the bottom of a cylindrical cavity
(30 mm in diameter), which is then filled with the PDMS mixture, covered with a glass plate (40 mm×35 mm×5 mm)
and cured at room temperature for 48 h. Once demolded, the sample has a 6 mm-high cylinder-like shape, the top of
which features a spherical cap of a radius of curvature 9.42 mm, with a summit 2 mm higher than the top surface of
the cylinder (see inset of Fig. 10).

The Young’s modulus of the elastomer has been measured to be E = 1.5 ± 0.1 MPa from a fit of A0, the area
of contact under pure normal load P, as a function of P (in the range 0.05–1.85 N), using Johnson-Kendall-Roberts’
model (Johnson et al., 1971).

A 5 mm-thick smooth bare-glass plate (Mirit Glass) was used as a slider. Before experiments, the glass surface
was first gently pre-cleaned mechanically with distilled water using a lens cleaning tissue. It was then left in three
different ultrasonic baths, each for 15 min, in the following order: soapy water (Decon90), ethanol and distilled water.
Between the baths, the plate was rinsed in distilled water. It was finally dried in an oven at 90◦C for 15 min.

S.2.3: Image analysis: segmentation and particle tracking
The first step in the image analysis is the segmentation of the raw images into in- and out-of-contact pixels. For

this, we first crop the images around the contact, thus excluding the marker on the glass substrate (see top right black
spot in Figs. 12(a-d)). Then, we transform the raw gray-scale cropped images into binary images by thresholding. The
threshold value is kept constant for all images and is selected by applying Otsu’s method (Otsu, 1979) to the initial
image. The segmented images can be directly used to measure the contact area, A, through selection of the largest
dark object in the image and filling up of its inner holes, due to the presence of the particles. Typical contours of the
contact are shown in Figs. 12(e-h).

The second step consists in the following denoising procedure applied to all images: (i) all objects whose area
is a single pixel are removed, then (ii) the closest remaining objects are connected by successively performing one
dilation and one erosion operation with a 3×3 square structuring element.

During the third step, we identify, in the initial image, all the objects whose area is strictly larger than 4 pixels.
Those objects from the initial image are now considered as the tracers of the contact evolution for upcoming analysis.
Note that for each tracer, we store the x- and y-widths of the smallest rectangle enclosing the tracer (Wx and Wy).
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The fourth step is to find the trajectory of each tracer by searching its successive positions in all images. For each
couple of two consecutive images, the following tracking procedure is applied for each tracer:

• extract two sub-images (first and second) from both consecutive images: their common position corresponds to
the location of the tracer in the first image and their common widths correspond to Wx and Wy increased by 5
pixels on all four sides, to conservatively account for the dilation operation that will be performed in the next
step.

• perform a dilation operation with a 3×3 square structuring element on the first sub-image. This dilation has an
amplitude much larger than the distance (∆dmax) traveled by the slider between two images in steady sliding
regime, ∆dmax = 1 µm ≈ 0.14 pixel.

• multiply pixel by pixel the two resulting sub-images, i.e., the dilated first one with the unmodified second one.

• find all objects (connected components) in the multiplication image. Store the position of the object as the
coordinates (Tx,Ty) of its center of mass in the full image. In the case of multiple objects, only the closest
object to the center of the sub-image is considered. If there is no object, then the trajectory ends.

The fifth step consists in removing all the trajectories that contain a non-realistic change, greater than 3 pixels, in
the position of a tracer between two successive images.

In the last step, we first measure the glass plate displacement by tracking the position of the centroid of the tracer
drawn on the glass for each image. We then translate the segmented and denoised counterparts of the raw images
(Fig. 12(a-d)) in such a way that this tracer remains at a constant position. In other words, we place our images in
the frame of the glass substrate (Fig. 12(e-h)), which actually moves from left to right at velocity V in the laboratory
frame. Finally, we subtract the glass plate displacement to all our trajectories.

The outcome of the tracking analysis is thus a dataset in which the position (Tx(t),Ty(t)) of each tracer is given in
the glass frame, for each image (i.e., for each time step).
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