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ABSTRACT

Context. CO isotopologue transitions are routinely observed in molecular clouds for the purpose of probing the column density of the
gas and the elemental ratios of carbon and oxygen, in addition to tracing the kinematics of the environment.
Aims. Our study is aimed at estimating the abundances, excitation temperatures, velocity field, and velocity dispersions of the three
main CO isotopologues towards a subset of the Orion B molecular cloud, which includes IC 434, NGC 2023, and the Horsehead pillar.
Methods. We used the Cramer Rao bound (CRB) technique to analyze and estimate the precision of the physical parameters in the
framework of local-thermodynamic-equilibrium (LTE) excitation and radiative transfer with added white Gaussian noise. We propose a
maximum likelihood estimator to infer the physical conditions from the 1–0 and 2–1 transitions of CO isotopologues. Simulations show
that this estimator is unbiased and proves efficient for a common range of excitation temperatures and column densities (Tex > 6 K,
N > 1014−1015 cm−2).
Results. Contrary to general assumptions, the various CO isotopologues have distinct excitation temperatures and the line intensity
ratios between different isotopologues do not accurately reflect the column density ratios. We find mean fractional abundances that
are consistent with previous determinations towards other molecular clouds. However, significant local deviations are inferred, not
only in regions exposed to the UV radiation field, but also in shielded regions. These deviations result from the competition between
selective photodissociation, chemical fractionation, and depletion on grain surfaces. We observe that the velocity dispersion of the C18O
emission is 10% smaller than that of 13CO. The substantial gain resulting from the simultaneous analysis of two different rotational
transitions of the same species is rigorously quantified.
Conclusions. The CRB technique is a promising avenue for analyzing the estimation of physical parameters from the fit of spectral
lines. Future works will generalize its application to non-LTE excitation and radiative transfer methods.

Key words. ISM: molecules – ISM: clouds – radiative transfer – methods: data analysis – methods: statistical
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1. Introduction

Spectroscopic measurements are commonly used to probe astro-
physical objects. In the interstellar medium, the moderate
temperatures and densities of diffuse and molecular clouds
(Tkin ∼ 10−100 K, and n∼ 102−105 cm−3, Draine 2011) are well-
suited for the emission in the low-energy rotational lines of
molecules such as carbon monoxide, which are accessible at
millimeter wavelengths. The advent of sensitive broadband het-
erodyne receivers provides homogeneous data sets of various CO
isotopologues and other species with high signal-to-noise ratios
(S/N) over large fields of view. The Outstanding Radio-Imaging
of OrioN B (ORION-B IRAM; co-PIs: J. Pety and M. Gerin)
30-m large program is aimed at imaging five square degrees
towards the southern part of the Orion B molecular cloud over
most of the 3 mm atmospheric window. Carbon monoxide is
of particular interest because it is one of the most abundant
molecules after molecular hydrogen. Using the unsupervised
meanshift clustering method on the intensities of the CO isotopo-
logues, Bron et al. (2018) have shown that it is possible to cluster
the emission line data across the analyzed field of view into a few
classes of increasing (column) densities. In two empirical stud-
ies, Gratier et al. (2017, 2020) show that both qualitatively and
quantitatively the 12CO(1−0), 13CO(1−0), and C18O(1−0)lines
are indeed tracing the molecular gas well. Their quantitative
comparisons show that the H2 column density deduced from the
dust emission can be accurately estimated from the 12CO(1−0),
13CO(1−0), and C18O(1−0)lines in the column density range
from 1021 to &1022 cm−2.

Assuming identical excitation temperatures, the opacity
of the ground state transitions is expected to be smaller
for 13COthan for 12CO, and even smaller for C18O, because
of the difference in elemental abundances, 12C/13C∼ 60 and
16O/18O∼ 500 (Langer & Penzias 1990; Wilson & Rood 1994).
These three lines can thus be used to probe progressively higher
gas column densities, provided the relative elemental abun-
dances are constant and the CO isotopologue abundances track
the elemental abundances. However, chemical models and obser-
vations show that selective photodissociation and carbon isotopic
fractionation can significantly modify the relative abundances
of carbon monoxide isotopologues, as compared to elemental
abundances (Visser et al. 2009; Liszt 2017; Roueff et al. 2015).
Fractionation via the exchange reaction between 13C+ and 12CO
leads to an enhancement of the 13CO abundance in the diffuse
or translucent regions where CO and C+ coexist and the kinetic
temperature remains moderate (.50 K, Liszt & Pety 2012). This
mechanism widens the 13CO emitting region and brings it closer
to that of 12CO, which favors the simultaneous detection of both
isotopologues across wide fields of view. However, the ratio of
isotopologue abundances can be significantly different from the
ratio of elemental abundances, which complicates the determi-
nation of the 13C elemental abundance from CO observations
only. Up to now, the most reliable determinations of the 12C/13C
elemental abundance ratio have been obtained using C+ or C
observations in regions without significant fractionation (e.g.,
Keene et al. 1998; Ossenkopf et al. 2013) or they have involved
C18O and the doubly isotopic species 13C18O (Langer & Penzias
1990).

No such fractionation reaction exists for oxygen. However,
the more abundant CO isotopologues shield themselves from
the destructive effect of UV photons more efficiently than less
abundant isotopologues because the photodissociation of car-
bon monoxide is governed by line absorption. This effect, called
selective photodissociation, plays an important role here. It has

been studied in detail through laboratory experiments (e.g.,
Stark et al. 2014) and in models of photo-dissociation regions
(e.g., Visser et al. 2009). In observations, it is clearly seen
as an offset between the threshold for the apparition of 12CO
(near AV = 0.5 mag) and C18O (1.5 mag) in the Taurus molecular
cloud and this offset is not due to a difference in the detection
sensitivity (Frerking et al. 1989; Cernicharo & Guelin 1987).
Typically, the 13CO abundance is enhanced through fractiona-
tion in the same regions where the C18O abundance decreases
due to selective photodissociation. This leads to a broad range
of the 13CO/C18O abundance ratio for a given set of elemental
abundances.

Determining the ratio of elemental abundances of the C and
O isotopes is interesting because it provides information on the
stellar populations which have produced these elements. Some
external galaxies exhibit CO isotopologue ratios that signifi-
cantly differ from the expected value based on the mean elemen-
tal abundances in the solar neighborhood. Such differences can
trace differences in elemental abundances, hence in stellar pop-
ulations and IMF shape (Sliwa et al. 2017; Martín et al. 2019).
However, a proper account of isotopic chemistry described above
must be performed in order to use the information on the relative
abundances of the CO isotopologues.

Finally, Orkisz et al. (2019) have shown in their analysis of
the filamentary structure of the Orion B molecular cloud that the
gas velocity dispersion determined from C18O reaches a mini-
mum value in the filament ridges and that it is always lower than
the velocity dispersion determined by 13CO. This suggests that
this variation of velocity dispersion between CO isotopologue
traces the dissipation of turbulence when entering the dense
filaments inside molecular clouds.

Constraining all these astrophysical effects relies on a pre-
cise derivation of physical conditions and chemical composition
from spectroscopic observations. This, in turn, relies on the
resolution of the radiative transfer equation because the line
intensities and profiles bear information on the line emission
mechanisms. The large data volumes provided by observational
programs like ORION-B require new statistical analysis methods
using the information in an optimal way and a derivation of the
physical parameters and their associated errors with a rigorous
methodology. For instance, the emission of the lowest rotational
transitions of the three major isotopologues of carbon monox-
ide, 12CO, 13CO, and C18O, is commonly used to determine the
molecular gas column density and evaluate the mass of molecu-
lar gas. Because these lines can now be observed simultaneously,
leading to an homogeneous flux calibration and therefore precise
relative calibration, it is essential to have a good estimation of the
precision on the mass estimate.

In estimation theory, the Cramer Rao bound (CRB) provides
a precision of reference that does not depend on a specific esti-
mator of the searched quantity, but only on the physical model
and the statistical properties of the noise (see, e.g., Bonaca &
Hogg 2018; Espinosa et al. 2018). The CRB further allows for
the quantification of the loss of precision due to degeneracies
between the estimated parameters (for instance, column density
and excitation temperature). Hence, a large value of this bound
indicates insufficient data or knowledge with respect to a given
physical model. We apply this technique here in the simplest pos-
sible model framework, that is, the emission of lines in the local
thermodynamic equilibrium (LTE), which can be fully expressed
using analytical equations.

The level populations of interstellar molecules result from
the balance of collisional (and possibly radiative) excitation and
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radiative and collisional de-excitation. Therefore the level popu-
lations often deviate from LTE conditions because the collisions
are not efficient enough to populate all energy levels accord-
ing to a Boltzmann distribution. With its low dipole moment
(0.1 Debye) and high abundance relative to H2, the low energy
rotational lines of carbon monoxide are bright and easily ther-
malized in collisions with H2, H, and He. This means that the
LTE model is still a good approximation for this molecule; in
other words, the rotational level populations can be described
by a Boltzman distribution at a single excitation temperature
(Liszt 2006; Leung & Liszt 1976; Goldsmith & Langer 1999;
Goldreich & Kwan 1974). Deviations from the LTE model have
been studied theoretically. For instance, using non-local, non-
LTE radiative transfer models of a uniform (constant density
and temperature) spherical cloud, Bernes (1979) has shown that
the excitation temperatures of the 12CO(1−0) and 12CO(2−1)
lines exhibit moderate spatial variations from edge to center. It
has been concluded that the LTE model is mostly valid for the
ground state transition and deviations from this approximation
increase with the quantum number of the upper level (van der
Tak et al. 2007).

With a wide range of physical conditions, from bright far-UV
illuminated regions to cold and shielded regions through diffuse
and translucent gas irradiated by a moderate radiation field, the
Orion B molecular cloud is an ideal place for probing the extent
to which fractionation and selective photodissociation can mod-
ify the elemental abundance ratio. It is also a good region for
probing the differences in excitation between isotopologues as
the simple hypothesis of equal excitation temperatures for 12CO,
13CO, and C18O may not be valid, as discussed in Bron et al.
(2018).

The article is organized as follows. Section 2 presents the
data used in this paper. Section 3 summarizes the mathemati-
cal formulation of the LTE radiative transfer. Section 4 presents
the computation and analysis of the precision achievable for
this theoretical framework. Section 5 illustrates the proposed
methodology on actual data sets. Section 6 focuses on the astro-
physical interpretations of these results. Appendix A details the
calculation of some gradients necessary to compute the Fisher
matrix. Appendix B describes our implementation of the maxi-
mum likelihood estimator and Appendix C presents a discussion
of the performance of this estimator.

2. Description of the data

We attempted to estimate the velocity field, the column den-
sity, and the excitation temperature of the CO isotopologues
from the analysis of the 13CO(1−0), 13CO(2−1), C18O(1−0),
C18O(2−1)and 12CO(1−0)lines towards parts of the Orion B
molecular cloud. We compared our results with the dust-traced
H2 column density and dust temperature. This section describes
the associated data sets.

2.1. IRAM-30 m observations

2.1.1. 3 mm CO lines from the ORION-B large program

The 3 mm data were obtained with the IRAM-30 m as part
of the ORION-B large program. Pety et al. (2017) present in
detail the acquisition and reduction of the dataset used in this
study. In short, the applied data were acquired at the IRAM-30m
telescope using the EMIR receiver and Fourier transform spec-
trometer from August 2013 to November 2014. The frequency
range from 84 to 116 GHz was completely sampled at 200 kHz

spectral resolution. The J = 1−0 lines of the CO isotopologues
analyzed here are observed in a single receiver tuning. These
lines are thus well inter-calibrated. The absolute flux calibration
at 3 mm for the IRAM-30 m telescope is estimated to be better
than 5%.

2.1.2. 1 mm CO lines

The 13CO(2−1) and C18O(2−1) lines were also observed at the
IRAM-30 m in 2006 (PI: N. Peretto) using the ABCD generation
of receivers and the VESPA auto-correlator. The two lines
were observed simultaneously ensuring an excellent
inter-calibration.

Data reduction was carried out using the GILDAS1/CLASS
software. The contribution of the atmosphere was first removed
(ON–OFF procedure) and the data were calibrated to the T?

A
scale using the standard chopper-wheel method (Penzias &
Burrus 1973). The data were then converted to main-beam tem-
peratures using the standard forward (0.94) and main-beam
(0.62) efficiencies for the ABCD receiver around 220 GHz2. The
resulting absolute flux calibration is estimated to be better than
10%. We subtracted a first-order baseline from every spectrum,
excluding the velocity range from 5 to 15 km s−1 in the local stan-
dard of rest (LSR) frame. Finally, the spectra were gridded into
a data cube through a convolution with a Gaussian kernel of full
width at half maximum (FWHM) at ∼1/3 of the IRAM-30 m
telescope beamwidth at the line rest frequency.

2.2. Herschel observations

In order to get independent constraints on the physical conditions
in the Orion B cloud, we used the dust continuum observa-
tions from the Herschel Gould Belt Survey (André et al. 2010;
Schneider et al. 2013) and from the Planck satellite (Planck
Collaboration I 2011). The fit of the spectral energy distribution
by Lombardi et al. (2014) gives us access to the spatial distribu-
tions of the dust opacity at 850 µm and of the dust temperature.
As in Pety et al. (2017), we converted τ850 µm to visual extinctions
using AV = 2.7 × 104 τ850 mag, and the visual extinction into H2
column density using N(H2)/AV = 0.9× 1021 H cm−2 mag−1.

2.3. Field of view

We aimed to jointly analyze the J = 1−0 and J = 2−1 lines of
the CO isotopologues. We thus restricted the field of view to the
region that was observed at 3 and 1 mm. This covers 19′ × 26′
towards the Orion B molecular cloud part that contains the
Horsehead nebula, and the HII regions NGC 2023 and IC 434.
The cubes used here are rotated counterclockwise by 14◦ around
the projection center (05h40m54.270s,−02◦28′00.00′′) in the
RA/Dec J2000 reference frame (see Fig. 1). The coordinates
are given in offsets (δx, δy) in arcseconds from this projection
center. The IRAM-30 m angular resolution ranges from 11.5′′
at 220 GHz to 23.5′′ at 110 GHz. The position-position-velocity
cubes of each line were smoothed to a common angular resolu-
tion of 23.5′′ to avoid resolution effects during the comparison.
At a distance of 400 pc (Menten et al. 2007), the sampled linear
scales range from ∼0.045 pc to ∼3 pc.

The spectral and spatial axes were resampled in order to
share the same spatial grid and velocity axis for all lines.

1 See http://www.iram.fr/IRAMFR/GILDAS for more information
about the GILDAS software (Pety 2005).
2 For details, see http://www.iram.es/IRAMES/mainWiki/
Iram30mEfficiencies
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Fig. 1. Spatial distributions of the integrated intensity (in K km s−1) of the considered lines. The maps have been rotated counterclockwise
by 14 degrees from the RA/Dec J2000 reference frame. The spatial offsets are given in arcsecond from the projection center located at
05h40m54.270s,−02◦28′00.00′′. Red crosses stand for two particular lines of sight, which are analyzed in Fig. 10.

Table 1. Properties of the observed lines.

Species Line ν dV (1) Beam (2) Noise (3)

MHz km s−1 ′′ mK

C18O 1−0 109 782.173 0.5 23.5 116
C18O 2−1 219 560.319 0.5 23.5 96
13CO 1−0 110 201.354 0.5 23.5 116
13CO 2−1 220 398.686 0.5 23.5 134
12CO 1−0 115 271.202 0.5 23.5 278

Notes. (1)Channel spacing after resampling. (2)Angular resolution after
smoothing. (3)Median noise σb after resampling and smoothing.

The spectroscopic observations thus provide position-position-
velocity cubes3 of 129× 170× 80 pixels, each pixel cover-
ing 9′′ × 9′′ × 0.5 km s−1 (Nyquist sampling at 3 mm). Figure 1
shows the maps of the intensity integrated between 0 and
20 km s−1 for the five lines of interest.

2.4. Noise

In this paper, the standard deviation of the noise σb is estimated
only on negative values of each spectrum using:

σb =


1

Kneg

∑

k∈{Tk≤0}
T 2

k


1/2

, (1)

where T is the intensity in Kelvin, and Kneg the number of chan-
nels that have a negative value of the intensity. This allows us
to compute it without a priori information on the velocity range
where the line appears, but assuming, however, that the baselin-
ing removes any intensity offset. Table 1 lists the median noise
estimated after spectral resampling and angular smoothing.

2.5. Line profiles

A fraction of the studied field of view shows spectra that can
only be modeled with more than one velocity component along
the line of sight. While we tend to adapt our formalism to handle
such cases, it is not obvious that a robust statistical test should be
devised to deduce the optimal number of components that must
be used. This is particularly true at transitions between regions
where the number of required velocity components changes in
order to get a good fit. To address this issue, we used the ROHSA
3 The data products associated with this paper are available at
http://www.iram.fr/~pety/ORION-B

(Marchal et al. 2019) algorithm that makes a Gaussian decompo-
sition based on a multi-resolution process from coarse to fine
grid. Here we only used the spectra denoised by ROHSA to pro-
vide a spatially coherent estimation of the number of components
and some initial estimation of their associated central velocities
for each pixel.

3. Radiative transfer in local thermodynamic
equilibrium

The molecular line emission and absorption in the case of local
thermodynamic equilibrium (LTE) are well-known (see, e.g.,
Mangum & Shirley 2015). In this section, we mainly summa-
rize the associated notations and equations so that we can more
easily explain the precision analysis framework on this case in
the next section. For the sake of simplicity, we focus on a single
chemical species and a single velocity component along one line
of sight. The observed spectrum as a function of frequency ν is
defined as:

x(ν) = s(ν) + b(ν), (2)

where b is a (thermal) Gaussian noise and s is the spectrum
associated to the species of interest. The specific intensity,
s, and the associated measurement noise, b, are expressed in
Kelvins, following the standard convention in radioastronomy.
The data reduction (atmospheric ON-OFF calibration and spec-
trum baselining to subtract the slowly-varying continuum resid-
ual from the receiver and the atmosphere) delivers a noise b that
is centered (i.e., with zero-mean) and whose variance can be
considered constant over each line profile.

We assume that two lines (l ∈ {1, 2}) from the same species
are being observed. The photons of each line are emitted at the
rest frequency of the line, νl, and redshifted in frequency because
of the Doppler shift due to the motion of the gas along the line of
sight in the observation frame, typically the local standard of rest
(LSR). The photon is thus received at the redshifted frequency
νred

l = νl

(
1 − V

c

)
, where V is the velocity of the emitting cell of

gas in the LSR frame and c is the speed of light. This equation is
the radio low-velocity approximation of the Doppler effect. The
Doppler effect due to the motion of the observer relative to the
LSR is automatically taken into account in the data acquisition
process. Therefore, each line of the dataset is analyzed in the
LSR frame. In this frame each line is centered around a typical
velocity, noted ∆V . This velocity is related to the redshifted cen-
troid frequency of the line, νcent

l , through a particular case of the
previous equation,

νcent
l = νl

(
1 − ∆V

c

)
. (3)
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We assume that the only background source of emission is the
cosmic microwave background (CMB). In this case, the intensity
s at observed frequency ν around νred

l can be written as

s(ν) = {J(Tex, νl) − J(TCMB, ν)} [1 − exp(−Ψ(ν))
]
, (4)

where TCMB is the known CMB temperature (TCMB = 2.73 K,
Mather et al. 1994), Tex is the unknown excitation temperature
along the line of sight and J is a measure of intensity at a given
temperature,

J(T, ν) =
c2

2kν2 B(T, ν) =
hν
k

1
exp hν

kT − 1
, (5)

where B(T, ν) is the spectral distribution of the radiation of
a black body at temperature T . The term

[
1 − exp(−Ψ(ν))

]
in

Eq. (4) represents the emission or absorption by the emitting or
absorbing medium along the line of sight, considered as a uni-
form slab. The function Ψ is the profile that corresponds to the
integrated opacity through the whole slab. For each line l, it can
be written as:

Ψl(ν) =αl φ
(
ν; νcent

l , νl
σV

c

)
. (6)

In this equation, σV is the velocity dispersion of the source along
the line of sight. It varies as a function of the local physical con-
ditions (higher temperatures and higher turbulence lead to larger
values). The function φ is a Gaussian profile:

φ(ν; νo, σν) =
1√

2πσν
exp

(
− (ν − νo)2

2σ2
ν

)
, (7)

where σν is the frequency dispersion in the source rest frame. It
is related to σV by σν = νl σV/c, because of the Doppler effect.
Finally, the amplitude αl associated to the Gaussian profile φ and
line l is:

αl =
c2

8π
N

Q(Tex)
Al gup

ν2
l

exp
[
−Eup

Tex

] (
exp

[
h νl

k Tex

]
− 1

)
, (8)

where Al is the Einstein spontaneous emission rate for line l, gup
is the degeneracy of the upper level of the line, Eup is its energy
(in units of Kelvin), and N is the column density of the species
along the line of sight. The partition function Q(Tex) is tabulated
in molecular databases (e.g., CDMS, Müller et al. 2001, or JPL,
Pickett et al. 1998), and its temperature dependence can be inter-
polated for each species. The partition function is computed as
the sum of the populations of all energy levels Ek. If the energy
levels are expressed in Kelvin, Q(Tex) can be written as:

Q(Tex) =

+∞∑

k=1

gk exp
[
− Ek

Tex

]
. (9)

The parameter αl is related to the line opacity τl

τl =
αl c√

2πνlσV
, (10)

which is dimensionless. The excitation temperature is defined
from the ratio of the population in the upper (nup) and lower
(nlow) levels of the studied line,

nup

nlow
=
gup

glow
exp

[
− hνl

kTex

]
. (11)

When the molecules are in thermal equilibrium with their
environment, the temperature Tex is equal to the gas kinetic
temperature. The kinetic temperature is not known and must be
estimated.

In the previous equations, the physical characteristics of the
gas (N, Tex, σV , and ∆V ) depend on the specific line of sight
on the sky. Moreover, while observers try to get a uniform noise
when observing the source, this is never perfect and it is impor-
tant to assume that the noise standard deviation σb also depends
on the specific line of sight on the sky. These considerations
imply that αl, τl, νcent

l , Ψl, s, and x also depend on the sky
position.

4. Cramer-Rao bound analysis

In this paper, we aim to estimate the physical parameters of the
LTE model presented in Sect. 3 based on the ORION-B data
(see Sect. 2). Even when the LTE model is perfectly verified,
the presence of an additive Gaussian noise induces some uncer-
tainty on the estimation. For each physical parameter θ estimated
as θ̂, the estimation error (̂θ − θ) can be quantified with the mean
square error (MSE) 〈(̂θ − θ)2〉, where 〈.〉 represents the statisti-
cal mean over the different realizations of the noise b. MSE can
be estimated with Monte Carlo simulations, but the result then
depends on the choice of the implemented estimator. For exam-
ple, when the MSE is large, it is not clear whether it is due to
the choice of the estimator or to a lack of information within the
data. In estimation theory, the Fisher matrix allows to quantify
the amount of information in the considered problem. It pro-
vides a reference precision, named Cramer-Rao bound (CRB),
which does not depend on the choice of a specific estimator of
the searched quantity, but only on the physical model and the sta-
tistical properties of the noise (see, e.g., Bonaca & Hogg 2018;
Espinosa et al. 2018).

Mathematically speaking, the CRB noted B(θ) is simply a
lower bound on the MSE of unbiased estimators (see Eq. (15)).
Indeed, the MSE is equal to the estimation variance 〈(̂θ − 〈̂θ〉)2〉
for an unbiased estimator because the estimation MSE is in gen-
eral equal to the sum of its variance and its bias (〈̂θ〉 − θ) squared,
that is,

〈(̂θ − θ)2〉= 〈(̂θ − 〈̂θ〉)2〉 + (〈̂θ〉 − θ)2. (12)

Therefore, a high CRB value implies that any unbiased estimator
θ̂ will necessarily have a high dispersion around the true value θ.
A high CRB can be understood as a lack of information provided
in the underlying model with respect to the considered level of
noise. When it occurs, one solution can be to introduce addi-
tional a priori knowledge or to make another measurement with
a better S/N. In contrast, a low CRB value does not necessarily
imply that there exists an unbiased estimator θ̂ with a low disper-
sion around the true value θ. CRB is only a lower bound and it
can be overly optimistic. It is thus necessary to build an estima-
tor, which can be tested by comparing its variance with the CRB.
If the estimator is unbiased and its variance is equal to the CRB,
then one knows that there does not exist any better unbiased esti-
mator. In this section, we analyze the CRB (i.e., a bound on the
variance of all unbiased estimators) and in Sect. 5.1 we check
with Monte Carlo simulations that an efficient estimator (i.e.,
one whose variance reaches the CRB) exists.

Here we compute the Fisher matrix and the associated CRB
precisions for the LTE radiative transfer. We then study the vari-
ations of these reference precisions for the different unknown
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(a) B1/2(∆V ) in km s−1 (b) B1/2(σV ) in km s−1 (c) 1.5σV√
2KR

in km s−1

Fig. 2. Variations of the square root of the Cramer-Rao bound (CRB) of the centroid velocity (∆V , left panel) and velocity dispersion (σV , middle
panel) in km s−1 as a function of the column density and the excitation temperature. Right panel: variations of a function of the product of the
number of channels (K) and the signal-to-noise ratio (R). In all three cases, the data are simulated assuming that 13CO(1−0) and 13CO(2−1) are
measured and the unit of the image contours are km s−1. In this simulation, σb = 100 mK, ∆V = 1.1 km s−1 and σV = 0.61 km s−1.

physical parameters (∆V , σV , Tex, and N) as a function of
the excitation temperature and column density. We finally use
the CRB precision to answer two questions. The first ques-
tion relates to what is the maximum noise tolerable to get a
given relative precision on these parameters. Here we compare
the cases where only one (13CO(1−0)) or two (13CO(1−0) and
13CO(2−1)) lines are available. Second, we consider which 12CO
line should be observed to improve the precision achieved when
only 12CO(1−0) observations are available.

4.1. Computing the CRB from the Fisher matrix for a single
line and a single velocity component

For a given line l, a sampled version of Eq. (2) can be written
over K discrete frequency channels as:

∀n ∈ {1, ...,K} xn,l = sn,l + bn,l. (13)

When b is a centered white Gaussian noise of standard devia-
tion, σb,l, and the physical model, s, is expressed as a function of
a set of unknown parameters, (θi), the Fisher matrix, IF, which
represents the amount of information provided by the line, l, can
simply be computed as (Stoica & Moses 2005):

∀(i, j) [IF]i j =
1
σ2

b,l

K∑

n=1

∂sn,l

∂θi

∂sn,l

∂θ j
, (14)

where [A]i j stands for the term (i, j) of the matrix A.
In our case, the physical model for s is the LTE radiative

transfer introduced in Sect. 3 and the vector of unknown param-
eters is θ = [Tex, log N, ∆V , σV ]T , which we also write θ =
[θ1, θ2, θ3, θ4]T to simplify the expression of the Fisher matrix
in Eq. (14). In this vector of parameters, we chose to analyze the
precision of the logarithm4 of the column density, N, instead of
directly analyzing the precision of N because the column density
can vary over orders of magnitudes in giant molecular clouds.

It can be shown (Garthwaite et al. 1995) that the variance of
any unbiased estimator θ̂i (here T̂ex, log N̂, ∆̂V or σ̂V ) is bounded
by:

var(̂θi)≥B(θi) = [I−1
F ]ii. (15)

Each diagonal term of the inverse of the Fisher matrix B(θi) =
[I−1

F ]ii is called the Cramer Rao bound of the correspond-
ing parameter. We note them as B(Tex), B(log N), B(∆V ), and
4 In this paper, the notation log refers to the logarithm in base 10.

B(σV ). These CRBs do not depend on the choice of the esti-
mation algorithm θ̂ and they are usually asymptotically reached
by the maximum likelihood estimator (Garthwaite et al. 1995).
Thus, the CRB can be considered to be providing reference pre-
cision of the estimation problem. The calculation of the gradients(
∂sn,l

∂θi

)
i=1,2,3,4

is detailed in Appendix A.

4.2. Generalization to two lines and two velocity components

We use the CRB analysis on the case where we observe two
different lines (l ∈ {1, 2}) of the same species. We assume that
these lines are well separated in frequency so that their frequency
supports are disjointed:

xn,l = sn,l + bn,l ∀n ∈ {1, ...,K} ∀l ∈ {1, 2}. (16)

The Fisher matrix of the set
(
xn,l

)
is simply the sum of the Fisher

matrices of each transition because we assume that the unknown
parameters θ are identical for the two lines.

We also use the CRB framework in the case where each
observed line is emitted from two independent velocity com-
ponents, that is, from two gas components characterized by
different values of the unknown parameters (θm with m ∈ {1, 2}).
Equation (16) that encodes the spectrum for line l can then be
written as:

xn,l = S n,l + bn,l ∀n ∈ {1, ...,K} ∀l ∈ {1, 2}, (17)

where S n,l = sn,l(θ1) + sn,l(θ2). (18)

This means that the composite line profile is considered to be the
simple sum of two velocity components that do not radiatively
interact. This assumption is only correct if the two velocity com-
ponents are adequately separated in velocity. This case with two
components is the most complex model we study in this paper.
In this case, the number of unknown parameters is eight (instead
of four) and, thus, the size of the Fisher Matrix is 8 × 8 (instead
of 4 × 4).

4.3. CRB variations as a function of Tex and N

As the inversion of the Fisher matrix is done numerically, we
do not have a simple explicit expression of the CRBs. In this
section, we empirically analyze, thus, their evolution as a func-
tion of the physical properties of the analyzed medium in a
particular case taken from the ORION-B project. To generate
Figs. 2–4, we assume that the two measured lines are 13CO(1−0)
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(a) B1/2(Tex) in Kelvin (b) B1/2(Tex) in Kelvin (c) B1/2(Tex) in Kelvin
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(d) 20σbσV,0

τ2
1σV

in Kelvin (e) 20σbσV,0

τ2
2σV

in Kelvin (f) σbσV,0
√
τ1τ2σV

in Kelvin

Fig. 3. Top: variations of the square root of the CRB of Tex in Kelvin as a function of the column density and the excitation temperature. Bottom:
functions of the line opacities. Left: only 13CO(1−0) is analyzed. Middle: only 13CO(2−1) is analyzed. Right: both 13CO(1−0) and 13CO(2−1) are
analyzed simultaneously. In (a) and (b) pixels in grey correspond to Tex and N values which lead to singular Fisher matrices. For this analysis,
σb = 100 mK, ∆V = 1.1 km s−1 and σV = 0.61 km s−1. The constant σV,0 = 1 km s−1 is introduced to have expressions in (d–f) that depend on σV ,
but remain homogeneous to a temperature.

and 13CO(2−1). The two corresponding opacities are noted τ1
and τ2. The number of samples is K = 80 for each line at a
spectral resolution of 0.5 km s−1. Only one velocity component
is assumed in the remainder of this section. The amount of noise
is fixed and identical for both lines at σb,1 = σb,2 = 100 mK.

The values of the Cramer-Rao bounds of the unknown
parameters (i.e., Tex, log N, ∆V and σV ) are then computed as
a function of the values of Tex and N. The Fisher matrices are
computed following Eq. (14), and then numerically inverted to
obtain B(θi) = [I−1

F ]ii. The excitation temperature Tex is sampled
logarithmically between 3 and 99 K, the column density N is
sampled logarithmically between 1013 cm−2 and 1019 cm−2, and
the other two parameters are kept constant at ∆V = 1.1 km s−1

and σV = 0.61 km s−1 (arbitrarily chosen). This leads us to
Figs. 2–4, where Tex varies horizontally and N varies vertically.
In these Figures, the variations of B1/2(θi) are shown instead of
the variations of B(θi) because the square root of the CRB is
homogeneous to the estimation standard deviation. It can thus
be interpreted as errorbars on the estimated parameter, θi. Vary-
ing Tex and N changes not only the S/N, but also the amount
of information measured by the Fisher matrix because of the
nonlinearity in the radiative transfer equation.

4.4. Precision of the estimation of the centroid velocity ∆V
and the associated velocity dispersion σV

Figures 2a, b shows variations of B1/2(∆V ) and B1/2(σV ). For
N ≥ 1016 cm−2 and Tex ≥ 12 K, the square root of both CRBs are

smaller than 0.01 km s−1. This means that any efficient unbiased
estimator is expected to have a small dispersion around the actual
values. This can be written ∆̂V = 1.10 ± 0.01 km s−1 and σ̂V =
0.61± 0.01 km s−1.

Figure 2c shows a function of KR, where R is the signal-to-
noise ratio defined by:

R =

∑K
n=1(s2

n,1 + s2
n,2)

K(σ2
b,1 + σ2

b,2)
. (19)

This expression is used in signal processing to quantify the S/N
on the “energy” of the signal. In our case, we empirically find,
as a rule of thumb,

B1/2(∆V )'B1/2(σV )' 1.5σV√
2KR

. (20)

While the dependency on σV is not presented in Fig. 2, we
checked that Eq. (20) remains valid when σV = 0.3, 1.31, and
2 km s−1. The estimation precision on ∆V and σV depends on the
S/N and on σV . This is expected because of the similarity with
the problem of delay estimation in radar for which le Chevalier
(1989) obtained an analytic formulation similar to Eq. (20).

4.5. Precision of the estimation of the excitation
temperature Tex

In this section, we begin to quantitatively evaluate the gain
in precision when two lines are observed instead of a single
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Fig. 4. Top row: variations of the square root of the CRB of log N as a function of the column density and the excitation temperature. Second and
third row: correlation coefficients between efficient estimators of (Tex, log N), and (log N, σV ) in the second and third rows. respectively (defined in
Eqs. (23) and (24)). Bottom row: variations of functions of the opacities. Left: only 13CO(1−0) is analyzed. Middle: only 13CO(2−1) is analyzed.
Right: both 13CO(1−0) and 13CO(2−1) are analyzed simultaneously. In (a) and (b) pixels in grey correspond to Tex and N values which lead to
singular Fisher matrices. For this analysis, σb = 100 mK, ∆V = 1.1 km s−1 and σV = 0.61 km s−1.

one. Figure 3 compares the variations of B1/2(Tex) when only
13CO(1−0) or 13CO(2−1) is available to constrain the excita-
tion temperature, and when both lines are available. To interpret
this figure, we first remark that for low column densities, the
uncertainty quickly increases leading to large values of the CRB,
especially for N < 1016 cm−2. While the variation of the CRB

as a function of the excitation temperature for a given column
density is monotonic in the considered range for the 13CO(1−0)
line, it shows a different behaviour for the 13CO(2−1) line, with
a minimum near 6 K, and an increase of the CRB for lower val-
ues of the excitation temperature. This different behaviour is
related to higher energy of the upper state of the 2−1 transition.
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The emerging 13CO(2−1) signal, which is proportional to the
population of the upper level of the transition, approaches zero
and becomes close to the noise level.

For the considered example, the analysis of a single line
(see Figs. 3a,b) gives a reference precision on Tex of 0.1 K ≤
B1/2(Tex) < 10 K for typically N > [1016−1017.5] cm−2. The
dependence on Tex is such that the same CRB is also reached
at higher column densities for higher values of Tex. This behav-
ior of the CRB can be qualitatively understood as resulting from
the increase of the line opacity. When the opacity becomes
larger than about 3, the peak temperature only depends on Tex
as the factor [1 − exp(−Ψ(νcent

l ))] in Eq. (4) approaches unity.
The CRB almost linearly depends on log Tex above 6 K. The
analysis of two lines (see Fig. 3c) greatly improves the situa-
tion. One reaches the same precision on Tex for column densities
that are between one and two orders of magnitude lower, that is,
0.1 K ≤ B1/2(Tex) < 10 K for typically N > [1014−1016.5] cm−2.
Here, once again the precision almost linearly depends on log Tex
above 6 K.

The second row of Fig. 3 shows functions of the opacities.
When trying for several values of σV , we empirically obtain:

B1/2(Tex)' 20σb σV,0

τ2
l σV

, (21)

when a single line is available, either 13CO(1−0) or 13CO(2−1).
In this equation, σV,0 = 1 km s−1 is a constant fixed so that
the expression depends on σV , but remains homogeneous to a
temperature. When these two lines are available, we obtain:

B1/2(Tex)' σb σV,0√
τ1τ2 σV

. (22)

Hence, according to Eqs. (21) and (22), when opacities are close
to one, the gain in precision (in standard deviation) is around 20
when we observe two lines of the same species instead of a single
one. These relations suggest that the parameters that control the
difficulty of the estimation problem are the amount of noise σb,
the velocity dispersions σV , and the opacities.

4.6. Precision of the estimation of the column density N

The top row of Fig. 4 shows that the precision on the estimation
of N has a complex behavior when only one line is available.
To interpret this, we note that even efficient estimators of θ have
correlated components described by the correlation coefficients
of the Fisher matrix. The correlation coefficient between Tex
estimations and log N estimations is given by:

γ(Tex, log N) =
B(Tex, log N)

B1/2(Tex)B1/2(log N)
, (23)

where B(Tex, log N) = [I−1
F ]12 is the non-diagonal element of the

inverse Fisher matrix, see Eq. (14). We also introduce the corre-
lation coefficient between log N estimations and σV estimations

γ(log N, σV ) =
B(log N, σV )

B1/2(log N)B1/2(σV )
(24)

where B(log N, σV ) = [I−1
F ]24 ; see Eq. (14).

Correlation coefficients are built such that their value ranges
from −1 to 1. As long as |γ| < 1, CRBs remain finite and
thus estimating parameters usually remains possible. There is
a complete ambiguity between estimations of the pairs (Tex
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Estimations

True parameters

Fig. 5. Illustration of the correlation between N and σV estimations
when a single line (13CO(1−0)) is available. The blue points in the scat-
ter plots show the estimations of N and σV obtained with a Monte Carlo
simulation of individual spectra that share the same physical parameters
and different realizations of a white Gaussian noise with standard devi-
ation σb = 100 mK. The parameters are Tex = 18 K, N = 1017.5 cm−2,
∆V = 1.1 km s−1, and σV = 0.61 km s−1.

and log N) or (log N and σV ), only when values of |γ| = 1.
In this case, the variance of these estimations becomes infi-
nite. Figure 5 shows a simulated example where log(N) and σV
can be accurately estimated even though they are highly (but
not completely) anti-correlated. Starting from a modeled spec-
trum with log (N cm−2) = 17.5,σV = 0.61 km s−1, and Tex = 18 K,
we built one thousand realizations of the observed spectrum
with a Monte Carlo simulation, and we fitted the LTE model
using the estimator proposed in Sect. 5.1. This Monte Carlo
simulation allows us to numerically estimate the standard devia-
tion on the estimated parameters and the correlation coefficient
between log(N) and σV . This coefficient is −0.94, implying
that the parameters are highly anti-correlated. However, the
standard deviation on the log (N cm−2) and σV estimations are
0.017 and 0.005 km s−1, respectively. This corresponds to typ-
ical relative errors of 4.0 and 0.8%, respectively. Hence some
high (anti-)correlation does not necessarily imply that the model
parameters can not be estimated, in contrast with a widespread
intuition. While we illustrated this property with a given estima-
tor, this statement is true for the CRB analysis. This emphasizes
another of its interests. It provides standard deviations and coef-
ficient of correlations without requiring to implement any Monte
Carlo simulation.

The second and third row of Fig. 4 show important ambi-
guities (i.e., correlation coefficients close to one or minus one)
between estimations of log N and Tex and even more ambiguities
between estimations of log N and σV (in particular for large val-
ues of N). When a single line is observed (see Figs. 4 d, e, g, h),
the results for |γ(Tex, log N)| and |γ(log N, σV )| are mostly larger
than 0.9 for small N (in Figs. 4d, e, yellow pixels correspond to
γ > 0.99 and in Figs. 4g, h to γ > 0.9). For high N, the ambigu-
ity with Tex decreases, but not the one with σV (in Figs. 4d, e,
light blue values are −0.5 < γ < 0 while in Figs. 4g, h dark blue
values correspond to γ < −0.9 and γ < −0.99). The horizontal
asymptote on the left of the CRB maps corresponds to a very
sharp change of sign of correlation coefficients γ. Figures 4 f, i,
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Fig. 6. Noise standard deviation σb,ρ in mK which ensures that relative precisions are better than ρ% (for details see Eq. (25)). Top: analysis of
a single line. Bottom: analysis of two lines 13CO(1−0) and 13CO(2−1). The contours for 10 and 100 mK are highlighted because these σb values
bracket the values reached during typical observations at the IRAM-30 m. For this analysis, ∆V is fixed at 1.1 km s−1, but the computations are done
for four different values of σV (0.3, 0.6, 1.3, and 2.0 km s−1) and then projected on the (N,Tex) plane (see text for details).

show that, although some ambiguities remain between log N and
σV for high N and small Tex, having two lines mitigates these
ambiguities in most cases.

As a rule of thumb, with a single line (see Figs. 4 a,b),
B1/2(log N) < 0.1 for N > [1016−1017] cm−2 (depending on
Tex), and Tex ≥ [6−12] K (depending on N). With two lines
(Fig. 4c), the situation greatly improves: B1/2(log N) < 0.1
for N > [1015−1017] cm−2 (depending on Tex) and Tex ≥ 6 K.
Figures 4a–c also show local minima of the B1/2(log N) when
Tex increases and N ≥ 1017 cm−2, and when N increases and
Tex ≥ 6 K. To interpret these, the last row of Fig. 4 shows func-
tions of the opacities. Comparing these with the variations of
B1/2(log N) shows that the smallest values of B1/2(log N) (i.e.,
the best achievable precision) are mainly located at the area
where τ1 and τ2 are close to 1. With two lines (see Fig. 4l), the
best precision is when τ1 < 1 and τ2 > 1.

4.7. Maximum noise tolerable to get a given relative precision
on the different parameters

In the previous section, the standard deviation of the noise σb
was fixed to 100 mK. Conversely, we now derive the amount
of noise that guarantees a given relative CRB precision for Tex,
log N, σV and ∆V . We compute σb,ρ the maximal value of σb
that satisfies the following inequalities:

B1/2(Tex)/Tex ≤ ρ, B1/2(log N) ≤ ρ,
B1/2(σV )/σV ≤ ρ, B1/2(∆V )/σV ≤ ρ, (25)

where ρ is a fixed threshold. In other words, instead of analyzing
the precision for a given amount of noise, it is also possible to
analyze the tolerable level of noise to ensure an intended pre-
cision (herein described by ρ). Such an analysis is useful for

designing an observation program and optimize the telescope
time needed to reach the scientific goal.

Up to this point in the paper, we have checked the variations
of the quantities as a function of Tex and N with fixed values of
∆V and σV . Figure 6 shows the variations of σb,ρ as a function of
Tex and N. As the computation of σb,ρ includes the computation
of maximum values, it is possible to make the computations in
three dimensions (with varying values of Tex, N, and σV ), and
to project these on the (Tex,N) plane. That is what is shown in
Fig. 6 for different values of the relative precision ρ (5, 10, and
20%).

The IRAM- time estimator for the EMIR receivers5 indi-
cates that we can achieve a sensitivity of 100 mK in 30–120 s
at 110 and 220 GHz for a spectral resolution of 0.5 km s−1. Simi-
larly, we can achieve a sensitivity of 10 mK in one to three hours
depending on the frequency and the observing mode (frequency
or position switching). The colored contours thus correspond to
the “fast/slow” acquisition mode at the IRAM-30 m. The com-
parison between the top and bottom lines allows us to see the
gain in precision when analyzing the two lowest J lines of 13CO
instead of a single one. In particular, the surface of reachable
combinations of column density and excitation temperature more
than doubles when analyzing two lines.

Instead of analyzing the level of noise, we can also analyze
the peak-signal-to-noise ratio defined for one transition, l, by:

Pl =
maxn sn,l

σb,l
(26)

and for two transitions by P = maxl=1,2 Pl. Figure 7 shows the
variations of minimum peak-signal-to-noise ratio Pρ for similar

5 http://www.iram.es/nte/
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Fig. 7. Same as Fig. 6, except that the contours show the variations of the peak-signal-to-noise ratio, Pρ, required to reach a given relative accuracy
(ρ%).

conditions as in Fig. 6. Analyzing only the 13CO(1−0) line
requires at least a S/N of 100 to get a relative precision of 20%.
Adding the 13CO(2−1) line in the analysis reduces the minimum
S/N by a factor of up to ten to reach the same relative precision.
The required S/N increases at high column densities because the
lines become optically thick, and at a combination of low column
density and high excitation.

4.8. Complementing 12CO(1–0) observations

All the previous analyses were done for the 13CO isotopologue
because it enabled us to study the case of low J lines that expe-
rience the transition from optically thin to thick regime over the
range of column densities and excitation temperatures that are
found in molecular clouds. However, the targeted transition when
observing the molecular gas of a new astronomical source is
usually 12CO(1−0) because it is the strongest line in the easily
observable 3mm atmospheric window (Wilson et al. 1970; Pety
et al. 2017).

Here we asked ourselves two questions. The first question
deals with what J line is best for carrying out observations in
order to reach a relative precision of 20% on all the estimated
parameters. Figure 8 shows the variations of the maximum noise
σb,ρ when a single line is observed among the first six rotational
transitions of 12CO. A global pattern is seen, especially for the
higher energy transitions 12CO(4−3), 12CO(5−4), 12CO(6−5),
For instance, if N lies in the interval [1017, 1019] cm−2 and Tex >
24 K, the 12CO(6−5) line seems the best choice (from the point
of view of the CRB) because it allows us to reach 20% accuracy
over this broad range of parameters for a noise level of 100 mK.
However, this line is not easy to access from ground-based tele-
scopes because of the limited atmospheric transmission at the
line frequency of 690 GHz.

The second question considers the best J line for carrying
out observations to complement the J = 1−0 line to reach the

same relative precision of 20%. Figure 9 seems to indicate that
observing 12CO(6−5) would be the most useful as it would
allow to tolerate a noise level of σb = 300 mK and maintain a
good level of precision for N in the interval [1016.0, 1018.5] cm−2.
We stress that this result only applies to the case where all
transitions have the same excitation temperature. In practice,
deviations from a Boltzmann population may be present lead-
ing to different excitation temperatures for the 12CO transitions
(van der Tak et al. 2007) because of the higher critical densities
of the higher-J transitions. Nevertheless, the usefulness of mildly
excited lines remains valid. Non-LTE approaches will be devel-
oped in the future that will provide a quantitative assessment of
the diagnostic power of these lines.

5. Application to the ORION-B data

The CRB is only a lower bound on the variance of any unbi-
ased estimator. Once the orders of magnitude of the CRBs have
been analyzed, the next step is to find a good estimator of
physical parameters. In this section, we first propose such an
estimator and analyze its performance for a realistic amount of
noise (herein chosen to σb = 100 mK), before applying it to the
ORION-B data.

5.1. Proposed estimator

The maximum likelihood estimator (MLE) is a good candidate
because under mild conditions, it reaches the CRB asymptoti-
cally, that is, when σb 7→ 0 (Garthwaite et al. 1995). Appendix B
details the computation of this estimator, its initialization, and
the iterative algorithm used to yield the estimation that is noted
θ̂. We also briefly discuss its computational efficiency.

Appendix C analyzes the performance of the proposed esti-
mator on simulated data. This appendix shows that this estimator
performs optimally for pairs of (Tex,N) values such that a
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Fig. 8. Noise standard deviation σb,ρ in mK which ensures relative precisions better than 20% when a single line of 12CO is analyzed. Other details
are identical to Fig. 6.
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Fig. 9. Noise standard deviation σb,ρ in mK which ensures relative precisions better than 20% when a couple of 12CO lines are observed: J = 1−0
and a higher J line. Other details are identical to Fig. 6.
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relative precision of reference is reached for all estimated param-
eters (that is, the conditions of Eqs. (25) are satisfied with ρ =
20%). Interestingly, this appendix also shows that the obtained
estimation θ̂ can be injected in the CRB computation to detect
whether or not this estimation is accurate.

5.2. Estimation of the number of velocity components and
initialization of the parameters

The number of velocity components is a priori unknown. While
we could have tried to use our maximum likelihood estimator to
fit the data with either one or two components, we would then
have had to devise a statistical test to determine which assump-
tion to choose. Instead, it is simpler to check for the presence
of several local maxima in the spectrum denoised with ROHSA,
the technique mentioned in Sect. 2. In particular, this allows us to
have a spatially coherent detection of the number of components.
The ROHSA algorithm is applied separately on the 13CO(1−0),
C18O(1−0), and 12CO(1−0) lines. If one of the denoised spectra
for 13CO(1−0), C18O(1−0) or 12CO(1−0) has at least two local
maxima in the velocity interval of interest [8.25, 14.25] km s−1,
we then fix the number of velocity components to two for all
three species. The denoised spectra 13CO(1−0), C18O(1−0) and
12CO(1−0) are analyzed iteratively in this order and as soon as
two components are selected based on one of the three spec-
tra, the velocities associated to the local maxima are used to
initialize the estimations of the velocity ∆V of each component
for all three species. This ensures that the velocities of each
component stay compatible for all three species during the fit.
We analyze the denoised spectra in the above order because the
13CO(1−0) line has both a good S/N and moderate opacities.
The C18O(1−0) line delivers a good information on the underly-
ing velocity structure because it is most often optically thin, but
its limited S/N may hamper the ∆V initialization. The saturation
that happens for the 12CO(1−0) line also makes the determina-
tion of the ∆V initializations inaccurate. Finally, when all the
three denoised spectra have only one maximum, one component
is independently fitted per species.

When initializing the parameters before maximizing the like-
lihood, we use two different assumptions to help the algorithm to
converge towards reasonable solutions. First, when two compo-
nents are detected, we use the same ∆V and σV initializations
for all the species so that the estimated parameters for each
component remain correctly paired among the three species,
as explained above. The white contours in Fig. 13 delimit the
regions where two local maxima have been detected. Only
23% of the field of view requires two velocity components. As
the estimations of Tex, N, and σV are highly correlated (see
Sect. 4.6), we systematically search in the 3D grid described in
Sect. B.2 to initialize them. We stress that this is only during the
initialization process that we use the same values ∆V and σV for
13CO and C18O. The maximization of the log-likelihood is done
independently on each species, ensuring that the estimations of
∆V and σV may take a different value for each species.

Second, a single line of 12CO is available and it is quite opti-
cally thick. In our analysis of the CRB, we observed in Figs. 4 (d,
e and g, h) that the estimation of log N is highly correlated
with σV , when N is high. This may imply some degeneracy
between the estimation of the velocity dispersion and the column
density. To alleviate this issue, we first deal with 13CO(1−0),
13CO(2−1), C18O(1−0), C18O(2−1), and we use the estimation
of σV obtained on 13CO to fix σV for the estimation of the other
parameters (Tex, log N and ∆V ) in the analysis of the 12CO(1−0)
line. If this assumption is false, the obtained estimations of the

other parameters will be biased. While this procedure is not
ideal, we empirically obtained estimations of Tex and log N much
closer to physical intuition: in particular, the estimations of the
column density are 100 times too large when all four parameters
are estimated. An analysis of the impact of a potential incorrect
value of σV goes beyond the scope of the present paper.

5.3. Detailed analysis of two lines of sight

Figure 10 shows how the proposed estimator succeeds to fit the
C18O, 13CO, and 12CO low J lines towards two lines of sight
in the studied field of view (see red crosses Fig. 1), at offsets
(803′′, 473′′) and (578′′,−121′′). The spectra on the left column
are modeled with a single velocity component but they are asym-
metric. This implies that our model is not perfectly adequate
because it assumes that the line profile is symmetric. The issue
is most problematic for 12CO, because the high opacity and the
complex underlying velocity field imply a more complex profile
with broad wings on each side of the line. A detailed solution for
this issue is beyond the scope of the present paper.

The spectra on the right column are well-fitted with two dif-
ferent velocity components. The estimations for the C18O and
13CO species are physically relevant because the two velocity
components are well separated in velocity. This is less obvi-
ous for 12CO, which presents a large velocity overlap of the two
components.

5.4. Estimation of the quality of the fit and filtering out
inaccurate estimations

In this section, we first compute the “energy” and the stan-
dard deviation of the fit residuals as two ways to quantify the
quality of the fit. We then explain how we filter out inaccurate
estimations from the physical analysis.

After a fit, we can define three different “energies” in the
sense of the information theory.

– The “energy” of the measured signal is

Exl =
∑

n

x2
n,l. (27)

– The “energy” of the estimated signal is

Esl =
∑

n s2
n,l (̂θ) or Esl =

∑
n s2

n,l (̂θ1) + s2
n,l (̂θ2), (28)

depending of the number of estimated components.
– The “energy” of the fit residual is

Erl =
∑

n

r2
n,l, (29)

where rn,l = xn,l − sn,l (̂θ),

or rn,l = xn,l − sn,l (̂θ1) − sn,l (̂θ2).
(30)

All the sums are computed on an interval of 10 km s−1 around
the maximum. The fit quality can then be quantified by com-
paring the “energy” in the residual with either the “energy” in
the observed spectrum (Erl/Exl ) or the difference of “energy”
between the observed and estimated signals ({Exl −Esl }/Exl ). The
former formula tells us the fraction of the observed “energy”
that has not been fitted. The latter formula tells us whether
the observed spectra has been under-fitted (positive value) or
over-fitted (negative value). Measuring the residual “energies”
is similar to computing a χ2 in least-square fitting. Another way
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Fig. 10. Two examples of LTE fit of the CO isotopologues lines. In the titles, Tex is expressed in Kelvin, N in cm−2, ∆V in km s−1, and σV in km s−1.
The plain lines show the data, and the dotted ones show the fit results. Values in red indicate estimations whose relative precision is larger than
20%. The associated lines of sight can be localized in Fig. 1 (see red crosses).
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Fig. 11. Joint histograms of the standard deviations of the residuals (σr) and of the noise (σb) for all the studied lines. Standard deviations are
expressed in Kelvin. The dashed lines correspond to ratios 1 and 10.

to quantify the quality of the fit is to compare the standard devia-
tion of the residuals σr =

(
1

K−1
∑

n r2
n,l

)1/2
with the noise standard

deviation (σb) on the observed spectrum. The fit is good when
σr ∼σb.

We can, in addition, use the CRB framework to filter out pix-
els with inaccurate estimations. As explained in Appendix C.1,
an estimation would be considered inaccurate when there is at
least one estimation among the 3 × 3 neighboring pixels, for
which at least one of the following conditions is satisfied:

B1/2(T̂ex)/T̂ex > 0.2, B1/2(log N̂) > 0.2,
B1/2(σ̂V )/σ̂V > 0.2, B1/2(∆̂V )/σ̂V > 0.2.

(31)

5.5. Global analysis of the quality of the estimation

Figure 11 compares the standard deviation of the residuals (σr)
with the standard deviation of the noise (σb) for all the lines stud-
ied here. If the fits were ideal, the joint histograms would only
peak near a line of slope one. They thus suggest that the C18O
lines are better fitted than the 13CO lines, and that the 12CO lines
are the least well-fitted. We also checked that the residuals are
larger (i.e., σr > σb) when the energy Ex is large (not shown in
the figure). As the S/N also increases with Ex, this issue implies
some mis-specification in the model. The best fit happens for the
C18O(1–0) line that has the lowest opacity. In that case, the pro-
files Ψ are almost perfect Gaussian profiles. On the contrary the
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in % that has not been modeled (d). The unit of the color look-up table is Kelvin2. White contours show the regions where two components have
been detected.

high opacity of the 12CO(1–0) line implies that the profiles are
highly saturated, and any small kinematic perturbations create
deviations from a Gaussian profile as shown in Fig. 10, where
the asymmetry pattern could not be taken into account by the
model. A better modeling could thus require additional velocity
components especially for the 12CO(1−0) line. Another limit of
the model is that it does not encode self-absorption signatures
that may happen at large opacity.

Figures 12 a, b show the spatial distributions of the “energy”
of the observed spectra and of the fit residuals for the 13CO(1−0)
line. Both images share the same color look-up table. On the
left image, the yellow pixels correspond to bright molecular gas
while the blue pixels corresponds to faint signal or noise asso-
ciated with the IC 434 HII region. The “energy” of the residual
still exhibits spatially coherent structures, but at a much smaller
level than the “energy” of the measured spectra. Our estimator
under-fits the observed spectra as shown in Fig. 12d. This may be
related to the fact that our model does not fit asymmetric profiles.
However, the fit quality is good as illustrated by the image of the
energy ratio, which shows that the residual “energy” amounts
to less than 1% of the signal (the dark blue color corresponds
to 0.01% in image Fig. 12c) except in regions where the S/N
becomes small. Figure D.1 shows the same quantities for all the
lines modeled in this paper. Overall, the fitting method is able to
recover all the emission with differences at the percent level or
less for all lines.

Increasing the complexity of the line profile model to address
the observed misspecifications could be hazardous. While the
increase of the number of parameters in more complex mod-
els certainly allows one to decrease the difference between the
observed spectrum and the model, it may also increase the vari-
ance of estimations in such proportions that obtained estimations
may become useless. In other words, the simple model used
here does not capture all the complexity of the physical pro-
cesses, but it at least allows us to capture the processes that has
already encoded. The fact that the residuals are smaller than 1%
compared to the observed signal is sufficient to make the anal-
ysis of the excitation temperature, the column density, and the
velocity dispersion pertinent for CO isotopologues. The main
source of systematic errors in the column density determination
results from the deviations from the local thermodynamic equi-
librium, leading to a more complex partition function than the
simple formula in Eq. (9). The effect is expected to be stronger
in warm regions (Tex ≥ 50−100 K) where many rotational lev-
els are populated and contribute to the partition function. These

Table 2. Statistics of the estimated parameters over all the pixels for the
three CO isotopologues.

Quantity Unit 12CO 13CO C18O

Tex K 30± 7.6 17± 4.6 15± 4.4
Tex/Tdust 1.3± 0.3 0.76± 0.22 0.71± 0.23
log N cm−2 17.8± 0.5 16.3± 0.45 15.5± 0.27
log N/NH2 −4.2± 0.4 −5.6± 0.29 −6.7± 0.15
σV km s−1 0.63± 0.17 0.64± 0.26 0.58± 0.2
log τ1 0.96± 0.47 −0.06± 0.4 −0.76± 0.25
log τ2 0.34± 0.41 −0.39± 0.25

warm regions occupy a small fraction of the total volume and
therefore a bias would not affect the general conclusions. Non-
LTE approaches will be developed to assess more quantitatively
the magnitude of the effect and to provide recommendations on
the best method depending on the molecular lines and the range
of physical conditions that are studied.

6. Astrophysical implications

The proposed estimator (see Sect. 5.1) provides accurate col-
umn densities, excitation temperatures, and velocity dispersions
in the framework of LTE excitation and radiative transfer. This
allows us to carefully analyze the errors introduced by the
simpler hypotheses that are commonly used for deriving CO
isotopologues column densities.

6.1. Estimated parameters and associated uncertainties for
C18O, 13CO, and 12CO

Figure 13 shows the spatial variations of the estimated parame-
ters and associated uncertainties for the C18O, 13CO, and 12CO
isotopologues. Table 2 lists the mean and standard deviation val-
ues of the excitation temperatures, column densities, velocity
dispersions and opacities. These values are computed over the
field of view that is observed for all the lines.

The peak-signal-to-noise ratio of the 12CO(1−0), 13CO(1−0),
and 13CO(2−1) lines is large (>20) over most of the studied
field of view. The regions where the peak-signal-to-noise ratio of
the C18O(1−0) and C18O(2−1) is larger than 20 still amounts to
respectively 15 and 32% of the studied field of view. The CRBs
are small for all estimated parameters (inside the red contours

A26, page 15 of 27

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037776&pdf_id=0


A&A 645, A26 (2021)

∆V [km/s] σV [km/s] Tex [K] N [cm−2] τ1 τ2

C
18

O
(1
−

0)
&

(2
−

1)

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

0

0.5

1

1.5

3

4.4

6.46

9.49

13.9

20.4

30

10
14

10
14.5

10
14.9

10
15.4

10
15.9

10
16.5

10
17

0.01

0.0464

0.215

1

4.64

21.5

100

0.01

0.0464

0.215

1

4.64

21.5

100

13
C

O
(1
−

0)
&

(2
−

1)

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

0

0.5

1

1.5

3

4.62

7.11

11

16.9

26

40

10
14

10
14.6

10
15.2

10
15.9

10
16.6

10
17.3

10
18

0.01

0.0464

0.215

1

4.64

21.5

100

0.01

0.0464

0.215

1

4.64

21.5

100

12
C

O
(1
−

0)

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

0

0.5

1

1.5

3

5.76

11.1

21.2

40.7

78.2

150

10
15

10
15.6

10
16.2

10
16.9

10
17.6

10
18.3

10
19

0.1

0.464

2.15

10

46.4

215

1000

B1/2(σV )
σV

B1/2(∆V )
σV

B1/2(Tex)
Tex

B1/2(log N) P1 P2

C
18

O
(1
−

0)
&

(2
−

1)

0.01

0.02

0.05

0.1

0.22

0.46

1

0.01

0.02

0.05

0.1

0.22

0.46

1

0.01

0.02

0.05

0.1

0.22

0.46

1

0.01

0.02

0.05

0.1

0.22

0.46

1

1

2.15

4.64

10

21.5

46.4

100

1

2.15

4.64

10

21.5

46.4

100

13
C

O
(1
−

0)
&

(2
−

1)

0.01

0.02

0.05

0.1

0.22

0.46

1

0.01

0.02

0.05

0.1

0.22

0.46

1

0.01

0.02

0.05

0.1

0.22

0.46

1

0.01

0.02

0.05

0.1

0.22

0.46

1

1

2.15

4.64

10

21.5

46.4

100

1

2.15

4.64

10

21.5

46.4

100

12
C

O
(1
−

0)

0.01

0.02

0.05

0.1

0.22

0.46

1

0.01

0.02

0.05

0.1

0.22

0.46

1

0.01

0.02

0.05

0.1

0.22

0.46

1

0.01

0.02

0.05

0.1

0.22

0.46

1

1

2.15

4.64

10

21.5

46.4

100

Fig. 13. Top: spatial variations of the estimated physical parameters. From left to right: centroid velocity, velocity dispersion, excitation temperature,
column density, and line opacities. Bottom: spatial variations of the relative precisions. From left to right: relative precision on the centroid velocity,
velocity dispersion, excitation temperature, column density, and line peak S/N. The black contours on the peak-signal-to-noise-ratio image delimit
the regions whereP ≥ 3. On all images, red contours delimit the regions where the relative precision is better than 20% for all estimated parameters,
and white contours delimit regions where two components have been estimated. In this latter case, the images only show the estimation that is the
closest (in terms of centroid velocity ∆V ) to its neighboring pixels.

that delimit the regions where the relative precision is better than
20% for all estimated parameters) except near the regions of tran-
sitions between one and two velocity components (i.e., near the
white contours). Even though the 12CO S/N is much larger than
the C18O or the 13CO one, the 12CO estimations are more uncer-
tain (see map ofB1/2(log N) for 12CO in Fig. 13) because a single

transition is available and the 12CO opacities are large (ranging
from 5 to about 1000). However, the higher S/N for 12CO helps
to derive the velocity field in regions where 13CO and C18O are
not well detected (diffuse gas).

The largest variations are observed in the column density
which varies from the detection limit near 1015 cm−2 up to values
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Fig. 14. Comparison between the map of the dust temperature and maps of temperature ratios. Inaccurate estimations are filtered out. The dust
temperature is only presented in regions with an accurate estimation of parameters.

larger than 1017 cm−2 for 13CO. The comparison of the col-
umn density maps for 13CO and C18O suggests that the C18O
molecules are confined to the high column density regions and
avoid the cloud edges. The 12CO isotopologue shows a different
behavior with emission extending over most of the imaged field
of view and column densities ranging from ∼1016 to ∼1019 cm−2.
These behaviors are related to the difference of opacity of the
isotopologues lines. Both 13CO lines have moderate opacities
across the mapped region, with somewhat higher values for
13CO(2−1) than for 13CO(1−0). The 12CO is highly optically
thick almost everywhere.

For all CO isotopologues, the excitation temperature presents
coherent spatial variations with maximum values near the
NGC 2023 star forming region. Even though the C18O emis-
sion is fainter and less extended than that of 13CO, both species
provide similar kinematics information. The velocity field is spa-
tially regular with well-resolved gradients, for instance in the
Horsehead nebula at the bottom right of the map. The velocity
dispersion σV ranges from 0.4 to 0.8 km s−1, with values around
0.3 km s−1 in the Horsehead nebula (see also Hily-Blant et al.
2005), and somewhat narrower lines for C18O than for 13CO.

6.2. Excitation temperatures

Simplifying assumptions are often made when analyzing the CO
rotational emission. The most usual one is that all isotopologues
have the same excitation temperature. It is based on the simi-
larity of the collisional cross sections. Because the opacity of
a rotational transition scales with the molecular column den-
sity, the differences in abundances translate to different opacities.
The main isotopologue (12CO) has optically thick lines while the
rarer isotopologues (13CO and C18O) have lines either optically
thin or with moderate opacities (see, e.g., Ripple et al. 2013).
Another assumption for high density regions (n > 105 cm−3

Goldsmith & Langer 1978) is the full thermalization of the low-
est CO rotational levels at the temperature measured on dust
(i.e., assuming the convergence of the dust and gas tempera-
tures). Both hypotheses have been subject to scrutiny. Recently,
in their clustering analysis of a one square degree map in the
Orion B cloud, Bron et al. (2018) showed that the observed CO
isotopologue line intensities and line ratios cannot be explained
using these simple hypotheses and that differences in excitation
temperatures should be taken into account.

As shown in Fig. 14, the excitation temperatures of the three
isotopologues are different across the field of view. The 12CO
isotopologue has the largest excitation temperature, followed
by 13CO and C18O. Table 3 lists the typical ratios of exci-
tation temperatures. They are Tex(12CO)/Tex(13CO)∼ 1.7 and
Tex(13CO)/Tex(C18O)∼ 1.3. Figure 14 shows that these ratios

Table 3. Statistics of ratios of the estimated parameters over all the
pixels for the three CO isotopologues.

13CO/C18O 12CO/13CO

Tex/T ′ex 1.3± 0.33 1.7± 0.39
log(N/N′) 1.2± 0.17 1.4± 0.33
σV/σ

′
V 1.1± 0.25 Fixed to 1

Notes. We stress that σV (12CO) is fixed to σV (13CO).

vary significantly as a function of the total column density and
dust temperature. Figure 15 suggests that higher dust tempera-
ture regions that trace higher UV illumination conditions tend
to show larger differences in excitation temperatures between
the CO isotopologues. The same trend is seen when the CO
isotopologue excitation temperatures are compared to the dust
temperature as in Fig. 14. A similar effect has been reported by
Welty et al. (2018) for the diffuse-translucent cloud along the line
of sight to HD 62542.

The excitation temperature of C18O, which traces the UV
shielded regions, is on average lower than Tdust (the mean value
of Tex/Tdust is 0.71, see Table 2). We find a similar situation
for 13CO(1–0) (mean value Tex/Tdust = 0.76), while most of the
positions show 12CO(1–0) excitation temperatures larger than
Tdust. This difference between the CO excitation temperature –
which is a lower approximation of the gas kinetic temperature
– and the dust temperature is indeed expected in photodissoci-
ation regions and UV-dominated regions where the gas kinetic
temperature is larger than the dust temperature. This is different
from the usual approximation that Tdust is a good approxi-
mation of the gas kinetic temperature in cold and shielded
regions.

The difference in excitation temperatures between CO iso-
topologues can be explained by radiative trapping in the 12CO
lines or by the presence of kinetic temperature gradients along
the line of sight, especially near photodissociation regions, pos-
sibly combined with density gradients. Clear spatial patterns
emerge in Fig. 14. The C18O and 13CO excitation tempera-
tures get closer to Tdust in regions where Tdust is lower than
20 K. Because the dust emission strongly varies with its tem-
perature (as T (4+β) where β is the dust emissivity index and
takes values between 1.5 and 2, Planck Collaboration XI 2014),
the dust temperature derived from a single temperature fit of
the spectral energy distribution in lines of sight combining a
strongly UV illuminated region and a more shielded material
does not represent the conditions in the UV shielded region well.
The dust temperature can overestimate the temperature in the
shielded gas that represents the bulk of the material. Somehow
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Fig. 15. Scatter plots between the CO isotopologue excitation temperatures. The color scale encodes the dust temperature Tdust. The ellipses
represent the interval of confidence for each estimation: Each ellipse is centered on the estimation of the excitation temperature for one pixel and its
horizontal and vertical sizes are equal to the associated CRBs. Dashed ellipses correspond to pixels with two components. Inaccurate estimations
are filtered out. Dashed red lines show the loci of ratios 1/2, 1, 2, and 4.

the illuminated region “overshines” as compared to the bulk of
the matter.

The error introduced in the column density determination
by using an incorrect excitation temperature can be estimated
by examining the variation of the line column-to-intensity ratio,
defined as the ratio of the column density of the species to the
line integrated emission, as a function of the excitation temper-
ature. Figure 16 shows the variation of the column-to-intensity
ratio for the 13CO(1−0) and 13CO(2−1) lines for different
column densities of 13CO, assuming a velocity dispersion of
0.61 km s−1. Column densities of N13CO ∼ 1014−1015 cm−2 corre-
spond to optically thin lines, while the opacity becomes signifi-
cant (i.e., τ≥ 0.5) for 1016−1017 cm−2. In the optically thin case,
the column-to-intensity ratio presents a shallow minimum which
depends on the transition, rises rapidly at temperatures lower
than the minimum and more slowly for excitation temperatures
above the minimum. When the line opacity becomes significant,
the shape of the column-to-intensity ratio curve changes and
the minimum shifts to higher excitation temperatures or possi-
bly disappears. Therefore, using the 12CO excitation temperature
for determining the column densities of 13CO and C18O leads
to errors in the estimation of these column densities because the
associated column-to-intensity ratio is inappropriate. For moder-
ate column densities (N12CO < 1016 cm−2), the column densities
can be underestimated in the case of low excitation temperatures,
or overestimated when using a too high excitation tempera-
ture, depending on the position of Tex relative to the minimum
of the column-to-intensity curve. A CO excitation temperature
near the minimum of the column-to-intensity curve minimizes
the error because a small difference in Tex in this region does
not change the column-to-intensity. For high column densities
(N ∼ 1017 cm−2), the bias is significant at low excitation temper-
atures (Tex < 20 K) because the column-to-intensity ratio (purple
curve in Fig. 16) is rising fast at low excitation temperatures.

6.3. Abundances

Figure 17 presents maps of the CO isotopologue abundances rel-
ative to H2 (see Sect. 2.2), and Fig. 18 shows scatter plots of
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Fig. 16. Plots of the 13CO column densities per unit intensity of
13CO(1−0) (top) and 13CO(2−1) (bottom) as a function of the excita-
tion temperature. This plot is done for four values of the 13CO column
density, and σV = 0.61 km s−1.
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Fig. 17. Comparison of the map of dust-traced H2 column density with maps of various column density ratios. Inaccurate estimations were filtered
out. The dust-traced column density is only presented in regions with an accurate estimation of parameters.
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Fig. 18. Scatter plot of the CO isotopologue column densities as a function of the dust-traced H2 column density. Inaccurate estimations are filtered
out. The black dashed lines show the expected gas phase abundances relative to H2 with no depletion: C18O/H2 = 5 × 10−7, 13CO/H2 = 4 × 10−6,
and CO/H2 = 1.4× 10−4.

the relationships between the CO isotopologue column densi-
ties and that of molecular hydrogen. In the mapped area, 13CO
and 12CO can be fitted and analyzed for H2 column densities
larger than 1021.5 cm−2. The threshold for C18O is about twice
higher at ∼1021.8 cm−2. Indeed, as shown by Pety et al. (2017)
and Orkisz et al. (2019), the threshold for the detection of C18O
is AV ∼ 3 mag or N(H2) = 1021.5 cm−2 in the Orion B molecu-
lar cloud, while the thresholds for 12CO and C13O are close to
AV = 1 mag.

Over the mapped area, the mean abundances are well
defined at N(13CO)/N(H2) = 10−5.6± 0.29 = 2.5± 1.5× 10−6, and
N(C18O)/N(H2) = 10−6.7±0.15 = 2.0± 0.8× 10−7 (see Table 2).
These mean abundances are comparable to those of other molec-
ular clouds in the solar neighborhood such as Taurus and
Ophiuchus (Frerking et al. 1989). However, these values are
about a factor of two lower than those predicted when no iso-
topic fractionation is assumed and when the non depleted gas
phase carbon elemental abundances applicable to the Orion
region are used, namely, C/H = 1.4× 10−4, 12C/13C = 57−67 and
16O/18O = 500−560 (Gerin et al. 2015; Langer & Penzias 1990;
Wilson & Rood 1994), namely N(13CO)/N(H2) = 4−5× 10−6,
and N(C18O)/N(H2) = 5−6× 10−7. The difference is more pro-
nounced for C18O because its abundance is affected by both
photodissociation and freeze-out over a more significant fraction
of the studied area.

Significant deviations from the mean values are present. The
C18O abundance is not only lower near the photo-illuminated
edges where molecules are photodissociated, but also in high
column density and well shielded regions. In these latter regions,
the dust temperature gets below the CO condensation tempera-
ture (Tdust < 17 K), and the CO molecules can rapidly freeze onto
dust grains, lowering the gas phase abundances. This depletion
effect is seen for C18O and 13CO supporting the explanation by
a global freeze-out effect.

Because the 12CO lines are saturated over most of the region,
and because a single line has been observed, the determina-
tion of its abundance is more uncertain. Nevertheless, fixing the
value of the velocity dispersion of 12CO to the one estimated for
13CO (see Sect. 5.2) allows us to determine the 12CO column
density for the pixels that have the least saturated line emis-
sion. Although fairly uncertain, the resulting values of the 12CO
abundance relative to H2 are close to 6× 10−5, lower than the
expected value using the carbon elemental abundance relative to
H, 1.4× 10−4 (Gerin et al. 2015), but similar to values obtained
in Taurus by Pineda et al. (2010).

6.4. CO isotopologue column density ratios

Maps of the CO isotopologue column density ratios are shown
in Fig. 17 and scatter plots are displayed in Fig. 19. With
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Fig. 19. Scatter plots between CO isotopologue column densities. The color scale encodes the ratio of the excitation temperatures of the considered
species in each panel. The ellipses represent the interval of confidence for each estimation: Each ellipse is centered on the estimation of the
column density for one pixel and its horizontal and vertical sizes are equal to the associated CRBs. Dashed ellipses correspond to pixels with two
components. Inaccurate estimations are filtered out. The dashed red lines show the loci of ratios 5, 20, and 60.

Fig. 20. Joint histogram of the logarithm of the estimated column den-
sity ratios and of the observed integrated intensity ratios. All the ratios
are computed for the 13CO(1−0) line over the C18O(1−0) one. The
dashed red lines correspond respectively to ratios of one and two.

no isotopic fractionation and all carbon locked in CO, the
expected CO isotopologue ratios are 12CO/13CO = 57−67 and
13CO/C18O = 7.5−9.8 using the elemental abundances given in
the previous subsection. As shown in Fig. 19, the lower bound
of the ratio of the 13CO and C18O column densities is indeed in
the expected range at N(13CO)/N(C18O) = 8. The upper bound is
close to 50 indicating that chemical effects play a significant role,
by enhancing the 13CO abundance (fractionation) or destroying
C18O (photodissociation).

Figure 20 suggests that the column density ratio is well cor-
related with the ratio of line intensities, but the column density
ratio is a factor up to 1.75 smaller than the ratio of line intensi-
ties because of the difference in excitation temperatures and of
the moderate opacity of the 13CO(1–0) line. Ratios of integrated
intensities can therefore be used to estimate the column den-
sity ratios, but after checking with radiative transfer calculations
for a possible multiplicative bias and introducing a correction if
needed.

Although the derivations of 12CO column densities are
uncertain, the column density ratio N(12CO)/N(13CO) ranges
between 10 and 60. In particular, the low values of the ratio
remain even when the opacity of the 12CO line becomes small
enough to accurately derive the column density. Such low values
are found in diffuse and translucent gas as a consequence of effi-
cient fractionation in 13C due to the exchange reaction between
13C+ and 12CO, that enhances the 13CO abundance (Liszt &
Pety 2012). The physical conditions in the translucent envelope
of Orion B seem to favor fractionation, which is not restricted
to a small subset of the mapped area but it seen over wide
areas. As discussed by Bron et al. (2018) the presence of chem-
ical fractionation over the whole region can be identified by
comparing the ratio of integrated intensities of the CO isotopo-
logues, and looking at the data in the W(13CO)/W(12CO) versus
W(13CO)/W(C18O) plane. The existence of this chemical frac-
tionation implies that using a single value for the abundance
ratios of CO isotopologues can introduce significant errors when
attempting to correct for the CO opacity in computing its col-
umn densities as done by Barnes et al. (2018) for instance. This
further increases the bias introduced by using the same excita-
tion temperature for 12CO and 13CO ground state transitions. In
addition to possibly biasing the results, using such simplifying
assumptions is also expected to increase the dispersion and affect
the overall determination of the XCO = N(H2)/W(CO) conversion
factor.

6.5. Velocity dispersions

Maps of the velocity dispersions for 13CO, C18O, and 12CO are
shown in Fig. 13. The mean values are listed in Table 2 and the
ratios for the different CO isotopologues are listed in Table 3.
Our formalism includes the line broadening due to opacity (see,
e.g., Phillips et al. 1979), which is very significant for 12CO.
This implies that the actual velocity dispersion derived from
high opacity lines like those of 12CO is smaller than the apparent
line width. Because we fixed the 12CO velocity dispersion to the
value obtained with 13CO in our estimation, the velocity disper-
sions of 12CO and 13CO are identical (see Sect. 5.2). The velocity
dispersions of C18O and 13CO are however fitted independently.
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Both species show similar velocity dispersions but 13CO has con-
sistently broader line profiles than C18O. The ratio between the
velocity dispersions of 13CO and C18O is 1.1 (see Table 3). The
13CO emission is produced by a more extended volume along
the line of sight than the C18O emission as shown by the lower
threshold in N(H2) where 13CO is detected as discussed above.
When analyzing the filamentary structure of the Orion B molec-
ular cloud, Orkisz et al. (2019) showed that the gas velocity
dispersion determined from C18O reaches a minimum value in
the filament ridges, and is always lower than the velocity disper-
sion determined by 13CO. The refined analysis presented here,
which takes the opacity broadening effect into account, confirms
the presence of gradients in velocity dispersion across the spa-
tial extent of the cloud and along the line of sight, which are
captured by the difference between 13CO and C18O. Inspecting
the spatial distribution of the velocity in Fig. 13 suggests that
the small excess of velocity dispersion for 13CO relative to C18O
is more prominent in the regions with relatively low Tdust. This
supports the hypothesis that this variation of velocity dispersion
is tracing the starting point of the dissipation of turbulence when
entering the dense filamentary skeleton of the molecular cloud.

7. Conclusion

This paper presents an analysis of the precision of the estimation
of physical parameters (∆V , σV ,N,Tex) when trying to fit spec-
tra of low J transitions for the most common CO isotopologues
using the LTE radiative transfer model. This analysis was based
on the Cramer Rao bound (CRB) computation. We applied this
analysis to the region of the Orion B molecular cloud that con-
tains the Horsehead pillar, as well as the NGC 2023 and IC 434
HII regions with the following astrophysical results.

– The mean abundances of the CO isotopologues are con-
sistent with previous determinations in other regions:
X(12CO)∼ 6× 10−5, X(13CO) = 2.5± 1.5× 10−6, and
X(C18O) = 2.0± 0.8× 10−7.

– The excitation temperatures Tex are different among the CO
isotopologues. 12CO presents the highest Tex, followed by
13CO and C18O. For 13CO and C18O, the excitation temper-
atures are lower than the dust temperature on average, while
they are higher for 12CO. This systematic variation can be
understood as resulting from gradients of physical conditions
along the line of sight together with the increased effect of
radiative trapping for the more abundant isotopologues.

– These differences in Tex imply that the ratio of 13CO(1−0)
and C18O(1−0) integrated intensities is not a direct mea-
surement of the column density ratio N(13CO)/N(C18O),
with a difference of up to a factor two. Moreover, this col-
umn density ratio exhibits regular spatial variations across
the mapped region, with high values in the UV illuminated
regions and low values in shielded regions. These low val-
ues are consistent with the ratio of 13C and 18O elemental
abundances (i.e., a factor of about 8).

– In this nearby molecular cloud, the elemental abundances are
uniform and the variations in CO isotopologue relative abun-
dances are solely due to chemical processes (fractionation,
photodissociation, freezing). The interpretation of variations
of line integrated intensity ratios should therefore be per-
formed with caution, taking into account radiative transfer
and chemical effects.

We obtained the following results from the methodological
viewpoint.

– This analysis has shown that it is important to take the
opacity broadening effect into account when fitting the line

profiles, even for moderate opacities as first discussed by
Phillips et al. (1979). The estimation of the column density
is correlated with that of the velocity dispersion when the
line is optically thick and this correlation between column
density and velocity dispersion must be taken into account
when estimating uncertainties on the fitted parameters even
for moderate line opacities. When the line is optically thin,
the estimation of the column density is correlated with that
of the excitation temperature except in a small interval where
the ratio of the column density of the species to the inte-
grated intensity of the line reaches a minimum (around
Tex = 10 K for the 1–0 transitions of CO isotopologues). This
means that a small variation of the estimation of the excita-
tion temperature or velocity dispersion leads to large errors
on the estimation of the column density.

– This analysis also allows us to quantify the benefit of a simul-
taneous analysis of two rotational lines of the same species
compared to the analysis of a single line. In particular, it
alleviates the degeneracy described above. This is a rigor-
ous demonstration of intuitive results. It is an argument in
favor of the installation of dual-band receiver systems for
telescopes like the IRAM-30 m or NOEMA.

– In order to derive the precision achieved on these parameters
when trying to fit actual observations of the CO isotopologue
lines towards the Orion B molecular cloud, we first showed
that a (simple) maximum likelihood estimator is unbiased
and efficient when the relative precision given by the CRB
is better than 20%, and that it is possible to detect pixels for
which the estimation of the parameters in LTE conditions is
accurate (i.e., better than 20%).

– The residuals of the fit of the CO isotopologue lines amount
to less than 1% of the original signal and the relative preci-
sion on the physical parameters is better than 20% for 63, 82,
and 40% of the field of view for the 12CO, 13CO, and C18O
species, respectively. The presence of structured residuals
nevertheless indicates that the model remains sometimes too
simple. In particular, asymmetric line profiles or the pres-
ence of line wings are incorrectly modeled. The 12CO line
profiles are the most affected. Addressing the possibility of
catching the complex shape of this spectrum is a motivating
perspective that would generalize the approach initiated in
this paper.

In the transition between regions where the number of required
velocity components changes, some ambiguity on the velocities
of the components occurs, and this impacts the estimations of
all the other parameters. Fixing a priori ∆V based on spatial
processing (e.g. extending the ROHSA pre-processing) and thus
applying only a gradient on σV , Tex and N could improve the
robustness of our estimations. This would be useful, in particular,
for low S/N pixels. Another perspective is to use a spatial regular-
ization criterion in the fit to improve all the estimations. This will
be the subject of another paper (Vono et al., in prep.). Finally, try-
ing to estimate the above physical parameters in regions that are
more diffuse than on the studied field of view or for other species
that have higher dipole moments (HCO+ or CS), requires the use
of non-LTE models. Such non-LTE models would also be inter-
esting to identify possible systematic effects coming from the
use of the LTE approximation. An upcoming paper will study
the large velocity gradient approximation of the radiative transfer
using a similar CRB approach.
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Appendix A: Gradient calculation

The spectrum at frequency ν is:

s(ν) = (J(Tex, νl) − J(TCMB, ν))
[
1 − exp(−Ψ(ν))

]
, (A.1)

and thus it is a function of the unknown parameters θ =
[Tex, log N, ∆V , σV ]. The following gradients are useful to
derive the Fisher matrix (see Eq. (14)).

A.1. ∂ s (ν)/∂Tex

∂s(ν)
∂Tex

=
∂J(Tex, νl)
∂Tex

[
1 − exp(−Ψ(ν))

]

+ (J(Tex, νl) − J(TCMB, ν))
∂Ψ(ν)
∂Tex

exp(−Ψ(ν)). (A.2)

A.2. ∂J(T,ν)
∂T

J(T, ν) =
hν
k

1
exp hν

kT − 1
. (A.3)

Thus

∂J(T, ν)
∂T

=
hν
k

hν
kT 2 exp hν

kT(
exp hν

kT − 1
)2 =

h2ν2

k2T 2

exp hν
kT(

exp hν
kT − 1

)2 , (A.4)

and, finally,

∂J(T, ν)
∂T

=
h2ν2

k2T 2

1
exp hν

kT − 2 + exp− hν
kT

. (A.5)

A.3. ∂Ψ(ν)
∂Tex

Ψ(ν) =

2∑

l=1

αlφ

(
ν; νl

(
1 − ∆V

c

)
, νl

σV

c

)
. (A.6)

Thus

∂Ψ(ν)
∂Tex

=

2∑

l=1

∂αl

∂Tex
φ

(
ν; νl

(
1 − ∆V

c

)
, νl

σV

c

)
. (A.7)

A.4.
∂αl
∂Tex

αl =
c2

8π
N

Q(Tex)
Al gup

ν2
l

exp
[
−Eup

Tex

] (
exp

[
h νl

k Tex

]
− 1

)
. (A.8)

Thus,

∂αl

∂Tex
=

−
Q′(Tex)
Q(Tex)

+
Eup

T 2
ex
− h νl

k T 2
ex

1

1 − exp− h νl
k Tex

αl, (A.9)

where Q′(Tex) =
∂Q(Tex)
∂Tex

is numerically computed.

A.5. ∂s (ν)/∂LN

Let us introduce LN = log N.

∂s(ν)
∂LN

= (J(Tex, νl) − J(TCMB, ν))
∂Ψ(ν)
∂LN

exp(−Ψ(ν)). (A.10)

A.6.
∂αl
∂LN

Since N = 10LN and using Eq. (A.8), we get

∂αl

∂LN
= αl ln(10), (A.11)

where ln is the natural logarithm.

A.7. ∂Ψ(ν)/∂LN

From Eq. (A.6), we get

∂Ψ(ν)
∂LN

=

L∑

l=1

∂αl

∂LN
φ

(
ν; νl

(
1 − ∆V

c

)
, νl

σV

c

)
. (A.12)

Then using Eq. (A.11), one gets

∂Ψ(ν)
∂LN

= log(10) Ψ(ν). (A.13)

A.8. ∂s (ν)/∂∆V

∂s(ν)
∂∆V

= (J(Tex, νl) − J(TCMB, ν))
∂Ψ(ν)
∂∆V

exp(−Ψ(ν)). (A.14)

A.9. ∂Ψ(ν)/∂∆V

With νc = νl

(
1 − ∆V

c

)
and σν = νl

σV
c , we have

Ψ(ν) =

2∑

l=1

αl φ (ν; νc, σν) . (A.15)

Thus,

∂Ψ(ν)
∂∆V

=

2∑

l=1

αl
∂φ (ν; νc, σν)

∂∆V
. (A.16)

Since φ(ν; νc, σν) = 1√
2πσν

exp
(
− (ν−νc)2

2σ2
ν

)
, we get

∂Ψ(ν)
∂∆V

= −
2∑

l=1

αl
νl

c
∂φ(ν; νc, σν)

∂νc
, (A.17)

where

∂φ(ν; νc, σν)
∂νc

=
2(ν − νc)

2σ2
ν

φ(ν; νc, σν). (A.18)

Thus

∂Ψ(ν)
∂∆V

= −
2∑

l=1

αl
νl

c
(ν − νc)
σ2
ν

φ (ν; νc, σν) . (A.19)

A.10. ∂ s (ν) /∂σV

∂s(ν)
∂σV

= (J(Tex, νl) − J(TCMB, ν))
∂Ψ(ν)
∂σV

exp(−Ψ(ν)). (A.20)
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A.11. ∂Ψ(ν)/∂σV

From Eq. (A.15), we get

∂Ψ(ν)
∂σV

=

2∑

l=1

αl
∂φ (ν; νc, σν)

∂σV
, (A.21)

and with φ(ν; νc, σν) = 1√
2πσν

exp
(
− (ν−νc)2

2σ2
ν

)
, we get

∂Ψ(ν)
∂σV

=

2∑

l=1

αl
νl

c
∂φ(ν; νc, σν)

∂σν
. (A.22)

Then,

∂φ(ν; νc, σν)
∂σν

= − 1
σν
φ(ν; νc, σν) +

2(ν − νc)2

2σ3
ν

φ(ν; νc, σν). (A.23)

Thus

∂Ψ(ν)
∂σV

=

2∑

l=1

αl
νl

c

(
(ν − νc)2

σ3
ν

− 1
σν

)
φ (ν; νc, σν) , (A.24)

which can also be written

∂Ψ(ν)
∂σV

=

2∑

l=1

αl
1
σV

(
(ν − νc)2

σ2
ν

− 1
)
φ (ν; νc, σν) . (A.25)

Appendix B: Maximum likelihood estimator

B.1. Definition for two lines of the same species and a single
velocity component

We begin with the assumption that we are estimating the physical
parameters (θ) of the LTE radiative transfer for two lines of the
same species, and a single velocity component. Starting from
Eq. (13), we write out the notation of the 2 K samples xn,l as χ.
The amount of noise for each line is fixed toσb,1, andσb,2. In this
case, the maximum likelihood estimator (MLE) is (Garthwaite
et al. 1995):

θ̂ = arg max
θ

(
log l(θ;χ)

)
. (B.1)

Thus, θ̂ is the argument that maximizes the likelihood for the
observed sample χ. With two lines, the likelihood can be written
as:

l(θ;χ) =

2∏

l=1

K∏

n=1

1√
2πσb,l

exp

−
(xn,l − sn,l)2

2σ2
b,l

 . (B.2)

And the log-likelihood is:

L(θ;χ) = cte −
2∑

l=1

∑K
n=1(xn,l − sn,l)2

2σ2
b,l

. (B.3)

B.2. Initialization of the unknown parameters

The log-likelihood function L(θ;χ) can have many local max-
ima. It is thus crucial to initialize the gradient near the global
maximum. As explained in Sect. 4.1, the vector of unknown
parameters has four components (θ = [Tex, log N, ∆V , σV ]T ) in
the case of a single velocity component. A simple initial estima-
tion of the typical velocity along the line of sight (∆V ) is given
by the velocity where the spectrum intensity is maximum. As
the three other unknown parameters (Tex, N, and σV ) are highly
correlated (see Sect. 4.6), we systematically search in a 3D grid
defined as follows.

– We sample N logarithmically between 1012 and 1018 cm−2

with a step of 0.1 (i.e., 61 values).
– We sample Tex logarithmically between 3 and 100 K with a

step of 0.05 (i.e., 31 values).
– Finally, we first sample σV with 0.2, 0.3,..., 0.6, 1.2,...,

3.8 km s−1 (i.e., 10 values) before refining the search with a
step of 0.025 km s−1 for σV ≤ 0.6 km s−1, and of 0.05 km s−1,
otherwise.

These values have been fixed empirically based on simulations
for which we tried to find a tradeoff between accuracy and
computation time.

B.3. Maximization of the likelihood function through a scoring
algorithm

The likelihood function is maximized here using Fisher’s scoring
algorithm (Garthwaite et al. 1995). It is an iterative algorithm,

θ̂(i+1) = θ̂(i) + piI−1
F (̂θ(i))∇θ (̂θ(i)), (B.4)

where i is the ith iteration, pi is a constant, IF(θ) is the Fisher
matrix (see Sect. 4) seen as a function of θ, and ∇θ(θ) is the
gradient,

∀ j = 1, ..., 4 [∇θ(θ)] j =

2∑

l=1

1
σ2

b,l

K∑

n=1

∂sn,l

∂θ j
(xn,l − sn,l), (B.5)

where j is the index of the unknown parameter.
In practice, at each iteration i, the algorithm tries pi = 0.1,

0.4 and 0.8, and it makes a quadratic fit to get an estimation of
pi that minimizes the log-likelihood in the interval [0.1, 0.8].
Moreover, the inversion of IF is made with the pseudo-inverse
when IF becomes singular (in the sense that the ratio between
the largest and the smallest eigenvalues of IF is larger than 108).
Finally, the iteration loop stops when the log-likelihood verifies
|L(̂θ(i+1);χ)− L(̂θ(i);χ)| < 10−16 or when the number of iterations
reaches 1000.

B.4. Generalization to two velocity components

When two velocity components are needed, the log-likelihood of
Eq. (B.3) becomes:

L(θ1, θ2;χ) = cte −
2∑

l=1

∑K
n=1(xn,l − sn,l(θ1) − sn,l(θ2))2

2σ2
b,l

. (B.6)

where sn,l(θm) is the spectrum corresponding to the compo-
nent m ∈ {1, 2}. The grid used in the initialization step now has
six dimensions: T (1)

ex ,N(1), σ(1)
V ,T (2)

ex ,N(2), σ(2)
V . One solution is to

consider the total Fisher matrix of size 8 × 8 (see Sect. 4.2), but
it can lead to singularities. We empirically observe that itera-
tively applying the gradient to each component separately (θ1,
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and then θ2) actually leads to better results than using a gradient
on the enlarged vector [θ1, θ2]T . Such a coordinate descent only
requires inversions of 4 × 4 Fisher matrices.

B.5. Computing load and optimization

From the computational viewpoint, the estimation may be car-
ried out many times either because it may be applied to many
different lines of sight or because it may be used in Monte Carlo
simulations. It is thus useful to actually compute in advance a 5D
set of (sn(θ))n,Tex,N,σV ,∆V

per line. In this 5D set, Tex, N and σV
are sampled as described in Appendix B.2. Moreover, we con-
sider ten different values of ∆V with a step of 0.05 km s−1 and
we restrict the range of explored channels to the velocity range
where the lines appear, that is, an interval of 26.5 km s−1 around
the initially estimated ∆V . This last point substantially decreases
the computation time. For a single species, the computation of
the 5D set of (sn(θ))n takes around 13 s in our Matlab implemen-
tation on a standard 2016 laptop. Each subsequent estimation
(initialization plus gradient) takes around 0.05 or 1.0 second
when estimating one or two velocity components, respectively.

For the considered ORION-B data, along with the initializa-
tion proposed in Appendix B.2, the median number of iterations
required to reach convergence is 40 or 200 when estimating one
or two velocity components, respectively.

Appendix C: Performance of the maximum
likelihood estimator

Monte Carlo simulations with P independent realizations of the
estimator

{̂
θ(p)

}
p=1,...,P

are used to analyze its performance. We

simulate data for the 13CO(1−0) and 13CO(2−1) lines using the
different values of Tex and N already used in Sect. 4.3. We here
compute P = 200 simulations with random noise for each pair of
(Tex,N) values.

After showing that MLE estimates of the parameters (̂θ) can
be injected in the computation of the CRB to detect accurate
estimations, we show that the proposed estimator is unbiased and
efficient.

C.1. Detection of (in)accurate estimations

In order to physically interpret the estimations θ̂ computed on
observed data, it is crucial to remove inaccurate estimations.
We thus need a way to quickly detect inaccurate estimations.
Figure C.1 shows the fraction of the Monte Carlo realizations for
each pair of (Tex,N) values that deliver “accurate” estimations of
all parameters. Here, “accurate” indicates that all the following
conditions are simultaneously satisfied:

B1/2(T̂ex)/T̂ex ≤ ρ, B1/2(log N̂) ≤ ρ,
B1/2(σ̂V )/σ̂V ≤ ρ, B1/2(∆̂V )/σ̂V ≤ ρ. (C.1)

In these equations, ρ is the relative precision required for all
the parameters. At first sight, Eqs. (C.1) and (25) seem identi-
cal. However, we here use estimation of the parameters θ̂, while
we used values of θ used to simulate the data in Sect. 4.7.
The value R(ρ) is the fraction of “accurate” estimations detected
without a priori information on the parameters. The contours in
Fig. C.1 correspond to the frontiers where the relative precision
on the actual values θ of the four parameters is ρ = 20 or 10%.
Figure C.1 thus clearly suggests that these frontiers are close to
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Fig. C.1. Variations of the relative number of accurate estimations as a
function of the column density and excitation temperature. The contour
corresponds to the frontier where the relative precision on the actual
values of the four parameters is ρ = 20% (solid red contour on the
left) and 10% (dashed red contour on the right). The 13CO(1−0) and
13CO(2−1) lines are simulated with σb = 100 mK, ∆V = 1.1 km s−1, and
σV = 0.61 km s−1.
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Fig. C.2. Variations of the bias (left) and efficiency (right) of the max-
imum likelihood estimator as a function of the column density and
excitation temperature. The solid and dashed red contours correspond to
the frontiers where the relative precisions on the estimations on the four
parameters are ρ = 20, and 10%, respectively, as defined in Fig. C.1.
The 13CO(1−0) and 13CO(2−1) lines are simulated with σb = 100 mK,
∆V = 1.1 km s−1, and σV = 0.61 km s−1.
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the pixels for which R(ρ)' 0.5. The test R(ρ)≥ 0.5 thus gives a
fair detection of accurate (and inaccurate) estimations. Further-
more, these maps show that, most of the time, all P estimations
are either inaccurate (R(ρ) = 0 in blue) or accurate (R(ρ) = 1, in
yellow). In other words, a single estimation θ̂ is often sufficient
to detect whether it is accurate or not.

More precisely, the light blue area in Fig. C.1.a corresponds
to a value R(0.2) = 0.15. This means that we still have a 15%
chance of considering an estimation as accurate when it is in
fact inaccurate, when N ' 1015 cm−2 and Tex > 50 K. It is pos-
sible to improve this on observed data because adjacent pixels
on the sky have physical parameters that are partially correlated.
We can thus assume that accurate and inaccurate estimations are
spatially grouped, and the detection can be improved by comput-
ing Eq. (C.1) in a sliding window of size 3× 3 pixels. In practice,
we remove estimations of pixels for which one of the neighbors
in the 3 × 3 pattern violates Eq. (C.1).

C.2. Bias and variance of the estimator

The bias and variance of the maximum likelihood estimator can
be estimated with (Garthwaite et al. 1995):

b̂ias(̂θi) =
1
P

∑
θ̂

(p)
i − θi

v̂ar(̂θi) =
1

P − 1

∑(
θ

(p)
i −

1
P

∑
θ̂

(p)
i

)2

, (C.2)

where P is the number of simulations in the Monte Carlo anal-
ysis, θi are the actual values of the parameters, and θ̂i are the
estimated values. Figure C.2 shows the variations of the ratios
b̂ias(̂θi)/v̂ar1/2 (̂θi) and v̂ar1/2 (̂θi)/B1/2(θ) as a function of Tex and
N.

It is evident that the bias of the proposed estimator is
negligible compared to its standard deviation (i.e., b̂ias(̂θi) �
v̂ar1/2 (̂θi)), and that its variance reaches the Cramer Rao bound
(i.e., v̂ar(̂θi)'B(θi)) in the region where the CRBs are suffi-
ciently small to get accurate estimations.

Appendix D: Additional figures

In Sect. 5.5, Fig. 12 shows the residuals for only one line.
Figure D.1 is a generalization with regard to the other lines.
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Fig. D.1. Spatial variations of the observed spectrum “energy” (first column), of the residual “energy” (second column), of their ratio (third column),
and of the ratio of “energy” that has not been modeled. The unit of the color look-up table is Kelvin2 or % depending on the column. White contours
show the regions where two components have been detected.

A26, page 27 of 27

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037776&pdf_id=0

	C18O, 13CO, and 12CO abundances and excitation temperaturesin the Orion B molecular cloud
	1 Introduction
	2 Description of the data
	2.1 IRAM-30m observations
	2.1.1 3mm CO lines from the ORION-B large program
	2.1.2 1mm CO lines

	2.2 Herschel observations
	2.3 Field of view
	2.4 Noise
	2.5 Line profiles

	3 Radiative transfer in local thermodynamic equilibrium
	4 Cramer-Rao bound analysis
	4.1 Computing the CRB from the Fisher matrix for a single line and a single velocity component
	4.2 Generalization to two lines and two velocity components
	4.3 CRB variations as a function of Tex and N
	4.4 Precision of the estimation of the centroid velocity V and the associated velocity dispersion V
	4.5 Precision of the estimation of the excitationtemperature Tex
	4.6 Precision of the estimation of the column density N
	4.7 Maximum noise tolerable to get a given relative precision on the different parameters
	4.8 Complementing 12CO(1–0) observations 

	5 Application to the ORION-B data
	5.1 Proposed estimator
	5.2 Estimation of the number of velocity components and initialization of the parameters
	5.3 Detailed analysis of two lines of sight
	5.4 Estimation of the quality of the fit and filtering out inaccurate estimations
	5.5 Global analysis of the quality of the estimation

	6 Astrophysical implications
	6.1 Estimated parameters and associated uncertainties for C18O, 13CO, and 12CO
	6.2 Excitation temperatures
	6.3 Abundances
	6.4 CO isotopologue column density ratios
	6.5 Velocity dispersions

	7 Conclusion
	Acknowledgements
	References
	Appendix A: Gradient calculation
	A.1  s()/Tex
	A.2 J(T,)T
	A.3 ()Tex
	A.4 lTex
	A.5 s()/LN
	A.6 lLN
	A.7 () /LN 
	A.8 s()/V
	A.9 () /V 
	A.10  s() /V 
	A.11 () /V

	Appendix B: Maximum likelihood estimator
	B.1 Definition for two lines of the same species and a single velocity component
	B.2 Initialization of the unknown parameters
	B.3 Maximization of the likelihood function through a scoring algorithm
	B.4 Generalization to two velocity components
	B.5 Computing load and optimization

	Appendix C: Performance of the maximum likelihood estimator
	C.1 Detection of (in)accurate estimations
	C.2 Bias and variance of the estimator

	Appendix D: Additional figures


