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Abstract. Ensemble estimates based on multiple datasets
are frequently applied once many datasets are available for
the same climatic variable. An uncertainty estimate based
on the difference between the ensemble datasets is always
provided along with the ensemble mean estimate to show
to what extent the ensemble members are consistent with
each other. However, one fundamental flaw of classic un-
certainty estimates is that only the uncertainty in one di-
mension (either the temporal variability or the spatial het-
erogeneity) can be considered, whereas the variation along
the other dimension is dismissed due to limitations in al-
gorithms for classic uncertainty estimates, resulting in an
incomplete assessment of the uncertainties. This study in-
troduces a three-dimensional variance partitioning approach
and proposes a new uncertainty estimation (Ue) that includes
the data uncertainties in both spatiotemporal scales. The new
approach avoids pre-averaging in either of the spatiotempo-
ral dimensions and, as a result, the Ue estimate is around
20 % higher than the classic uncertainty metrics. The devi-
ation of Ue from the classic metrics is apparent for regions
with strong spatial heterogeneity and where the variations
significantly differ in temporal and spatial scales. This shows
that classic metrics underestimate the uncertainty through
averaging, which means a loss of information in the varia-
tions across spatiotemporal scales. Decomposing the formula
for Ue shows that Ue has integrated four different variations
across the ensemble dataset members, while only two of the
components are represented in the classic uncertainty esti-
mates. This analysis of the decomposition explains the cor-
relation as well as the differences between the newly pro-

posed Ue and the two classic uncertainty metrics. The new
approach is implemented and analysed with multiple precip-
itation products of different types (e.g. gauge-based products,
merged products and GCMs) which contain different sources
of uncertainties with different magnitudes. Ue of the gauge-
based precipitation products is the smallest, while Ue of the
other products is generally larger because other uncertainty
sources are included and the constraints of the observations
are not as strong as in gauge-based products. This new three-
dimensional approach is flexible in its structure and partic-
ularly suitable for a comprehensive assessment of multiple
datasets over large regions within any given period.

1 Introduction

With the technical developments in monitoring natural cli-
mate variables and the increasing knowledge of the physi-
cal mechanisms in the climate system, many institutes have
the ability to provide different kinds of climate datasets.
Taking precipitation, which is the dominant variable in
the land water cycle, as an example, there are point mea-
surements, such as GHCN-D (global historical climatology
network-daily, Menne et al., 2012), gridded products based
on gauge measurements and interpolation (e.g. CRU, Har-
ris et al., 2014), products derived from remote sensing (e.g.
the Tropical Rainfall Measuring Mission – TRMM), reanal-
ysis datasets (e.g. NCEP) and estimates from models (e.g.
GCMs). These products have been developed using differ-
ent original data, technologies and model settings for vari-
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ous purposes (Phillips and Gleckler, 2006; Tapiador et al.,
2012; Beck et al., 2017; Sun et al., 2018). As a result, there
are differences between the various products due to measure-
ment errors, model biases, or chaotic noise. The uncertainty
is thus regarded as the deviation of these model results from
their real values.

However, the real values are difficult to measure and the
uncertainties are difficult to remove from the datasets. Thus,
using ensembles consisting of multiple datasets to generate a
weighted average has become very popular in climate-related
research. The ensemble means of multiple datasets are con-
sidered more reliable estimates than a single dataset. For ex-
ample, IPCC uses 42 CMIP5 (Coupled Model Intercompar-
ison Project Phase 5) models to show historical temperature
changes and 39 CMIP5 models to average future tempera-
ture projections in a RCP 8.5 scenario (Fig. SPM.7 in IPCC,
2013b). Schewe et al. (2014) use nine global hydrologi-
cal models to evaluate global water scarcity under climate
change. GLDAS (Global Land Data Assimilation System)
involves four different land surface models (Rodell et al.,
2004) and GRACE (Gravity Recovery and Climate Exper-
iment) provides estimates from three independent institutes
(Landerer and Swenson, 2012). Using multiple datasets re-
duces the dependence on a single dataset and eliminates the
random variations associated with biases or noise in each sin-
gle model estimate.

Along with the ensemble means, uncertainty information
is recommended to be presented because the level of uncer-
tainty determines the reliability of the ensemble results. In
general, uncertainties can be quantified as the range of maxi-
mum and minimum values (i.e. Vmax−Vmin), the value differ-
ence at different quantiles (e.g. V5 %−V95 %), the consistency
of models (ratio of models following a certain pattern to the
total number of models), the variation (σ 2) or the standard
deviation (σ ) of multiple model estimations. These metrics
describe the differences between multiple model estimates in
different aspects. Among the metrics, the standard deviation
(σ ) is the most used because it has the same unit as the orig-
inal dataset. Moreover, it is less sensitive to extreme samples
and to the number of datasets used for the investigation. The
ratio of the standard deviation (σ ) to the mean value (µ),
the so-called coefficient of variance (CV), representing the
dispersion or spread of the distribution of various ensemble
members (Everitt, 2013), is a unitless value which also shows
the degree of uncertainty efficiently.

Depending on the purpose of data evaluation, the uncer-
tainty between the datasets can be displayed or visualized in
space to show the spatial heterogeneity. For example, the pre-
dicted future temperature increase has a higher significance
in different models in the northern high latitudes than in the
middle latitudes (Box TS.6 Fig. 1 in IPCC, 2013a). Another
typical implementation is to evaluate the evolution of the un-
certainty over time. In general, the range of the uncertainty
decreases in the historical period over time because more
observations have been accessible recently. But the uncer-

Figure 1. Two classic uncertainty assessments in the current litera-
ture: the temporal evolution of the model uncertainty (flowcharts in
red) and the spatial distribution of the model uncertainty (flowcharts
in blue). Each of these uncertainty estimates was averaged over one
of the dimensions, either space or time, which will lead to loss of
information about the corresponding dimension.

tainty increases in future projections because of the increas-
ing spread of model estimates (Fig. SPM.7 in IPCC, 2013b),
indicating a decreasing consistency but increasing variation
across various datasets.

The two kinds of ways can easily show the spatial dis-
tribution or the temporal evolution of the uncertainty. But a
shortcoming is apparent, as the variation along one dimen-
sion (time or space) has to be collapsed to generate the mean
values when we attempt to assess the uncertainty for the other
dimension (space or time). For example, the averaging over
a specific region to obtain the spatial mean is estimated at
each time step before obtaining the temporal evolution of the
model uncertainty (red flowcharts in Fig. 1). In contrast, av-
eraging over a certain temporal period to obtain the tempo-
ral mean is necessary for each grid cell when estimating the
spatial variations of model uncertainties (blue flowcharts in
Fig. 1). The averaging, in either dimension, means a loss of
information about the variation in the data. Any changes in
the variation that leave the mean values unchanged will not
be propagated to the global uncertainty estimation. The re-
sult of this is that the variations between datasets are not fully
considered when estimating the uncertainties. In other words,
neither of the uncertainty estimates can represent the whole
of the differences between multiple datasets. The uncertainty
can be underestimated, and the similarity of the datasets thus
overestimated. Indeed, the current literature has not paid at-
tention to the neglect of variation after averaging as well as
its influence on the assessment of the uncertainty.

The total variation across multiple datasets is contributed
by the spatial heterogeneity, temporal variability and the
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model uncertainties. To some degree, the model uncertainty
is similar to other dimensions as a variation along a third
dimension (ensemble dimension). The key to evaluating the
model uncertainty is to decompose the variation caused by
differences between the datasets from the other two con-
tributors. Although decomposing the variation by means of
ANalysis Of VAriance (ANOVA) is often seen in hydro-
meteorological studies, this is designed to separate the pro-
cess uncertainties generated in different model processes
that propagate to the final variation. For example, Déqué
et al. (2007) decomposed the uncertainties of regional cli-
mate models (RCMs) into four sources of uncertainty: sam-
pling uncertainty, model uncertainty, radiative uncertainty
and boundary uncertainty. Bosshard et al. (2013) decom-
posed the uncertainty in river streamflow projections to un-
certainties from climate models, statistical post-processing
schemes and hydrological models. These implementations
differ from the purpose of the present study because they fail
to separate the uncertainties from the spatiotemporal varia-
tions because spatiotemporal averaging was already applied
in the estimation process. Sun et al. (2010, 2012) for the first
time decomposed the total variation into temporal variation
and spatial heterogeneity. They concluded that the variations
along the spatial dimension contributed more to the total vari-
ation than did the temporal variabilities. However, their ap-
proach is only valid for one single dataset and is thus not able
to evaluate the uncertainties if multiple datasets describe the
same variable. But a generalized approach should be based
on Sun’s work, as one more dimension can be added for a
specific analysis of the uncertainties.

In the present study, we aim to introduce a new approach to
estimating uncertainty of multiple datasets. The new uncer-
tainty metric should avoid any averaging over time or space,
so that all information along each of these two dimensions
can be maintained for the assessment of the uncertainty. Mul-
tiple precipitation products will be used to display the results
and explain the specifics of the new approach. In Sect. 2,
the details of the three-dimensional variance partitioning ap-
proach are introduced. The characteristics of multiple pre-
cipitation datasets and estimations of two other classic un-
certainty metrics are shown in Sect. 3. The results of the new
approach for precipitation products are discussed in terms of
the types of precipitation datasets in Sect. 4. The differences
between the new uncertainty estimate and two selected clas-
sic metrics used in uncertainty analysis are analysed and dis-
cussed in Sect. 5. A discussion and some conclusions follow
in Sect. 6.

2 Method and datasets

2.1 Mathematical derivation

Multiple datasets recording the same climatic variable should
be reorganized into a three-dimensional database, using the

dimensions of (1) time with a regular time interval (e.g.
monthly or annual), (2) space with regular spatial units, with
all the grids re-organized into one dimension from the orig-
inal longitude–latitude grids, and (3) ensemble as the third
dimension describing the different ensemble datasets. Thus,
the dataset array can be re-organized to be

Z= [zijk], (1)

with the ith time step (i = 1,2, . . .,m), j th grid (j =
1,2, . . .,n), and kth ensemble member or ensemble model
(k = 1,2, . . ., l).

We define the three dimensions to be time, space and en-
semble dimension, and the means for these three dimensions
to be the temporal mean, spatial mean and ensemble mean.
The corresponding variances are referred to as the temporal
variance, spatial variance, and ensemble variance. We also
define the grand mean (µ), grand variance (σ 2) and total
sum of squares (SST) (or total variation) across the entire
database:

µ=

m∑
i=1

n∑
j=1

l∑
k=1

zijk/(mnl) (2)

σ 2
=

SST
mnl

(3)

SST=
m∑
i=1

n∑
j=1

l∑
k=1
(zijk −µ)

2. (4)

The total variation receives contributions from the variations
along all three dimensions (Eq. 4). It can be reformulated as
an expression in terms of the variations along each of the
three different dimensions. For instance, the derivation of the
total variation can start from the third ensemble dimension.
For a specific kth ensemble member, the grand mean is for-
mulated as µts[k] =

∑m
i=1
∑n
j=1zijk/(mn), leading to the to-

tal sum of squares being rewritten as

SST=
m∑
i=1

n∑
j=1

l∑
k=1
(zijk −µts[k] +µts[k] −µ)

2. (5)

The SST can be further expanded and rearranged as

SST=
m∑
i=1

n∑
j=1

l∑
k=1
(zijk −µts[k])

2

+ 2×
l∑

k=1
(µts[k] −µ)

[ m∑
i=1

n∑
j=1
(zijk −µts[k])

]
︸ ︷︷ ︸

=0

+

[ m∑
i=1

n∑
j=1

]
︸ ︷︷ ︸
=mn

l∑
k=1
(µts[k] −µ)

2, (6)

SST=
m∑
i=1

n∑
j=1

l∑
k=1
(zijk −µts[k])

2
+mn

l∑
k=1
(µts[k] −µ)

2, (7)
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SST=mn
l∑

k=1
σ 2

ts[k] +mnlσ
2(µts), (8)

where σ 2(µts) is the variation of the grand mean for each en-
semble member and σ 2

ts[k] is the grand variance in the spatial
and temporal dimensions for the ensemble member k. More-
over, σ 2

ts[k] can be split using the mean of the spatial variation
at each time step σ 2

s [k, :] and the variation of the spatial mean
σ 2(µs[k, :]), denoted as in Eq. (9) with its derivation given in
Eqs. (10)–(17).

σ 2
ts[k] = σ

2
s [k, :] + σ

2(µs[k, :]). (9)

For a specific dataset k, the grand mean µts[k] at the spa-
tiotemporal scale is

µts[k] =
1
mn

m∑
i=1

n∑
j=1

zijk. (10)

The total sum of squares of the differences from the grand
mean of this ensemble member is

SST[k] =
m∑
i=1

n∑
j=1
(zijk −µts[k])

2 (11)

and the grand variance σ 2
ts is

σ 2
ts[k] =

1
mn

m∑
i=1

n∑
j=1
(zijk −µts[k])

2. (12)

The derivation can start from either the spatial dimension or
the temporal dimension. If the derivation starts from the spa-
tial dimension, Eq. (11) can be rewritten by incorporating the
spatial mean of each time step µs[k, i] =

∑l
j=1zijk/n:

SST[k] =
m∑
i=1

n∑
j=1
(zijk −µs[k, i] +µs[k, i] −µts[k])

2. (13)

This can be expanded and then rearranged as

SST[k] =
m∑
i=1

n∑
j=1
(Zijk −µs[k, i])

2

+ 2×
m∑
i=1
(µs[k, i] −µts[k])

×

[ n∑
j=1
(Zijk −µs[k, i])

]
︸ ︷︷ ︸

=0

+

[ n∑
j=1

]
︸ ︷︷ ︸
=n

m∑
i=1
(µs[k, i] −µts[k])

2, (14)

SST[k] =
m∑
i=1

n∑
j=1
(Zijk −µs[k, i])

2

+ n

m∑
i=1
(µs[k, i] −µts[k])

2, (15)

SST[k] =n
m∑
i=1

σ 2
s [k, i] + nmσ

2(µs[k, :])

= nmσ 2
s [k, :] +mnσ

2(µs[k, :]). (16)

The grand variance of this specific dataset is Eq. (17) (iden-
tical to Eq. 9).

σ 2
ts[k] =

SST[k]
mn

= σ 2
s [k, :] + σ

2(µs[k, :]) (17)

Here, σ 2
s [k, :] is the mean of the spatial variation at each time

step and σ 2(µs[k, :]) is the variation of the spatial mean, or if
we started the derivation from the time dimension, the grand
variance can be split using the average of the temporal vari-
ation from all regions σ 2

t [:,k] and the spatial variation of the
temporal mean σ 2(µt[:,k]):

σ 2
ts[k] = σ

2
t [:,k] + σ

2(µt[:,k]). (18)

With Eqs. (9) or (17) and (18), we obtain

σ 2
ts[k] =

1
2

{
[σ 2(µt[:,k])+ σ 2

s [k, :]] + [σ
2(µs[k, :])+ σ

2
t [:,k]]

}
. (19)

Substituting Eq. (19) into (8) results in

SST=
mn

2

l∑
k=1
[σ 2(µt[:,k])+ σ 2

s [k, :]]

+
mn

2

l∑
k=1
[σ 2(µs[k, :])+ σ

2
t [:,k]]

+mnlσ 2(µts). (20)

The first term on the right-hand side of Eq. (20) can be
transformed to

mn

2

l∑
k=1
[σ 2(µt[:,k])+ σ 2

s [k, :]] =mnl

[
σ 2

s_t+ σ
2
s

2

]
, (21)

where σ 2
s_t is the mean value across ensemble members of

the spatial variation of the temporal mean, and σ 2
s represents

the grand mean of σ 2
s , which is the grand variance across the

temporal and ensemble dimensions. Eq. (20) then becomes

SST=mnl
[
σ 2

s_t+ σ
2
s

2

]
+mnl

[
σ 2

t_s+ σ
2
t

2

]
+mnlσ 2

e (µts), (22)

where σ 2
t_s denotes the mean value across ensemble members

of the temporal variation of the spatial mean, σ 2
t denotes the
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grand mean of σ 2
t , the grand variance across space and en-

semble dimensions, and σ 2
e (µts) denotes the variation across

ensemble members of the spatial–temporal means µts.
Similarly, the global derivation of SST can start from any

of the other two dimensions (i.e. space or time). This deriva-
tion can then be formulated as

SST=mnl
[
σ 2

s_e+ σ
2
s

2

]
+mnl

[
σ 2

e_s+ σ
2
e

2

]
+mnlσ 2

t (µse), (23)

SST=mnl
[
σ 2

e_t+ σ
2
e

2

]
+mnl

[
σ 2

t_e+ σ
2
t

2

]
+mnlσ 2

s (µet), (24)

where each variable is defined in Appendix A. Averaging
these three expressions of SST defined in Eqs. (22)–(24)
leads to

SST=
mnl

3

[
σ 2

t_s+ σ
2
t_e

2
+ σ 2

t + σ
2
t (µse)

]

+
mnl

3

[
σ 2

s_t+ σ
2
s_e

2
+ σ 2

s + σ
2
s (µet)

]

+
mnl

3

[
σ 2

e_t+ σ
2
e_s

2
+ σ 2

e + σ
2
e (µts)

]
. (25)

With the total number of degrees of freedom being m×
n× l, the grand variance is expressed as

σ 2
=

1
3
[
σ 2

t_s+ σ
2
t_e

2
+ σ 2

t + σ
2
t (µse)]︸ ︷︷ ︸

Vt

+
1
3
[
σ 2

s_t+ σ
2
s_e

2
+ σ 2

s + σ
2
s (µet)]︸ ︷︷ ︸

Vs

+
1
3
[
σ 2

e_t+ σ
2
e_s

2
+ σ 2

e + σ
2
e (µts)]︸ ︷︷ ︸

Ve

, (26)

where Vt, Vs and Ve denote the temporal, spatial and ensem-
ble variances, respectively. An illustration of the present ap-
proach is shown in Fig. 2 to facilitate the understanding of the
partitioning results. The original database, consisting of mul-
tiple datasets, is re-organized into three dimensions (grey in
the centre). Zones with different colours represent different
processes of the original database from different dimensions
(see the details in the caption of Fig. 2 and Appendix A).

Note that the ensemble variance Ve in Eq. (26) is a com-
bination of several variations across the ensemble members.
The four components are the variations of temporal and spa-
tial values (σ 2

e , zone B3), temporal mean (σ 2
e_t, zone C5), spa-

tial mean (σ 2
e_s, zone C6) and the grand variance of the spa-

tiotemporal mean for a single ensemble member (σ 2
e (µts),

zone F3). Similarly, the other variances only rely on the vari-
ances in the corresponding dimension, which shows the inde-
pendence of the three dimensions. This also is an illustration
of the fact that the uncertainty across ensemble members is
similar to the temporal variation and spatial heterogeneity.

2.2 Definitions of the metrics for model uncertainty

Although the total variation is a result of contributions from
the spatial heterogeneity, temporal variability and the uncer-
tainties across different datasets, we mainly focus on the vari-
ance in the ensemble dimension because the spatial or tempo-
ral variation is natural for climatic variables. The uncertainty
of ensemble members is normalized as the ratio of the square
root of the ensemble variance (Ve) to the grand mean value
of the datasets (µ).

Ue =
√
Ve/µ (27)

Two classic metrics used for uncertainty estimates are also
introduced for comparison. For each basic spatial unit (in
the present study this means a grid cell), we can estimate
the temporal mean of the target variable in each ensemble
dataset as µt[j,k], j = 1, . . .,n represents the spatial unit and
k = 1, . . ., l represents the index of the dataset. Then we can
estimate the variations across different ensemble datasets of
the mean values as σ 2(µt[j, :]) (expressed as σ 2

e_t[j ] in this
study). The spatial distribution of the σ 2

e_t shows the magni-
tude of the model uncertainty over space and its root σe_t[j ]

is the model deviation at each spatial unit. The estimate of
this model deviation over the entire region can be expressed
as

N.s.std=
√
σ 2

e_t/µ=
1
µ

√√√√1
n

n∑
j=1

σ 2
e_t[j ]. (28)

For each spatial unit, σ 2
e_t[j ] (j = 1, . . .,n) can take a differ-

ent value. The values for all the grid cells are averaged to
obtain σ 2

e_t, which shows the general magnitude of the en-
semble variation over space. The quantity N.s.std is normal-
ized as the ratio of the square root of the averaged variations√
σ 2

e_t to the grand mean of all the datasets µ.
Similarly, the model uncertainty can be normalized as the

ratio of the square root of the averaged ensemble variation
but at different time steps σ 2

e_s to the entire means:

N.t.std=
√
σ 2

e_s/µ=
1
µ

√√√√ 1
m

m∑
i=1

σ 2
e_s[i], (29)

where σ 2
e_s[i] (i = 1, . . .,m) is the variation across different

datasets of the spatial means of each product at each time
unit µs[i,k], (i = 1, . . .,m,k = 1, . . ., l).

www.hydrol-earth-syst-sci.net/24/2061/2020/ Hydrol. Earth Syst. Sci., 24, 2061–2081, 2020
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Figure 2. Partitioning the temporal–spatial-ensemble variance. The original database is re-organized into three dimensions: time, space and
ensemble. Zones with different colours represent different processes based on the original database through different dimensions. The labels
of the zones are listed on the right; detailed definitions can be found in Appendix A. The grand variance is σ 2 and the grand mean is µ.
The subscripts t, s, and e indicate dimensions of time, space and ensemble, respectively. In Zone A, µx shows the mean values across the
x dimension (x = t, s or e); in Zone B, σ 2

x indicates the variation across the x dimension; in Zone C, σ 2
x_y indicates the variation across the

x dimension of µy (y = t, s or e); in Zone D, µxy indicates the means across the x and y dimensions; in Zone E, σ 2
xy indicates the variation

across the x and y dimensions; in Zone F, σ 2
x (µyz) indicates the variation across the x dimension of the means across the y and z dimensions

(z= t, s or e).

The two uncertainty estimates (Eqs. 28 and 29) correspond
to the two classic metrics presented in the Introduction. We
will compare Ue estimated by the newly proposed approach
with these two classic metrics (N.t.std and N.s.std) to show
their relations and differences.

2.3 Study area and data description

Mainland China has been selected as the study area be-
cause of its large area and different types of climate (Kot-
tek et al., 2006). Ten different subregions have been de-
fined to facilitate the comparisons and analysis of the strong
spatial variations. The subregions are (1) Songhua River
Basin, (2) Liao River Basin, (3) Hai River Basin, (4) Yellow
River Basin, (5) Huai River Basin, (6) Yangtze River Basin,
(7) Southeast China, (8) South China, (9) Southwest China,
and (10) Northwest China; see Fig. 3. The entire Chinese
mainland is numbered as the 11th region. Most of the sub-
regions are natural river basins: this definition is more ap-
propriate for water resource analysis than definitions using

Figure 3. Ten subregions are defined in this study. These subregions
are mainly river basins (Regions 1–8), but 9 is Southwest China and
10 is Northwest China. Region 11 is the entirety of the Chinese
mainland.

longitude–latitude grids or those based on administrative re-
gions.

Hydrol. Earth Syst. Sci., 24, 2061–2081, 2020 www.hydrol-earth-syst-sci.net/24/2061/2020/
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Precipitation is one of the climatic variables sensitive
to large-scale atmospheric cycles and the local topogra-
phy. Thirteen different precipitation datasets from various
sources have been collected for comparison (Table 1). These
datasets have been categorized into three groups according to
the methods they used for generating the products, namely,
gauge-based products, merged products and general circu-
lation models (GCMs). The gauge-based products (namely,
CMA, GPCC, CRU, CPC and UDEL) use data observed
from global precipitation gauges. The density of the ground
observation gauges, the representativeness of the gauges, and
the interpolation algorithms for converting the gauge obser-
vations to a gridded dataset differ from product to product.
The CMA (China Meteorological Administration) dataset
has the densest distribution of gauges and probably has the
best quality to capture the spatiotemporal variations of the
precipitation over the study area. The CMA dataset is ex-
cluded when estimating the uncertainty of the gauge-based
products: it is chosen as the reference dataset for compari-
son.

As for the merged precipitation products, the CMAP,
GPCP and MSWEP use different sources of precipitation
data (namely, gauge observations, satellite remote sensing,
and atmospheric model re-analysis). These different precip-
itation sources are averaged using different weights. Thus,
the differences between the three merged products are asso-
ciated with the precipitation sources and the weight of the
gauge observations. ERA-Interim is a re-analysis product: it
uses near-real-time assimilation with data from global ob-
servations (Dee et al., 2011). Thus, the forecasting model is
constrained by the observations and forced to follow the real
system to some degree. Because of its use of observations,
ERA-Interim also belongs to the category of merged prod-
ucts.

GCM precipitation is a pure model estimation because ob-
servations are not used to constrain the simulations. The im-
plemented physical and numerical processes will affect the
accuracy of the model results. The lack of constraints on the
GCMs will cause them to not follow the actual synoptic vari-
ability and explore other trajectories in the solution space.
Kay et al. (2015) repeatedly ran the same GCM with a very
small shift in the initial conditions. But the small difference
leads to an increasing spread in the model outputs after a
number of running time steps (see Fig. 2 in Kay et al., 2015).
Therefore, the uncertainty in GCMs can be attributed to the
differences in the model structures, parameter settings, and
the initial conditions as well. There are more than 20 kinds
of different GCMs; only 4 of them have been chosen, ran-
domly, to maintain the same number of datasets using the
gauge-based products as those using merged products.

All the products of the three precipitation types, including
CMA, are in gridded format. Although they differ in their
original spatial resolution, all the products have been inter-
polated to a 0.5◦ spatial resolution to unify the spatial units.
Annual average values are summed based on their original

time steps (daily or monthly) and the overlap time span of all
the datasets is from 1979 to 2005 for all the products.

3 Characteristics of precipitation and model-quantified
uncertainties with classic metrics

3.1 Spatial patterns of annual precipitation

The long-term annual mean precipitation (1979–2005) ob-
tained by averaging the precipitation from multiple datasets
in the corresponding precipitation group is mapped in Fig. 4.
The annual mean precipitation obtained from the CMA
dataset is 589.8 mm yr−1 (1.6 mm d−1) over the entire Chi-
nese mainland. The gauge-based precipitation has the least
bias (−4.1mm yr−1, −0.7 % in percentage) compared to the
CMA precipitation. The precipitation in the merged prod-
ucts and GCMs is larger than that of the CMA by 63.1
and 232.0 mm yr−1 (with the bias equal to +10.7 % and
+39.3 %), respectively.

The spatial pattern of the annual precipitation shows a de-
creasing gradient from Southeast China (> 1600 mm yr−1)
to Northwest China (< 400 mm yr−1) in CMA and all other
three precipitation groups. However, they have different abil-
ities to display the spatial gradient of the precipitation in
some detail. For instance, abrupt precipitation changes rather
than following the general gradient occur in some areas in
CMA. This is probably caused by the sudden changes in to-
pography (e.g. the northern Tienshan Mountains, the Qilian
Mountains), which is not captured in the gauge-based prod-
ucts because some of the key gauges are not included in the
production of the gauge-based products. The abrupt changes
can be somehow represented by merged products and GCMs
because the local variation due to topographic changes can be
observed by other measurements or modelled by algorithms.
The precipitation in the merged products and the GCMs is
higher than that of CMA in the Himalayas, and particu-
larly the GCMs show higher precipitation in the North Tibet
Plateau as well as the southern part of the Hengduan Moun-
tains. These differences show the general characteristics of
the three types of precipitation products.

3.2 Spatial distribution of model uncertainties

In addition to the precipitation differences in its long-term
annual means, differences can be found between datasets
within the same precipitation group. The spatial distribution
of the model uncertainty for each precipitation group, which
is expressed as the ensemble deviation of the annual pre-
cipitation from different precipitation products, is mapped in
Fig. 5.

The ensemble deviation of the datasets based on gauge
observations is small in most of the land area of China
(< 50 mm yr−1, Fig. 5a). Although the deviation is higher in
the south of China (50–100 mm yr−1), the area is not con-
tinuous in space. The highest deviation occurs along the
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Figure 4. Annual precipitation over a long-term period (1979–2005) for each group of precipitation datasets. (a) Annual precipitation of the
CMA dataset, (b) ensemble means of the annual precipitation over the precipitation products in gauge-based precipitation excluding CMA,
(c) ensemble mean of the annual precipitation of all merged products, and (d) ensemble means of the annual precipitation of all GCMs. The
observations in Taiwan are not released in the CMA dataset.

Himalayas, indicating a high variation across the observed
datasets. Regarding the merged precipitation products, the
deviation shows high values (> 200 mm yr−1, Fig. 5c) in
Southwest China (e.g. the Tibet Plateau, Yunnan Province,
Guangxi Province). Moderate deviation is found in North-
east China, North China and Southeast China. The deviation
of precipitation has a correlation with the topology, which in-
dicates that the performances of the technologies used for the
merged products are subject to the topologies as well. Com-
pared to the gauge-based and merged products, the deviation
of the selected GCMs has the highest value (> 400 mm yr−1,
Fig. 5e) in South China, indicating a significant model uncer-
tainty of the annual precipitation between different GCMs.

The ratio of the ensemble deviation to the mean value,
which shows the model uncertainty with no units, is very low
in East China (< 10 %, Fig. 5b). It is higher in West China,
especially in the Himalayas and the North Tibet Plateau.
Similarly to that of the gauge-based products, the uncer-
tainty of the merged products has higher values in the west
than in the east of China (Fig. 5d). The area with a devia-
tion ratio less than 10 % is mainly distributed in Southeast
China and is apparently smaller than that of the gauge-based
products, showing a decreasing similarity among different
merged products. The area with a moderate deviation ratio
(10 %–40 %) increases compared to that of the gauge-based
products, and the area is mostly in central and western China.
The uncertainty estimated in the GCMs shows similar pat-
terns in West China to that of the merged products, but with
higher magnitudes in East China (Fig. 5f). Only the area in

the northeast and part of central China features small uncer-
tainty, less than 10 %, and the deviation ratio rises signifi-
cantly in South China (e.g. the Pearl River basin), which cor-
responds to the high standard deviations in the GCMs shown
in Fig. 5e.

The magnitude of the ensemble deviation demonstrates the
model uncertainty of the different products in the same pre-
cipitation group and shows the ability to estimate the pre-
cipitation with different methods. For all products, the en-
semble deviation is relatively larger where the precipitation
is higher, especially along the mountains and the subtropical
regions. The deviation ratio is higher in Northwest China,
where the precipitation is among the lowest in China. Par-
ticularly for the gauge-based products, higher ratios occur
where the gauge density is low and the orographic effect is
apparent (e.g. the Tibet Plateau and other mountainous ar-
eas). For the merged products and the GCMs, the deviation
ratio increases especially in Southeast China, showing de-
creasing similarities among different precipitation products.
Because the deviation ratio has taken into account both the
variation and the means (which may have a systematic bias),
the deviation ratio is better than the absolute ensemble devi-
ation at representing the uncertainty, and it is the most com-
monly used in geographic studies.

3.3 Temporal evolution of model uncertainties

Figure 5 shows the spatial distribution of the ensemble de-
viation of the precipitation products. However, the temporal
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Figure 5. Spatial distribution of model uncertainty in annual precipitation estimated by the ensemble products. The uncertainty is expressed
as the standard deviation of the annual precipitation across ensemble precipitation products of a specific group (a, b: gauge-based products,
middle: merged products, e, f: GCMs). (a, c, e) are the values of the uncertainty. (b, d, f) are the ratios of ensemble deviation to the ensemble
means of the datasets in the corresponding group.

evolution of the deviation, which shows the performance of
the product over time and its changes, is not captured because
the temporal variation has been averaged in order to estimate
the spatial ensemble deviation in Fig. 5. In this subsection,
we examine the temporal evolution of the uncertainties in re-
gional annual precipitation estimated by different ensemble
products. The analysis is based on the 10 subregions defined
in Fig. 3 and the entire Chinese mainland.

The annual precipitation of each precipitation group has
been normalized as the ratio to the long-term annual mean of
the CMA in each subregion (black line in Fig. 6). The magni-
tude of the annual precipitation in the gauge-based products
(the blue solid line) is similar to that of the CMA except in
Southwest China (Fig. 6i) for the overestimation along the
Himalayas (Fig. 4a, b). The precipitation in the merged prod-
ucts (the green solid line) is higher in Southwest and North-
west China, in accordance with Fig. 4c. The annual precipi-
tation of the GCMs (the red solid line) is apparently higher

than that of the gauge-based products and merged products
for almost all regions, which agrees with the spatial patterns
in Fig. 4d.

The ensemble deviation across the timescale is shown in
the shaded area in Fig. 6. It is estimated as the deviation
of regional annual precipitation of each product in the same
group at a specific time step for each subregion. The devi-
ation is normalized to facilitate comparisons between dif-
ferent subregions. High deviations are found in Southwest
China (Fig. 6i) in all three precipitation groups because of
the large differences along the Himalayas. The deviations
of the gauge-based products and the merged products in
other regions are small and getting smaller with time. This
is mainly because more observations are included and tech-
nologies have improved with time to control the quality of
the data. A large deviation is found in the merged products
in 10-Northwest China (Fig. 6j) and 4-Yellow River Basin
(Fig. 6d), where a dry climate dominates and the annual
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Figure 6. Temporal evolution of the model uncertainty. The uncertainty is expressed as the normalized ensemble deviation of annual precip-
itation across ensemble datasets in each precipitation group for specific subregions. The value on the top right of each panel is the annual
regional precipitation estimated in the CMA dataset (1979–2015). The annual precipitation is normalized as the ratio to the CMA long-term
annual precipitation. The solid curve represents the ensemble mean of precipitation in each precipitation data group over the subregion. The
width of the shaded area represents the standard deviation of the annual precipitation estimated from the datasets within that group for each
year (divided by the annual precipitation of the corresponding group). The shaded area is equally distributed in the two sides of the ensemble
mean values for the corresponding precipitation group.

precipitation is among the lowest. The model deviation of
GCMs varies between regions as it is at its smallest in 1-
Songhua River Basin (Fig. 6a) and 6-Yangtze River Basin
(Fig. 6f), while it is among the highest in 8-South China
and West China (9, 10), agreeing with the deviation maps
in Fig. 5.

Despite their mean values and magnitudes of deviation, the
temporal evolutions of the gauge-based products and merged
products agree well with those of the CMA dataset, while the
temporal evolution of the members of the category of GCMs
is weaker and not well correlated with that of the CMA. The
main reason is that GCMs are not constrained in their synop-
tic variability and the sequence of wet and dry years can be

very different from that of the observations. A smoother re-
sult is thus obtained when we build the ensemble mean from
the GCMs. Unlike the weak variation in GCMs, the gauge-
based and merged products have a strong co-variance, and
the ensemble mean preserves this co-variance.

For the entire Chinese mainland (Fig. 6k), the ensemble
deviation remains stable in different precipitation groups. In
contrast, the annual precipitation spans the strongest spatial
heterogeneity in the mainland compared to those divided by
subregions (Fig. 4). However, the spatial variation has been
collapsed because the regional precipitation has to be ob-
tained before the temporal analysis. It is therefore interesting
to evaluate how the uncertainty changes when the variations
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along both the time dimension and the spatial dimension are
considered in the precipitation datasets.

3.4 Variations along the temporal and spatial
dimensions

Previous subsections provide the deviation analysis in either
temporal scale or spatial scale. However, the two are sel-
dom compared with each other. Herein, the standard devi-
ations of the temporal and spatial variations in the precipi-
tation datasets are compared in Fig. 7 in 10 subregions and
the China mainland for different precipitation groups. The
gauge-based products provide similar annual regional precip-
itation to CMA over the China mainland and the 10 specific
subregions except for the region 7-Southeast China (Fig. 7g)
and region 9-Southwest China (Fig. 7i), while the merged
products provide larger precipitation estimations for most of
the regions. It might indicate the degraded ability of remote
sensing, one of the important data sources in the merged
products, to estimate the precipitation amount in storms as
the storms mainly contribute to the total precipitation for the
two subregions. The regional precipitation in GCMs is even
larger except in the region 8-South China (Fig. 7h). These
results indicate the degraded ability of merged products and
GCMs in reproducing the total value of the annual precipita-
tion.

The spatial standard deviations (as a ratio to the mean) in
regions 9, 10 and 11 are the largest, indicating the strongest
spatial heterogeneity over these regions. The smallest spatial
variations are found in regions 7-Southeast China and 3-Hai
River, either because of the small area or the high homogene-
ity in these subregions. Nevertheless, the spatial deviation in
most of the subregions is larger than the temporal deviation.
The ratio of the temporal deviation to the spatial deviation is
among the smallest in subregions 9, 10 and 11 (k = 0.1, 0.12
and 0.05, respectively; k is the ratio of the temporal devia-
tion to the spatial deviation), showing an apparent difference
between the variations along the two dimensions, while the
difference between the variations along the two dimensions is
small in 3-Hai River basin (k = 1.15) and 7-Southeast China
(k = 0.90), mainly due to the relatively strong variability of
the annual precipitation in different years.

In addition to the differences between regions, the vari-
ations in different precipitation groups also vary in magni-
tude. Excluding the CMA dataset, which consists of only
one single product, the total variation (the sum of the spa-
tial and temporal variations) across the gauge-based prod-
ucts is higher than that of the other two groups. This differ-
ence demonstrates that the gauge-based products may have
the largest spatial variation, and the correlations between the
different gauge-based products are high, so that this varia-
tion is preserved when passing to the ensemble. In contrast,
variations across the GCMs are the smallest, either because
the precipitation estimated in the GCMs is more spatially
homogenous than that of other precipitation products or be-
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Figure 7. Spatial standard deviation (horizontal) and temporal standard deviation (vertical) of the annual precipitation across ensemble
datasets in each of the different precipitation groups for each subregion. The P value in the bottom left is the annual precipitation of CMA.
The cross centre represents the long-term means of the regional annual precipitation in ratio to the CMA mean value. The horizontal error
bar represents the spatial standard deviation (spatial variation of the long-term annual precipitation at all the grids). The vertical error bar
represents the temporal standard deviation (temporal variations of region-averaged annual precipitation in different years).

cause the precipitation estimations in different GCMs are not
consistent in time or space since there are no constraints on
the GCM simulation. The inconsistent precipitation patterns
will be further eliminated when carrying out an ensemble av-
eraging over multiple datasets.

4 Variances in precipitation products

4.1 Variances in three dimensions

In the preceding section, we introduced the spatial and tem-
poral characteristics of the annual precipitation. The varia-
tions in the precipitation in two dimensions of the precip-
itation products in the same precipitation group were esti-
mated by two classic metrics. In this section, we will present
the uncertainty results estimated by the newly proposed ap-
proach to the variance. As introduced in the Methods section,
the input annual precipitation to the approach is re-organized
into three dimensions: (1) time, 27 years from 1979 to 2005,
(2) space, 0.5◦ grids in a specific region, and (3) ensemble,

the number of models in each precipitation group (four mod-
els for each of the three groups). Note that the estimated vari-
ance is for a specific subregion because it is an analysis based
on regions and a long-term scale.

The grand variance (V , total value of the variance for all
three dimensions) and its three components (i.e. variance in
time Vt, space Vs and ensemble dimension Ve) for all the
subregions is mapped in Fig. 8. The grand variance is sim-
ilar in space in groups of the gauge-based products and the
merged products (Fig. 8a, b, c), while the grand variance in
the GCMs is larger and is approximately twice the V in the
other two groups in regions 9-South China and 10-Southwest
China. The differences are mainly constituted by the spatial
variance and ensemble variance (Fig. 8i, l).

The temporal variance Vt is the smallest among all three
variances, and it has very little differences in North China
(Fig. 8d, e, f). But it is higher in the gauge-based prod-
ucts than in the merged products and GCMs in regions 8-
Southeast China and 9-South China, indicating a relatively
strong temporal variation in the annual precipitation series,
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Figure 8. Maps of the estimated grand variance (V ) and variances in different dimensions (Vt, Vs, Ve) across the ensemble datasets in each
of the three different precipitation groups.

in accordance with the larger uncertainty ranges shown in
Fig. 6h, i. Similar patterns of the spatial variance Vs are found
in the gauge-based products and merged products (Fig. 8g,
h). The largest Vs is found in regions 7-Southeast River
basin and 9-Southwest China because the precipitation sig-
nificantly varies in space in these two subregions: it is higher
in GCM precipitation especially in 9-Southwest China, in-
dicating the strong spatial heterogeneity in the GCM mod-
els over the Himalayas (Fig. 8i). The ensemble variance Ve
is relatively small in most regions for gauge-based products
(Fig. 8j), indicating that the model variation across datasets in
the observation group is small. A similarly small Ve is found
in the northern regions of the merged products as well as in
the GCMs for the regions in North China, while the intra-
ensemble variations are large in the GCMs, especially in
the south, especially 9-Southwest China and 8-South China
(Fig. 8k, l).

One can conclude that the grand variance and individual
variance for each of the three different dimensions are gen-
erally larger in the precipitation group consisting of GCMs.
The variations for the gauge-based products and merged
products are similar in values and spatial distribution. How-
ever, in addition to the variances, the deviation defined as
the ratio of the square root of the variance to the mean (e.g.
U , Ut, Us, Ue) contains extra information about the regional
means and will be discussed in the following section.

4.2 Deviations in three dimensions

In contrast to the spatial gradient of the magnitude of the
variance distributed over the 10 subregions (Fig. 8), the larger
values of the total deviation (U =

√
V /µ) occur in the north-

west, but a lower value generally occurs in South China
(Fig. 9). The decreasing tendency of magnitude of the precip-
itation from the southeast to the northwest results in a shift
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of the spatial gradient compared to Fig. 4. The total devia-
tion U is highest in Northwest China (U = 0.89, Fig. 9a, b,
c) for all three precipitation groups, but is relatively small
in the northeastern 1-Songhua River (U = 0.27) and 8-South
China (U = 0.29) for the gauge-based products. A relatively
lower U is found in subregion 6-Yangtze River in the merged
products and GCMs in the eastern part of China.

Deviations along the temporal and spatial dimensions are
inherent, as they show the temporal evolution and spatial het-
erogeneity of the precipitation products. The results show
that Ut is small and contributes very little to the total U , indi-
cating the weak fluctuation of annual precipitation compared
to the spatial heterogeneity (Fig. 9d, e, f). The smallest value
ofUt for the GCMs is in accordance with the weakest tempo-
ral variations in Fig. 6. The deviation in the spatial dimension
(Us) contributes the most to the total deviation, especially in
Northwest China (Us = 0.77 for the gauge-based products,
Fig. 9g). The high Us indicates the strong spatial heterogene-
ity of precipitation in the region, demonstrating that the abil-
ity to describe the precipitation varies significantly in differ-
ent places in the subregions. However, because the spatial
variations obtained by the GCMs in Northwest China are less
significant than with the other two groups, the value of Us for
region 10-Southwest China (= 0.51) is smaller than that of
the gauge-based and merged products.

The variations along the temporal and spatial dimensions
show the natural precipitation patterns, but the deviation of
multiple products (Ue) shows the ability to consistently rep-
resent the spatiotemporal patterns. Therefore, Ue indicates
the uncertainty of the ensemble precipitation products in the
same group. For the gauge-based products,Ue is smaller than
0.1 for regions in East China, indicating that the model vari-
ations are relatively small compared to the annual means.
The value of Ue is higher for 9-Southwest China (= 0.30)
and 10-Northwest China (= 0.37), showing large variations
even in the gauge-based products. For the merged products,
Ue is similar to that of the gauge-based products in West
China (= 0.36), while it is larger in the east, especially for 6-
Yangtze River and 4-Yellow River (more than 2 times larger
than Ue of the gauge-based products).

For the GCM precipitation, Ue increases compared to the
other two groups in the eastern subregions, corresponding to
the higher spatial model uncertainty in GCMs over the east-
ern regions shown in Fig. 5. It decreases in 10-Northwest
China (Ue = 0.25), and a possible reason for this is that the
spatial homogeneity of the variations in 10-Northwest China
(Fig. 5f) is stronger than that of the other groups (Fig. 5b, d,
f). In the GCMs, the highest Ue occurs in Southwest China,
where both the means and the variations are higher (Figs. 4
and 5). One can conclude that Ue is linked with the mag-
nitude of the model uncertainties in Figs. 5 and 6, indicating
that it is to some degree correlated with the classic metrics, as
higher Ue covers the grid cells or regions with higher model
uncertainty.

5 Comparison of the uncertainty Ue with the classic
metrics

5.1 Deviation from the classic uncertainty metrics

In this section, we will compare the uncertainty Ue of the
ensemble members estimated by the three-dimensional par-
titioning approach with the two classic metrics defined as
N.s.std in Eq. (28) and N.t.std in Eq. (29), to explain how
these three metrics are related and differ with each other.
As shown in Fig. 10, Ue is correlated with both N.s.std and
N.t.std. The correlation is stronger when Ue is smaller than
0.2, where the regions from 1 to 8 are generally included
for all three precipitation groups. But Ue is in general larger
than N.s.std and N.t.std for the products. This deviation is be-
cause the variation along one dimension has been collapsed
when calculating the deviation along the other dimension.
For subregions 9, 10 and 11, N.s.std and N.t.std deviate the
most from the 1 : 1 line of Ue. Taking subregion 9-Southwest
China in the gauge-based products as an example, the tem-
poral variance is 62.4 mm yr−1, while the spatial variance is
571.8 mm yr−1 (Fig. 7i). The difference between N.s.std and
Ue is 0.058 (= 0.297–0.239; the deviation ratio is 24.3 %)
when the temporal variation is collapsed. The difference be-
tween N.t.std and Ue is 0.126 (= 0.297–0.171; the devia-
tion ratio is 73.4 %) when the spatial variation is collapsed.
The deviation is significantly larger than that betweenUe and
N.s.std, showing that the collapse will induce a deviation re-
lated to the magnitude of the collapsed dimension.

These subregions (9, 10, 11) feature strong spatial het-
erogeneities (Fig. 7i, j, k) in the annual mean precipitation
(Fig. 4). The averaging process before estimating the clas-
sic metrics will cause a significant smoothing of the datasets
when the spatial heterogeneity of the datasets is very strong,
because the spatial variation is significantly higher than the
temporal variation, as shown in Fig. 7. The estimation of
N.t.std, which needs an averaging over the spatial dimension,
will lose more information than that in the time dimension.
The deviation between N.t.std andUe (Fig. 10b) is larger than
that between N.s.std and Ue (Fig. 10a). The priority of the
precipitation types also changes, from model dominated (the
model uncertainties in GCMs are larger than the others) to
region dominated (the uncertainties in the specific regions
9, 10, and 11 are larger than in the other regions no mat-
ter which precipitation data are used). This indicates that the
difference in model variation over space can be reflected in
the new uncertainty Ue.

Each classic metric has its physical meaning: N.s.std rep-
resents the uncertainties over space and N.t.std represents the
uncertainties across time. The comparison of Ue with each
of them demonstrates the metric performance on the same
physical meaning. It is possible to compare Ue with a combi-
nation of the two classic metrics, but the combination could
be far more complex than a simple sum of the two classic
metrics. However, a qualitative comparison is accessible be-
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Figure 9. Maps of deviations (U , Ut, Us, Ue) estimated as the ratio of the square root of the corresponding variances (i.e. V , Vt, Vs, Ve) to
the regional mean (µ) of the ensemble datasets in each of the three different precipitation groups. Of these, Ue is considered to be the model
uncertainty.

cause Ue has a linear correlation with either of them. This
correlation will persist and occur between Ue and a combi-
nation of the two classic metrics by summing them up with
certain weights.

5.2 Decomposition of the ensemble uncertainty

We now decompose the ensemble variance to determine the
reason for the deviation of Ue from N.s.std and N.t.std. As
shown in Eq. (26), the ensemble variance Ve is expressed by

Ve =
1
3

[
σ 2

e_t+ σ
2
e_s

2
+ σ 2

e + σ
2
e (µts)

]
. (30)

This combines four components which stand for the variation
of different estimates across the ensemble dimension (i.e. the
variance of original temporal and spatial values, σ 2

e , of the
temporal mean, σ 2

e_t, of the spatial mean, σ 2
e_s, and of the

grand mean, σ 2
e (µts)). Among these, σ 2

e_t is the mean of the
squares of the spatial deviation in Fig. 5a, c, e for all grids in
a specific region and σ 2

e_s is the mean of the squares of the
temporal deviation in Fig. 6 for each time step in a specific
region. These two components are closely related to the two
classic metrics N.s.std (Eq. 28) and N.t.std (Eq. 29), respec-
tively.
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Figure 10. Relation of Ue to the two classic metrics (a) normalized spatial standard deviation N.s.std and (b) normalized temporal standard
deviation N.t.std. The two metrics are estimated with Eqs. (28) and (29) of the ensemble datasets in each of the three different precipitation
groups.

Figure 11. Proportions of the four components in Eq. (30) to Ve of the ensemble datasets in each of the three different precipitation groups:
(a) gauge-based products, (b) merged products and (c) GCMs. The contribution is normalized so that their sum is 1.0 for each region. Among
the four components, σ 2

e_t and σ 2
e_s are associated with the two classic metrics N.s.std and N.t.std, respectively.

By decomposing Eq. (30), the contributions of the four
components to the ensemble variance Ve are shown in
Fig. 11. For all three precipitation groups, σ 2

e is the dominant
component simply because all the information on variations
of the original datasets is retained in the uncertainty estima-
tion. The other three components result from estimations af-
ter an averaging is performed, either over time, space, or the
full spatiotemporal dimensions, which means a loss of infor-
mation. The contribution of σ 2

e_t and σ 2
e_s approximates 0.15

for the regions from 1 to 8. But σ 2
e_t increases for regions 9,

10 and 11, indicating that there is significant spatial hetero-
geneity in these regions. In contrast, σ 2

e_s decreases because
the spatial averaging has collapsed the spatial variations. The
very small contribution of σ 2

e_s related to N.t.std is the cause
of larger deviations between N.t.std and Ue in these subre-
gions (Fig. 10b).

Although any component can be used as a metric for eval-
uating the variations of multiple datasets, there are limita-
tions for each of the variations. Regarding the variation of
the temporal mean σ 2

e_t and spatial mean σ 2
e_s, the collapse

of a dimension has ignored part of the information. More-
over, the variation of the grand mean σ 2

e (µts) has ignored
both the temporal variability and spatial heterogeneity, which
further decreases its applicability to the assessment of uncer-
tainty. The variation σ 2

e is estimated based on the original
data without averaging, and thus it represents the most infor-
mation. However, it does not take into account the systematic
uncertainty (bias in the mean values) which is expressed by
σ 2

e (µts).
Therefore, none of the single components is able to rep-

resent the others. The integrated metric Ve is therefore a so-
lution that represents all metrics to different degrees. What
is interesting is that the variability of the proportions of σ 2

e_t

and σ 2
e_s (or σ 2

e and σ 2
e (µts)) are opposite and the sum of

their proportions is stable, around 0.3 (or 0.7). This indicates
a complementary relation between the two pairs of elements
(σ 2

e_t and σ 2
e_s; σ 2

e and σ 2
e (µts)). On the other hand, some of

the information is ignored in one of the components but re-
mains in the other one within the same pair. Therefore, the
variation along the time dimension and that along the spatial
dimension should be considered together, as is done in the es-
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Figure 12. Changes in (a) value and (b) percentage when using Ue
as the new uncertainty metric compared to classic metrics N.s.std
(Eq. 28) and N.t.std (Eq. 29).

timation of the ensemble variance Ve. The normalized uncer-
tainty Ue derived from the integrated variation Ve, which is
better able to determine the uncertainties than are the classic
metrics, should be the more proper choice for an uncertainty
analysis.

5.3 Differences between the metrics in value and
proportion

Figure 10 shows that Ue is generally higher than the un-
certainty identified by the two classic metrics (i.e. N.s.std
and N.t.std). Figure 12 then summarizes the magnitude of
the deviations of the classic metrics from the new uncer-
tainty Ue. We can see that the two classic metrics gener-
ally underestimate the uncertainty by around 0.03 (Fig. 12a).
The variation of the underestimation of N.t.std is larger than
that of N.s.std, showing a larger deviation between Ue and
N.t.std. Employing the new uncertainty metric will increase
the estimated uncertainty by around 20 %–40 % for half of
the cases, when compared to N.s.std (Fig. 12b). For nearly
25 % of the cases, the new Ue increases the estimated uncer-
tainty by more than 50 %. In extreme cases, Ue is more than
double N.t.std (Fig. 12b). The results show that the widely
applied uncertainty estimates from the two classic metrics
have underestimated the uncertainty of the various models or
datasets. Such an underestimation may especially occur for
the temporal assessment of the uncertainties (N.t.std), which
is very commonly seen in scientific reports and articles to
illustrate the temporal evolution of the variables of interest.

6 Discussion and conclusions

6.1 Features and applicability of the approach

The total variation across the database which consists of mul-
tiple datasets is contributed by the spatiotemporal variations
as well as the uncertainties of ensemble datasets, while the
uncertainty assessment with current approaches (e.g. Eqs. 28
and 29) needs either the temporal variability or the spatial
heterogeneity to be averaged, which means a loss of infor-

mation. The variance partitioning approach proposed in this
study works in three dimensions. It uses all the information
over both the temporal and spatial dimensions of the mul-
tiple ensemble members. It avoids the collapse of variation
along any dimension, and thus the proposed uncertainty esti-
mateUe provides a more accurate estimate of the uncertainty.
The estimate Ue is especially suitable for an overall assess-
ment of the multiple datasets over a certain period and over
a specific space. Even though the trade-off is that Ue cannot
provide the temporal evolution or spatial heterogeneity for
users’ consideration, in many cases we would like to know
the general performance of the ensemble models based on a
global single estimate.

The results of this partitioning approach can be affected
by the choice of the time step intervals. For example, the
temporal variance or proportion of temporal variance will
significantly increase if the time interval is chosen to be 1
month. The intra-annual variability of precipitation will re-
sult in higher Vt. The changes depend on how significant the
intra-annual variability is compared to the inter-annual vari-
ations. Moreover, only changes in the temporal variation (the
average values remain but the magnitudes of the variation in-
crease or decrease) can be captured by Ue. But N.s.std will
remain the same because the temporal variability has been
neglected in the averaging process. It is the same with N.t.std
if different spatial resolutions of the measurements are used.

The proposed approach has a flexible structure that can
deal with different problems, from a global scale to regional
studies. The temporal dimension can also span from daily,
monthly, annual to decadal analyses with different scopes.
The ensemble dimension is applicable from two members
(i.e. model evaluation between simulations and observa-
tions) to any number of multi-models (consensus evalua-
tion, Tebaldi et al., 2011; McSweeney and Jones, 2013).
The present approach is also applicable to any variables that
can be organized into three dimensions, such as climatic
variables (e.g. temperature, evaporation), hydrological vari-
ables (e.g. soil moisture, runoff) or environmental variables
(e.g. drought index). Based on these advantages, this three-
dimensional partitioning approach can be widely applied in
hydro-climatic analysis.

6.2 Conclusions

A new three-dimensional partitioning approach has been pro-
posed in this paper to assess the model uncertainties of mul-
tiple ensemble datasets. The new uncertainty metric (Ue) is
estimated with an overall consideration of temporal and spa-
tial variations as well as the differences among the ensemble
products. The results have shown that Ue is generally larger
than the classic uncertainty metrics N.s.std and N.t.std, which
require a collapse of the variation along either the temporal
or spatial dimension. The deviation occurs where the spatial
variations are significant but being averaged in the N.t.std es-
timation. The decomposition of the total variance Ve shows
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the complementary relation between the two classic metrics,
and therefore the new uncertainty Ue (derived from Ve) is a
more comprehensive estimate of the uncertainty of multiple
ensemble products.

Thirteen precipitation datasets generated by different
methods have been categorized into three groups (namely,
gauge-based products, merged products and GCMs) and the
model uncertainty in the ensemble products has been anal-
ysed with the new approach and with the two classic uncer-
tainty metrics for each precipitation group. Using the clas-
sic metrics, in most regions, uncertainty of GCMs has been
found to be the largest. But the new estimator Ue indicates
that the largest model uncertainty occurs in specific regions
no matter which precipitation group is considered. The im-
pact of spatial heterogeneity on the model uncertainty has
been represented well in the new uncertainty metric (Ue). In
addition to the theoretical analysis of the components of Ue,
the overall model uncertainty Ue can be used as a new uncer-
tainty estimate which involves more information and should
receive more attention in the field of uncertainty assessment.
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Appendix A: The algorithms for different expressions in
the methodology

Zone A:
A1: µt[s,e;n× l];µt[j,k] =

1
m

∑m
i=1zijk

A2: µs[e, t; l×m];µs[k, i] =
1
n

∑n
j=1zijk

A3: µe[t,s;m× n];µe[i,j ] =
1
l

∑l
k=1zijk

Zone B:
B1: σ 2

t [s,e;n× l];σ
2
t [j,k] =

1
m

∑m
i=1(zijk −µt[j,k])

2

B2: σ 2
s [e, t; l×m];σ

2
s [k, i] =

1
n

∑n
j=1(zijk −µs[k, i])

2

B3: σ 2
e [t,s;m× n];σ

2
e [i,j ] =

1
l

∑l
k=1(zijk −µe[i,j ])

2

Zone C:
C1: σ 2

t_s[e; l];σ
2
t_s[k] = σ

2(µs[k, :])

C2: σ 2
t_e[s;n];σ

2
t_e[j ] = σ

2(µe[:,j ])

C3: σ 2
s_t[e; l];σ

2
s_t[k] = σ

2(µt[:,k])

C4: σ 2
s_e[t;m];σ

2
s_e[i] = σ

2(µe[i, :])

C5: σ 2
e_t[s;n];σ

2
e_t[j ] = σ

2(µt[j, :])

C6: σ 2
e_s[t;m];σ

2
e_s[i] = σ

2(µs[:, i])

Zone D:
D1: µet[s;n];µet[j ] =

1
lm

∑l
k=1

∑m
i=1zijk

D2: µse[t;m];µse[i] =
1
nl

∑n
j=1

∑l
k=1zijk

D3: µts[e;k];µts[k] =
1
mn

∑m
i=1
∑n
j=1zijk

Zone E:
E1: σ 2

et[s;n];σ
2
et[j ] =

1
lm

∑l
k=1

∑m
i=1(zijk −µet[j ])

2

E2: σ 2
se[t;m];σ

2
se[i] =

1
nl

∑n
j=1

∑l
k=1(zijk −µse[i])

2

E3: σ 2
ts[e; l];σ

2
st[k] =

1
mn

∑m
i=1
∑n
j=1(zijk −µts[k])

2

Zone F:
F1: σ 2

t (µse)=
1
m

∑m
i=1(

1
nl

∑n
j=1

∑l
k=1zijk −

1
m

∑m
i=1(

1
nl

∑n
j=1

∑l
k=1zijk))

2

F2: σ 2
s (µet)=

1
n

∑n
j=1(

1
lm

∑l
k=1

∑m
i=1zijk −

1
n

∑n
j=1(

1
lm

∑l
k=1

∑m
i=1zijk))

2

F3: σ 2
e (µts)=

1
l

∑l
k=1(

1
mn

∑m
i=1
∑n
j=1zijk −

1
l

∑l
k=1(

1
mn

∑m
i=1
∑n
j=1zijk))

2

The t, s, and e in the algorithms represent the three dimen-
sions time, space and ensemble, with the sizes of m,n, and
l and index with i,j , and k, respectively. Each expression is
shown with its size and the meaning of each dimension. For
example, for A1, µt[s,e;n× l], the µt has a size of n× l.
The first axis represents the space dimension, and the second
is the ensemble dimension, while C1 (σ 2

t_s[e; l]) has only one
ensemble dimension with its size as l. F1 (σ 2

t (µse)) is only a
single value.
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Data availability. The CMA dataset is available through
http://data.cma.cn/data/detail/dataCode/SEVP_CLI_CHN_
PRE_DAY_GRID_0.50/ (Zhao et al., 2018). The GPCC
is available through https://opendata.dwd.de/climate_
environment/GPCC/html/fulldata_v6_doi_download.html
(Schneider et al., 2011). The CRU is available through
https://iridl.ldeo.columbia.edu/SOURCES/.UEA/.CRU/.TS3p21/
(Harris et al., 2014). The CPC is available through
http://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/ (Xie et al.,
2007). The UDEL is available through http://climate.udel.edu/data
(Willmott and Matsuura, 2012). The CMAP is available through
https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html
(Xie et al., 2003). The GPCP is available through
https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html
(Adler et al., 2018). The MSWEP is available through https:
//platform.princetonclimate.com/PCA_Platform/mswepRetro.html
(Beck et al., 2017). The ERA-I is available through https://www.
ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim/
(Dee et al., 2011). The GCMs (including HadCM3, IPSL-
CM5A-LR, CMCC-CM and MIROC5) are available through
https://esgf-node.llnl.gov/projects/cmip5/ (Taylor et al., 2012).
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