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Abstract—This paper deals with the characterization and
classification of reflectance confocal microscopy images of human
skin. A special attention will be given to the identification and
characterization of the lentigo, a phenomenon that originates at
the dermo-epidermic junction of the skin. Confocal images are
acquired at different skin depths with a high resolution. For each
depth, the histograms of pixel intensities are determined, and
well statistically modelled with a generalized gamma distribution
(GGD). The scale, shape and translation parameters associated
with the GGD are estimated using a new natural gradient descent
algorithm showing fast convergence properties when compared
to state-of-the-art estimation methods. Results show that the
estimated parameters can be used to classify clinical images of
lentigo and healthy patients. They also show that the scale and
shape parameters are good features to identify and characterize
the presence of lentigo in skin tissues.

Keywords—Reflectance confocal microscopy, lentigo character-
ization, maximum likelihood estimation, natural gradient.

I. INTRODUCTION

The human skin is a large and complex organ that can be subjected

to a number of diseases. The lentigo is a lesion that originates at

the junction between the dermis and the epidermis due to a high

concentration of melanocytes aggregating at the dermal papillae walls.

This lesion leads to the destruction of the regular cellular network

at the dermoepidermal junction [1]. The diagnosis of lentigo can be

performed through visual inspection or through biopsy of the skin

surface. Reflectance confocal microscopy (RCM) is a non-invasive

imaging technique that enables in vivo visualisation of the epidermis

down to the papillary dermis in real time [2], [3]. Its potential to improve

the detection of cancer and tumors has been demonstrated in various

research and dermatological clinical studies [4]. Current practices to

analyze these images are mainly based on visual inspection. However,

the automatic analysis of confocal images is also very interesting.

In [5], a correlation between RCM and histology has been reported

for the diagnosis of melanoma. RCM has also been proved valuable

for treatment follow up [6], guidance of cutaneous surgery [7], and

surveillance of lentigo maligna treatment [8], [9].

The complex nature of RCM images requires automatic image

processing methods to build accurate diagnosis strategies. Recent

research onRCM images hasmainly focused on three aspects: i) clinical

studies to evaluate their usefulness, ii) segmentation of nuclei, and iii)

classification of skin tissues. Luck et al. [10] have first developed an

automatic RCM image processing method to segment nuclei. Their

methodwas based on aGaussian imagemodel that takes into account the

reflectivity of nuclei and a truncated Gaussian distribution to represent

the intensity of the cytoplasm fibers. A Gaussian Markov random field

was also used for spatial correlation, and a Bayesian classification

algorithm was investigated to label tissues. Neural networks were also

used to perform nuclei segmentation in RCM images as described in

[11]. Various features extracted from RCM images have been used

for the applications cited above. Kurugol et al. [12], [13] developed

and validated a semi-automatic method to locate the dermoepidermal

junction (DEJ) using a statistical classifier based on texture features.

Texture analysis was also considered in [14] to localize skin layers in

RCM images. Hames et al. [15], [16] developed a logistic regression

classifier to automatically segment the different layers of the skin in

RCM images. In [17], a support vector machine (SVM) classifier based

on SURF texture features was proposed to identify skin morphological

patterns in RCM images. Finally, Koller et al. [18] investigated a

wavelet-based decision tree classification method to distinguish benign

and malignant melanocytic skin tumors in RCM images. This method,

will be used as a benchmark in our study.

The first contribution of this paper is a statistical model that allows

the characterization of the underlying tissues. The variability of the

pixel intensities of an RCM image is represented by a GGD, whose

parameters are used as features for the classification of healthy and

lentigo confocal images. The representation of the confocal images

into a 3D space of parameters acts as an interesting dimension reduction

technique allowing classification algorithms to be implemented in quasi

real-time. The GGD statistical model is adjusted to the intensities of

the RCM images at different depths, to identify the skin depths at

which lentigo detection and characterization are the most significant.

A quantitative analysis supported by an SVM classifier is conducted to

evaluate the performance of the proposed characterization. A second

contribution of this work is a new estimation algorithm for the GGD

parameters, based on a natural gradient approach [19]. The main

property of this algorithm is its fast convergence compared to other

existing techniques, allowing big databases to be processed with

reduced computational cost. This approach is also known as Fisher

scoring [20]. It updates the parameters in a Riemannian space, resulting

in a fast convergence to a local minimum of the cost function of interest

[21]. The proposed model and estimation algorithm are validated

using synthetic and real RCM images, resulting from a clinical study

containing healthy and lentigo patients. The obtained results are very

promising.

The paper is organized as follows. Section 2 presents the proposed

method for lentigo detection and characterization and the proposed

estimation algorithm based on a natural gradient method. Simulation

results are presented and analyzed in Section 3. Conclusions and

perspectives for future works are finally reported in Section 4.

II. LENTIGO DETECTION AND CHARACTERIZATION

This section presents the proposed approach based on the use of a

GGD model for the image pixels to characterize and classify healthy

and lentigo RCM images. It contains two steps that are summarized in

Fig. 1 and described in the next sections.
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Fig. 1. Proposed classification method for lentigo and healthy confocal
images.

A. Statistical estimation

1) Generalized gamma distribution: In this paper, we propose

to use the statistical properties of the pixel intensities to detect the

presence of lentigo in RCM images. More precisely, we consider a

vectorized RCM image denoted asx = (x1, . . . , xN ) associated with

N pixels and we assume that the distribution of these pixel intensities

is a GGD [22], [23]. The GGD depends on the parameter vector θ =
(γ, β, ρ)

T
and is defined as

f (xn;θ) =
(xn − γ)ρ−1

βρ Γ(ρ)
exp

(
−xn − γ

β

)
I]γ,+∞[(xn) (1)

where IA is the indicator function on the set A, β > 0, ρ > 0 and

Γ(.) is the gamma function [24]. We will show in Section III-A2 that

the density (1) is perfectly adapted to the distribution of RCM images.

The next section introduces a new statistical estimation method based

on the maximum likelihood (ML) principle and the natural gradient

descent. This method allows the parameter vector θ to be estimated

from the samples xn.

2) ML estimation: The ML estimation method consists of

maximizing the likelihood of the observed samples with respect to

the unknown model parameters [25]. Assuming that the observations

xn are independent, the likelihood function of the sample x =
(x1, ..., xN )T is defined as

f (x;θ) =

N∏
n=1

f (xn;θ) (2)

leading to the following log-likelihood function

L(θ) = log [f (x;θ)] = −Nρ log(β)−N log [Γ(ρ)]

+(ρ− 1)
N∑

n=1

log(xn − γ)− 1

β

N∑
n=1

(xn − γ). (3)

The partial derivatives of the log-likelihood with respect to γ, β and ρ
can be computed easily leading to⎧⎪⎨
⎪⎩

∂ L(θ)
∂γ = −(ρ− 1)

∑N
n=1(xn − γ)−1 + N

β
∂ L(θ)
∂β = −Nρ

β + 1
β2

∑N
n=1(xn − γ)

∂ L(θ)
∂ρ = −NΨ(ρ)−N log(β) +

∑N
n=1 log(xn − γ)

(4)
where Ψ(z) = Γ

′
(z) /Γ (z) is the digamma function [24]. The

maximization of the log-likelihood in (3) with respect to θ can be

conducted using various numerical algorithms. Jonkman and al. [23]

proposed to use a gradient descent algorithm defined by the following

recursion

θt+1 = θt + λA(θt)∇L(θt) (5)

where ∇ is the gradient operator, λ is an appropriate stepsize and

A a preconditioning matrix that depends on θt (e.g., defined from the

Hessian of the log-likelihood).

In this paper, we consider another route defined by a natural

gradient descent method in order to estimate the parameter vector θ.

Contrary to Newton’s method, a natural gradient recursion does not

assume a locally-quadratic cost function and has the nice property to be

asymptotically Fisher-efficient for ML estimation [19]. The main idea

is to update the parameters in a Riemannian space, resulting in a fast

convergence to a local minimum of the objective function [21]. The

natural gradient recursion is defined by

θt+1 = θt +
λ

‖ F−1(θt)∇L(θt) ‖F
−1(θt)∇L(θt) (6)

where∇L(θt) is the gradient defined in (4) and F (θt) is the Fisher

information matrix (FIM) defined as

F (θt) = −

⎛
⎜⎜⎜⎝

E
(

∂2L(θt)

∂γ2

)
E
(

∂2L(θt)
∂γ ∂β

)
E
(

∂2L(θt)
∂γ ∂ρ

)

E
(

∂2L(θt)
∂β ∂γ

)
E
(

∂2L(θt)

∂β2

)
E
(

∂2L(θt)
∂β ∂ρ

)

E
(

∂2L(θt)
∂ρ ∂γ

)
E
(

∂2L(θt)
∂ρ ∂β

)
E
(

∂2L(θt)

∂ρ2

)

⎞
⎟⎟⎟⎠ . (7)

Straightforward computation lead to

F (θ) = N

⎛
⎜⎝

1
β2(ρ−2)

1
β2

1
β(ρ−1)

1
β2

ρ
β2

1
β

1
β(ρ−1)

1
β Ψ′(ρ)

⎞
⎟⎠ (8)

where Ψ′ denotes the trigamma function [24]. The interest of using

this natural gradient method for generalized gamma distributions will

be clarified in Section III-A. To our knowledge, it is the first time that a

natural gradient method is applied to generalized gamma distributions.

B. Characterization and classification

In order to characterize the presence of lentigo in RCM images, we

can fit the GGD to RCM images at different depths. The resulting

estimated parameters γ, β and ρ can be used to identify the skin

depths at which lentigo detection and characterization are the most

significant. The estimated GGD parameters associated with these

characteristic depths can then be used to classify the healthy from

lentigo patients using an SVM classification algorithm [26]. Simulation

results confirming these properties are presented in Section III-B.

III. SIMULATION RESULTS

A. Performance of the proposed estimation algorithm

1) Synthetic data: This section evaluates the performance of

the proposed estimation algorithm on synthetic data. All simulations

were conducted using MATLAB R2014b on a PC with an Intel(R)

Core(TM) i7-4860HQ CPU 2.4 GHz processor, 32 GB RAM, and an

Nvidia GeForce GTX 980m graphics card. In the first experiment,

we generated samples distributed according to a GGD with a number

of samples varying from N = 40 to N = 1000 using (1) with

the following fixed parameters θ = (γ, β, ρ)T = (2, 15, 4)T

(note that additional results of other experiments are available in the

technical report [27]) and M = 1000 Monte Carlo runs. The method

investigated in [23] based on a Newton gradient descent using the

Hessian as a pre-conditioned matrix was considered as a benchmark. A

second method (referred to as analytical method) consists of using the

two first equations of (4) to express β and ρ as a function of γ, i.e.,

β =

[∑N
n=1 (xn − γ)

∑N
n=1

(
1

xl
n−γ

)]
−N2

N
∑N

n=1

(
1

xn−γ

)



After replacing these expressions in the third equation of (4), we obtain 
a non-linear equation of 'Y defined as 

N 

-Nw(p) - N log(,B) + L log(xn - 'Y) = 0 (9) 
n=l 

which can be solved using a Newton gradient descent 

The RMSEs of the parameter estirnates are displayed in log scale (to 
improve readability) in Fig. 2 with the associated running tirnes. Note 
that the three methods were initialized with the same estirnator based on 
the "pseudo method of moments" (see [23] for details). The proposed 
descentalgorithm based on a natural gradient recursion provides smaller 
RMSEs for a small number of samples, i.e, for N E { 40, ... , 300}. The 
natural gradient descent also provides a faster convergence compared to 
the other methods with a significant reduction in computational cost for 
any sample size. This result is interesting since it allows big databases 
of RCM images to be processed more easily. These results highlight the 
good perfonnance of the proposed strategy for the estimation of GGD 
parameters. 
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Fig. 2. RMSEs and total computational limes for the three estimation 
methods for N varying from 40 to 1000. 

2) Real data: This section is devoted to the validation of the
proposed algorithm using real RCM images. The images were acquired 
with an apparatus Vivascope 1500, from the stratum corneum, the 
epidermis layer, the dermis-epidermis junction (DEJ) and the upper 
papillary dermis. Each RCM image shows a 500 x 500µm field of view 
with 1000 x 1000 pixels. A set of L = 45 women aged 60 years and 
over were recruited. All the volunteers gave their informed consent for 
examination of skin by RCM. The volunteers were then divided into two 
groups according to the clinical evaluation perfonned by a physician 
The first group was formed by 27 women with at Jeast 3 lentigines on 
the back of the band while 18 women without lentigo constituted the 
control group. 1\vo acquisitions were performed on each volunteer for 
the 25 depths, each acquisition providing a so-called stack containing 
the 25 images. Images were taken on lentigo Jesions for volunteers of 
the first group and on healthy skin on the back of the hand for the control 

TABLE I. ESTIMATED GGD PAR AMETERS ASS0CIATED WITH THE 

GGOS DISPLAYED IN FIG. 3. 

Healthy Lentigo 
Depth 9 f3 p 9 /3 p 

Z= 45µm 4.59 4.96 4.51 4.27 7.19 3.81 

Z= 54µm 4.63 4.79 4.09 2.70 7.03 3.74 

Z= 67.Sµm 3.68 4.73 4.30 2.51 7.59 3.11 

group. An examination of each acquisition has been performed in order 
to locale the stratum corneum and the DEJ precisely in each image. 
Consequently, our data base contained L = 45 patients. For each patient, 
we considered two stacks of 25 RCM images, giving a total of 2250 
images. Fig. 3 compares the histograms of the RCM image intensities 
with the estimated GGD distributions at 3 representative depths. This 
figure corresponds to two arbitrary healthy and lentigo patients. The 
GGD is clearly a good statistical mode! for the RCM image intensities, 
for both lentigo and healthy images. Table I shows that the estimated 
scale and shape parameters of the distributions associated with healthy 
and lentigo images are significantly different, allowing these images to 
be classified. In addition to showing that the GGD captures well the 
statistical properties of RCM images, our method allows identifying 
the depth at which the lentigo is best discriminated, which will be the 
focus of the next section. 
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Fig. 3. Histograms of the RCM image intensities. The figure 
corresponds to data from two arbitrary healthy and lentigo patients 
(patients #6 and #38) at three representative depths ( one depth per 
column). 

B. Identification of characteristic depths

The GGD distributions were fitted to each of the 2250 images.
Having acquired two stacks of 25 images for each patient, one of 
the two stacks was selected randomly for the analysis. The averaged 
estirnated parameters BHealthy and Bt.entigo were then calculated at 
each depth for healthy and lentigo patients. To account for variability, 
the process of selecting one stack for each patient was repeated 
300 tirnes. The averaged results and the corresponding standard 
deviations are displayed in Fig. 4, which clearly shows that ,B and 
p allow the discrimination of healthy and lentigo patients for depths 
between 40µm and 60µm, with a maximal difference around 50µm. 
Conversely, parameter 'Y does not allow healthy and lentigo patients 
to be distinguished. As mentioned in the introduction, lentigines are 
mainly characterized in RCM images by the disorganization of the 



dermoepidermal junction (DEJ). This explains why parameter β is very

discriminant at depths close to50μm, which corresponds to the average

depth that represent the DEJ (the true DEJ interval was annotated by

the dermatologists and is delimited by the two blue lines) as shown in

Fig. 5. This result is compatible with clinical practices for analyzing

the DEJ, confirming the validity of our approach.

Fig. 4. Evolution of the averaged estimated parameters γ̂, β̂ and ρ̂
versus depth.

Fig. 5. Estimated characteristic depths located between 40μm and 60μm
(green and red lines) and the true DEJ depths annotated by the dermatologists
(blue lines) associated with the 45 patients.

C. Classification performance

Section III-B provided an estimate of the depths allowing healthy

and lentigo patients to be classified. An SVM classification algorithm

was considered in this section in order to confirm these results. The

estimated GGD parameters associated with the characteristic depths

(40μm to 60μm) for a given patient were then used to classify the

patients into 2 classes referred to as “lentigo” and “healthy”. The leave-

one-out method was used to compute the different error probabilities.

This method uses L − 1 images for training (where L is the number

of patients in the database) and the remaining image for testing. This

operation is repeatedM = 1000 times to determine the probabilities of

error and of correct classification. For each experiment, we considered

only images from one acquisition out of the two (for each patient). The

M results were then used to calculate the average confusion matrix

shown in Table II and to evaluate the average indicators (Precision,

Specificity, Sensitivity and Accuracy). These indicators are defined

as Precision = TP/(TP+FP), Specificity = TN/(FP+TN), Sensitivity =

TABLE II. CLASSIFICATION PERFORMANCE ON REAL RCM IMAGES

(45 PATIENTS).

β CART method

Confusion matrix L̂ Ĥ
Sensitivity

Specificity
L̂ Ĥ

Sensitivity

Specificity

Lentigo 22 5 81.4 % 21 6 77.7 %

Healthy 2 16 88.8 % 3 15 83.3 %

Precision 91.6 % 76.1 % 87.5 % 71.4 %

Accuracy 84.4 % 80 %

TP/(TP+FN), Accuracy = (TP+TN)/(TP+FN+FP+TN), where TP, FP,

TN and FN are the numbers of true positives, false positives, true

negatives, and false negatives. This table allows us to evaluate the

classification performance for these characteristic depths. The accuracy

for the classification of healthy and lesion tissues is equal to 84.4 %

for β and to 82.2 % for ρ (the results concerning the parameter ρ
are not shown here for brevity and can be found in [27]), confirming

that these parameters can be used for lentigo detection. Fig. 6 shows

examples of RCM images classified using the proposed methodology.

The method presented in [18] was then campared to our algorithm in

order to assess the significance of our results. This method consists

of extracting from each RCM image a set of 39 parameters (more

technical details are available in [28]) and applying to these features

a classification procedure based on a classification and regression tree

(CART). Note that the CART algorithm was tested on the real RCM

images using a leave one out procedure. As shown in Table II, the

accuracy obtained with the CART algorithm is 80%, i.e., it is slightly

smaller than the one obtained with the proposed method and leads to

two additional mis-classified patients. Furthermore, the estimated GGD

parameters can be used for the characterization of RCM images, which

is not possible with CART.

Fig. 6. Examples of RCM images (at the depth 58.5 μm) for lentigo
and healthy patients classified by the proposed SVM method.

IV. CONCLUSIONS

This paper investigated the potential of using the statistical

properties of reflectance confocalmicroscopy images to classify healthy

and lentigo skins. The proposed method estimated the parameters of a

generalized gamma distribution for the RCM images. These parameters

were then used to train an SVM classifier. The proposed classifier

was tested on a database of 2250 real images associated with 45
patients yielding promising results. Future work will be devoted to

the segmentation of these RCM images using the estimated parameters

of the GGD distributions.
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