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49 Abstract

50 This paper reviews current understanding of deglaciation in North, Central and South 

51 America from the Last Glacial Maximum to the beginning of the Holocene. Together 

52 with paleoclimatic and paleoceanographic data, we compare and contrast the pace of 

53 deglaciation and the response of glaciers to major climate events. During the Global Last 

54 Glacial Maximum (GLGM, 26.5-19 ka), average temperatures decreased 4º to 8ºC in the 

55 Americas, but precipitation varied strongly throughout this large region. Many glaciers 

56 in North and Central America achieved their maximum extent during the GLGM, whereas 

57 others advanced even farther during the subsequent Heinrich Stadial 1 (HS-1). Glaciers 

58 in the Andes also expanded during the GLGM, but that advance was not the largest, 

59 except on Tierra del Fuego. HS-1 (17.5-14.6 ka) was a time of general glacier thickening 

60 and advance throughout most of North and Central America, and in the tropical Andes; 

61 however, glaciers in the temperate and subpolar Andes thinned and retreated during this 

62 period. During the Bølling-Allerød interstadial (B-A, 14.6-12.9 ka), glaciers retreated 

63 throughout North and Central America and, in some cases, completely disappeared. Many 

64 glaciers advanced during the Antarctic Cold Reversal (ACR, 14.6-12.9 ka) in the tropical 
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65 Andes and Patagonia. There were small advances of glaciers in North America, Central 

66 America and in northern South America (Venezuela) during the Younger Dryas (12.9-

67 11.7 ka), but glaciers in central and southern South America retreated during this period, 

68 except on the Altiplano where advances were driven by an increase in precipitation. 

69 Taken together, we suggest that there was a climate compensation effect, or ‘seesaw’, 

70 between the hemispheres, which affected not only marine currents and atmospheric 

71 circulation, but also the behavior of glaciers. This seesaw is consistent with the opposing 

72 behavior of many glaciers in the Northern and Southern Hemispheres.

73 Key Words: Deglaciation, Termination-I, Americas, Late Pleistocene, Glacial 

74 Chronology

75

76 1. Introduction

77 This paper focuses on the evolution of glaciation in the Americas during the Last Glacial 

78 Termination. The American continents extend 15,000 km from 70ºN to 55ºS and are 

79 characterized on their Pacific margins by mountain ranges that are continuous over this 

80 distance and, in most cases, now have glaciers or had them during the last glacial period 

81 of the Pleistocene. Knowledge of the activity of these glaciers has increased enormously 

82 in recent years (Palacios, 2017). This knowledge provides us an opportunity to study how 

83 American glaciers behaved during the Last Glacial Termination in the context of the 

84 asynchronous climatic setting of the two hemispheres. The largely north-south orientation 

85 and nearly continuous extent of mountain ranges in the Americas provide a unique 

86 opportunity to understand synoptic latitudinal variations in global paleoclimate.

87 The Last Glacial Termination is generally considered to span the time period between the 

88 Global Last Glacial Maximum (GLGM) and the beginning of the current interglacial 

89 period, the Holocene (Cheng et al., 2009; Denton et al., 2010). It has also been referred 

90 to as Termination I, given that it is the last in a series of similar transitions between 

91 Pleistocene glacials and interglacials (Emiliani, 1955; Broecker and van Donk, 1970; 

92 Cheng et al., 2009; Deaney et al., 2017).

93 The motivation for this review paper is that there have been few attempts to summarize, 

94 synthesize, and compare evidence for late Pleistocene glacier activity across the entire 

95 extent of the Americas. Our objective is to review current understanding of the evolution 

96 of glaciers in both North and South America throughout the Last Glacial Termination and 
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97 discuss whether the contrasts between the hemispheres implied by paleoclimatic and 

98 paleooceanographic models are reflected in the behavior of the glaciers. Given the 

99 continuous nature of the processes involved in the planet’s recent glacial history, parsing 

100 deglaciation into periods requires simplification of the climatic mechanisms. Different 

101 and opposite changes may occur at different latitudes, with variable response times. In 

102 the present article, we have however selected deglaciation phases in accordance with the 

103 current state of knowledge and with scientific tradition.

104 Section 2 introduces the study regions and then summarizes how each of the regions has 

105 responded to major climatic changes caused by the different forcings that drove 

106 deglaciation. Section 3 presents the methods that we have used in this work to select study 

107 areas, represent graphically the glacial evolution of each area, and compare glacial 

108 chronologies and paleoclimatic aspects of areas. Section 4 reviews the spatial and 

109 temporal variability of the GLGM in the Americas. The next sections review the 

110 behaviors of these glaciers during deglaciation, notably the Heinrich 1 Stadial (HS-1) 

111 (Section 5), the Bølling-Allerød (B-A) interstadial and the Antarctic Cold Reversal 

112 (Section 6), and the Younger Dryas (YD) (Section 7). These sections are followed by a 

113 discussion (Section 8) in which we: 1) consider uncertainties in numeric ages obtained 

114 on glacial landforms (Section 8.1); 2) summarize knowledge of climate evolution during 

115 the Last Glacial Termination based on research on marine sediments and polar ice cores 

116 (Section 8.2); 3) compare our results with the climatic evolution summarized in Section 

117 8.2; and 4) compare our results with published research on glacier activity on other 

118 continents during the Last Glacial Termination (Sections 8.3 to 8.5).

119

120 2. Study Areas

121 Our review proceeds from north to south (Figs. 1 and 2). The study begins with the 

122 Laurentide Ice Sheet (LIS) (Fig. 1), which contributed most to sea-level rise during the 

123 Last Glacial Termination (Lambeck et al., 2014) and was capable of greatly disrupting 

124 the coupled ocean-atmosphere system during deglaciation (Broccoli and Manabe, 1987a; 

125 Heinrich, 1988; Clark, 1994; Barber et al., 1999; Hemming, 2004). We summarize the 

126 most recent syntheses about LIS deglaciation (Dyke, 2004; Stokes 2017), enabling 

127 comparisons with deglaciation in the American mountains. Alaska is traversed by high 

128 mountains and was only partially glaciated during the GLGM. We examine this region as 

129 an unusual example of mountain glaciation at northern high latitudes (Briner et al., 2017). 
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130 We next describe the Cordilleran Ice Sheet (CIS) in southwestern Canada and adjacent 

131 United States, from roughly 48°N to 52°N, which removed or buried much of the 

132 preceding alpine glacial record (Clague, 2017), and the North Cascades in Washington 

133 State from 47°N to 49°N, which provide an excellent record of the early part of the Last 

134 Glacial Termination (Porter, 1976; Porter et al., 1983; Riedel et al., 2010; Riedel, 2017). 

135 The climate of these areas is strongly influenced by the location of the northern westerlies.

136 There was widespread alpine glaciation in the central sector of western North America: 

137 to the west in the Sierra Nevada Mountains in California; to the east in the Rocky 

138 Mountain/Yellowstone region, and in between the numerous mountain ranges of the 

139 Basin and Range Province (Fig. 1). Glaciation in the western U.S. has been the subject of 

140 numerous recent studies (Licciardi et al., 2001, 2004; Munroe et al., 2006; Licciardi and 

141 Pierce, 2008; Refsnider et al., 2008; Thackray, 2008; Laabs et al., 2009; Young et al., 

142 2011; Shakun et al., 2015b; Leonard et al., 2017a, 2017b; Licciardi and Pierce, 2018; 

143 Dahms et al., 2018, 2019). In the interior, we mainly focus on the greater Yellowstone 

144 glacial system and adjacent mountain ranges around 44-45°N where new glacial 

145 syntheses are available (Larsen et al., 2016; Licciardi and Pierce, 2018; Pierce et al., 2018; 

146 Dahms et al., 2018, 2919); and the Rocky Mountains of Colorado at 37-41°N, for which 

147 there are also some recent contributions (Ward et al., 2009; Young et al., 2011; Leonard 

148 et al., 2017a, 2017b; Brugger et al., 2019). The Sierra Nevada, from 36° to 38°N, is one 

149 of the most-studied mountain ranges in North America, and numerous syntheses have 

150 been written on its glacial history (Gillespie and Zehfuss, 2004; Gillespie and Clark, 

151 2011; Phillips, 2016, 2017).

152 Southward, the combined effects of lower elevation and higher ELA result in the limited 

153 presence of glacial landforms in the southern United States and northern Mexico. 

154 However, in central Mexico, at about 19ºN, the high volcanoes (>5000 m above sea level, 

155 asl) of the Trans-Mexican Volcanic Belt were glaciated (Fig. 1). Elevations decrease 

156 again in southern Mexico, and there are two mountain ranges in Central America (>3800 

157 m asl) that hosted glaciers during the Late Pleistocene: Sierra Altos Cuchumatanes in 

158 Guatemala and the Cordillera de Talamanca in Costa Rica. There are some recent 

159 syntheses of the glacial history of central Mexico (Vázquez-Selem and Heine, 2011; 

160 Vázquez-Selem and Lachniet, 2017) and the Central American glaciated ranges (Lachniet 

161 and Selzer, 2002; Roy and Lachniet, 2010; Cunningham et al., 2019; Potter et al., 2019). 

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295



6

162 Lachniet and Vázquez-Selem (2005) and Vázquez-Selem and Lachniet (2017) recently 

163 summarized the history of Quaternary glaciation for this entire region.

164 In South America (Fig. 2), the crest and high valleys of the Andes from the north at 11ºN 

165 to the south at 55ºS (a distance of over 7200 km) were glaciated during the last glacial 

166 cycle. The northern Andes are located between latitudes 11ºN and 4ºS, and include ranges 

167 in Venezuela, Colombia, and Ecuador. The Venezuelan Andes consist of two main ranges 

168 oriented northeast to southwest between 7ºN and 10º N, named Sierra de Perijá and the 

169 Mérida Andes; the latter contains abundant glacial landforms and extant glaciers. 

170 Numerous dating studies have been performed on glacial landforms in that region (e.g. 

171 Schubert, 1974; Bezada, 1989; Mahaney et al., 2000; Dirszowsky et al., 2005; 

172 Wesnousky et al., 2012; Angel et al., 2013, 2016, 2017; Carcaillet et al., 2013; Guzmán, 

173 2013; Angel, 2016;). The Colombian Andes consist of three parallel ranges extending 

174 from 1ºN to 11ºN: the Cordillera Occidental (western), Cordillera Central and Cordillera 

175 Oriental (eastern). Studies have been carried out in the Cordillera Central and Cordillera 

176 Oriental involving radiocarbon dating of paleosols and glaciofluvial and glacial 

177 sediments, and more recently surface exposure 10Be dating (Thouret et al., 1996; 

178 Clapperton, 2000; Helmens, 2004, 2011; Jomelli et al., 2014). The Ecuadorian Andes 

179 extend from 1ºN to 4ºS and include the Eastern and Western Cordilleras. Glaciation 

180 studies in these ranges have relied mainly on radiocarbon dating of glaciolacustrine and 

181 till sediments (Clapperton et al., 1997a; Rodbell et al., 2002; La Frenierre et al., 2011).

182 The central Andes extend the length of Peru, western Bolivia and northern Chile, and 

183 comprise two parallel ranges in which the highest areas have glacial landforms and extant 

184 glaciers (Fig. 2). Databases have been compiled to inform paleoclimate modeling and to 

185 compare glacier activity in Peru and Bolivia (e.g. Mark et al., 2005). Cosmogenic nuclide 

186 exposure dating methods have improved knowledge of Late Pleistocene glacial evolution, 

187 but there are significant challenges in interpreting the data (Smith et al., 2005, 2008; Zech 

188 et al., 2008; Glasser et al., 2009; Licciardi et al., 2009; Rodbell et al., 2009; Smith and 

189 Rodbell, 2010; Blard et al., 2013; Jomelli et al., 2011, 2014; Bromley et al., 2016; Martin 

190 et al., 2018). Several other studies in this region focus on the time of deglaciation (He et 

191 al., 2013; Shakun et al., 2015b; Stansell et al., 2015, 2017). A recent synthesis of Late 

192 Pleistocene glacial evolution has been published for the entire region (Mark et al., 2017), 

193 and this review has since been complemented by additional paleoglacier chronologies 

194 (Ward et al., 2017; Martin et al., 2018) 
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195 In southern Peru (Fig. 2), western Bolivia and northern Chile, the western Andean range 

196 marks the west edge of the Altiplano and Puna Plateau, a closed basin that contains the 

197 great lakes of Titicaca (3806 m asl), Poopó (3685 m asl), and Salar de Uyuni (3653 m 

198 asl). Here, typical elevations are 4000-5000 m asl; the basin is surrounded by the Western 

199 and the Eastern Andes, where large volcanoes reach elevations greater than 6000 m asl. 

200 In the north of this area, precipitation is delivered mainly by the South American monsoon 

201 in the summer months, but to the south, this gives way to extratropical systems related to 

202 the southern westerly winds in austral winter. This transition region, between 18°S and 

203 30°S, is an area of persistent aridity known as the Arid Diagonal (De Martonne, 1934).

204 The western cordillera of the Andes in northern Chile crosses the Arid Diagonal between 

205 18ºS and 27ºS (Fig. 2). Between Nevado Sajama (18.1ºS) and Cerro Tapado (30.2ºS), 

206 there are few modern glaciers because of limited precipitation (Casassa et al., 2007), but 

207 glacial deposits can be mapped as far south as ~24ºS on the north side of the Arid 

208 Diagonal and as far north as 27ºS on the south side (Jenny et al., 1996). A few small rock 

209 glaciers and permanent snowfields exist on very high peaks throughout the Arid 

210 Diagonal, where ELAs reach >6000 m asl (Ward et al., 2017).

211 Moving farther south to the northern part of the Argentine Andes between 22ºS and 36ºS 

212 (Fig. 2), there are two different atmospheric circulation patterns, which again are 

213 separated by the Arid Diagonal. The Arid Diagonal crosses this section of the Andes 

214 between 25ºS and 27ºS. Most of the precipitation north of the Arid Diagonal falls during 

215 the South American summer monsoon season. South of the Arid Diagonal precipitation 

216 falls mainly during the austral winter months and is related to southerly sourced westerly 

217 winds. The locations where most precipitation is related to the South American summer 

218 monsoon are Tres Lagunas (Zech et al., 2009), Nevado de Chañi (Martini et al., 2017a), 

219 Sierra de Quilmes (Zech et al., 2017), and Sierra de Aconquija (D’Arcy et al., 2019). The 

220 locations where most precipitation is related to the southern westerlies are: the Ansilta 

221 range (Terrizzano et al., 2017), Cordon del Plata (Moreiras et al., 2017) and Las Leñas 

222 valley (Zech et al., 2017). Reviews of the glacial chronology of the entire region were 

223 carried out by Zech et al. (2017) and more recently by D’Arcy et al. (2019).

224 From 36ºS to the southernmost tip of South America, the Patagonian Andes are a complex 

225 mountainous region with numerous present-day glaciers and two large ice fields (Campo 

226 de Hielo Patagónico Norte and Sur) (Fig. 2). Mapping of major moraine systems 

227 throughout Patagonia and early geochronological work have provided a broad framework 
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228 that underpins our knowledge of the glacial history of this region (e.g., Caldenius, 1932; 

229 Feruglio, 1950; Flint and Fidalgo, 1964, 1969; Mercer, 1969, 1976). During the GLGM, 

230 there was a large ice sheet, the Patagonian Ice Sheet (PIS), that extended 2000 km along 

231 the crest of the range, from 38°S to 55°S. With the exception of northern Patagonia, the 

232 western outlet glaciers of the Patagonian Ice Sheet terminated in the Pacific Ocean, 

233 whereas eastern outlets terminated on land. The deglaciation chronology and pattern of 

234 land-terminating outlets of the PIS have been the subject of much research (Denton et al., 

235 1999a; Glasser et al., 2004, 2008; Kaplan et al., 2008; Moreno et al., 2009; Rabassa and 

236 Coronato, 2009; Rodbell et al., 2009; Hein et al., 2010; Harrison and Glasser, 2011; Boex 

237 et al., 2013; Mendelova et al., 2017).

238 The southern tip of South America, from the Strait of Magellan to Cape Horn, comprises 

239 hundreds of islands (Fig. 2). The largest island, Isla Grande de Tierra del Fuego, is 

240 dominated on its west side by the Cordillera Darwin, a mountain range with peaks over 

241 2000 m asl. This range is currently covered by large glaciers, some of which reach the 

242 sea. The climate of Tierra del Fuego is strongly affected by the southern westerlies, and 

243 precipitation declines rapidly from the Pacific to the Atlantic coast. Hall et al. (2017a) 

244 and Hall et al. (2019) published recent syntheses of the glacial history of Tierra del Fuego 

245 during Last Glacial Termination and the Holocene, respectively.

246

247 3. Methods
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248 3.1 Selection of studies in each area

249 It is impossible to include all available information on the deglaciation of the Americas 

250 in detail in a single review paper. However, this does not preclude us from carrying out a 

251 comparative analysis of the Late Glacial history of the two continents based on recent 

252 advances in knowledge that we seek to provide here. With this objective in mind, we 

253 selected regions where studies of Late Glacial history are most advanced and 

254 geographically representative. For each selected region, we review recent publications 

255 that are key to understanding the glacial history from the Last Glacial Maximum to the 

256 beginning of the Holocene, including the most up-to-date review papers or syntheses from 

257 specific regions. 

258 3.2 Graphical expression of glacier extent for each interval

259 The figures in this paper illustrate generalised glacier extent for each of the intervals 

260 discussed below (Figs. 3, 4, 5, 6, and 7). A common metric is required to compare glacier 

261 advances and extent across the vast area of the Americas. Many researchers consider the 

262 Equilibrium Line Altitude (ELA) to be the best measure of climate-driven changes in 

263 glacier extent (Rea, 2009), although it may introduce errors in paleoclimatic 

264 reconstructions in active tectonic mountain ranges (Mitchell and Humphries, 2015) and 

265 is perhaps less helpful for large continental ice sheets. We are unable to use ELA in our 

266 review for three reasons. First, many studies do not report ELAs for glacial events. 

267 Second, the ELAs reported in the papers we surveyed were calculated using different 

268 methods and thus may not be comparable between regions. Third, reported ELAs are 

269 generally local values and may not be representative of regional climate. For example, an 

270 ELA reconstructed for a heavily shaded glacier in a north-facing cirque in the Northern 

271 Hemisphere will yield a much lower value than one reconstructed for an exposed glacier 

272 on the south side of the same mountain. To be quantitatively useful, both of these must 

273 be normalized to the climatic ELA – the zero-mass-balance elevation of a horizontal 

274 unshaded surface. To evaluate the climatic ELA, one must model the mass balance of the 

275 glacier using a digital elevation representation of the basin. Modeling the physical mass 

276 balance of a large number of glaciers spanning the entire Americas is beyond the scope 

277 of this paper.

278 We therefore use a simple, easy-to-compute metric that is based on observational data – 

279 the relative extent of a glacier (Et), expressed as a perce1642) ntage and quantified as 

280 follows:
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281 𝐸𝑡(%) =  
𝑍𝑡 ‒ 𝑍𝑃

𝑍𝐿𝐿𝐺𝑀 ‒ 𝑍𝑃
 

282 where Zt is the elevation of the glacier terminus during the period in question, ZP is the 

283 elevation at the end of the Little Ice Age, prior to the anthropogenic period, and ZLLGM is 

284 the terminal elevation at the Local Last Glacial Maximum (LLGM). For areas that have 

285 no historic glaciers, we use the highest elevation in the catchment as a default value for 

286 ZP. In the figures, we have grouped Et values for each climate region in 20% intervals. 

287 Some ice masses, notably the Laurentide and Patagonian ice sheets, did not uniformly 

288 descend downslope from high-elevation accumulation areas, but rather expanded from 

289 higher elevation accumulation across vast expanses of relatively flat terrain. For these 

290 areas, we used the terminal position (in kilometers) relative to the late Holocene, or final, 

291 position as a metric of relative extent.

292 3.3 ELA depression in the Americas

293 In the text and tables, we refer to the approximate decrease in ELA for each period with 

294 respect to the current ELA. We acknowledge that glacier extents can be affected by 

295 hypsometry, but in this broad review paper and, as noted above, we are not in a position 

296 to perform original mass-balance modeling of a large number of glaciers spanning the 

297 entire Americas, which itself could be the subject of a large research project. ELA 

298 depression data included in our tables are based on cited peer-reviewed papers. The values 

299 should be considered approximations, but are useful for comparing how glaciers in each 

300 region responded to climate during each of the periods we discuss and for testing 

301 hypotheses of the large-scale driving mechanisms.

302 3.4 Dating glacial landforms 

303 Our work compares chronological data obtained over recent decades through cosmogenic 

304 nuclide, surface-exposure dating methods. New scaling models and reference production 

305 rates have considerably changed the interpretation and chronological framing of many 

306 glacial landforms in recent years (e.g. Kaplan et al., 2011; Blard et al., 2013 a,b; Kelly et 

307 al., 2015; Martin et al., 2015, 2017; Borchers et al., 2016; Marrero et al., 2016, Philips et 

308 al., 2016). However, the degree of uncertainty in the production rates of most terrestrial 

309 cosmogenic isotopes, especially those that do not derive from quartz, can be greater than 

310 the amount of time separating many of the phases of deglaciation (Marrero et al., 2016), 

311 making it difficult to relate a glacier landform to a particular short period in the past. 
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312 Nevertheless, we account for these differences by identifying scaling factors explicitly or 

313 providing citations to relevant publications that allow the reader to be informed.

314 Other possible problems may compromise the validity of cosmogenic nuclide exposure 

315 ages. Exposure ages can be misleading if the dated glacial landforms are found to have 

316 had previous exposure to radiation or have been eroded out of till subsequent to glacier 

317 retreat (Blard et al., 2014; Briner et al., 2016; Çiner et al., 2017). Many of the dated glacial 

318 landforms discussed in this review are boulders on the crests of moraines, and their 

319 apparent ages must be interpreted in the context of advances or stillstands of glacier 

320 fronts. Care must be taken when interpreting these ages (Kirkbride and Winkler, 2012) 

321 because, once constructed, a moraine may not stabilize for a long time (Putkonen et al., 

322 2008; Heyman et al., 2011). Moreover, weathering and exhumation since stabilization 

323 commonly remove grains from the surfaces of boulders, leading to ages that are younger 

324 than those of the moraines on which they lie (Briner et al., 2005; Hein, 2009; Heyman et 

325 al., 2011; Oliva and Ruiz-Fernández, 2015). Frequently, glacier fronts are limited in their 

326 advance by previously formed moraines and, in such cases, the glacier may deposit new 

327 boulders on old moraines. This process can be repeated several times and form a single 

328 moraine ridge that is the product of multiple advances (Osborn, 1986; Winkler and 

329 Matthews, 2010; Schimmelpfennig et al., 2014). The elevation of sample sites, which 

330 have changed frequently through the time on account of glacio-isostatic adjustments, is 

331 essential in calculating cosmogenic ages. Morever, the pattern of these changes is very 

332 difficult to know, which also introduces uncertainty in cosmogenic ages (Jones et al., 

333 2019). Snow can reduce the exposure of surfaces to cosmogenic radiation and, in most 

334 cases, it is difficult to judge the impact of variations in snow cover over the thousands of 

335 years that a surface was exposed (Schildgen et al., 2005). Finally, in some cases, glaciers 

336 can advance or retreat independently of climatic forcing (Quincey et al., 2011; Ó Cofaigh 

337 et al., 2019). 

338 These potential problems may not necessarily be solved by collecting and analyzing a 

339 larger number of samples from the same glacial landform. If altered boulders or boulders 

340 with prior radiation exposure are sampled, the statistic only increases the error (Palacios, 

341 2017). Placing the results of cosmogenic nuclide exposure dating within a suitable 

342 geomorphological context is far more important than the statistics themselves. This 

343 context provides grounds for discarding impossible results and preferentially weighting 

344 others. For this reason, this review has relied not only on surface exposure ages and the 
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345 most recent production rates, but also on radiocarbon ages and regional geomorphological 

346 contexts that strengthen age interpretations and indicate the degree to which they might 

347 be in error.

348 3.5 Possible errors and uncertainties in ages reported in this review

349 The studies on which this review is based have been conducted over many decades, 

350 during a period when dating methods and standards have markedly changed. Although 

351 our focus is on recent literature, which is based on current knowledge, we include 

352 pertinent older studies that report ages calculated using earlier protocols. Given the many 

353 hundred studies and tens of thousand ages involved, reconciliation of chronological 

354 differences resulting from different methods would constitute a major research project 

355 and one that is far beyond the scope of this review. To that end, we therefore caution 

356 readers that the patterns we draw from the literature are a starting point for more detailed 

357 comparisons between specific study areas; we encourage readers to thoroughly evaluate 

358 and, if necessary, recompute ages reported in the literature for such purposes.

359 However, as shown below, ages cited in this paper are still comparable, because 

360 systematic uncertainties resulting from different methods and production rates are lower 

361 than 5% for most of the ages that we discuss here. Most of the ages cited in the text have 

362 been calculated using the 10Be isotope and are derived from rocks containing quartz. 

363 Some ages cited in the text have been calculated using 36Cl and 3He in rocks without 

364 quartz, commonly volcanic rocks. Recent literature has shown that the ages derived from 

365 these three isotopes are comparable, albeit with different uncertainties (Phillips, 2016, 

366 2017; Barth et al., 2019). 

367 Balco and Schaefer (2006), Thompson et al. (2017), Corbett et al., (2019), and Barth et 

368 al. (2019) have recently recalculated 36Cl ages cited in the Laurentide sections of this 

369 paper and have concluded that they differ little from previously published ages. All 10Be 

370 ages from Alaska have been calculated using similar production rates: the Arctic value of 

371 Young et al. (2013) or the NENA value of Balco et al. (2009). Menounos et al. (2017) 

372 report 10Be ages for the area of the Cordilleran Ice Sheet that are consistent with both 

373 previously and subsequently published ages from this region. Recently, 10Be ages for the 

374 Rocky Mountains/Yellowstone region have been calculated or recalculated by Shakun et 

375 al. (2015a), Dahms et al. (2018), Licciardi and Pierce (2018), and Pierce et al. (2018), and 

376 shown to be internally consistent and consistent with the other ages in North America. 

377 Sierra Nevada 36Cl and 10Be ages are taken from Phillips (2016) and Phillips (2017) and 
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378 are based on CRONUS-Earth production rates (Borchers et al., 2016, Marrero et al., 

379 2016a, Phillips et al., 2016). Whole-rock cosmogenic 36Cl ages on moraine boulders and 

380 glacially polished rock surfaces in Mexico and Central America are based on calculations 

381 and recalculations using CRONUScalc (Marrero et al., 2016a, 2016b). Ages from Mexico 

382 reported by Vázquez-Selem and Lachniet (2017) and Central America reported by Potter 

383 et al. (2019) and Cunningham et al. (2019) are based on different scaling models, but the 

384 age differences are less than 2.5%. In conclusion, all cosmogenic ages from North and 

385 Central America cited in the text have been calculated or recalculated in the past three 

386 years, and possible differences are likely less than 5%.

387 Turning to South America, the Late Glacial chronology in the northern Andes is mainly 

388 based on radiocarbon and 10Be cosmogenic ages. Many 10Be ages were recomputed using 

389 the Cosmic Ray Exposure Program (CREp, http://crep.crpg.cnrs-nancy.fr/#/) (Martin et 

390 al., 2017) and the synthetic High Andes 10Be production rate reported by Martin et al. 

391 (2015). Jomelli et al. (2014) notably homogenized and recalculated 477 published 10Be 

392 and 3He surface exposure ages from the Peruvian and Bolivian Andes, spanning the past 

393 15,000 years. Aftter the publication of the paper by Jomelli et al. (2014), Martin et al. 

394 (2015) proposed a new empirical 10Be production rate for the Tropical Andes that is 

395 similar, within uncertainties, to those proposed by Blard et al. (2013a) and Kelly et al. 

396 (2015). Jomelli et al (2017) and Martin et al (2018) adopted this new production rate and 

397 reported recalculated new ages, which we follow in this paper. A recent review by Mark 

398 et al. (2017) provides additional information on the Late Glacial chronology of the 

399 Peruvian and Bolivian Andes. Alcalá-Reygosa et al. (2017) report 36Cl ages from volcanic 

400 areas in the Peruvian Andes, which they calculated using the spreadsheet developed by 

401 Schimmelpfennig (2009) and Schimmelpfennig et al. (2009). Bromley et al. (2011) 

402 provide 3He ages for the same area. The 36Cl, 3He, and radiocarbon ages from the Peruvian 

403 Andes are consistent with one another (Blard et al. 2013a, 2013b; Bromley et al., 2019). 

404 10Be ages from northern Chile were calculated or recalculated by Ward et al. (2015, 2017) 

405 based on a protocol similar to that used in the Peruvian and Bolivian Andes. 36Cl ages 

406 from northern Chile (Ward et al., 2017) were calculated using CRONUS-Earth 

407 production rates and the LSDn routine in CRONUScalc (Marerro et al., 2016b). Recently, 

408 D’arcy et al. (2019) recalculated all the 10Be ages from the Central Andes of Argentina 

409 using local High Andes production rates (Kelly et al., 2015; Martin et al., 2015, 2017). 

410 Ages from Patagonia and Tierra del Fuego were recalculated by the CRONUS-Earth 
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411 online exposure age calculators (v. 2.2) (Balco et al., 2008), using the time-dependent 

412 Lal/Stone scaling model and the "Patagonian" production rate of Kaplan et al. (2011). As 

413 in North and Central America, the South American cosmogenic ages differ slightly 

414 between some regions, but the errors do not exceed 5% and thus do not change the overall 

415 conclusions of the paper.

416 We have converted 14C ages from all the regions to calendar year ages using CALIB 7.1.

417 4. The Manifestation of the Global Last Glacial Maximum (26.5-19 ka) in the 

418 Americas and the Start of the Last Glacial Termination

419 4.1 The Global Last Glacial Maximum 

420 The first period analyzed covers the time between 26.5 ka and 19 ka, when most of the 

421 northern ice sheets and many mountain glaciers reached their maximum extent in the last 

422 glacial cycle (Clark et al., 2009). This period coincides with the time of minimum sea 

423 level and is characterized by a quasi-equilibrium between the cryosphere and climate 

424 (Clark et al., 2009). Following standard usage (Clark et al., 2009; Hughes et al., 2013), 

425 we have called this period the ‘Global Last Glacial Maximum’ (GLGM). Clark et al. 

426 (2009) note that many ice masses, especially mountain glaciers, achieved their maximum 

427 extents prior to or after this period, and that the term ‘Local Last Glacial Maximum’ 

428 (LLGM) should be used to describe local maxima in particular regions. They further 

429 proposed 20-19 ka for the beginning of deglaciation, which was the time when most of 

430 the northern ice sheets began to retreat, sea level and temperatures started to increase, 

431 followed by an increase in the concentration of CO2 in the atmosphere. Hughes et al. 

432 (2013), in an exhaustive review of the chronology of the LLGM throughout the world, 

433 show that not only did many mountain glaciers achieve their maximum extents before the 

434 GLGM, but some northern ice sheets did as well. They acknowledge, however, the 

435 fundamental role that the Laurentide Ice Sheet played in deglaciation, where the LLGM 

436 broadly coincides with the GLGM.

437 4.2 Laurentide Ice Sheet

438 The extent of glaciation during the LGM is summarized in Figure 3. The large extent of 

439 the LIS was the result of planetary cooling, but its very existence also had an effect on 

440 the evolution of mountain glaciers. The GLGM broadly coincides with the maximum size 

441 of the Laurentide Ice Sheet (LIS) (Dyke et al., 2002; Clark et al., 2009; Stokes, 2017). 

442 Despite the difficulty of precisely dating the maximum extent of the ice sheet, it is widely 

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



15

443 accepted that different sectors of the LIS reached their local maxima at different times 

444 during the broad interval of the GLGM. For example, it has been suggested (Dyke et al., 

445 2002) that the northwestern, northeastern and southern margins likely attained their 

446 maximum positions relatively early (~28-27 ka), whereas the southwestern and 

447 northernmost limits were probably reached slightly later (~25-24 ka). More recently, 

448 others have suggested that the northwestern margin, in the vicinity of the Mackenzie 

449 River delta, may have reached its maximum position at less than 20 ka (Murton et al., 

450 2007; Kennedy et al., 2010; Lacelle et al., 2013) and possibly as late as 17-15 ka (Murton 

451 et al., 2015). If correct, this relatively late advance to a LLGM ice extent may have been 

452 aided by eustatic sea-level rise and the opening of the Arctic Ocean along the Beaufort 

453 Sea coastline, which provided a source of moisture and increased precipitation in the 

454 region (Lacelle et al., 2013).

455 Irrespective of the regional asynchronicity in the time of the local glacial maximum, it is 

456 likely that the LIS existed at its near-maximum extent for several thousand years, which 

457 would indicate that its mass balance was in equilibrium with the climate for a prolonged 

458 period of time (Dyke et al., 2002). Indeed, initial deglaciation is thought to have been 

459 slow prior to 17 ka (Dyke et al., 2002), and, as noted above, glaciers in some regions may 

460 have been advancing (e.g. in the far northwest). Possible exceptions to the generally slow 

461 recession include the major lobes of the southern margin of the ice sheet and the marine-

462 based southeastern margin around the Atlantic Provinces. More rapid retreat of these 

463 margins was likely caused by ice-stream drawdown (Shaw et al., 2006, 2018; Margold et 

464 al., 2018) and, in the southeast, by eustatic sea-level rise (Dyke, 2004). In contrast, retreat 

465 of the land-based southern margin is thought to have been driven mainly by orbital forcing 

466 (Clark et al., 2009; Gregoire et al., 2015). Based on 22 10Be surface exposure ages on 

467 boulders on GLGM moraines in Wisconsin, Ullman et al. (2015a) dated the initial retreat 

468 of the ice sheet to as early as 23±0.6 ka, which coincided with a small increase in boreal 

469 summer insolation. 10Be ages on samples 10-15 km up-ice from these moraines indicate 

470 a marked acceleration in retreat after ca. 20.5 ka that coincided with increased insolation 

471 prior to any increase in atmospheric carbon dioxide. This lends support to the notion that 

472 orbital forcing was the primary trigger for deglaciation of the LIS (see also Gregoire et 

473 al., 2015 and Heath et al., 2018).

474 Although increased insolation is thought to have triggered the initial retreat of the 

475 southern margin of the ice sheet (Ullman et al., 2015a), it is interesting to note that the 
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476 overall net surface mass balance likely remained positive for much of the early part of 

477 deglaciation (Ullman et al., 2015b). However, the ice sheet was clearly shrinking, which 

478 implies that the primary mechanism of mass loss was dynamic discharge/calving from 

479 major marine-based ice streams (Margold et al., 2015, 2018; Ullman et al., 2015b; Robel 

480 and Tziperman, 2016; Stokes et al., 2016). Indeed, ~25% of the ice sheet’s perimeter was 

481 occupied by streaming ice at the global LGM, compared to ~10% at 11 ka (Stokes et al., 

482 2016). Only when summer temperatures increased by 6-7˚C relative to the LGM did the 

483 overall net surface mass balance turn increasingly negative (Ullman et al., 2015b). 

484 Numerical modelling suggests that this occurred soon after ~11.5 ka and resulted in the 

485 rapid retreat of the land-based southern and western margins of the LIS (Ullman et al., 

486 2015b). The rapid retreat of these terrestrial margins contrasts with the generally slow 

487 retreat of the northern and eastern marine-based margins and resulted in a highly 

488 asymmetric pattern of retreat towards the major dispersal centers in the east (Dyke and 

489 Prest, 1987; Margold et al., 2018).

490 4.3 Alaska

491 Alaska is located at latitudes similar to the northern LIS, but was covered largely by 

492 mountain glaciers during the GLGM. Thus, it is of interest to understand its glacial 

493 evolution as a first link between the large ice sheet and mountain glaciers. The best 

494 available evidence from Alaska suggests that glaciers expanded during Marine Isotope 

495 Stage (MIS) 2 (the Late Wisconsinan glaciation in local terminology), in step with the 

496 GLGM. Although maximum ages constraining the advance phase are sparse, constraints 

497 on LGM culmination date to ~21 ka in several regions spanning the state, including the 

498 Ahklun Mountains (Kaufman et al., 2003), the Alaska Range (Tulenko et al., 2018), the 

499 Brooks Range and Arctic Alaska (Pendleton et al., 2015). The best available maximum 

500 age for the LGM glacier advance in Alaska – ~24 ka – is arguably from the Ahklun 

501 Mountains (Kaufman et al., 2003, 2012). Deglaciation in Alaska commenced as early as 

502 ~21 ka. Recognizing that cosmogenic nuclide exposure ages of moraine boulders 

503 represent the culmination of an advance, mean exposure ages of LGM terminal moraine 

504 boulders (~21 ka) mark the transition from maximum glacier conditions to ice retreat and 

505 terminal moraine stabilization. Moraines up-valley of terminal moraines were formed in 

506 the Ahklun Mountains (Manley et al., 2001), and marine sediments were deposited within 

507 LGM extents in Cooke Inlet (Reger et al., 2007) as early as ~20 ka. In the Alaska Range, 

508 the first moraines up-valley of the LGM terminal moraines were deposited ~20 ka 
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509 (Tulenko et al., 2018). In at least one or two valleys in the Brooks Range that are 

510 accurately dated, glaciers receded well up-valley between ~21 ka and ~17 ka (Pendleton 

511 et al., 2015).

512 Climate conditions in Alaska during the GLGM are not well known, but several lines of 

513 evidence indicate that conditions were much more arid than today (e.g. Finkenbinder et 

514 al., 2014; Dorfman et al., 2015). Data on temperature changes during the LGM are scarce. 

515 Some paleoecological evidence exists from the Brooks Range suggesting summer 

516 temperatures 2-4°C colder than the present (Kurek et al., 2009), and pollen data from 

517 across Beringia suggest summer temperatures were ~4°C lower (Viau et al., 2008). On 

518 the other hand, climate modeling indicates rather warm conditions in Alaska during the 

519 LGM, associated with persistent shifts in atmospheric circulation related to Laurentide 

520 and Cordilleran ice sheet size (Otto-Bliesner et al., 2006; Löfverström and Liakka, 2016; 

521 Liakka and Löfverström, 2018).

522 The largest gaps in knowledge regarding the timing of the LGM and initial deglaciation 

523 in Alaska are related to the spatial pattern of glacier change across the state and complex 

524 climate forcing. High-resolution chronologies from moraine sequences from single 

525 valleys are scarce. Furthermore, few quantitative paleoclimate data exist, and the existing 

526 records of glaciation and snowline depression have yet to be reconciled with climate 

527 modeling results that show relatively warm LGM conditions.

528 4.4 Cordilleran Ice Sheet and North Cascades

529 Glaciers in western Canada were expanding into lowland areas on the flanks of the Coast 

530 and Rocky Mountains during the GLGM, contributing to development of the CIS 

531 (Clague, 2017). The CIS was not fully formed at the GLGM; large areas of southern 

532 British Columbia remained ice-free several thousand years later. Alpine glaciers in the 

533 southern Coast Mountains advanced into lowlands near Vancouver, British Columbia, 

534 after 25.8 ka during the Coquitlam stade in local terminology (Hicock and Armstrong, 

535 1981; Hicock and Lian, 1995; Lian et al., 2001). To the south, alpine glaciers in the North 

536 Cascades achieved their maximum MIS 2 extents between 25.3 ka and 20.9 ka, about the 

537 same time as the GLGM (Kaufman et al., 2004; Riedel et al., 2010). The alpine advances 

538 at these sites ended with the Port Moody interstade sometime after 21.4 ka, when glaciers 

539 in the southern Coast Mountains and the North Cascades retreated (Hicock et al., 1982, 

540 1999; Hicock and Lian, 1995; Riedel et al., 2010) (Fig. 8).
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541 Regional pollen and macrofossil data and glacier reconstructions indicate that the climate 

542 that led to the alpine glacial advance in the North Cascades was the coldest and driest 

543 period in MIS 2 (Barnosky et al., 1987; Thackray, 2001; Riedel et al., 2010). Glacier 

544 ELAs fell by 750-1000 m from west to east across the range in response to a reduction in 

545 mean annual surface air temperature of ~8˚C and a significant reduction in precipitation 

546 (Porter et al., 1983; Bartlein et al., 1998, 2011; Liu et al., 2009). The primary reasons for 

547 the relatively arid climate were likely the lower sea surface temperatures in the Pacific 

548 Ocean, the greater distance to the coastline and large-scale changes in the atmosphere 

549 caused by formation of continental ice sheets (Hicock et al., 1999; Grigg and Whitlock, 

550 2002; Thackray, 2008). Paleoclimatic simulations produced by global climate models 

551 suggest that three large-scale controls on climate have been especially important in the 

552 Pacific Northwest during Late Glacial time (Broccoli and Manabe, 1987a, 1987b; 

553 COHMAP Members, 1988; Bartlein et al., 1998; Whitlock et al., 2000). First, the 

554 Laurentide Ice Sheet (LIS) influenced both temperature and atmospheric circulation. 

555 Second, variations in the seasonal distribution of insolation as a result of the Earth’s 

556 orbital variations affected temperature, effective precipitation and atmospheric 

557 circulation. Third, changes in atmospheric concentrations of CO2 and other greenhouse 

558 gases affected temperatures on centennial and millennial timescales (Sowers and Bender, 

559 1995).

560 4.5 Rocky Mountains/Yellowstone region

561 The Rocky Mountains allow us to link glacier behavior from the LIS to the north and the 

562 CIS to the northwest with lower latitudes, where only small glaciers formed during the 

563 period of maximum glacial expansion (Figs. 8, 9, 10, 11, 12, and 13). Recent ages from 

564 Colorado confirm that a number of valley glaciers reached their LLGM extent ~21-20 ka 

565 (Brugger et al., 2019) at roughly the same time as the GLGM (known locally as the 

566 Pinedale Glaciation), while in other valleys glaciers continued to advance, re-advance or 

567 remain in the same position for several thousand years until ~17 ka (see Brugger et al., 

568 2019, and references therein). 

569 In the Greater Yellowstone region, glaciers of the Beartooth Uplift and High Absaroka 

570 Range appear to have reached their maximum extents ~20 ka (Licciardi and Pierce, 2018). 

571 A similar pattern is evident on the eastern slope of the Teton Range, where the oldest 

572 moraines date to 19.4±1.7 ka (Pierce et al., 2018). Differences in the ages of LLGM limits 

573 in valleys surrounding the Yellowstone Plateau are likely due to local topographic factors 
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574 at the margins of the Yellowstone Ice Cap rather than general climate forcing (Young et 

575 al., 2011; Leonard et al., 2017a, 2017b; Pierce et al., 2018; Laabs et al., in preparation). 

576 Ages of ~23-21 ka from terminal moraines of four valley glaciers in the Wind River 

577 Range, about 150 km southeast of Yellowstone Park, show that the LLGM also generally 

578 coincides with the GLGM (Phillips et al., 1997; Shakun et al., 2015a; Dahms et al., 2018). 

579 Deglaciation seems to have been swift here; ice appears to have receded to 2.6 km behind 

580 its terminus in the Middle Popo Agie valley by ~19 ka and 13 km upvalley from its 

581 terminus in the adjacent North Fork valley by ~18-17 ka. Glaciers in both valleys 

582 apparently receded 19 km and 27 km to their respective cirque riegels by 17-16 ka 

583 (Dahms et al., 2018). The glacier in the Pine Creek valley receded nearly 30 km from its 

584 terminus at Fremont Lake by 14-13 ka (Shakun et al., 2015a). 

585 Many glaciers in the Rocky Mountains of Colorado reached their maximum extents 

586 during the GLGM, with the outermost moraines abandoned ~22-20 ka (Ward et al., 2009; 

587 Dühnforth and Anderson, 2011; Young et al., 2011; Schweinsberg et al., 2016; Leonard 

588 2017a, 2017b; Brugger et al., 2019). In some cases, extensive deglaciation followed 

589 shortly after 20 ka (Ward et al., 2009), but elsewhere glaciers remained at, or had re-

590 advanced to, near their maximum extents as late as 17-16 ka (Briner, 2009; Young et al., 

591 2011; Leonard et al., 2017a, 2017b), well after the end of the GLGM. In some instances, 

592 these 17-16 ka moraines are the outermost moraines of the last glaciation.

593 The near complete absence of modern glaciers in the Colorado Rocky Mountains makes 

594 it difficult to estimate ELA depressions at the GLGM, although in the San Juan Mountains 

595 of southwestern Colorado it appears that they were lowered by at least 900 m (Ward et 

596 al., 2009). Recent numerical modeling of paleo-glaciers in several Colorado ranges 

597 indicates a rather modest GLGM temperature depression of 4.5º-6.0ºC compared to 

598 present-day temperatures, assuming no change in precipitation (Dühnforth and Anderson, 

599 2011; Leonard et al., 2017a, 2017b). In contrast, work in the Mosquito Range suggests a 

600 temperature depression of 7.5o-8.1oC (Brugger et al., 2019). Earlier work, using different 

601 paleo-glaciological approaches, indicates somewhat greater GLGM temperature 

602 depressions in the Colorado Rocky Mountains (Leonard, 1989, 2007; Brugger and 

603 Goldstein, 1999; Brugger, 2006, 2010; Refsnider et al., 2008). Global and regional 

604 climate models suggest that precipitation in the northern Rocky Mountains was 

605 significantly reduced compared to the present. In contrast, the southernmost Rocky 

606 Mountains in New Mexico were wetter at the GLGM than at present, and the central 
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607 Rocky Mountains of Colorado and Wyoming experienced close to modern precipitation 

608 (Oster et al., 2015).

609 4.6 Sierra Nevada

610 Few moraines from the early GLGM period in the Sierra Nevada have been directly dated, 

611 perhaps because such moraines were less extensive than those built during the local 

612 maximum and were thus obliterated by the later advances (Phillips et al., 2009). However, 

613 there is abundant evidence of a cooling climate during the early GLGM from nearby 

614 lacustrine records. For example, cores collected from Owens Lake, just east of the range 

615 (Smith and Bischoff, 1997), record a rise in juniper pollen, which is considered an 

616 indicator of cold temperature, between 30 ka and 25 ka, reaching a maximum between 25 

617 ka and 20 ka (Woolfenden, 2003). In the same cores, total organic carbon, which 

618 decreases as input of glacial rock flour increases, falls from about 4% to near zero 

619 between 30 ka and 25 ka (Benson, 1998a, b). Similar patterns are observed in sediments 

620 from Mono Lake (Benson, 1998a, b), which also received direct discharge from glaciated 

621 valleys in the Sierra Nevada. The inference from lacustrine records that glaciation reached 

622 near-maximum extent at about 25 ka is confirmed by a fortuitously preserved terminal 

623 moraine in the valley of Bishop Creek, located at about 95% of the maximum LGM extent 

624 and dated to 26.5±1.7 ka (Phillips et al., 2009) (Fig. 14).

625 Cosmogenic and radiocarbon data for GLGM glaciation in the Sierra Nevada have 

626 recently been compiled and updated by Phillips (2016, 2017). Both 10Be and 36Cl surface-

627 exposure dating yields ages ranging from 21 ka to 18 ka for the GLGM moraines (Tioga 

628 3 in local terminology). Radiocarbon ages are slightly younger (19-18 ka), but this is 

629 because they are on organic matter accumulated in depressions behind the Tioga 3 

630 terminal moraines and thus date to the earliest stages of retreat. The spacing of recessional 

631 moraines indicates that retreat was at first slow, but then accelerated (Phillips, 2017).

632 In summary, glaciers advanced in the Sierra Nevada steadily after about 30 ka, achieving 

633 positions slightly short of their maximum extents by 26 ka. They then were relatively 

634 stable for the next 5 ka, but advanced slightly between 22 ka and 21 ka to their all-time 

635 maximum limits of the last glacial cycle. Minor retreat from this maximum position began 

636 at 19 ka and accelerated rapidly after 18.0 ka to 17.5 ka. Plummer (2002) attempted to 

637 quantify both temperature and precipitation variations in the Sierra Nevada region during 

638 the GLGM by simultaneously solving water and energy balance equations for glaciers 

639 and closed-basin lakes. He concluded that precipitation during the peak LGM-maximum 
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640 period (21-18 ka) was about 140% of historical levels and temperature was 5-6°C colder 

641 than today.

642 4.7 Mexico and Central America

643 The highest mountains in Mexico and Central America were glacier covered during the 

644 GLGM. There the LLGM overlaps part of the GLGM. In central Mexico, 36Cl exposure 

645 ages of moraines from the maximum advance are between 21 ka and 19 ka. Moraines 

646 were deposited as late as 15-14 ka in the mountains near the Pacific (Tancítaro, 3840 m 

647 asl) and Gulf of Mexico (Cofre de Perote, 4230 m asl), but minor recession occurred 

648 around 17 ka in the interior (Iztaccíhuatl, 5286 m asl) (Vázquez-Selem and Heine, 2011). 

649 Boulders on recessional moraines built inside the moraines from the local maximum have 

650 yielded exposure ages between ~14.5 ka and >13 ka, and exposure ages on glacial polish 

651 associated with recession range from 15 ka to 14 ka (Vázquez-Selem and Lachniet, 2017). 

652 In Cerro Chirripó (3819 m asl), Costa Rica, the local maximum is ~25 ka to 23 ka based 

653 on 36Cl ages (Potter et al., 2019), whereas 10Be exposure ages of lateral and recessional 

654 moraines are between ca. 18.3 ka and ~16.9 ka (Cunningham et al., 2019). They are thus 

655 younger than recessional moraines on mountains in central Mexico at a similar elevation 

656 (e.g. Tancítaro, 3840 m asl). No ages exist for the glaciated Altos Cuchumatanes (3837 

657 m asl) of Guatemala, although a maximum around the time of the GLGM is probable 

658 based on data from central Mexico and Costa Rica (Roy and Lachniet, 2010).

659 ELAs in the region during the LLGM were depressed 1000-1500 m compared to modern 

660 values (equivalent to 6-9°C of cooling), which is consistent with ELA depression around 

661 the world during the GLGM (Lachniet and Vázquez-Selem, 2005).

662 4.8 Northern Andes

663 A widespread advance in the Northern Andes during the GLGM is not clear, and the 

664 limited chronological data available preclude robust interpretations. In the Venezuelan 

665 Andes, temperatures during the GLGM have been estimated to be around 8°C cooler than 

666 present, according to palynological analysis and a paleo-ELA reconstruction (Schubert 

667 and Rinaldi, 1987; Stansell et al., 2007). Some outermost moraines have been dated to 

668 around 21 ka in the Sierra Nevada based on 10Be ages (modified ages from Angel, 2016; 

669 updated ages from Carcaillet et al., 2013). The Las Tapias terminal moraine at 3100 m 

670 asl in the Sierra Santo Domingo, northeastern Sierra Nevada, yielded ages of 18.2±1.0 ka 
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671 (n=3) (Angel, 2016), and a glacier advance in the Cordillera de Trujillo has been dated to 

672 around 17 ka (Bezada, 1989; Angel, 2016) (Fig. 15).

673 Climate in the Colombian Andes during the GLGM was cold and dry (van Geel and van 

674 der Hammen, 1973; Thouret et al., 1996). In this region, there are only a few ages from 

675 scattered valleys and it is difficult to evaluate glacier extent during the GLGM. However, 

676 in Páramo Peña Negra, close to Bogota, two moraine complexes between 3000 m and 

677 3550 m asl were built between ~28 ka and 16 ka (Helmens, 1988). Paleo-ELAs were on 

678 average 1300 m lower than modern, likely driven by 6–8°C colder temperatures (Mark 

679 and Helmens, 2005). A till (‘drift 3’) on the western slopes of the Sierra Nevada del Cocuy 

680 may date to the GLGM. The onset of sedimentation in Laguna Ciega, which is located on 

681 this till at 2900 m asl has been radiocarbon-dated to ca. 27.0-24.5 ka BP (van der Hammen 

682 et al., 1981).

683 The glacial chronology of the Ecuadorian Andes is poorly constrained and does not allow 

684 clear conclusions to be drawn about glacier extent. There are some indications of possible 

685 advances around the time of the GLGM, such as in the Rucu Pichincha and the Papallacta 

686 valley (Heine and Heine, 1996) and in Cajas National Park (Hansen et al., 2003). 

687 Brunschön and Behling (2009) suggest that climate was cold and wet during the GLGM 

688 in the southern Ecuadorian Andes based on a pollen record and the upper timberline 

689 position in Podocarpus National Park.

690 4.9 Peruvian and Bolivian Andes

691 Evidence for the extent and chronology of past glacier advances in Peru and Bolivia at 

692 the GLGM comes from moraine chronologies and lake sediment records that provide a 

693 suite of ages before and after 21 ka (Clayton and Clapperton, 1997; Blard et al., 2013). 

694 The time of the local maximum glacier expansion, based on the average cosmogenic ages 

695 of moraine groups, is ~25 ka, but there are large uncertainties (up to 7 ka), making the 

696 exact time of the LLGM uncertain. It also remains uncertain whether LLGM moraines 

697 were constructed during a long still-stand or a re-advance that erased the previous 

698 maximum limit (Mark et al., 2017). A close examination of site records reveals that, 

699 although the LLGM was close to the GLGM, there was, in some places, a larger local 

700 maximum extension of glaciers before the GLGM (Farber et al., 2005; Smith et al., 2005; 

701 Rodbell et al., 2008). In the southern part of the Altiplano, maximum glacier extents of 

702 the last glaciation are probably as old as 60 ka (e.g. Blard et al., 2014) (Figs. 16 and 17).  

703 Lakes Titicaca and Junin, which are outside glacial moraines, have provided sediment 
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704 records that indicate deglaciation was underway by 22-19.5 ka (Seltzer et al., 2000, 2002; 

705 Baker et al., 2001a, 2001b; Rodbell et al., 2008). On the Coropuna volcano, located in 

706 southern Peru, 3He ages indicate that the LLGM happened ~25 ka and deglaciation began 

707 at ~19 ka (Bromley et al., 2009).

708 Temperatures decreased ~6° C during the GLGM in the Peruvian and Bolivian Andes 

709 (Mark et al., 2005), and precipitation was slightly higher than today, as indicated by the 

710 Sajsi paleo-lake cycle (Seltzer et al., 2002; Blard et al., 2011, 2013). Therefore, a 

711 temperature increase was probably the main driver of deglaciation between 19 ka and 17 

712 ka. However, precipitation variations likely played an important role in some regions 

713 where a late deglaciation is reported, such as in the vicinity of the paleo-lake Tauca, on 

714 the central Altiplano (Martin et al., 2018).

715 4.10 Southern Bolivia and Northern Chile

716 Glacier extent at the GLGM in the western cordillera of the Andes, adjacent to the Arid 

717 Diagonal, is unclear. Glacial deposits and landforms north of the Arid Diagonal that have 

718 been investigated include those at Cerro Uturuncu (Blard et al., 2014), El Tatio and 

719 Sairecabur (Ward et al., 2017), and Cerro La Torta and the Chajnantor Plateau (Ward et 

720 al., 2015). Deposits in the subtropics south of the Arid Diagonal include those in Valle 

721 de Encierro (Zech et al., 2006) and Cordón de Doña Rosa (Zech et al., 2007). At most 

722 sites north of the Arid Diagonal, a set of degraded moraines lies 2-5 km outside one or 

723 two sets of closely nested, sharper-crested moraines, which in turn are outside smaller 

724 younger up-valley moraines (Jenny et al., 1996). A few 10Be and 36Cl ages suggest that 

725 the outer degraded moraines date to MIS 6 (191-130 ka; Ward et al., 2015). Greater 

726 precision is not possible with available data, but this interval corresponds to the age of a 

727 broad bajada along the Salar de Atacama based on 36Cl ages on terrace surfaces and a 

728 depth profile (Cesta and Ward, 2016). 

729 A set of more prominent moraines inside these degraded moraines marks the maximum 

730 expansion of glaciers after MIS 6 (Ward et al., 2017). Widely scattered 10Be and 36Cl 

731 ages, ranging from about 90 to 20 ka (45-35 ka modal age), have been obtained from 

732 boulders on these moraines both north and south of the Arid Diagonal (Ward et al., 2017) 

733 (Fig. 18). Eight boulders on the sharp crest of the LLGM moraine at El Tatio yielded six 

734 36Cl ages between 41 ka and 19.8 ka, with outliers at 82 and 57 ka. At Cerro La Torta, 

735 one LLGM moraine boulder yielded a 10Be age of 24.7±1.8 ka and glaciated bedrock just 
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736 inside the LLGM limit returned a 10Be exposure age of 31±2.4 ka. Similar ages have been 

737 obtained from the terminal moraines at Cerro Uturuncu, south of paleolake Tauca on the 

738 Bolivian Altiplano, with 8 of 12 3He ages between 46 and 33 ka (Blard et al., 2014). 

739 Similarly, a single boulder on the outer terminal moraine in Encierro Valley yielded a 

740 10Be age of 35±2 ka (Zech et al., 2006), and 9 of 13 10Be samples from the outermost 

741 moraines, drift, and outwash at Cordón de Doña Rosa returned ages ranging from 49 to 

742 36 ka (Zech et al., 2007). 

743 If the local LGM moraines date to 49-35 ka, they were built at about the same time as the 

744 Incahuasi highstand, during which a deep lake formed in the Pozuelos Basin in Argentina 

745 (McGlue et al., 2013), and during a period when glaciers in the subtropical Argentine 

746 Andes expanded (see Section 4.11).

747 Exposure ages on bedrock inside the prominent LLGM moraines (Blard et al., 2014; 

748 Ward et al., 2015) indicate that deglaciation was underway by 20-17 ka. Assuming these 

749 ages are valid, deglaciation of the western cordillera in northern Chile may have preceded 

750 that of the Altiplano.

751 The scatter in cosmogenic ages on moraines in this region may be due to differences in 

752 dating methods. 36Cl production is environmentally sensitive, and production rates are 

753 less certain than those for 10Be. However, 10Be ages on the same features also exhibit 

754 scatter (Ward et al., 2015). For example, the LLGM moraines bordering the former 200 

755 km2 ice cap on the Chajnantor Plateau (4500-5500 m asl) have yielded both 10Be and 36Cl 

756 ages ranging from 141 to 43 ka. However, 10Be and 36Cl exposure ages on glaciated 

757 bedrock beneath the most prominent moraines are younger and less scattered (30-18 ka), 

758 and one boulder on a small moraine ~1 km inboard of the LLGM margin yielded an age 

759 of 26.7±2.8 ka, similar to the bedrock ages (Ward et al., 2017). Additionally, the youngest 

760 bedrock exposure ages (20-18 ka) are from downvalley sites, near the terminal moraines, 

761 whereas ages higher on the plateau are older (30-26 ka) (Ward et al., 2015). This pattern 

762 cannot be explained by retreat of the glacier margin; rather it suggests that the LLGM 

763 moraines contain a significant component of older reworked material with cosmogenic 

764 inheritance. It is also consistent with the lesser, but still considerable, scatter seen in the 

765 ages on LLGM valley glacier moraines in the region.
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766 Reliable estimates of temperature and precipitation in northern Chile during the GLGM 

767 will require more precise dating of the glacial deposits there. Kull and Grosjean (2000) 

768 performed glacier-climate modeling to reconstruct precipitation associated with 

769 construction of the major sharp-crested moraine at the El Tatio site. They assumed a 

770 regional temperature depression of ~3.5ºC, consistent with that at ca. 17 ka, and 

771 concluded that an additional 1000 mm/yr of precipitation over modern would be required 

772 to generate a glacier of the appropriate size. If instead the sharp-crested El Tatio moraines 

773 date to the GLGM, as suggested by Ward et al. (2017), temperatures were likely 5-7 C 

774 lower than today and less precipitation would be required. For example, assuming a 5.7 C 

775 temperature depression typical of the GLGM in this area, Kull et al. (2002) estimated that 

776 a 580±150 mm/yr increase over modern precipitation would be required to explain the 

777 LLGM deposits at a different western cordillera site (Encierro Valley).

778 4.11 Central Andes of Argentina

779 The maximum expansion of glaciers in the Argentine Andes occurred before the GLGM, 

780 between 50-40 ka and before 100 ka (Zech et al., 2009, 2017; Martini et al., 2017a; Luna 

781 et al., 2018; D’Arcy et al., 2019). However, there was a generalized glacier expansion 

782 during the GLGM between 22º and 35º S (Fig. 19). North of the Arid Diagonal, the 

783 LLGM is dated to 25-20 ka based on an average of 10 10Be ages on both sides of Nevado 

784 de Chañi (Martini et al., 2017a). The advance on the east side of Nevado de Chañi was 

785 less pronounced than that on the west side. Glaciers advanced between ~22 ka and ~19 

786 ka in the Laguna Grande valley and at ~20 ka in the Peña Negra valley, both in the Tres 

787 Lagunas area (Zech et al., 2009, 2017). M2 moraines in the Sierra de Aconquija were 

788 built at ~22 ka (D’Arcy et al., 2019). There are no moraines firmly dated to the GLGM 

789 in the Sierra de Quilmes (Zech et al., 2017), but pronounced undated lateral moraines in 

790 the Nevado del Chuscha valley might be of that age. Based on the geomorphology and 

791 chronology of the moraine sequence in the same valley, Zech et al. (2017) concluded that 

792 these lateral moraines must have been deposited between 44 ka and 18 ka.

793 There is no consensus about precipitation levels in the subtropical Andes north of the 

794 Arid Diagonal during the GLGM. Available evidence from the nearby arid Altiplano 

795 suggests climate was only moderately wetter than present (Baker et al., 2001a, 2001b; 

796 Placzek et al., 2006). Speleothem records from the western Amazon, the Peruvian Andes, 

797 the Pantanal and southeastern Brazil all indicate wetter conditions during the GLGM 
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798 (Cruz et al., 2005; Wang et al., 2007; Kanner et al., 2012; Cheng et al., 2013; Novello et 

799 al., 2017) due to an intensification of the South American summer monsoon.

800 The glacial chronology south of the Arid Diagonal is poorly constrained. Moraines 

801 coincident with the GLGM have been found in the Ansilta range and Las Leñas valley. 

802 Lateral moraines in the Ansilta range have been dated to 28-19 ka based on four 10Be 

803 ages, and a prominent lateral moraine in Las Leñas valley was built between 22 ka and 

804 20 ka (Terrizano et al., 2017). Other possible evidence of GLGM glacial activity comes 

805 from the Cordon del Plata range, where one boulder on the Agostura I moraine was dated 

806 to 19 ka (Moreiras et al., 2017). Two 10Be ages (31 ka and 23 ka) on a moraine close to 

807 Nahuel Huapi lake, near Bariloche in northern Patagonia, suggest a GLGM age (Zech et 

808 al., 2017). An end moraine in the Rucachoroi valley yielded two 10Be ages and Zech et 

809 al. (2017) assigned an age to an end moraine in the Rucachoroi valley to 21 ka based on 

810 two 10Be ages. South of the Arid Diagonal, there is evidence of wetter conditions during 

811 the GLGM compared to today (Kaiser et al., 2008; Moreno et al., 2018).

812 4.12 Patagonia

813 The time of the LLGM of the Patagonian Ice Sheet (PIS) is, unsurprisingly, variable, 

814 given the broad latitudinal range of the Patagonian Andes (38°–55°S). In most cases, 

815 Patagonian glaciers achieved their maximum extents earlier than the GLGM, during MIS 

816 3 (Darvill et al., 2015; Garcia et al., 2018). Detailed stratigraphic and chronologic data 

817 exist in the Chilean Lake District (41°S) on the northwest side of the former ice sheet 

818 (Denton et al., 1999a; Moreno et al., 2015, 2018). Here, multiple radiocarbon-based 

819 chronologies bracket the time of local major expansions of piedmont lobes at ~33.6, 

820 ~30.8, ~26.9, ~26 and 17.8 ka (Denton et al., 1999a; Moreno et al., 2015). There is a 

821 significant gap in glacial chronologies for the area between 41° and 46°S, except for the 

822 Cisnes valley (44°S) where moraines dating to the end of the GLGM (10Be mean age ~20 

823 ka) are inside more distal moraines that are assumed to date to earlier phases of the last 

824 glacial cycle (de Porras et al., 2014; Garcia et al., 2019). However, the more distal 

825 moraines are undated, consequently it remains unclear whether or not the pattern of more 

826 extensive MIS 3 advances persists southward in central Patagonia. Farther south, 

827 additional studies have been done in the area currently occupied by the cross-border lakes 

828 of Lago General Carrera/Buenos Aires (46.5°S) and Lago Cochrane/Pueyrredón (47.5°S). 

829 In the former area, ages of ~26 ka have been obtained for the local maximum extent of 

830 the PIS (Kaplan et al., 2004, 2011; Douglass et al., 2006), coincident with the GLGM. 
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831 However, earlier glacial activity, at 34-31 ka, is suggested by Optically stimulated 

832 Luminescence (OSL) ages on buried sediments (Smedley et al., 2016). In the latter area 

833 (Lago Cochrane/Pueyrredón), the LLGM has been dated at ~29 ka, and possibly ~35 ka, 

834 with moraines of the GLGM located immediately up-ice (Hein, 2009, 2010, 2017).

835 Exposure dating in southern Patagonia indicates that the LLGM was far more extensive 

836 than subsequent GLGM advances. For example, the Bahía Inútil–San Sebastián ice lobe 

837 (53°S) expanded 100 km farther at ~45 ka and ~30 ka (Darvill et al., 2015a) than later 

838 advances during the GLGM at ~20 ka (McCulloch et al., 2005a; Kaplan et al., 2008). The 

839 pattern is repeated farther north where the Torres del Paine and Última Esperanza ice 

840 lobes (51°S) reached their local maximum extents at ~48 ka, with subsequent advances 

841 dated to 39.2 ka and 34 ka, and a far less extensive GLGM advance at 21.5 ka (Sagredo 

842 et al., 2011; García et al., 2018). Single exposure ages from the San Martín valley (49°S) 

843 tentatively suggest local maximum glacier expansion at ~39 ka, with a less extensive 

844 GLGM advance at ~24 ka (Glasser et al., 2011).

845 Considered together, the chronologies demonstrate that the LLGM in Patagonia occurred 

846 at different times, but largely during MIS 3. Presently, there is no satisfactory mechanism 

847 to adequately explain the timing of this local glacial maximum, although possible 

848 explanations include regional insolation and coupled ocean-atmosphere interactions, 

849 including the influence of the southern westerly winds, sea surface temperatures, 

850 Southern Ocean stratification and Antarctic sea ice extent (Darvill et al., 2015a, 2016; 

851 Moreno et al., 2015; García et al., 2018). Compared to the LLGM, the onset of 

852 deglaciation is more closely coupled throughout Patagonia and centered at 17.8 ka with 

853 some local variation, which is concurrent with warming of the mid to high latitudes in the 

854 Southern Hemisphere (Kaplan et al., 2004, 2007; McCulloch et al., 2005a; Douglass et 

855 al., 2006; Hein et al., 2010, 2017; Sagredo et al., 2011; Murray et al., 2012; García et al., 

856 2014, 2019; Henríquez et al., 2015; Moreno et al., 2015, 2018, 2019; Bendle et al., 2017; 

857 Mendelova et al., 2017; Vilanova et al., 2019).

858 4.13 Tierra del Fuego

859 Caldenius (1932) constructed the first map of the Darwin ice field at the LLGM. The map 

860 has not been greatly modified since that time, and the exact position of the ice limits 

861 around large parts of the Cordillera Darwin are poorly constrained. Former ice extent is 

862 best understood where glaciers flowing northeastward from the mountains contributed to 
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863 extensive lobes in the Straits of Magellan and Bahía Inútil (Clapperton et al., 1995; 

864 Rabassa et al., 2000; Bentley et al., 2005; McCulloch et al., 2005a; Coronato et al., 2009; 

865 Darvill et al., 2014) (Fig. 20). Surface exposure ages of glacial landforms in Tierra del 

866 Fuego suggest that these lobes achieved their maximum extents by ~25 ka and remained 

867 there until ~18 ka (McCulloch et al., 2005b; Kaplan et al., 2008; Evenson et al., 2009). 

868 However, several belts of ice-marginal landforms occur outside these moraines 

869 (Caldenius, 1932; Clapperton et al., 1995; McCulloch et al., 2005a; Evenson et al., 2009), 

870 and existing exposure age data have yielded conflicting results. Some of these outer 

871 moraines have been assigned pre-GLGM ages, but an analysis of weathering of erratic 

872 boulders suggests that most, if not all, of them may date to the last glaciation (Darvill et 

873 al., 2015b). On the southern flank of the Cordillera Darwin, outlet glaciers formed an ice 

874 stream in Beagle Channel that terminated near the Atlantic Ocean (Caldenius, 1932; 

875 Rabassa et al., 2000, 2011; Coronato et al., 2004, 2009), but remains undated. Moreover, 

876 there is no convincing evidence on the Pacific Coast for the position of the GLGM ice-

877 sheet margin, and reconstructions range from extensive ice on the continental shelf 

878 (Caldenius, 1932) to ice terminating close to the present-day shoreline (Coronato et al., 

879 2009). Given the uncertainty in GLGM positions around most of the margin, the time of 

880 the onset of glacier recession is difficult to pinpoint. However, on both the north and south 

881 sides of the range, radiocarbon ages from bog sediments, as well as a limited number of 

882 exposure ages from erratics, indicate that glaciers had receded to the interior of the 

883 mountains by ~17 ka (Heusser, 1989; Hall et al., 2013; Menounos et al., 2013) (Fig. 20).

884 4.14 Synthesis 

885 Based on current understanding, glaciers in North and Central America during the GLGM 

886 (Table 1 and Fig. 3) appear to have fluctuated near-synchronously and likely responded 

887 to the same climate drivers. In many sectors, glaciers achieved their LLGM extents 

888 around 26-21 ka. In some cases, glacier fronts remained stable from that time until shortly 

889 after 21 ka, when deglaciation began. This was the case for most of the LIS and for 

890 glaciers in Alaska, the North Cascades, several valleys in the Rocky 

891 Mountain/Yellowstone region, the Sierra Nevada, Central Mexico, and the Cordillera de 

892 Talamanca in Costa Rica.

893 Key climate forcing common to all these regions is the decrease in temperature during 

894 the GLGM. Based on a decrease in ELAs of approximately 900 m, temperatures 

895 decreased by approximately 7-8oC across much of the North American continent. 
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896 However, there are some differences. For example, the ELA depression in Alaska was 

897 less than 500 m, and the corresponding summer temperature depression was likewise less 

898 than in the western US. The pattern of precipitation during the GLGM apparently was 

899 even less uniform. Evidence shows a trend towards aridity during the GLGM in the North 

900 Cascades close to the ice sheet and the northern Rocky Mountains, and increased 

901 precipitation to the south in the Sierra Nevada, Basin and Range Province and southern 

902 Rocky Mountains.

903 We note that the behavior of glaciers during the GLGM in North and Central America 

904 was also asynchronous. Several glaciers advanced to their maximum positions several 

905 thousand years after the GLGM, at about the time of the HS-1 period. This is the case for 

906 some sectors of the LIS and CIS, some ranges in southern Alaska, some areas close to 

907 Yellowstone, the Colorado Rocky Mountains, mountains of central Mexico near the 

908 oceans, and some valleys of the Cordillera de Talamanca in Costa Rica. Differences in 

909 glacier activity within the same region could be due to local differences in precipitation 

910 stemming from orographic effects, for example in some areas of the Yellowstone region, 

911 or between oceanic and interior mountains in Mexico. Whether or not the relationship 

912 between precipitation and the glacial local maximum is generally applicable for the entire 

913 continent is a subject for future research.

914 The relative consistency in glacier behavior across North and Central America is not 

915 observed in South America. The lack of synchronicity in glacier growth in the Andes 

916 might possibly be due to the relative scarcity of data in the region or, alternatively, to its 

917 large latitudinal range and complex geography, which lead to large differences in 

918 precipitation. The most arid regions of the southern tropical Andes (southern Bolivia, 

919 northern Chile and Argentina) show the largest temporal variability in the time of the 

920 LLGM, probably due to strong precipitation control. In any case, the maximum local 

921 expansion of the glaciers in most areas in the Andes does not coincide with the GLGM. 

922 One of the few exceptions is in Tierra del Fuego, where glaciers may have reached their 

923 maximum extents between ~25 ka and ~18 ka. Even there, however, future work may 

924 show that moraines down-ice of this limit may also date to the last glaciation. In the rest 

925 of the Andean Cordillera, moraines were built during the GLGM, but the maximum 

926 advance apparently happened up to several thousands of years earlier; in southern 

927 Patagonia the LLGM may have occurred during MIS 3 as few other southern high latitude 

928 regions such as Kerguelen (Jomelli., et 2018). We also note that the moraines that 
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929 coincide with the GLGM are not necessarily the largest, as is commonly the case in North 

930 America where glacier fronts remained in the same position for an extended period of 

931 time.

932 Glaciers in the central part of the Altiplano, in the vicinity of paleo-lake Tauca, remained 

933 close to their LLGM positions until the end of H-1 (Martin et al., 2018). Elevated 

934 precipitation during H-1 apparently sustained glaciers until the end of that period. In 

935 summary, throughout the Andes, the GLGM seem to be marked by an expansion of 

936 glaciers, but that advance was not the largest everywhere. Across the Andes, this period 

937 coincided with a clear drop in temperature of ~3-8°C based on ELA depressions. Those 

938 values are consistent with temperature reductions inferred from ELA depressions in North 

939 America. Some local indicators, for example the Sajsi paleo-lake on the Altiplano show 

940 that the GLGM was characterized by slightly higher precipitation than today (Placzek et 

941 al., 2006).

942

943 5. The Impact of Heinrich-1 Stadial (HS-1) (17.5-14.6 ka) on American Glaciers 

944 5.1 Heinrich-1 Stadial 

945 The second period analyzed is the Heinrich 1 Stadial (HS-1), which is called the ‘Oldest 

946 Dryas’ in Scandinavia. The term HS-1 comes from records of marine sediments that show 

947 the massive discharge of icebergs into the North Atlantic during this period (Heinrich, 

948 1988), mainly from the Hudson Bay/Strait region, the main drainage route for the LIS 

949 (Hemming, 2004). The use of the term as a chronological unit has been criticized 

950 (Andrews and Voelker, 2018) from a sedimentological point of view. The term Oldest 

951 Dryas, although widely used, has also been criticized because it is not clearly delimited 

952 chronologically (Rasmussen et al., 2014). In this paper, we follow the paleoclimate and 

953 paleoglaciological criteria of Denton et al. (2006), who delimit HS-1 between the 

954 Heinrich 1 “event” (17.5 ka) and the beginning of the Bølling-Allerød interstadial (14.6 

955 ka). They refer to this period as the ‘Mystery Interval’ due to the fact that, although CO2 

956 concentrations in the atmosphere increased during this time, temperature dropped sharply 

957 in the Northern Hemisphere and in the tropics. In our study, we opt for the term HS-1 for 

958 the same time period, following the standard differentiation between “event” and 

959 “stadial” (Rasmussen et al., 2014; Heath et al., 2018).
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960 HS-1 is a climate event that interrupted deglaciation. In the North Atlantic region, 

961 temperatures fell drastically in winter, sea ice expanded, and the ocean cooled (Barker et 

962 al., 2010). Atlantic Meridional Overturning Circulation (AMOC) was sharply reduced or 

963 even collapsed (McManus et al., 2004; Böhm et al., 2015), and many mountain glaciers 

964 advanced in Europe (Gschnitz stadial in the Alps; Ivy-Ochs, 2015), at least at the 

965 beginning of HS-1. Although the European ice sheets decreased in size during this period 

966 (Toucanne et al., 2015), it is clear that climate during HS-1 varied. There were periods 

967 with hot summers that caused massive glacier melting (Thornalley et al., 2010; Williams 

968 et al., 2012). The Asian monsoon disappeared (Wang et al., 2008), the South American 

969 monsoon intensified (Stríkis et al., 2015, 2018), and the Southern Hemisphere westerlies 

970 were displaced polewards (Denton et al., 2010). Temperatures in Antarctica increased, 

971 along with atmospheric CO2 concentrations (Monnin et al., 2001; Ahn et al., 2012), due 

972 to Southern Ocean ventilation (Barker et al., 2009). HS-1 is the period that best 

973 demonstrates the close relationships among AMOC, atmospheric CO2 and temperatures 

974 in Antarctica (Deaney et al., 2017).

975 5.2 Laurentide Ice Sheet

976 The extent of glaciers and ice sheets during HS-1 is summarized in Figure 4. Although 

977 explanations of Heinrich events have tended to focus on the Hudson Strait ice stream, it 

978 is clear that there are sedimentological differences both within and between individual 

979 Heinrich ‘layers,’ including variable source areas (Andrews et al., 1998, 2012; Piper and 

980 Skene, 1998; Hemming, 2004; Tripsanas and Piper, 2008; Rashid et al., 2012; Roger et 

981 al., 2013; Andrews and Voelker, 2018). Thus, it is likely that other ice streams along the 

982 eastern margin of the LIS, and possibly even farther afield at its northern margin (Stokes 

983 et al., 2005), may have contributed, at least in part, to some Heinrich-like events 

984 (Andrews et al., 1998, 2012; Piper and Skene, 1998). However, the extent to which these 

985 events were correlative is unclear, as are the wider impacts of Heinrich events on the 

986 dynamics of the LIS. For example, readvances or stillstands elsewhere in the Americas 

987 have been linked to HS-1, and yet evidence from the LIS is comparatively scarce. 

988 Clark (1994) was one of the first to propose a link between Heinrich events in the Hudson 

989 Strait and the advance of ice margins/lobes resting on soft deformable sediments along 

990 the southern margin of the ice sheet. Mooers and Lehr (1997) also noted the possibility 

991 that the advance and rapid retreat of lobes in the western Lake Superior region may have 

992 been correlative with Heinrich events 2 and 1, but this idea has since received relatively 
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993 little attention and there is little clear evidence for major re-advances of the LIS during 

994 or soon after HS-1 (Heath et al., 2018). Rather, the most likely impact of HS-1 was to 

995 lower the ice surface over Hudson Bay and drive changes in the location of ice dispersal 

996 centers, with subsequent effects on ice-flow patterns (Margold et al., 2018). For example, 

997 Dyke et al. (2002) suggest that the drawdown of ice during HS-1 was likely sufficient to 

998 displace the Labrador ice divide some 900 km eastward from the coast of Hudson Bay 

999 and cause a major flow reorganization (see also Veillette et al., 1999). There is also 

1000 evidence that parts of the ice sheet thinned rapidly in coastal Maine during the latter part 

1001 of HS-1 (Hall et al., 2017b; Koester et al., 2017).

1002 There is also clear evidence from several regions that the ice sheet retreated during HS-

1003 1, punctuated by brief readvances or stillstands. For example, recalculated 10Be data 

1004 (Balco and Schaefer, 2006), coupled with the New England varve chronology (Ridge et 

1005 al., 2004), indicate retreat of the ice margin in the northeastern United States. 36Cl 

1006 exposure ages from the Adirondack Moutains (Barth et al., 2019) suggest that the ice 

1007 sheet may have begun to thin around 19.9±0.5 ka. Thinning continued throughout HS-1 

1008 and accelerated between 15.5±0.4 ka and 14.3±0.4 ka (see also Section 5.2). Rapid ice 

1009 sheet thinning has also been inferred in coastal Maine during the latter part of HS-1 (Hall 

1010 et al, 2017b; Koester et al., 2017). 

1011 5.3 Alaska

1012 Although detailed moraine chronologies needed to fully explain glacier change in Alaska 

1013 during HS-1 do not exist, there is patchy information on ice extent at that time. In most 

1014 locations where recessional moraines have been dated, some stillstands or re-advances 

1015 have been inferred during HS-1. In the Brooks Range, a prominent recessional moraine 

1016 has been dated to ~17 ka (Pendleton et al., 2015), and the Elmendorf Moraine in south-

1017 central Alaska dates to ~16.5 ka (Kopczynski et al., 2017). Given the number of 

1018 recessional moraines in most valleys, for example throughout the Alaska Range, the 

1019 Ahklun Mountains, and the Kenai Peninsula, it is difficult to know if these glacial 

1020 stabilizations necessarily relate to cooling triggered in the North Atlantic Ocean. Rather, 

1021 they could be related to a number of factors that could cause glacier recession to be 

1022 interrupted by re-advances or stillstands (e.g. isostatic rebound, solar variability, glacier 

1023 hypsometric effects). Thus, attributing them per se to North Atlantic stadial conditions at 

1024 this time is premature. In fact, in spite of some interruptions, there was overall significant 
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1025 recession of glaciers throughout HS-1 in Alaska. Most glaciers in Alaska with reasonable 

1026 chronological constraints experienced net retreat during HS-1.

1027 5.4 Cordilleran Ice Sheet and the North Cascades

1028 Alpine glaciers receded from maximum positions during the Port Moody interstade, 

1029 which began after 21.4 ka (Riedel et al., 2010). Two glacial events in this region correlate 

1030 with HS-1: construction of alpine glacier end moraines and the advance of the CIS to its 

1031 maximum limit. Deposition of ice-rafted detritus at a deep-sea core site west of 

1032 Vancouver Island began about 17 ka and abruptly terminated at about 16.2 ka, recording 

1033 the rapid advance and retreat of the western margin of the CIS (Cosma et al., 2008). 

1034 Studies west of Haida Gwaii (Blaise et al., 1990) and near the southwestern margin of the 

1035 CIS (Porter and Swanson, 1998; Troost, 2016) also indicate that it reached its maximum 

1036 extent several thousand years after the GLGM. Glaciers in two mountain valleys in the 

1037 southern North Cascades retreated from moraines closely nested inside the GLGM 

1038 moraines. However, 36Cl ages on the Domerie II (17.9-14.7 ka) and the Leavenworth II 

1039 moraines (17.2-15.0 ka) have large uncertainties, and the moraine ages may or may not 

1040 be associated with HS-1 (Porter, 1976; Kaufman et al., 2004; Porter and Swanson, 2008).

1041 The climate in the North Cascades during HS-1 is not well understood due to a lack of 

1042 age control on landforms, limited paleoecological data, and the large influence of the 

1043 continental ice sheets on climate. However, glacial ELAs associated with potential HS-1 

1044 moraines located well to the south of the CIS terminus were slightly above the GLGM 

1045 maximum (Porter, 1976; Kaufman et al., 2004; Porter and Swanson, 2008). In areas 

1046 inundated by the CIS to the north, alpine glaciers retreated to valley heads, presumably 

1047 due to lower precipitation as the continental ice sheets expanded to cover most of Canada 

1048 and northern Washington. Climate models and pollen data indicate that at 16 ka mean 

1049 annual air temperature was 4-7ºC cooler than today (Heusser, 1977; Kutzbach, 1987; Liu 

1050 et al., 2009).

1051 5.5 Rocky Mountain/Yellowstone region

1052 In some areas of this region, glacier retreat began toward the end of the GLGM; in other 

1053 areas, glaciers maintained their fronts or re-advanced at ~16.5 ka, although with a great 

1054 degree of local variability, and then immediately retreated. Glaciers in some valleys near 

1055 the margins of the Yellowstone Ice Cap reached their local maximum extent at ~17 ka, 

1056 then rapidly retreated at ca. 15 ka when several external climate forcings coincided 
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1057 (Licciardi and Pierce, 2018) (Figs. 11 and 12). Moraines dated to the HS-1 period are 

1058 common in valleys along the eastern slope of the Teton Range (Licciardi and Pierce, 

1059 2018) and in the Wind River Range (Dahms et al., 2018, 2019; Marcott et al., 2019). In 

1060 the Wind River Range, these moraines are ~1-2 km downvalley from cirque headwalls in 

1061 14 valleys (Dahms et al., 2010). Ages from these moraines in Stough Basin, Cirque of the 

1062 Towers and Temple Lake cluster around ~15.5 ka (Fig. 10) (Dahms et al., 2018; Marcott 

1063 et al., 2019). Subsequently, a second period of regional deglaciation was well under way 

1064 after ~15 ka (Larsen et al., 2016; Dahms et al., 2018; Pierce et al., 2018). 

1065 Glaciers in some valleys in the Colorado Rocky Mountains receded during HS-1. In 

1066 contrast, many other valleys contain end moraines dating to 17-16 ka. Ages on polished 

1067 bedrock surfaces up-valley of these moraines have yielded ages that show that the glaciers 

1068 retreated shortly thereafter (Young et al., 2011; Shakun et al., 2015a; Leonard et al., 

1069 2017a, 2017b; Laabs et al., 2020, submitted). Ward et al. (2009) suggest that there was a 

1070 stillstand or possible re-advance around 17-15 ka in the Colorado Front Range, 

1071 interrupting overall post-GLGM recession.

1072 5.6 Sierra Nevada

1073 There is strong evidence for an advance of glaciers in the Sierra Nevada during HS-1 – 

1074 the Tioga 4 advance in local terminology (Phillips et al., 1996) – but HS-1 was not a time 

1075 of extensive glaciation. As described in Section 3.5, retreat from the GLGM maximum 

1076 began gradually at about 19 ka. It accelerated rapidly after 18 ka, and glaciers receded 

1077 past Tioga 4 glacier margins by about 17 ka (Phillips, 2017). Retreat then reversed and 

1078 glaciers readvanced to Tioga 4 positions by 16.2 ka (Fig. 14). The ELA depression for 

1079 this advance was about 900 m, compared to the GLGM ELA depression of about 1200 

1080 m. The Tioga 4 advance apparently was short-lived; by 15.5 ka, the range was effectively 

1081 deglaciated. It is clear from the simultaneous expansion of Lake Lahontan and the Tioga 

1082 4 glaciers that increased precipitation played a major role in glacier expansion at this time.

1083 The fact that Lake Lahontan was relatively small during Tioga 3 (21-19 ka, the LLGM), 

1084 while glaciers were more extensive, shows that Tioga 3 was colder and drier than Tioga 

1085 4. Plummer (2002) estimated that Tioga 4 precipitation was 160% greater than today and 

1086 temperature was 3°C cooler based on the inferred size of Searles Lake at that time. Had 

1087 he used the extent of Lake Lahontan in his analysis, the increase in precipitation would 

1088 have been even larger. Phillips (2017) suggested that the large extent of sea ice in the 

1089 North Atlantic during HS-1 led to greatly increased precipitation and cooler temperatures 
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1090 in California through an atmospheric teleconnection. An impediment to further analysis 

1091 of these topics is the chronological inconsistencies between the dating of the Sierra glacial 

1092 record, nearby marine cores, and lacustrine records (Phillips, 2017). More confidence in 

1093 the chronology could allow researchers to resolve questions of climate leads and lags, and 

1094 determine whether the apparent differences in timing are the result of chronological 

1095 imprecision or latitudinal paleoclimate gradients.

1096 5.7 Mexico and Central America

1097 Glaciers in central Mexico remained at or near their maximum positions throughout HS-

1098 1. In the interior mountains (e.g. Iztaccíhuatl), glaciers were slightly smaller during HS-

1099 1 (ELA = 4040 m asl) than at the LLGM (ELA = 3940 m asl, from 21 ka to 17 ka) 

1100 (Vázquez-Selem and Lachniet, 2017). Recession at this time is not recorded in mountains 

1101 near the Pacific Ocean, where a low ELA persisted until 15-14 ka. Indeed, during HS-1, 

1102 ELAs were ca. 400-650 m lower on mountains near the coast than in the interior, which 

1103 suggests a strong precipitation gradient from the coast to the interior and overall drier 

1104 conditions in the interior during HS-1 (Lachniet et al., 2013). In general, the end of HS-

1105 1 is coeval with the onset of glacier recession ~14.5 ka in central Mexico. Existing 

1106 evidence at Cerro Chirripó, Costa Rica, indicates moraine formation between 18.5 ka and 

1107 17 ka (Cunningham et al., 2019), potentially during the earlier part of HS-1. If the summit 

1108 area was ice-free by 15.2 ka, as suggested by Cunningham et al. (2019), glacier recession 

1109 prevailed during the second part of HS-1 (as defined by Hodell et al., 2017).

1110 5.8 Northern Andes

1111 Most of the glacier advances in the northern tropical Andes were dated between the end 

1112 of the GLGM and the end of HS-1 (~15 ka). In the Sierra Nevada of the Venezuelan 

1113 Andes, some valleys were completely deglaciated by ~16.5 ka (Angel et al., 2016). In 

1114 others, glaciers advanced ~17 ka (modified ages of Angel, 2016). In the Sierra Santo 

1115 Domingo, maximum advances are dated to ~17.5 ka (modified ages from Wesnousky et 

1116 al., 2012; Angel, 2016). In the Sierra del Norte they date to between 18 ka and 15.5 ka 

1117 (modified ages from Wesnousky et al., 2012; Angel, 2016), and in the Cordillera de 

1118 Trujillo, to around 18 ka (10Be ages modified ages from those of Angel, 2016). Some 

1119 advances in the Colombian Andes may be related to HS-1. This is the case in the Bogotá 

1120 Plain, where a moraine complex has been dated to between 18 ka and 14.5 ka (Helmens, 

1121 1988; Helmens et al., 1997b), and in the Central Cordillera, where peat overlying a 

1122 moraine complex yielded a minimum age of 16-15 ka (Thouret et al., 1996). There are 
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1123 moraines in the Ecuadorian Andes that are related to HS-1, for example in Cajas National 

1124 Park, vicinity of Pallcacocha lake above 3700 m asl, where a moraine was radiocarbon 

1125 dated to 17-14.5 cal ka BP (Hansen et al., 2003). 

1126 Most glacier advances in the northern tropical Andes have been dated to ~18-15 ka based 

1127 on 10Be ages. However, the scarcity of paleoclimatic information limits our ability to 

1128 estimate the regional HS-1 climate and to compare it to GLGM conditions. Rull (1998) 

1129 proposed a cold event (~7°C cooler than today), locally called as El Caballo Stadial, at 

1130 16.5 ka based on a palynological record from the central Mérida Andes in Venezuela. 

1131 Similarly, Hooghiemstra et al. (1993) proposed the Fúquene Stadial at a similar time in 

1132 the Colombian Andes based on a palynological study in the Bogotá Plain. In contrast, 

1133 Brunschön and Behling (2009) concluded that both temperature and precipitation in the 

1134 southern Ecuadorian Andes were higher during the period 16.2-14.7 cal yr BP than during 

1135 the GLGM.

1136 5.9 Peru and Bolivia

1137 Three moraines near Lake Junín have cosmogenic ages of ~21 ka to 18 ka (Smith et al., 

1138 2005), providing evidence of an advance prior to HS-1. In contrast, the Galeno moraines 

1139 in the Cajamarca region have slightly younger ages and have complete inset 

1140 lateral/terminal loops with an average age of 19 ka. The Juellesh and Tuco valleys in the 

1141 Cordillera Blanca have inner and outer moraine loops that date, respectively, to ~18.8±2.0 

1142 ka and ~18.7±1.6 ka (Smith and Rodbell, 2010). Glasser et al. (2009) presented similar 

1143 ages (~18.3±1.4 ka) for an outer lateral moraine in the Tuco valley. An inner lateral 

1144 moraine (M4 of Smith and Rodbell, 2010) has been dated to ~18.8±2.3 ka, and Glasser 

1145 et al. (2009) reported similar ages on the same moraine (~17.9±0.9 ka). Revised ages on 

1146 various stages of deglaciation of the Cordillera Huayhuash are centered on ~17.8-16.5 ka 

1147 (Hall et al., 2009). Similarly, dated boulders on the Huara Loma, Coropuna, and Wara 

1148 Wara moraines in Bolivia may record post-GLGM advances between 19.4 ka and 18.2 

1149 ka (Zech et al., 2010; May et al., 2011; Martin et al., 2018).

1150 Many valleys in central Peru and Bolivia contain evidence of glacier advances or 

1151 persistent stillstands during HS-1 (~17.5-14.6 ka) (syntheses in Mark et al., 2017, and 

1152 Martin et al., 2018). The mean exposure ages of all groups of moraine boulders in this 

1153 region that fall within HS-1 is 16.1±1.1 ka. A stillstand synchronous with HS-1 is also 

1154 indicated by cosmogenic 3He ages of moraines on the Coropuna volcano, southern Peru 

1155 (Bromley et al., 2009). Radiocarbon and cosmogenic ages from the Cordillera Vilcanota 
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1156 and the HualcaHualca volcano (Fig. 17) provide independent evidence that glaciers in 

1157 southern Peru advanced sometime after ~18.0-16.8 ka (Mercer and Palacios, 1977; 

1158 Alcalá-Reygosa et al., 2017), and radiocarbon ages from the Altiplano indicate an 

1159 advance occurred there from ~17 ka to 15.4 ka (Clapperton et al., 1997b; Clapperton, 

1160 1998).

1161 Ice core records from Huascarán, Peru, suggest that HS-1 was the coldest period of the 

1162 past ~19 ka (Thompson et al., 1995), but researchers have argued recently that the 18O 

1163 signal in tropical ice does not provide a pure temperature signal (Quesada et al., 2015). 

1164 The cooling inferred from reconstructions of paleo-ELAs during HS-1 is around 3°C in 

1165 the central Altiplano (Martin et al., 2018). 

1166 The northern equatorial Andes of Peru appear to have been wetter during most of HS-1 

1167 (Mollier-Vogel et al., 2013), whereas speleothem records in central Peru suggest that the 

1168 local climate became abruptly drier at ~16 ka (Kanner et al., 2012; Mollier-Vogel et al., 

1169 2013). Lake-level fluctuations provide strong evidence for pronounced shifts in 

1170 precipitation across the central Andes during this period (Baker et al., 2001a, 2001b; 

1171 Placzek et al., 2006; Blard et al., 2011). Farther south, over the Altiplano, shoreline 

1172 reconstructions demonstrate that the first part of HS-1 (~18-16.5 ka) was similar to or 

1173 drier than today. However, during the Lake Tauca highstand in the second part of HS-1 

1174 (16.5-14.5 ka) precipitation was ca. 130% higher than today (Placzek et al., 2013; Martin 

1175 et al., 2018). Some of the GLGM and older moraines in this part of the Altiplano may 

1176 have been overridden during this wet phase. Martin et al. (2018) established that the 

1177 downward shift in ELA at this time was amplified in valleys that are near the latitudinal 

1178 center of paleo-lake Tauca, resulting from a significant local increase in precipitation.

1179 5.10 Southern Bolivia and Northern Chile

1180 During HS-1, there was a sharp spatial gradient in climate between Cerro Tunupa, which 

1181 is located at the geographic center of Lake Tauca, and Cerro Uturuncu (Bolivia) and 

1182 elsewhere north of the Arid Diagonal (Ward et al., 2017; Martin et al., 2018). Blard et al. 

1183 (2014) describe a 900 m gradient in ELAs between Cerro Tunupa and Cerro Uturuncu 

1184 based on the Tauca-phase moraines at each site. The spatial gradient in temperature 

1185 between these sites (Ammann et al., 2001) is not sufficient to explain the ELA difference, 

1186 which implies the existence of a strong spatial gradient in precipitation across the 

1187 southern margin of Lake Tauca. Further work by Martin et al. (2018) quantified this 

1188 precipitation gradient, confirming that it was significantly drier in the southern portion of 
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1189 the Lake Tauca basin. The presence of this drying trend to the south and west is supported 

1190 by the lack of a clear Tauca-phase transgression at Pozuelos Basin in the Puna region, 

1191 which is at a similar latitude to Cerro Uturuncu and El Tatio (McGlue et al., 2013). Based 

1192 on the clustering of 10Be and 36Cl exposure ages on LLGM moraines (Section 4.10), 

1193 Tauca-phase moraines appear to be either absent or restricted to higher parts of valleys at 

1194 El Tatio, Cerro La Torta, and Chajnantor Plateau (Ward et al., 2017), as well as at several 

1195 sites on the central Puna Plateau (Luna et al., 2018) and the western slope of Nevado 

1196 Chañi (24ºS) in Argentina (Martini et al., 2017a). The precipitation gradient is consistent 

1197 with paleo-vegetation proxy records that indicate an approximate doubling of modern 

1198 precipitation, from ~300 to ~600 mm/yr (Grosjean et al., 2001; Maldonado et al., 2005; 

1199 Gayo et al., 2012), in the northern Arid Diagonal and adjacent Andes during the Tauca 

1200 highstand. South of the Arid Diagonal, at Valle de Encierro and Cordón de la Rosa, ages 

1201 of 17 ka from highly recessed locations indicate a stillstand or minor advance during HS-

1202 1, followed by full deglaciation (Ward et al., 2017).

1203 5.11. Central Andes of Argentina

1204 Initial deglaciation in the Central Andes after the LLGM was followed by renewed glacier 

1205 expansion during HS-1. Moraines that mark the HS-1 limit are found up-valley of those 

1206 constructed during the GLGM. North of the Arid Diagonal, glacier expansion during HS-

1207 1 coincided with the Tauca paleo-lake (Blard et al., 2011; Placzek et al., 2013). Glaciers 

1208 advanced in the Laguna Grande valley in the Tres Lagunas area between ~17 ka and ~15 

1209 ka (Zech et al., 2017), the east and west sides of Nevado de Chañi ~15 ka (Fig. 19) 

1210 (Martini et al., 2017a), and in the Sierra de Quilmes, between ~18 ka and ~15 ka (Zech 

1211 et al., 2017). An exception to these findings comes from Sierra de Aconquija where 

1212 renewed glacier growth appears to have occurred after the HS-1 stadial (D’Arcy et al., 

1213 2019). South of the Arid Diagonal, there is almost no evidence of glacial limits dating to 

1214 HS-1. Just one sample from the La Angostura I moraine in the Cordon del Plata has been 

1215 dated to ~15 ka (Moreiras et al., 2017). Moraines up-valley of the GLGM limit in the Las 

1216 Leñas valley and Ansilta Range have not yet been dated (Terrizzano et al., 2017; Zech et 

1217 al., 2017).

1218 5.12 Patagonia

1219 At the time of the HS-1 stadial, the Patagonian region was experiencing widespread 

1220 warming and deglaciation (Moreno et al., 2015; Bertrand et al., 2008). Rapid warming 

1221 began at 17.8 ka in northwestern Patagonia and approached average interglacial 
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1222 temperatures by 16.8 ka (Moreno et al., 2015). Glaciers in northwestern Patagonia 

1223 retreated out of the lowlands shortly before ~17.8 ka and into high mountain cirques 

1224 above 800 m asl by 16.7 ka (Denton et al., 1999a; Moreno et al., 2015). The abrupt and 

1225 synchronous withdrawal of many glacier lobes in northwestern Patagonia was 

1226 contemporaneous with the rapid expansion of temperate rainforests (Heusser et al., 1999; 

1227 Moreno et al., 1999), suggesting pronounced warming at 17.8 ka coupled with a poleward 

1228 shift of the southern westerlies between 17.8 ka and 16.8 ka (Pesce and Moreno, 2014; 

1229 Moreno et al., 2018). However, on the east flank of the Andes (Cisnes valley, 44°S), it 

1230 has been suggested that glaciers started retreating somewhat earlier, at ~19 ka. At this 

1231 site, it has been estimated that the ice had diminished to 40% of its local maximum extent 

1232 by ~16.9 ka (Weller et al., 2017; Garcia et al., 2019).

1233 Farther south, in central Patagonia, lake cores from two small basin (Villa-Martínez et 

1234 al., 2012; Henríquez et al., 2017) show that the Lago Cochrane/Pueyrredón ice lobe 

1235 (47.5°S) retreated over 90 km into the Chacabuco Valley between ~21 ka (Río Blanco 

1236 moraines; Hein et al., 2010a) and 19.4 ka. Ice receded an additional ~60 km to reach a 

1237 position close to modern glacier limits by around 16-15 ka (Turner et al., 2005; Hein et 

1238 al., 2010; Boex et al., 2013; Mendelova et al., 2017; Davies et al., 2018; Thorndycraft et 

1239 al., 2019). Retreat east of the shrinking ice sheet in the Lago Cochrane sector of central 

1240 Patagonia occurred without discernable warming (Henríquez et al., 2017). Almost 

1241 certainly, however, this retreat was facilitated by calving in deep proglacial lakes that 

1242 formed in the over-deepened Cochrane/Pueyrredón and General Carrera/Buenos Aires 

1243 basins as the glaciers withdrew (Turner et al., 2005; Bell, 2008; Hein et al., 2010; Borgois 

1244 et al., 2016; Glasser et al., 2016; Davies et al., 2018; Thorndycraft et al., 2019). At Lago 

1245 General Carrera/Buenos Aires (46.5°S), glacier retreat from the Fenix I moraine 

1246 commenced ~18 ka, but was interrupted by a readvance to the Menucos moraines at ~17.7 

1247 ka. An annually resolved lake sediment record, tied to a calendar-year timescale by the 

1248 presence of the well dated Ho tephra erupted from Volcán Hudson (17,378±118 cal yr 

1249 BP), indicates that ice remained close to the east end of the lake until after 16.9 ka, before 

1250 retreating back into the mountains (Kaplan et al., 2004; Douglass et al., 2006; Bendle et 

1251 al., 2017, 2019). Bendle et al. (2019) suggest that the onset of deglaciation in central 

1252 Patagonia was a direct result of the HS-1 event. They hypothesize that warming at the 

1253 start of HS-1 occurred due to rapid poleward migration of southern westerly winds, which 

1254 increased solar radiation and ablation at the ice sheet surface. They linked warming and 
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1255 accelerated deglaciation to the oceanic bipolar seesaw, which delayed Southern 

1256 Hemisphere warming following the slowdown of the Atlantic meridional overturning at 

1257 the start of HS-1 (Bendle et al., 2019).

1258 Determining whether “early LGM” and “early deglaciation” are correct interpretations of 

1259 glacier activity in central Patagonia (44°-49°S) (Van Daele et al., 2016; García et al., 

1260 2019) is important for determining whether local (glaciological, reworking of old organic 

1261 matter) or regional (climatic) mechanisms are responsible for apparent differences in 

1262 timing, rate, and magnitude of glacier fluctuations prior to and during the GLGM and 

1263 Termination I (Vilanova et al., 2019). Another problem emerges from studies of lake 

1264 sediments from the eastern slopes of the Andes in central Patagonia. Based on an analysis 

1265 of seismic data and lake sediment cores from Lago Castor (Fig. 1), Van Daele et al. (2016) 

1266 concluded that the Coyhaique glacier lobe achieved its maximum extent and retreated 

1267 before the GLGM. The concepts of ‘early LGM‘ and ’early deglaciation‘ rely heavily on 

1268 the interpretation and selective rejection of anomalously old radiocarbon ages, which 

1269 include results as old as 43,100±3600 14C yr BP in the clastic-dominated and intensely 

1270 reworked portion of the Lago Castor cores beneath the H0 tephra, which has been 

1271 radiocarbon dated to 17,300 cal yr BP (Weller et al., 2014). This enigmatic radiocarbon 

1272 chronology has not been corroborated by more recent studies in the Río Pollux valley, 

1273 where Moreno et al. (2019) and Vilanova et al. (2019) have reported stratigraphic, 

1274 geochronologic, and palynological results from small, closed-basin lakes to constrain the 

1275 timing and extent of the Coyhaique glacier lobe during Termination I. These studies point 

1276 to the abandonment of the final LLGM margins at ~17.9 ka, ~600 years before the 

1277 reported age of the H0 tephra. The similarities between northern and southern Patagonia 

1278 (see below), and contrasts with the Río Cisnes and Lago Cochrane/Pueyrredón glacier 

1279 lobes, suggest that the different behavior of the latter might arise from differences in their 

1280 topographic setting, ice divide migration (Mendelova et al., 2019), or differential calving 

1281 in large proglacial lakes in the Central Patagonian Andes during the final stage of the 

1282 LLGM.

1283 In southern Patagonia, the Lago Argentino lobe (50°S) retreated at least 60 km from its 

1284 LLGM by 16.2 ka (Strelin et al., 2011). A nearby mountain glacier at Río Guanaco (50°S) 

1285 retreated to half its extent between 18.9 ka and 17 ka, suggesting a temperature increase 

1286 of ~1.5°C, or about one-third of the total deglacial warming relative to today (Murray et 
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1287 al., 2012). Similarly, the Última Esperanza ice lobe retreated after 17.5 ka, but with a 

1288 short period of stabilization at ~16.9-16.2 ka (Sagredo et al., 2011).

1289 5.13 Tierra del Fuego

1290 HS-1 in the Cordillera Darwin was characterized by very rapid glacier recession with no 

1291 evidence of stillstands (Hall et al., 2013, 2017a). Surface exposure ages on boulders 

1292 indicate that ice was at the innermost GLGM moraine at the shore of Bahía Inútil at ~18 

1293 ka (McCulloch et al., 2005b; Kaplan et al., 2008; Hall et al., 2013), but retreated shortly 

1294 thereafter (McCulloch et al., 2005b). Radiocarbon ages from peat bogs near present-day 

1295 sea level indicate that the Cordillera Darwin icefield had retreated inside fjords by 16.8 

1296 ka (Hall et al., 2013, 2017b). On the north side of the Cordillera Darwin, this recession 

1297 was ~130 km from its LLGL. In the Fuegian Andes, two 10Be ages from glacially eroded 

1298 bedrock in front of an alpine glacier indicate that recession was well underway by ~17.8 

1299 ka and had reached the late-glacial position as early as ~16.7 ka (Menounos et al., 2013). 

1300 Whether this glacier was part of the Cordillera Darwin icefield or a separate ice mass at 

1301 the GLGM remains uncertain (Coronato, 1995; Menounos et al., 2013). In any case, 

1302 glaciers in the region responded to HS-1 by rapidly retreating, as was the case at some 

1303 other Southern Hemisphere locations (Putnam et al., 2013). 

1304 5.14 Synthesis

1305 Glaciers in most of North and Central America began to retreat from their GLGM 

1306 positions by about 21 ka (Table 2 and Fig. 4). In some areas (e.g. Wind River Range), 

1307 they suffered the same mass losses after ~21 ka as other glaciers, but apparently re-

1308 advanced during HS-1. In other regions (e.g. Yellowstone Ice Cap, the Colorado Rocky 

1309 Mountains and on some Mexican volcanoes), glaciers reached their maximum extents 

1310 during HS-1. Some of these glaciers may have advanced from the GLGM to HS-1 and 

1311 surpassed their GLGM limits. This possibility, however, must be considered hypothetical, 

1312 as it is inherently difficult to verify.

1313 Interestingly, one of the Northern Hemisphere regions that appears to have been least 

1314 affected by the HS-1 event, at least in terms of the ice-marginal fluctuations, is the LIS. 

1315 Rather, the ice sheet thinned and retreated during this period. It is likely that internal flow 

1316 patterns and ice divides were impacted by drawdown induced by the Hudson Strait ice 

1317 stream. There are few data from Alaska to evaluate the effects of HS-1 on glaciers, but 

1318 there is some evidence of advances interrupting overall retreat during this interval. The 
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1319 southern sector of the CIS and a number of glaciers in Colorado and those proximal to 

1320 the Yellowstone Ice Cap area reached their maximum extents during HS-1. In a few 

1321 valleys in the North Cascades south of the CIS limit, possible HS-1 moraines lie upvalley 

1322 of GLGM moraines, although data are sparse. A clear advance immediately following 

1323 HS-1 has been documented in the Sierra Nevada and the Wind River Range. In the Sierra, 

1324 HS-1 moraines, locally termed Tioga 4, lie well inside GLGM moraines. These moraines 

1325 record an ELA depression of 900 m, which is 300 m less than during the GLGM. In the 

1326 Wind River Range, the Older Dryas/HS-1 moraines lie 19-27 km upvalley of 

1327 LLGM/GLGM moraines. In the interior mountains of Central Mexico and Costa Rica, 

1328 moraines dating to near HS-1 lie inside GLGM moraines. However, glaciers in mountains 

1329 close to the oceans remained at, or advanced past, their GLGM limits until the end of HS-

1330 1.

1331 In the Sierra Nevada, temperatures were 3ºC lower than today during HS-1, but clearly 

1332 precipitation was increased. In other regions, data appear to confirm the decrease in 

1333 temperature in the Sierra Nevada, but there is little information on precipitation.

1334 Glaciers in the tropical Andes built significant moraine complexes during HS-1, attesting 

1335 to a significant stillstand or readvance. In the northern Andes, numerous moraines have 

1336 been dated to this period, reflecting an interruption of the longer-term of trend glacier 

1337 retreat. HS-1 advances are widespread and significant in central and southern Peru and in 

1338 Bolivia. Although the first part of the HS-1 stadial in these areas was dry, the second part 

1339 was wet, with, on average, a two-fold increase in precipitation above modern values. The 

1340 precipitation increase may have been five-fold around the Altiplano paleo-lakes (Tauca 

1341 highstand from 16.5 ka to 14.5 ka). This precipitation control on glacier mass balance is 

1342 a strong driver of the spatial variability of ELA reductions during HS-1. Several of the 

1343 HS-1 moraines in the region appear to have been constructed by glaciers that were very 

1344 close to LLGM moraines. HS-1 moraines are also present in the Arid Diagonal, although 

1345 aridity increased towards the south, resulting in a more limited glacier extent in that area. 

1346 In some cases, glaciers in the Arid Diagonal disappeared during HS-1. Glaciers advanced 

1347 during HS-1 in the Central Andes of Argentina after a long period of retreat, and at the 

1348 same time as the Tauca highstand.

1349 In contrast, glaciers in the temperate and subpolar Andes abandoned their LGM positions 

1350 and underwent sustained or step-wise recession during HS-1. In northwestern Patagonia, 

1351 climate warmed rapidly and experienced a significant decline in precipitation, driven by 
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1352 a southward shift of the southern westerly winds (Pesce and Moreno, 2014; Moreno et 

1353 al., 2015, 2018; Henríquez et al., 2017; Vilanova et al., 2019). The magnitude of these 

1354 changes appears to decline south of 45°S, modulated by the regional cooling effect of 

1355 residual ice masses in sectors adjacent to the eastern margins of the Patagonian ice sheet 

1356 (Henríquez et al., 2017). The difference in glacier behavior between the tropical Andes 

1357 and Patagonia and Tierra del Fuego during HS-1 could be due to two causes. First, the 

1358 significant increase in precipitation in the tropical Andes during HS-1 could be the main 

1359 cause of the glacier advances in that region. Second, Patagonia and Tierra del Fuego may 

1360 have been too distant from the events responsible for HS-1, which are closely related to 

1361 North Atlantic circulation; rather they may have been more affected by Antarctica and 

1362 southern westerly winds. The two effects may have even converged, dividing the 

1363 continent into two different glacial regimes during HS-1 (Sugden et al., 2005).

1364

1365 6. Evolution of American Glaciers during the Bølling-Allerød Interstadial (B-A) and 

1366 the Antarctic Cold Reversal (ACR) (14.6-12.9 ka)

1367 6.1 Bølling-Allerød Interstadial and the Antarctic Cold Reversal 

1368 The term ‘Bølling-Allerød’ (B-A) is derived from recognition of two warm Late Glacial 

1369 palynological zones (the Bølling and the Allerød) between the HS-1 and Younger Dryas. 

1370 The use of this term for a chronological period has been criticized from a palynological 

1371 point of view (De Klerk, 2004). Nevertheless, warming during this period has been 

1372 identified (Lowe et al., 2001) and firmly dated in the GI-1 Greenland ice core to 14.6 ka 

1373 to 12.9 ka (Rasmussen et al., 2014), and the term Bølling-Allerød interstadial 

1374 (abbreviated ’B-A‘) is customarily applied to this period.

1375 The B-A period began with reinforcement of the AMOC (McManus et al., 2004) and a 

1376 marked increase in atmospheric CO2 (Chen et al., 2015) and methane (Rosen et al., 2014); 

1377 these conditions persisted through this period (Monnin et al., 2001). Climate rapidly 

1378 warmed, at least around the North Atlantic (Clark et al., 2012). The AMOC remained 

1379 vigorous throughout the B-A period (Deaney et al., 2017), and only a few cold events 

1380 interrupted it in the Northern Hemisphere (Rasmussen et al., 2014). Sea ice retreated to 

1381 the north (Denton et al., 2005), and glaciers in Europe thinned and retreated (for example 

1382 in the Alps; Ivy-Ochs, 2015). The Asian monsoon strengthened to a level similar to the 

1383 present (Sinha et al., 2005; Wang et al., 2008). It seems that the changes in the oceans 
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1384 preceded changes in the atmosphere, and the oceans had a decisive influence on Northern 

1385 Hemisphere warming (Thiagarajan et al., 2014). The changes in the oceans were possibly 

1386 caused by a period of intense melt in Antarctica just before the B-A (Weaver et al., 2003; 

1387 Weber et al., 2014). The process that drove the B-A would then be the opposite of that 

1388 which caused HS-1, when the melting of the northern ice sheets led to warming in the 

1389 Southern Hemisphere (Zhang et al., 2016). During the B-A, cooling in Antarctica caused 

1390 increased sea ice cover in the surrounding ocean, causing the southern westerlies and the 

1391 Intertropical Convergence Zone (ITCZ) to migrate northward, and strengthening the 

1392 AMOC, which in turn caused warming in the Northern Hemisphere (Pedro et al., 2015; 

1393 Zhang et al., 2016).

1394 The cold period in the south has been called the Antarctic Cold Reversal (ACR). We 

1395 analyze the B-A and ACR together because they occurred around the same time, although 

1396 the boundary between cooling in the south and the warming in the north is not well 

1397 defined (Pedro et al., 2015). The ACR has been well documented in Antarctic ice cores, 

1398 and a clear bipolar seesaw is observed in relation to Greenland ice cores (Blunier et al., 

1399 1997, 1998; Pedro et al., 2011). Cooling in the Southern Hemisphere is apparent up to 

1400 40º S (Pedro et al., 2015), resulting in widespread glacier advance (Putnam et al., 2010; 

1401 Shulmeister et al., 2019). There is also a clear cooling signal in tropical areas, at least in 

1402 high Andean regions (Jomelli et al., 2014, 2016).

1403 6.2 Laurentide Ice Sheet

1404 The hemispheric extent of glaciation during the B-A is summarized in Figure 5. The 

1405 Bølling-Allerød interstadial is characterized by enhanced ablation in marginal areas of 

1406 the LIS (Ullman et al., 2015b) and a marked acceleration in the rate of retreat, most 

1407 notably along the southern and western margins, but with minimal retreat along its 

1408 northern margin (Dyke and Prest, 1987; Dyke, 2004; Stokes, 2017). As a result, the LIS 

1409 is likely to have fully separated from the CIS by the end of the interstadial, although 

1410 precise dating of the opening of the ‘ice-free corridor’ remains a challenge (Dyke and 

1411 Prest, 1987; Gowan, 2013; Dixon, 2015; Pedersen et al., 2016). It is worth noting, 

1412 however, that positive feedback mechanisms related to ice surface lowering and surface 

1413 mass balance are likely to have resulted in the rapid ‘collapse’ of the saddle between the 

1414 LIS and the CIS, which some have hypothesized was the source of Meltwater Pulse 1A 

1415 (Gregoire et al., 2012).
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1416 The rapid retreat of the southern and western margins of the LIS was also likely aided by 

1417 the development of proglacial lakes that facilitated calving and the draw-down of ice, 

1418 particularly at the southern margin (Andrews, 1973; Dyke and Prest, 1987; Cutler et al., 

1419 2001). Moreover, the rapid retreat of the LIS during this time period led to major changes 

1420 in the trajectory of ice streams at the western and southern margins, with associated 

1421 changes in the location of the major ice divide in Keewatin, which migrated several 

1422 hundred kilometers east towards Hudson Bay (Dyke and Prest, 1987; Margold et al., 

1423 2018). 

1424 There is also clear evidence for an overall acceleration in the rate of retreat and thinning 

1425 of the ice sheet in the southeastern sector. This has been characterized as a two-phase 

1426 pattern of deglaciation (Barth et al., 2019), with steady retreat starting ~20 ka and then 

1427 increasing around 14.5 ka, coincident with the B-A warming. A clear example of this is 

1428 seen in an extensive suite of 21 36Cl ages from boulder and bedrock samples along vertical 

1429 transects spanning ~1000 m of relief in the Adirondack Mountains of the northeastern 

1430 USA (Barth et al., 2019). These data suggest gradual ice sheet thinning of 200 m initiated 

1431 around 20 ka, followed by a rapid surface lowering of 1000 m, coincident with the onset 

1432 of the B-A warming (Barth et al., 2019). Similarly high rates of thinning are also recorded 

1433 on Mt. Mansfield, Vermont’s highest peak, although they appear to have initiated around 

1434 13.9±0.6 ka, which slightly post-dates the abrupt onset of the B-A (Corbett et al., 2019). 

1435 Despite an acceleration in the overall rate of recession, there appears to have been 

1436 minimal recession of the LIS along its northern margin (Dyke, 2004). Also, there is 

1437 evidence for readvances/oscillations of some of the lobes in the vicinity of the Great 

1438 Lakes (Dyke, 2004), perhaps related to internal ‘surge’ dynamics and short-lived ice 

1439 stream activity, rather than any external climatic forcing (Clayton et al., 1985; Patterson, 

1440 1997; Cutler et al., 2001; Margold et al., 2015, 2018; Stokes et al., 2016). There is also 

1441 some evidence of climatically induced readvances of parts of the LIS during the B-A. For 

1442 example, recession of the ice margin in northern New Hampshire was interrupted by the 

1443 Littleton-Bethlehem readvance and deposition of the extensive White Mountain moraine 

1444 system (Thompson et al., 2017). Based on a suite of approaches (glacial stratigraphy and 

1445 sedimentology, radiocarbon dating, varve chronology, and cosmogenic-nuclide exposure 

1446 dating), Thompson et al. (2017) constrained the age of this readvance to ~14.0-13.8 ka, 

1447 coincident with Older Dryas cooling.

1448 6.3 Alaska
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1449 Glaciers in the Brooks Range were smaller than today by 15 ka in some valleys and ~14 

1450 ka in others (Badding et al., 2013; Pendleton et al., 2015), suggesting widespread glacier 

1451 retreat around the time of the B-A onset. In southeast Alaska, there was widespread 

1452 glacier collapse throughout fjords and sounds during this period (Baichtal, 2010; Carlson 

1453 and Baichtal, 2015; J. Baichtal, unpublished data). Whether this recession was related to 

1454 an abrupt increase in temperature or to a steady temperature increase during this broader 

1455 time period is unknown. However, rising lake levels and decreasing aridity at ~15 ka 

1456 (Abbott et al., 2000; Finkenbinder et al., 2014; Dorfman et al., 2015) suggest that there 

1457 was a major climate shift in Alaska at this time.

1458 6.4 Cordilleran Ice Sheet and North Cascades

1459 The B-A interstadial began with the rapid disintegration of the CIS and deglaciation in 

1460 the North Cascades from 14.5 ka to 13.5 ka (Clague, 2017; Menounos et al., 2017; Riedel, 

1461 2017). Recent glacio-isostatic adjustment models supported by data calibration from 

1462 records of sea level, paleo-lake shorelines, and present-day geodetic measurements 

1463 confirm more than 500 m of thinning of the CIS between 14.5 ka and 14.0 ka (Peltier et 

1464 al., 2015; Lambeck et al., 2017). The pattern of CIS deglaciation was complex due to the 

1465 influences of mountain topography, marine waters and regional climate variability. Early 

1466 deglaciation was marked by rapid eastward frontal retreat across the British Columbia 

1467 continental shelf and northward retreat up Puget Sound. Rapid down-wasting exposed 

1468 high-elevation hydrologic divides and led to the isolation of large ice masses in mountain 

1469 valleys (Riedel, 2017). Lakeman et al. (2008) presented evidence that the CIS in north-

1470 central British Columbia thinned and in some areas transformed into a labyrinth of dead 

1471 or dying ice tongues in valleys. The presence of ice-marginal landforms in most North 

1472 Cascade valleys is likely related to temporary stillstands of the wasting remnants of the 

1473 CIS, but the ages of most of these landforms are unknown (Riedel, 2017).

1474 Ice sheet deglaciation temporarily rearranged regional drainage patterns. Frontal retreat 

1475 of ice back to the north from hydrologic divides led to the formation of proglacial lakes 

1476 in southern British Columbia and northern Washington (Fulton, 1967; Riedel, 2007). The 

1477 lakes generally drained to the south, and several major valleys carried Late Glacial 

1478 outburst floods that crossed low hydrologic divides, connecting rivers and fish migration 

1479 pathways that later became isolated. The Sumas advances of the CIS diverted Chilliwack 

1480 and Nooksack rivers to the south into lower Skagit valley (Clague et al., 1997). Fish 

1481 genetics and geomorphic evidence, including perched deltas and boulder gravel deposits, 
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1482 indicate that the lower Fraser River may have been diverted through Skagit valley at this 

1483 time.

1484 CIS deglaciation during the B-A was interrupted by minor advances of the CIS, and some 

1485 alpine glaciers also advanced. The Sumas I advance of the CIS across Fraser Lowland 

1486 occurred between 13.6 ka and 13.3 ka (Clague et al., 1997; Kovanen and Easterbrook, 

1487 2002). Top-down deglaciation of the ice sheet from mountain divides led to exposure of 

1488 valley heads and cirques before adjacent valley floors. This set the stage for the formation 

1489 of new cirque and valley moraines from Yukon Territory to the North Cascades during 

1490 the B-A (Clague, 2017; Riedel, 2017). Menounos et al. (2017) report 76 10Be surface 

1491 exposure ages on bedrock and boulders associated with lateral and end moraines at 26 

1492 locations in high mountains of British Columbia and Yukon Territory. At some of these 

1493 sites, they also obtained radiocarbon ages from lakes impounded by moraines or till. 

1494 Three older moraines have a combined median age of 13.9 ka, which the authors assigned 

1495 to the B-A. A moraine near Rocky Creek at Mount Baker was built before 13.4-13.3 ka 

1496 based on the age of volcanic ash and charcoal on the moraine surface. The Hyak I and 

1497 Rat Creek I moraines have 36Cl surface exposure ages of 14.6–12.8 ka, but uncertainty in 

1498 the 36Cl surface exposure ages precludes a definitive correlation with this event (Weaver 

1499 et al., 2003).

1500 There is sparse geological and paleoecological data on climate during the B-A interval 

1501 from North Cascades and CIS region. In the North Cascades, the tentatively dated Rat 

1502 Creek and Hyak alpine glacial moraines had ELAs ~500-700 m below those of modern 

1503 glaciers or about 200 m above the GLGM advances (Porter et al., 1983). The lower ELAs 

1504 were caused, in part, by mean July temperatures about 4-6°C below modern values 

1505 (Heusser, 1977; Kutzbach, 1987; Liu et al., 2009). Rapid loss of the CIS was driven by a 

1506 positive temperature anomaly of 1-2ºC early in the B-A, while a regional increase in mean 

1507 annual precipitation of 250 mm and brief cold periods with temperature reductions of 1.5 

1508 ºC caused the small glacier advances later in the B-A (Liu et al., 2009).

1509 6.5 Rocky Mountain/Yellowstone region

1510 Although glaciers in some southwestern valleys continued to advance after 16 ka due to 

1511 their exposure to greater orographic precipitation, the Yellowstone ice cap experienced 

1512 intense deglaciation from 15 ka to 14 ka in response to a warming climate (Licciardi and 

1513 Pierce, 2018; Pierce et al., 2018). Glaciers in the Wind River Range retreated behind their 

1514 HS-1 moraines at this time, possibly as far as cirque headwalls (Dahms et al., 2018; 
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1515 Marcott et al., 2019) before they began to readvance during the YD (see below). 

1516 Deglaciation occurred in all ranges in the Colorado Rocky Mountains after about 16 ka, 

1517 and by 13 ka most glaciers had disappeared (Laabs et al., 2009; Young et al., 2011; 

1518 Shakun et al., 2015a; Leonard et al, 2017a, 2017b).

1519 6.6 Sierra Nevada

1520 Glaciers in the Sierra Nevada retreated to cirque headwalls by about 15.5 ka, well before 

1521 the start of the B-A (Phillips, 2016, 2017). This relatively early disappearance is 

1522 attributable to the southerly latitude and summer-warm, high-insolation Mediterranean 

1523 climate of the Sierra Nevada. Following the B-A transition, glaciers reappeared for a very 

1524 short interval prior to the Holocene. This event, named the ‘Recess Peak advance’, 

1525 resulted from an approximate 150 m decrease in the ELA, in comparison to a 1200 m 

1526 decrease during the GLGM maximum advance (Clark and Gillespie, 1997). 

1527 Unfortunately, the chronological control for the time of this advance is imprecise. Three 

1528 radiocarbon ages from bulk organic matter in lake cores from two different lake basins 

1529 that overlie Recess Peak till fall between 14 ka and 13 ka, suggesting correlation with 

1530 both the Inter-Allerød Cold Period and the ACR (Bowerman and Clark, 2011). However, 

1531 cosmogenic ages (both 10Be and 36Cl), although somewhat scattered and imprecise, tend 

1532 to cluster in the 12.7-11.3 ka range, which would be correlative with the Younger Dryas. 

1533 More recently, Marcott et al. (2019) averaged six new 10Be ages to obtain a date of 

1534 12.4±0.8 ka for the Recess Peak advance, which is consistent with the previous 

1535 cosmogenic ages but does not definitively establish whether it was a YD or ACR event. 

1536 Most indirect regional indicators of cooling also fall within the Younger Dryas age range. 

1537 Phillips (2016) performed an in-depth study of this issue, but was unable to arrive at any 

1538 definitive conclusion. In summary, there is no unequivocal evidence for any glacier 

1539 presence in the Sierra Nevada during the B-A. It is possible that there was a brief minor 

1540 advance toward the end of the B-A, but the dating of this event has yet to establish this 

1541 with any certainty.

1542 6.7 Mexico and Central America

1543 Data from central Mexico, and to some extent Costa Rica, indicate that glaciers receded 

1544 during the B-A, consistent with warming in the American tropics (Vázquez-Selem and 

1545 Lachniet, 2017). In central Mexico, slow initial deglaciation from 15 ka to 14 ka was 

1546 accompanied by the formation of small recessional moraines close to those of the 

1547 maximum advance (Vázquez-Selem and Lachniet, 2017). Subsequently, glacier recession 
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1548 accelerated, as evidenced by exposure ages on glacially abraded surfaces from 14 to 13 

1549 ka. The ELA increased by at least 200 m during that period (Vázquez-Selem and 

1550 Lachniet, 2017). According to Cunningham et al. (2019), Cerro Chirripó , in Costa Rica, 

1551 was ice-free by 15.2 ka, before the onset of the B-A. However, also in Cerro Chirripó, 

1552 Potter et al. (2019) proposed periods of glacier retreat and stillstand from 15 ka to 10 ka.

1553 6.8 Northern Andes

1554 An advance of Ritacuba Negro Glacier in the Sierra Nevada de Cocuy, Colombia, has 

1555 been linked to the ACR and an ELA decrease of about 500 m (Jomelli et al., 2014). A 

1556 model simulation of the last deglaciation in Colombia (Liu et al., 2009; He et al., 2013) 

1557 suggests a temperature 2.9°±0.8°C lower than today during the ACR, with a 10% increase 

1558 in annual precipitation (Jomelli et al., 2016). Bracketing radiocarbon ages on laminated 

1559 proglacial lake sediments indicate that glaciers retreated in the central Mérida Andes of 

1560 Venezuela under warmer and wetter conditions at the start of the Bølling (14.6 ka) (Rull 

1561 et al., 2010). Glaciers then briefly advanced under colder conditions from 14.1 ka to 13.9 

1562 ka), followed by warm and dry conditions during the Allerød (13.9-12.9 ka) (Stansell et 

1563 al., 2010).

1564 6.9 Peru and Bolivia

1565 There is evidence for glacier advance at many sites in Peru and Bolivia during the ACR 

1566 (Jomelli et al., 2014). Mean surface exposure ages on moraines built during this advance 

1567 are 14.4-12.7 ka; at some sites there is an apparent bimodal distribution of ages (Jomelli 

1568 et al., 2014). A glacier advance at Nevado Huaguruncho in the Eastern Cordillera of the 

1569 Peruvian Andes has been dated to 14.1±0.4 ka, based on both exposure ages on moraines 

1570 and radiocarbon ages on lake sediments, and was followed by retreat by 13.7±0.4 ka 

1571 (Stansell et al., 2015). Two sets of moraine ridges in valleys within the Cordillera 

1572 Huayhuash date to the ACR (Hall et al., 2009). However, moraine ages from the 

1573 Queshque valley in the nearby Cordillera Blanca are at the end of the ACR (Stansell et 

1574 al., 2017). In Bolivia, the two moraines from Wara Wara and Tres Lagunas (Zech et al., 

1575 2009, 2010) may have been constructed during the ACR, but could be older (Jomelli et 

1576 al., 2014). A moraine of Telata Glacier in Zongo Valley formed during either the ACR or 

1577 YD (Jomelli et al., 2014). The ACR advance exceeded all subsequent Holocene advances, 

1578 with an ELA estimated to be 450-550 m below its current level based on glaciological 

1579 modeling (Jomelli et al., 2014, 2016, 2017). Some glacial valleys contain at least two sets 

1580 of moraines attributed to the ACR (Jomelli et al., 2014), suggesting multiple advances 

2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891



50

1581 related to possible centennial-scale climate fluctuations during this period. However, such 

1582 patterns must be better documented in other mountain ranges to establish a robust climate 

1583 interpretation (Figs. 21 and 22).

1584 Paleoclimate records suggest that the central tropical Andes were cold during the ACR 

1585 (Jomelli et al., 2014), although some contradictory evidence exists. Moreover, fluvial 

1586 sediment records suggest that northern Peru was wet at the start of the ACR but 

1587 subsequently became drier (Mollier-Vogel et al., 2013); and speleothem records from 

1588 Brazil suggest that the ACR was a period of drier monsoon conditions (Novello et al., 

1589 2017). Farther south on the Altiplano, lake sediment records also indicate that the ACR 

1590 was likely a drier interval (Sylvestre et al., 1999; Baker et al., 2001b), as does the 

1591 shoreline stratigraphy, indicating that Lake Tauca had vanished (Placzek et al., 2006; 

1592 Blard et al., 2011).

1593 Climate forcings responsible for such glacier trends during the ACR were analyzed using 

1594 transient simulations with a coupled global climate model (Jomelli et al., 2014). Results 

1595 suggest that glacial behavior in the tropical Andes was mostly driven by temperature 

1596 changes related to the AMOC variability superimposed on a deglacial CO2 rise. During 

1597 the ACR, temperature fluctuations in the tropical Andes are significantly correlated with 

1598 other Southern Hemisphere regions (Jomelli et al., 2014), in particular with the southern 

1599 high-latitudes and the eastern equatorial Pacific. Cold SSTs in the eastern equatorial 

1600 Pacific were associated with glacier advance.

1601 6.10 Southern Bolivia and Northern Chile

1602 There are no glacial landforms in the Arid Diagonal that have been dated with sufficient 

1603 precision to permit an ACR age assignment (Ward et al., 2015). There are, however, small 

1604 undated moraines in the upper headwaters at El Tatio that may date to this period, or 

1605 perhaps to the Younger Dryas (Ward et al., 2017). Sites to the south and west, even those 

1606 north of the Arid Diagonal, appear to have been fully deglaciated by this time.

1607 6.11 Central Andes of Argentina

1608 As of yet, there are no firmly documented glacier advances in the Argentine Andes after 

1609 HS-1. In the Sierra de Aconquija, however, D’Arcy et al. (2019) obtained two ages on a 

1610 moraine (M3a) that fall within the B-A/ACR. At Tres Lagunas, there are no moraines 

1611 younger than HS-1 (Zech et al., 2009). Possible B-A/AC moraines at other locations 
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1612 (Sierra de Quilmes, Ansilta Range and Las Leñas) have not yet been dated (Terrizzano et 

1613 al., 2017; Zech et al., 2017).

1614 6.12 Patagonia

1615 Many researchers have identified B-A/ACR glacier advances in central and southern 

1616 Patagonia (Turner et al., 2005; Ackert et al., 2008; Kaplan et al., 2008; Moreno et al., 

1617 2009; Glasser et al., 2011; Sagredo et al., 2011, 2018; Strelin et al., 2011; García et al., 

1618 2012; Nimick et al., 2016; Davies et al., 2018; Mendelova et al., 2020). Past research on 

1619 glacier fluctuations in northwestern Patagonia did not focus on the last termination, 

1620 consequently no evidence of an advance of ACR age has yet been reported. However, 

1621 paleoecological records from sectors as far north as 41°S suggest cooling during this 

1622 interval (Hajdas et al., 2003). For example, records from northwestern Patagonia (40°-

1623 44°S) show declines in relatively thermophilous trees and increases in the cold-

1624 tolerant/hygrophilous conifer Podocarpus nubigena during ACR time, suggesting a shift 

1625 to cold/wet conditions (Jara and Moreno, 2014; Pesce and Moreno, 2014; Moreno and 

1626 Videla, 2016; Moreno et al., 2018). There is a gap in well-dated glacial geologic studies 

1627 along a ~600 km length of the Andes between 40°S and 47°S (Fig. 23) covering the time 

1628 span of the ACR. The only existing study reports a glacial advance in the Cisnes valley 

1629 (44°S) sometime between 16.9 and 12.3 ka (Garcia et al. 2019), however, the 

1630 chronological constrains are too broad to reach further conclusions.

1631 Detailed geomorphic studies suggest that glaciers in central and southwestern Patagonia 

1632 experienced repeated expansion or marginal fluctuations during the ACR period (Strelin 

1633 et al., 2011; García et al., 2012; Sagredo et al., 2018; Reynhout et al., 2019; Thorndycraft 

1634 et al., 2019). Multiple 10Be ages from moraines deposited by glaciers on the Mt. San 

1635 Lorenzo massif (47°S) indicate that glaciers there reached their maximum Late Glacial 

1636 extents at 13.8±0.5 ka (Tranquilo Glacier; Sagredo et al., 2018), 13.2±0.2 ka (Calluqueo 

1637 Glacier; Davies et al., 2018), and 13.1±0.6 ka (Lacteo and Belgrano glaciers; Mendelova 

1638 et al., 2020). An ELA reconstruction based on the data from Tranquilo valley suggests 

1639 that temperatures were 1.6-1.8°C lower than at present at the peak of the ACR (Sagredo 

1640 et al., 2018). García et al. (2012) report a mean age of 14.2±0.6 ka for a sequence of 

1641 moraines farther south, in the Torres del Paine area (51°S). The latter findings support 

1642 the conclusions of Moreno et al. (2009), based on radiocarbon-dated ice-dammed lake 

1643 records, that the Río Paine Glacier was near its maximum extent during the ACR.
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1644 6.13 Tierra del Fuego

1645 Relatively little work has been done on ACR ice extent on Tierra del Fuego. McCulloch 

1646 et al. (2005a) propose extensive ice in the Cordillera Darwin as far north as the Isla 

1647 Dawson adjacent to the Strait of Magellan during the ACR, but subsequent work has 

1648 failed to support this hypothesis. Rather, evidence from bogs located near sea level up-

1649 ice of Isla Dawson suggests that there has not been any major re-expansion of Cordillera 

1650 Darwin ice towards the Strait of Magellan since initial deglaciation during HS-1 (Hall et 

1651 al., 2013). Similarly, a radiocarbon age from a bog on the south side of the mountains in 

1652 front of Ventisquero Holanda indicates that the glacier has not reached more than 2 km 

1653 beyond its present limit in the past ~15 ka (Hall et al., 2013). In the only confirmed case 

1654 of ACR moraines in the region, Menounos et al. (2013) used 10Be surface exposure ages 

1655 of boulders to document an age of ~14 ka for a cirque moraine in the nearby Fuegian 

1656 Andes. Other moraines in the Cordillera Darwin may date to the same period (Hall, 

1657 unpublished data), but none has yet been dated adequately.

1658 6.14 Synthesis 

1659 Glacier activity in North and Central America was very different from that in South 

1660 America during the B-A interstadial (Table 3 and Fig. 5). This period was generally a 

1661 time of rapid glacier retreat throughout North and Central America. Indeed, in many 

1662 regions, glaciers completely disappeared during the B-A interstadial. Although evidence 

1663 has been presented in some areas for minor advances during the B-A, uncertainties in 

1664 numeric ages on which the conclusions are based do not preclude the possibility that the 

1665 advances happened during the ACR.

1666 The LIS experienced rapid retreat along much of its margin during the B-A. Documented 

1667 local advances may be related more to surge processes than to climate, although there 

1668 may be exceptions related to cooling during the Older Dryas (e.g. Thompson et al., 2017). 

1669 Glaciers in Alaska retreated significantly, even beyond the limits they achieved in the late 

1670 Holocene. In western Canada and in Washington State, the CIS retreated rapidly, 

1671 especially from 14.5 ka to 13.5 ka. During this period of general retreat, however, the CIS 

1672 and many alpine glaciers advanced between 13.9 ka and 13.3 ka. In the Central and 

1673 Southern Rocky Mountains of Wyoming and Colorado, deglaciation had begun by 14.5 

1674 ka, and most glaciers had disappeared by 13.5 ka. Although single-boulder 10Be ages 

1675 associated with moraines fall between 14.5 ka and 13.3 ka, no evidence of synchronous 

1676 glacier advances within the B-A have been reported from these areas. In the Sierra 
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1677 Nevada, glaciers retreated to cirque headwalls by about 15.5 ka. Some moraines within 

1678 Sierra cirques indicate that there were relatively minor advances, but again, it is not 

1679 known if they date to the Inter-Allerød Cold Period, the ACR, or even the YD. In central 

1680 Mexico, recessional moraines close to moraines of the maximum advance date to 15-14 

1681 ka; after 14 ka, there was rapid glacier recession. Glaciers in Costa Rica disappeared by 

1682 15.2 ka.

1683 Glaciers in the Venezuelan Andes retreated during the B-A, whereas glaciers in several 

1684 regions of Central and Southern South America advanced during this period. In most 

1685 cases, these advances have been assigned to the ACR. For example, ACR advances have 

1686 been proposed in the Colombian Andes, with temperatures about 3ºC lower than today. 

1687 Multiple ACR advances have also been reported in the Peruvian and Bolivian Andes 

1688 under a cold and relatively dry climate. There are no conclusive data from northern Chile 

1689 or the central Andes of Argentina, but it appears that there was a trend towards 

1690 deglaciation during the B-A. Existing data do not resolve whether minor glacier advances 

1691 that have been recognized occurred during the ACR or the YD. There were several ACR-

1692 related glacier advances in Patagonia, with temperatures almost 2ºC below current levels. 

1693 Only limited evidence of the ACR has been found in Tierra del Fuego.

1694

1695 7. The Impact of the Younger Dryas (YD) (12.9-11.7 ka) and the Final Stages of 

1696 Deglaciation

1697 7.1 Younger Dryas concept

1698 The last period we consider in our review extends from the end of the B-A (12.9 ka) to 

1699 the beginning of the Holocene (11.7 ka). Again, the name coined by palynologists – 

1700 Younger Dryas (YD) – is now widely used. Although the chronological limits derived 

1701 from palynology are controversial, this cold interval has now been defined in Greenland 

1702 ice cores (Rasmussen et al., 2014). Undoubtedly, it is the most widely studied deglacial 

1703 period. Although climate varied extraordinarily during this period (Naughton et al., 

1704 2019), its effects in the Northern Hemisphere are clear – the AMOC weakened (Meissner, 

1705 2007; Muschitiello et al., 2019), sea ice expanded, and winter and spring temperatures 

1706 dropped drastically (Steffensen et al., 2008; Mangerud et al., 2016); summers remained 

1707 relatively warm (Schenk et al., 2018). Glaciers in Europe advanced (Ivy-Ochs, 2015; 

1708 Mangerud et al., 2016), and the Asian monsoon weakened (Wang et al., 2008). Although 
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1709 the ITCZ migrated southward, precipitation changes in the tropics during the YD were 

1710 complex (Partin et al., 2015). Like HS-1, the YD was accompanied by warming in 

1711 Antarctica and an increase in atmospheric CO2 (Broecker et al., 2010; Beeman et al., 

1712 2019). The southern continents appear to have cooled slightly (Renssen et al., 2018), 

1713 although glaciers in New Zealand and Patagonia clearly retreated, an apparent 

1714 contradiction that has not been resolved (Kaplan et al. 2008, 2011; Martin et al., 2019; 

1715 Shulmeister et al., 2019).

1716 The causes of the abrupt YD anomaly continue to be a topic of debate. Changes in deep-

1717 water circulation in the Nordic seas, weakening of the AMOC (Muschitiello et al., 2019), 

1718 moderate negative radiative forcing and altered atmospheric circulation (Renseen et al., 

1719 2015; Naughton et al., 2019) likely played a role. Draining of Glacial Lake Agassiz after 

1720 intense melting of the Laurentide Ice Sheet during the B-A would have weakened the 

1721 AMOC and is supported by geomorphic evidence of this lake draining into the Gulf of 

1722 St. Lawrence and the North Atlantic at the end of the B-A (Leydet et al., 2018). 

1723 Additionally or alternatively, Glacial Lake Agassiz may have drained via the Mackenzie 

1724 River into the Arctic Ocean, also weakening the AMOC (Keigwin et al., 2018). The 

1725 hypothesis that the cause was external to the planet has recently attracted renewed interest 

1726 (Wolbach et al., 2018). In any case, the YD ended abruptly, with a 7 ºC warming of some 

1727 regions in the Northern Hemisphere in only 50 years (Dansgaard et al., 1989; Steffensen 

1728 et al., 2008).

1729 7.2 Laurentide Ice Sheet

1730 The hemispheric extent of glaciation during the YD is summarized in Figure 6, and that 

1731 of the early Holocene is shown in Figure 7. The response of the LIS to the abrupt cooling 

1732 of the YD is complex and difficult to generalize, but most records appear to indicate that 

1733 recession slowed and that some major moraine systems were built, likely as a result of 

1734 marginal readvances (Dyke, 2004). For example, the largest end moraine belt along the 

1735 northwestern margin of the ice sheet, encompassing the Bluenose Lake moraine system 

1736 on the Arctic mainland and its correlative on Victoria Island, is now thought to have 

1737 formed due to YD cooling (Dyke and Savelle, 2000; Dyke et al., 2003). Similarly, there 

1738 are examples of readvances on Baffin Island, most notably in Cumberland Sound 

1739 (Jennings et al. 1996; Andrews et al. 1998). The large Gold Cove readvance of Labrador 

1740 ice across the mouth of Hudson Strait has also been assigned to the late stage of the YD, 

3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186



55

1741 possibly in response to the rapid retreat of ice along the Hudson Strait (Miller and 

1742 Kaufmann, 1990; Miller et al., 1999).

1743 It has also been noted that several ice streams switched on during the YD, perhaps in 

1744 response to a more positive ice sheet mass balance in some sectors (Stokes et al., 2016; 

1745 Margold et al., 2018). Examples are two large lobes southwest of Hudson Bay (the Hayes 

1746 and Rainy lobes), which readvanced towards the end of the YD. However, the precise 

1747 trigger is uncertain; climatic forcing and dynamic instabilities related to meltwater 

1748 lubrication and/or proglacial lake-level flucutations are possibities (Margold et al., 2018). 

1749 Elsewhere, the M’Clintock Channel ice stream in the Canadian Arctic Archipelago (Clark 

1750 and Stokes, 2001) is thought to have been activated during the early part of the YD and 

1751 may have generated a large (60,000 km2) ice shelf that occupied Viscount Melville Sound 

1752 (Hodgson, 1994; Dyke, 2004; Stokes et al., 2009). In contrast, the nearby Amundsen Gulf 

1753 ice stream appears to have retreated rapidly during the early part of the YD, perhaps 

1754 triggered by glacier retreat from a bathymetric pinning point into a wider and deeper 

1755 channel (Lakeman et al., 2018). 

1756 The above examples highlight the difficulty of attempting to relate ice stream activity to 

1757 external climate forcing. Overall, it appears that the LIS receded throughout the YD, but 

1758 that the pace of recession slowed and there were notable readvances at the scale of 

1759 individual lobes or ice streams. It should also be noted that while several moraine systems 

1760 have been robustly linked to YD advances or stillstands, many others might also be 

1761 correlative but have not yet been precisely dated (Dyke, 2004).

1762 Following the YD, the LIS retreated rapidly in response to both increased summer 

1763 insolation and increasing levels of carbon dioxide (Carlson et al., 2007, 2008; Marcott et 

1764 al., 2013). Retreat proceeded back towards the positions of the major ice dispersal centers 

1765 in the Foxe-Baffin sector, Labrador and Keewatin (Dyke and Prest, 1987; Dyke, 2004; 

1766 Stokes, 2017). The final retreat of the Labrador Dome has recently been constrained by 

1767 Ullman et al. (2016) using 10Be surface exposure dating of a series of end moraines that 

1768 likely relate to North Atlantic cooling (Bond et al., 1997; Rasmussen et al., 2006). 

1769 Following the last of these cold events at 8.2 ka (Alley et al., 1997; Barber et al., 1999), 

1770 Hudson Bay became seasonally ice-free and deglaciation was completed by 6.7±0.4 ka 

1771 (Ullman et al., 2016).

1772 7.3 Alaska
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1773 The existing literature offers limited evidence for glacier readvances in Alaska during the 

1774 YD. There may be many moraines that were deposited during or at the culmination of the 

1775 YD, but they have not been dated. One way to assess the possibility of there being YD 

1776 moraines in Alaska is to consider whether or not glaciers extended beyond their present 

1777 limits during the YD. Of the 14 glaciers throughout Alaska discussed by Briner et al. 

1778 (2017), nine had retreated up-valley of their late Holocene positions prior to the YD. 

1779 Thus, in some cases, it appears that glaciers did indeed extend down-valley of modern 

1780 limits during the YD. This was the case in Denali National Park and several sites in 

1781 southern Alaska. A notable site that provides the best evidence to date of YD glaciation 

1782 in the state is at Waskey Mountain in the Ahklun Mountains. The chronology of the 

1783 moraines at this locality has been updated since the work of Briner et al. (2002). Young 

1784 et al. (2019) report evidence for an early YD glacier culmination, followed by minor 

1785 retreat through the remainder of the interval.

1786 In terms of climate, Kokorowski et al. (2008) conclude that evidence for YD cooling is 

1787 mainly restricted to southern Alaska. Kaufman et al. (2010) argue that the coldest 

1788 temperatures in southern Alaska were at the beginning of the YD and that warming 

1789 occurred subsequently. This climatic pattern is consistent with the revised glacier 

1790 chronology of the Waskey Mountain moraines. Denton et al. (2005) hypothesized that 

1791 YD cooling was mostly a wintertime phenomenon and hence may have had limited effect 

1792 on glacier mass balance. This hypothesis is supported in Arctic Alaska with the 

1793 documentation of extreme winter temperature depression during the YD (Meyer et al., 

1794 2010). Most of the pollen records summarized by Kokorowski et al. (2008) show no 

1795 significant cooling during the YD. In addition to the climate forcing transmitted from the 

1796 North Atlantic region, the Bering Land Bridge was flooded around the time of the YD 

1797 (England and Furze, 2008), although it may not have been completely covered by the sea 

1798 until about 11 ka (Jakobsson, 2017). This flooding event may have led to an increase in 

1799 precipitation due to more northerly storm tracks (Kaufman et al., 2010), which may have 

1800 influenced glacier mass balance. Additionally, the decreasing influence of LIS-induced 

1801 atmospheric reorganization may have affected summer temperature in Beringia during 

1802 the Late Pleistocene-Holocene transition. Of course, there may have been more glacier 

1803 fluctuations during the YD than is currently envisioned, because they may have occurred 

1804 under a climate that was similar to, or warmer than, that of the late Holocene (Kurek et 
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1805 al., 2009; Kaufman et al., 2016), in which case moraines may have been destroyed by 

1806 Holocene glacier advances.

1807 7.4 Cordilleran Ice Sheet and the North Cascades

1808 Many alpine glaciers and at least two remnant lobes of the CIS advanced during the YD. 

1809 In all cases, the advances were much smaller than those during the LGM and HS-1. At 

1810 alpine sites, most glaciers reached only several hundred meters beyond late Holocene 

1811 maximum positions attained during the Little Ice Age (Osborn et al., 2012; Menounos et 

1812 al., 2017). Other glaciers advanced and came into contact with stagnant CIS ice at lower 

1813 elevations (Lakeman et al., 2008). In the western North Cascades, there are multiple, 

1814 closely spaced moraines constructed during the YD (Riedel 2017). Radiocarbon dating 

1815 constrains the time of an advance on Mount Baker in the North Cascades to 13.0-12.3 ka 

1816 (K. Scott, written communication; Kovanen and Easterbrook, 2001). The Hyak II advance 

1817 in the southernmost North Cascades near Snoqualmie Pass occurred after 13 ka (Porter, 

1818 1976). Menounos et al. (2017) established 10Be ages on 12 high-elevation moraines in 

1819 western Canada with a median age of 11.4 ka. A lobe of the CIS advanced across central 

1820 Fraser Lowland one or two times after 12.9 ka (Saunders et al., 1987; Clague et al., 1997; 

1821 Kovanen and Easterbrook, 2001; Kovanen, 2002), and the final advance of the glacier in 

1822 the Squamish River valley in the southern Coast Mountains north of Vancouver has been 

1823 dated to about 12.5 ka (Friele and Clague, 2002). It is not clear how long the CIS persisted 

1824 in each North Cascade mountain valley, but the middle reaches of Silver Creek were ice-

1825 free by 11.6 ka, as were many sites in western Canada (Clague, 2017; Riedel, 2017). By 

1826 the beginning of the Holocene or shortly thereafter, ice cover in British Columbia was no 

1827 more extensive than it is today. A radiocarbon age from basal sediments in a pond 

1828 adjacent to the outermost Holocene moraine at Tiedemann Glacier in the southern Coast 

1829 Mountains shows that ice cover in one of the highest mountain areas in British Columbia 

1830 was, at most, only slightly more extensive at 11 ka than today (Clague, 1981; Arsenault 

1831 et al., 2007). This conclusion is supported by an age of 11.8-11.3 ka on a piece of wood 

1832 recovered from a placer gold mine near Quesnel, British Columbia, which is located near 

1833 the center of the former CIS (Lowdon and Blake, 1980).

1834 Alpine glacial ELAs associated with YD advances were 200-400 m below modern values 

1835 in the North Cascades, but fluctuated 100-200 m (Riedel, 2007). The colder YD climate 

1836 is also recorded in changes in loss-on-ignition carbon in lake bed sediments in the eastern 

1837 North Cascades (Riedel, 2017). Changes in pollen zone boundaries led Heusser (1977) to 
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1838 conclude that YD mean July air temperature was 2-3ºC cooler than today. Liu et al. (2009) 

1839 suggested that annual precipitation increased by 250 mm, while mean annual air 

1840 temperature was 4ºC colder compared to the 1960-1990 average, and fluctuated by 

1841 ±0.5ºC during the YD interval.

1842 7.5 Rocky Mountain/Yellowstone region

1843 A YD glacier advance or stillstand has been documented in the Lake Solitude cirque in 

1844 the Teton Range. Boulders perched on the small cirque lip date to 12.9±0.7 ka (Licciardi 

1845 and Pierce, 2008). Glaciers in cirques in the Wind River Range advanced to form 

1846 moraines or rock glaciers 50-300 m upvalley of Older Dryas/ HS-1 deposits (Fig. 10). 

1847 Ages on these moraines in Stough Basin, Cirque of the Towers and Titcomb Basin are 

1848 between 13.3 ka and 11.4 ka (Shakun et al., 2015a; Dahms et al., 2018; Marcott et al., 

1849 2019) and provide clear evidence of a glacier advance during the YD period. It is 

1850 uncertain whether or not these glaciers disappeared prior to re-advancing to their YD 

1851 positions. 

1852 There is clear evidence of a significant glacier advance in the Colorado Mountains during 

1853 the YD (Marcott et al., 2019), confirming previous age assignments (Menounos and 

1854 Reasoner, 1997; Benson et al., 2007). Pollen studies (Jiménez-Moreno et al., 2011; Briles 

1855 et al., 2012) also indicate Younger Dryas cooling in the Colorado Rocky Mountains, as 

1856 does a study of lacustrine sediment (Yuan et al., 2013) in the San Luis Valley of southern 

1857 Colorado (Leonard et al., 2017a).

1858 7.6 Sierra Nevada

1859 The only known glacier advance between the retreat of the Tioga 4 glaciers at ~15.5 ka 

1860 and the late Holocene Matthes (‘Little Ice Age’) advance in the Sierra Nevada is the 

1861 Recess Peak advance (Bowerman and Clark, 2011). Both cosmogenic surface exposure 

1862 ages and independent regional climate records favor a YD age for this minor advance. 

1863 However, limiting radiocarbon ages on bulk organic matter just above the Recess Peak 

1864 till in lacustrine cores are between 14 ka and 13 ka (Philips, 2017), suggesting that the 

1865 advance may be older than the YD. The weight of the evidence appears to still favor the 

1866 YD age assignment, but the replicated direct radiocarbon measurements are difficult to 

1867 dismiss. Confirmation of a YD age would support the model that the YD cooling had a 

1868 detectable, although not major, impact on the deglacial climate of the west coast of North 

1869 America. Confirmation of a slightly older age would suggest that there was a brief, but 
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1870 significant episode of cooling there late during the B-A. In either case, the climate signal 

1871 is small compared to that of the GLGM. The linked glacial/lacustrine modeling of 

1872 Plummer (2002) yields a match to Recess Peak glacier extent and lake surface area in the 

1873 paleo-Owens River watershed, with a temperature reduction of 1°C and 140% of modern 

1874 precipitation. This local combination of glacial and closed-basin lacustrine records offers 

1875 an unusual opportunity to assess the paleoclimatic drivers of Recess Peak event, but the 

1876 significance of the event cannot be understood until the chronology is secure. Clearly, 

1877 additional radiocarbon and high-precision cosmogenic dating of the Recess Peak deposits 

1878 is a priority.

1879 7.7 Mexico and Central America

1880 Glaciers constructed a distinctive group of closely spaced end moraines in the mountains 

1881 of central Mexico at 3800-3900 m asl from 13-12 ka to ~10.5 ka (Vázquez-Selem and 

1882 Lachniet, 2017). ELAs were 4100-4250 m asl, which is 650-800 m below the modern 

1883 ELA, suggesting temperatures ~4-5°C below modern values. Considering that other 

1884 proxies generally show relatively dry conditions (Lachniet et al., 2013), the relatively low 

1885 ELAs were likely controlled by temperature.

1886 The terminal Pleistocene moraines of central Mexico provide clear evidence for Younger 

1887 Dryas glaciation in the northern tropics. The moraines are closely spaced and relatively 

1888 small (in general <6 m high near their front), but are well preserved in most mountain 

1889 valleys at elevations of 3800-3900 m asl. They suggest that glaciers remained near 3800-

1890 3900 m asl for 1000-2000 years at the close of the Pleistocene, forming several small 

1891 ridges only tens of meters apart from one another (Vázquez-Selem and Lachniet, 2017). 

1892 Cosmogenic ages on glacially abraded surfaces indicate that mountains <4000 m asl in 

1893 central Mexico were ice-free by 11.5 ka, and mountains <4200 m asl became ice-free 

1894 between 10.5 ka and 10 ka. South-facing valleys were ice-free even earlier (12 ka) 

1895 (Vázquez-Selem and Lachniet, 2017). Glaciers on high peaks (Iztaccíhuatl, Nevado de 

1896 Toluca, La Malinche) receded, exposing polished bedrock surfaces below 4100 m asl, 

1897 from 10.5 ka to 9 ka. A brief, but distinctive glacier advance is recorded later, from ca. 

1898 8.5 ka to 7.5 ka, on the highest peaks of central Mexico (>4400 m asl) (Vázquez-Selem 

1899 and Lachniet, 2017) (Fig. 24).

1900 Cosmogenic exposure ages from the summit of Cerro Chirripó, Costa Rica, indicate that 

1901 the mountain was ice-free by 15.2 ka (Cunningham et al., 2019). However, other ages 

1902 suggest moraine formation around YD time (Potter et al., 2019) and complete 
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1903 deglaciation thereafter (Orvis and Horn, 2000). The mountains of Costa Rica and likely 

1904 Guatemala were ice-free before 9.7 ka (Orvis and Horn, 2000).

1905 7.8 Northern Andes

1906 The evidence of possible YD glacier advances in the northern Andes is limited and mainly 

1907 restricted to elevations above 3800 m asl (Angel et al., 2017). Glacier advances in some 

1908 valleys in the Venezuelan Andes seem to be related to cooling during the YD. In the 

1909 Sierra Nevada, climate was dry, but temperatures were 2.2-3.8°C colder than today 

1910 between 12.9 ka and 11.6 ka (Salgado-Labouriau et al., 1977; Carrillo et al., 2008; Rull 

1911 et al., 2010; Stansell et al., 2010). Mahaney et al. (2008) suggest glaciers advanced in the 

1912 Humboldt Massif of this mountain range at 12.4 ka. In the Mucubají valley, also in this 

1913 range, small moraines located at elevations higher than 3800 m asl have yielded 10Be ages 

1914 of 12.22±0.60 ka and 12.42±1.05 ka (modified ages from Angel, 2016) and may be 

1915 related to the YD. Glacier advances have been linked to the YD in the Sierra Nevada del 

1916 Cocuy, Colombia, based on 10Be dating (Jomelli et al., 2014), and on the Bogota Plain 

1917 based on ages on lacustrine sediments behind the moraines (Helmens, 1988). There are 

1918 also moraines that might date to the YD in the Ecuadorian Andes. For example, in the 

1919 Chimborazo-Carihuairazo Massif, two moraine complexes have been radiocarbon-dated 

1920 to 13.4-12.7 cal ka BP (Clapperton and McEwan, 1985).

1921 7.9 Peru and Bolivia

1922 The weight of evidence suggests that glaciers were generally in retreat during the YD in 

1923 Peru and Bolivia. In the Cordillera Oriental of northern Peru, lake sediment records show 

1924 some evidence of readvance and reoccupation of higher cirques by glaciers, but no 

1925 moraines have been dated (Rodbell, 1993). Similar evidence from Vilcabamba in 

1926 southern Peru suggests glaciers advanced at the beginning of the YD, but then retreated 

1927 (Licciardi et al., 2009). Mercer and Palacios (1977) present evidence that glaciers 

1928 advanced near Quelccaya near the beginning and end of the YD. Similarly, Rodbell and 

1929 Seltzer (2000) and Kelly et al. (2012) provide radiocarbon-based evidence that sites in 

1930 the Cordillera Blanca and the Quelccaya Ice Cap advanced either just prior to or at the 

1931 start of the YD, followed by retreat. A cirque lake in Bolivia (16ºS, headwall 5650 m asl) 

1932 formed before 12.7 ka, suggesting that ice had retreated by that time (Abbott et al., 1997). 

1933 According to Bromley et al. (2011), the ice cap on the Coropuna volcano experienced a 

1934 strong advance at ~13 ka. Similar glacier activity has been reported at Hualca Hualca 

1935 volcano (Alcalá-Reygosa et al., 2017) and Sajama (Smith et al., 2009) volcanoes. These 
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1936 advances coincide with the highest level of the Coipasa paleo-lake cycle, confirming the 

1937 high sensitivity of the glaciers in this region to shifts in humidity (Blard et al., 2009; 

1938 Placzek et al., 2013) (Fig. 17).

1939 Many glaciers advanced or experienced stillstands in the Central Andes during the early 

1940 Holocene. The mean age of all Holocene moraine boulders is 11.0±0.4 ka (Mark et al., 

1941 2017). In the Cordillera Huayhuash, 10Be samples from moraine boulders date from 11.4 

1942 ka to 10.5 ka (Hall et al., 2009). Early Holocene (11.6-10.5 ka) moraines are also present 

1943 on Nevado Huaguruncho (Stansell et al., 2015), and a moraine in the Cordillera 

1944 Vilcabamba in southern Peru has been dated to ~10.5 ka (Licciardi et al., 2009). Basal 

1945 radiocarbon ages from lake sediments in the Cordillera Raura suggest ice-free conditions 

1946 after 9.4 ka (Stansell et al., 2013). At Quelccaya in the Cordillera Vilcanota, peat overlain 

1947 by till has been dated to 11.1 ka and 10.9 ka (Mercer and Palacios, 1977). Similarly, the 

1948 Taptapa moraine on the Junin plain has been radiocarbon-dated to ~10.1 cal ka BP 

1949 (Wright, 1984). The Quelccaya Ice Cap reached its present extent by10 cal ka BP, based 

1950 on dated peat at its margin (Mercer, 1984). Glaciers in Peru seem not to have advanced 

1951 throughout the remainder of the early Holocene. In Bolivia, however, 10Be ages suggest 

1952 several advances during the early Holocene period (Jomelli et al., 2011, 2014). 

1953 7.10 Southern Bolivia and Northern Chile

1954 As in the case of the ACR, there are no confirmed YD glacial landforms in the Arid 

1955 Diagonal, but the chronology is insufficent to exclude minor glacial fluctuations in the 

1956 high headwaters at this time (Ward et al., 2017).

1957 7.11 Central Andes of Argentina

1958 Published evidence of YD glacier activity exists at only two sites in the central Andes of 

1959 Argentina. In the Nevado de Chañi, glaciers retreated after HS-1, followed by an advance 

1960 during the YD (Martini et al., 2017a). Four 10Be ages from lateral and frontal moraines 

1961 in the Chañi Chico valley average 12.1±0.6 ka (Fig. 19) (Martini et al., 2017a). The ELA 

1962 during the YD advance was at ~5023 m asl, which is 315 m above the GLGM ELA 

1963 (Martini et al., 2017a). Moraines assigned to the YD have been found in two valleys in 

1964 the Sierra de Aconquija (D’Arcy et al., 2019). According to D’Arcy et al. (2019), one 

1965 moraine (M3a) was deposited at 12.5 ka and a second (M3b) at 12.3 ka. YD glacier 

1966 advances coincided with a period of higher-than-present precipitation at paleo-lake 

1967 Coipasa on the Altiplano (Blard et al., 2011; Placzek et al., 2013). No general early 
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1968 Holocene glacier activity has been reported for the region, although two moraine boulders 

1969 from Sierra de Aconquija yielded 10Be ages of 8.5 ka and 7.9 ka (D’Arcy et al., 2019). In 

1970 northwestern Argentina, the presence of relict rock glaciers in cirques suggests that YD 

1971 or early Holocene cooling may have activated rock glaciers instead of causing glaciers to 

1972 re-form (Martini et al., 2013, 2017b).

1973 7.12 Patagonia

1974 After reaching their maximum Late Glacial extents during the ACR, Patagonian glaciers 

1975 receded during the YD period. In some regions (47°-52°S), this general trend was 

1976 interrupted by stillstands or minor readvances that deposited small moraines upvalley 

1977 from the much larger ACR moraines (Moreno et al., 2009; Sagredo et al., 2011, 2018; 

1978 Strelin et al., 2011; Glasser et al., 2012; Mendelova et al., 2020). Some of these advances 

1979 may relate to the end of terminal calving following the draining of paleo-lakes in the 

1980 region (Davies et al., 2018; Thorndycraft et al., 2019). Again, no evidence of glacier 

1981 advances during the YD has been reported north of 47°S.

1982 Paleo-vegetation records indicate a decline in precipitation during the YD in northwestern 

1983 Patagonia (Jara and Moreno, 2014; Pesce and Moreno, 2014; Moreno et al., 2018), 

1984 warm/wet conditions in central-western sectors (44°-48°S) (Villa-Martínez et al., 2012; 

1985 Henríquez et al., 2017), and increased precipitation in southwestern sectors (48°-54°S) 

1986 (Moreno et al., 2012, 2018). A widespread warm/dry interval is evident between 11 ka 

1987 and 8 ka (Moreno et al., 2010). Although, most studies suggest that Patagonian glaciers 

1988 retreated through the early Holocene, approaching their present-day configurations 

1989 (Strelin et al., 2011; Kaplan et al., 2016), recent finding by Reynhout et al. (2019) at Torre 

1990 glacier (49°S) show robust evidence of early renewed glacial activity during the early 

1991 Holocene.

1992 7.13 Tierra del Fuego

1993 To our knowledge, there are no published data on glacier behavior during the Northern 

1994 Hemisphere YD or at the start of the Holocene in the Cordillera Darwin. Glaciers are 

1995 assumed to be restricted to the inner fjords. In the adjacent Fuegian Andes, an excavation 

1996 just upvalley of an ACR moraine yielded a calibrated radiocarbon age on peat of ~12.2 

1997 ka, indicating that the glacier had receded by that time (Menounos et al., 2013), possibly 

1998 during the YD. In the same cirque, the presence of the Hudson tephra (7.96-7.34 ka) 
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1999 within ~100 m of Little Ice Age moraines suggests the glacier had receded to the Little 

2000 Ice Age limit by the early Holocene.

2001 7.14 Synthesis

2002 Information on glacier activity in the Americas during the YD is limited, but has been 

2003 improving in recent years (Table 4 and Figs. 6 and 7).

2004 The LIS continued to thin and retreat throughout the YD, although at a lower rate than 

2005 earlier. Some major moraine systems were built during YD stillstands or re-advances, but 

2006 it is uncertain if they are a consequence of climate forcing or glacier dynamics related to 

2007 internally driven instabilities. Evidence for YD advances is sparse in Alaska, and it seems 

2008 that glacier retreat dominated there. In southern Alaska, however, temperatures decreased 

2009 during the YD. It is possible that glaciers advanced during this period, but if so, the 

2010 evidence was destroyed by late Holocene advances. There is evidence of YD glacier 

2011 advances at the southwestern margin of the CIS and in the North Cascades, where a 

2012 significant reduction in temperature and an increase in precipitation have been detected. 

2013 In the Wyoming and Colorado Rocky Mountains, moraines in several cirque basins, 

2014 which once were thought to be mid-Holocene ('Neoglacial') age, are now attributed to the 

2015 YD. In the Sierra Nevada a minor advance may be attributed to the YD, although the 

2016 dating is problematic. Many other small moraine complexes in the western mountains of 

2017 the U.S. have yet to be dated.

2018 One of the few regions with obvious YD moraines is central Mexico, where reconstructed 

2019 ELAs suggest temperatures were ~4-5°C below modern values in an environment that 

2020 was drier than today. The evidence for YD glaciation in the mountains of Costa Rica is 

2021 inconclusive, but in the Northern Andes at elevations above 3800 m asl, some glaciers 

2022 advanced during the YD due to a decrease in temperatures of 2.2-3.8°C below present 

2023 values under a dry climate.

2024 Glaciers continued to retreat in Peru and Bolivia during the YD, except on the Altiplano 

2025 where the YD coincided with the highest level of the Coipasa paleo-lake cycle and with 

2026 advances of glaciers in numerous mountain ranges and on high volcanoes. It is 

2027 questionable whether some late advances in northern Chile occurred during the ACR or 

2028 the YD, but most of the Arid Diagonal was already ice-free in the YD. Some evidence 

2029 for YD advances has been found in the central Andes of Argentina, but in Patagonia 

2030 glacier retreat continued throughout the YD and was interrupted only by stillstands or 
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2031 minor readvances that deposited small moraines. Glacier retreat also dominated during 

2032 the YD on Tierra del Fuego, where there is no evidence for advances during this period.

2033 Deglaciation accelerated after the YD in nearly all of North, Central and South America, 

2034 and most small glaciers reached their current size or disappeared during the early 

2035 Holocene. In the area of the LIS, deglaciation occurred rapidly following the YD and was 

2036 largely complete by 7 ka. In Alaska, glaciers reached sizes similar to today in the early 

2037 Holocene. The CIS had disappeared by the beginning of the Holocene. Most glaciers in 

2038 the Yellowstone region and the Colorado Rocky Mountains disappeared before the 

2039 Holocene, and in the Sierra Nevada glaciers were about their current size at that time. In 

2040 central Mexico, glaciers probably reached their current size or disappeared by the 

2041 beginning of the Holocene, although a minor advance, probably related to the 8.2 ka 

2042 event, is recorded on the highest volcanoes. Many glaciers advanced or experienced 

2043 stillstands in the Central Andes under a wetter climate during the early Holocene, 

2044 although these glaciers apparently rapidly retreated a short time thereafter. In Patagonia 

2045 and Tierra del Fuego, glaciers retreated during the early Holocene and most glaciers 

2046 approached their present size at that time.

2047

2048 8. Discussion

2049 8.1. The climatic meaning of the Last Glacial Termination

2050 Before comparing glacier behavior in the different regions of the Americas, we first 

2051 summarize the state of knowledge of global climate evolution during the Last Glacial 

2052 Termination and the mechanisms that caused it. An immediate problem in attempting 

2053 such a summary is that it is difficult to even define the start and end of this period. It 

2054 encompasses a set of events that do not begin or end at the same time around the world. 

2055 In addition, deglaciation may be caused, not only by changes in orbital forcing that 

2056 regulate the amount of insolation that Earth receives (Broecker and van Donk, 1970), but 

2057 also by internal forcing mechanisms and feedbacks, including changes in atmospheric 

2058 circulation and composition, especially in CO2 and CH4 (Sigman and Boyle, 2000; 

2059 Monnin et al., 2001; Sigman et al., 2010; Shakun et al., 2012; Deaney et al., 2017), 

2060 changes in ocean circulation, the composition of the oceans and sea ice extent (Bereiter 

2061 et al., 2018), and the interplay between the atmosphere and oceans (Schmittner and 

2062 Galbraith, 2008; Fogwill et al., 2017). Finally, the Last Glacial Termination is difficult to 
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2063 define because the two hemispheres experience opposing external forcing and potentially 

2064 opposing internal forcing mechanisms that might induce a climate compensation effect 

2065 between the hemispheres termed the “bipolar seesaw” (Broecker and Denton, 1990). 

2066 Broadly speaking, glacial terminations initiate when the ice sheets of the Northern 

2067 Hemisphere are at their maximum extent and with global sea level at its lowest (Birchfield 

2068 and Broecker, 1990; Imbrie et al., 1993; Raymo, 1997; Paillard, 1998). Additionally, 

2069 global deglaciation during each termination operates over approximately the same length 

2070 of time during each glacial cycle and is characterised by short-lived fluctuations of rapid 

2071 glacier retreat and occasional re-advances (Lea et al., 2003). Given these observations, it 

2072 is important to determine the mechanisms responsible for the climatic and glacial changes 

2073 that accompany deglaciations. To that end, several hypotheses have been proposed that 

2074 are mainly based on the temperatures of the oceans (Voelker, 2002) and the composition 

2075 of the atmosphere (Severinghaus and Brook, 1999; Stolper et al., 2016).

2076 Any attempt to closely examine the Last Glacial Termination must account for changes 

2077 in ocean temperature throughout this period. These temperature changes are simultaneous 

2078 in the two hemispheres, but can shift in opposite directions, for example in the Atlantic 

2079 Ocean. They are determined by the greater or lesser intensity of the AMOC (see syntheses 

2080 in Barker et al., 2009, 2010). Even though these changes occur throughout deglaciation, 

2081 the amount of CO2 in the atmosphere tends to increase more or less continuously. A 

2082 possible explanation for this apparent enigma is that the oceans in one hemisphere may 

2083 cool while those in the other hemisphere warm and emit more CO2, redistributing heat 

2084 across the planet (Barker et al., 2009).

2085 Building on previous work (Cheng et al., 2009), Denton et al. (2010) propose that a 

2086 concatenation of processes, with multiple positive feedbacks, drive deglaciation. They 

2087 argue that deglaciation is initiated by coincident “excessive” growth of Northern 

2088 Hemisphere ice sheets and increasing boreal summer insolation due to orbital forcing. 

2089 The large volume of ice on northern continents results in maximum isostatic depression 

2090 and an increase in the extent of the ice sheets that are marine-based. Even a small increase 

2091 in insolation could, under these conditions, enlarge ablation zones and initiate the collapse 

2092 of Northern Hemisphere ice sheets. Marine-based ice sheets can also be more vulnerable 

2093 to collapse due to positive feedbacks associated with sea-level rise at the grounding line. 

2094 Outbursts of meltwater and icebergs from these ice sheets cool the North Atlantic Ocean 

2095 and weaken the AMOC, leading to an expansion of winter sea ice and very cold winters 
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2096 on the adjacent continents (Denton et al., 2010). Under these conditions, the northern 

2097 polar front expands, driving the ITCZ, the southern trade winds, and the southern 

2098 westerlies to the south (Denton et al., 2010). The Asian monsoon weakens, while the 

2099 cooling over the North Atlantic intensifies the South American monsoon (Novello et al., 

2100 2017) and the southern westerlies. The result is an increase in upwelling in the southern 

2101 oceans, accompanied by enhanced ocean ventilation and a rise in atmospheric CO2. 

2102 During deglaciation, the Southern Hemisphere warms first, followed by warming over 

2103 the rest of the planet (Broecker, 1998). Southward migration of the southern westerlies 

2104 also contributes to a temperature rise in the southern oceans, which transfer heat to the 

2105 south (Denton et al., 2010). The intensive cooling in the Northern Hemisphere ends due 

2106 to a reduction in meltwater input, northward retreat of sea ice, and renewed warming of 

2107 the northern oceans, which reestablish the AMOC. Subsequently, the ITCZ returns 

2108 northward and the Asian monsoon intensifies. The northward migration of the southern 

2109 westerlies and the intensification of the AMOC cool the southern oceans, completing a 

2110 cycle in the recurrent bipolar seesaw that ultimately tends toward equilibrium (Denton et 

2111 al., 2010).

2112 The hypothesis for climate evolution during Last Glacial Termination summarized above 

2113 can be tested with our dataset on the behavior of glaciers in the Americas. It is clear that 

2114 sea level depends on how water is distributed between the ocean and Northern 

2115 Hemisphere ice sheets during glacials and also on the effects of land-based glacier ice 

2116 cover on the isostatic balance of the northern continents (Lambeck et al., 2014). The 

2117 hypothesis that deglaciation begins when northern ice sheets are extremely large is still 

2118 supported (Abe-Ouchi et al., 2013; Deaney et al., 2017). According to Cheng et al. (2016), 

2119 for example, ice sheets reach their maximum size after five precession cycles, which may 

2120 explain why glacial cycles finished after similar durations of about 115 ka (Paillard, 

2121 1998). In addition, it seems that the time needed for ice sheets to reach this extreme size 

2122 increased throughout the Pleistocene (Clark et al., 2006), and successively more 

2123 insolation energy was required to start deglaciation. This might explain why each glacial 

2124 cycle is longer than its predecessor (Tzedakis et al., 2017). Deglaciation begins when the 

2125 excessive size of the northern ice sheets coincides with: (i) increasing insolation in boreal 

2126 summer in the Northern Hemisphere, mainly at 65º N, the average latitude of large 

2127 northern ice sheets (Kawamura et al., 2007; Brook and Buizert, 2018); (ii) minimum CO2 

2128 in the atmosphere (Shakun et al., 2012); and (iii) maximum sea ice extent (Gildor et al., 

3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894



67

2129 2014). These conditions induce aridity and reduce vegetation cover, which in turn 

2130 increases atmospheric dust, reducing albedo on northern ice sheets (Ellis and Palmer, 

2131 2016). Better knowledge of the activity of glaciers throughout the Americas may confirm 

2132 the hypothesis that is central to these models, namely that deglaciation begins in the North 

2133 and is transmitted to the South.

2134 New information from ocean and polar ice cores reinforces the idea of climate 

2135 compensation between the two hemispheres (the bipolar seesaw) during the Last Glacial 

2136 Termination. Intensive sea-level rise occurs within the first 2 kyr of deglaciation, 

2137 inducing retreat of marine-based ice sheets, and acts as a positive feedback for 

2138 deglaciation (Grant et al., 2014). Fogwill et al. (2017) argue that, once deglaciation starts, 

2139 it is driven by global oceanic and atmospheric teleconnections. New data support the idea 

2140 that meltwater cooling of the Northern Hemisphere reduced the AMOC strength (Deaney 

2141 et al., 2017; Muschitiello et al., 2019) and pushed the northern westerlies southward in 

2142 Asia (Chen et al., 2019), Europe (Naughton et al., 2019), and North America (Hudson et 

2143 al., 2019). The Asian summer monsoon weakened during these cold periods in the 

2144 Northern Hemisphere (Cheng et al., 2016; Chen et al., 2019), and the Indian summer 

2145 monsoon transferred Southern Hemisphere heat northward, promoting subsequent 

2146 Northern Hemisphere deglaciation (Nilsson-Kerr et al., 2019).

2147 New data have also highlighted the importance of CO2 storage in the dense deep waters 

2148 of the Southern Hemisphere during glacials (Fogwill et al., 2017; Clementi and Sikes, 

2149 2019). Ventilation of these waters during deglaciation emits a large amount of CO2 into 

2150 the atmosphere and significantly warms the planet (Stephens and Keeling, 2000; 

2151 Anderson et al., 2009; Skinner et al., 2010; Brook and Buizert, 2018; Clementi and Sikes, 

2152 2019), favoring deglaciation (Lee et al., 2011; Shakun et al., 2012). This increase in CO2 

2153 overrides the cooling effect from orbital variations in the Southern Hemisphere (He et al., 

2154 2013).

2155 Recent high-resolution data from ice cores in Antarctica and Greenland have helped 

2156 verify the opposite temperature trends in the two polar areas during deglaciation, at least 

2157 on a large scale. Moreover, these data confirm that the rise in CO2 was synchronous with 

2158 the increase in Antarctic temperatures (Ahn et al., 2012; Beeman et al., 2019). Antarctic 

2159 temperature seems to be more closely linked to changes in tropical ocean currents, 

2160 whereas Greenland is less affected by this phenomenon (Wolff et al., 2009; Landais et 

2161 al., 2015). However, the intimate relationship between AMOC intensity and atmospheric 
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2162 CO2 concentrations has been clearly demonstrated (Deaney et al., 2017), and deglaciation 

2163 largely represents a period of imbalance between these two parameters. Therefore, when 

2164 the AMOC stabilizes, atmospheric CO2 concentrations stabilize and the interglacial 

2165 period begins (Deaney et al., 2017). That said, some exceptions have been detected on a 

2166 centennial scale (Böhm et al., 2015). A sudden surge in the AMOC may cause a large 

2167 release of CO2 into the atmosphere, although only for a few centuries (Chen et al., 2015). 

2168 New studies propose that mean ocean temperature and the temperature of Antarctica are 

2169 closely related, underlining the importance of the Southern Hemisphere ocean in 

2170 orchestrating deglaciation (Bereiter et al., 2018), as it is the main contributor of CO2 to 

2171 the atmosphere (Beeman et al., 2019). Inverse temperature evolution and the latitudinal 

2172 migration of atmospheric circulation systems (fronts, ITCZ, trade winds and westerlies) 

2173 may have the greatest impact on the planet’s glaciers and ice sheets, albeit in opposite 

2174 directions.

2175 Improved knowledge of the changing extent of glaciers throughout the Americas is 

2176 necessary to understand how glaciers are affected by the above-described evolution of 

2177 the climate system during the Last Glacial Termination. However, little attention has been 

2178 focussed on the differing behavior of glaciers between the hemispheres and how this 

2179 might reflect global ocean and atmospheric teleconnections during the last deglaciation. 

2180 Is there a glacial bipolar seesaw reflected in the behavior of mountain glaciers? In that 

2181 sense, it is necessary to consider that mountain glaciers today contribute about one-third 

2182 of the ice melt to the oceans (Gardner et al., 2013; Bamber et al., 2018). One of the few 

2183 studies that compares the behavior of mountain glaciers in both hemispheres is that of 

2184 Shakun et al. (2015a). These authors analyzed 1116 cosmogenic nuclide exposure ages 

2185 (mostly 10Be ages) from glacial landforms located between 50ºN and 55ºS on different 

2186 continents, but mostly from the Americas. Inferred glacier behavior was evaluated using 

2187 a variety of climate forcings. Their results demonstrate that glaciers responded 

2188 synchronously throughout deglaciation, mainly due to the global increase of CO2 in the 

2189 atmosphere and the subsequent increase in temperature. They note important regional 

2190 differences related to other factors, such as insolation in the Northern Hemisphere, a 

2191 seesaw response to changes in the AMOC in the Southern Hemisphere, and changes in 

2192 precipitation distribution and in tropical ocean currents.

2193 8.2 Glaciers in the Americas during GLGM in a global context
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2194 We note the similarity in the times of glacier advances in North and Central America 

2195 during the GLGM. Most mountain glaciers reached their maximum extent before or 

2196 during the GLGM, although in some areas (e.g. Teton Range and portions of the 

2197 Yellowstone Ice Cap), the maximum may also have encompassed HS-1. However, there 

2198 were many local differences within each region. Similarly, the LIS did not exhibit 

2199 uniform evolution along all parts of its margin, although it did reach its maximum extent 

2200 during the GLGM. Based on our synthesis, the LIS began to retreat about 21 ka ago at 

2201 the same time as the majority of the North and Central American glaciers, as well as 

2202 European glaciers. The Scandinavian Ice Sheet reached its maximum extent in the GLGM 

2203 and also started its retreat about 21 ka (Toucanne et al., 2015; Cuzzone et al., 2016; 

2204 Hughes A.L.C. et al., 2016; Hughes, P. et al., 2016; Stroeven et al., 2016; Patton et al., 

2205 2017). As in the case of the LIS, the margins of the Scandinavian Ice Sheet retreated at 

2206 different times; retreat in some areas was delayed until HS-1. The same timing and 

2207 behavior has been reported for the Barents, British-Irish, and Icelandic ice sheets (Hormes 

2208 et al., 2013; Pétursson et al., 2015; Hughes A.L.C. et al., 2016). In all three cases, the 

2209 maximum was reached during the GLGM and deglaciation began about 21-20 ka, 

2210 although retreat did not begin in some areas until HS-1. Some sectors of the British-Irish 

2211 Ice Sheet began their retreat very early in the GLGM, although for reasons related to the 

2212 dynamics of the ice sheet rather than climate (Ó Cofaigh et al., 2019). In the case of the 

2213 Icelandic Ice Sheet, sea-level rise caused it to collapse after 19 ka (Pétursson et al., 2015). 

2214 In summary, the Last Glacial Termination started almost simultaneously in areas covered 

2215 by the LIS and the Eurasian ice sheets.

2216 Similarities are also evident between North and Central American and many European 

2217 mountain glaciers. The glacial maximum in Europe extended from 30 ka until the 

2218 beginning of deglaciation 21-19 ka, for example in the Alps (Ivy-Ochs, 2015), Apennines 

2219 (Giraudi et al., 2015), Trata Mountains (Makos, 2015; Makos et al., 2018) and the 

2220 Anatolia peninsula mountains (Akçar et al., 2017). However, glaciers in some mid-

2221 latitude mountains in Europe achieved their maximum size much earlier, between MIS 5 

2222 to MIS 3, for example, glaciers in the Cantabrian Mountains and central Pyrenees on the 

2223 Iberian Peninsula (Oliva et al., 2019) and the High Atlas in North Africa (Hughes et al., 

2224 2018). In contrast, glaciers in the eastern Pyrenees, the Central Range and the Sierra 

2225 Nevada on the Iberian Peninsula, which are also located in mid-latitudes, clearly attained 

2226 their maximum size during the GLGM (Oliva et al., 2019). In summary, mountain 
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2227 glaciers in Europe and North America evolved in a similar way, in spite of the local 

2228 differences within each region.

2229 Comparing glacial behavior in South America to glaciers in other continents at similar 

2230 latitudes is more difficult. The extra-American glaciers of the Southern Hemisphere are 

2231 located in isolated mountains of Africa and Oceania and, with one exception, have not 

2232 been well studied. The exception is the Southern Alps of New Zealand, which are located 

2233 at the about the same latitudes as northern Patagonia.

2234 Unlike most of North and Central America, the maximum advance of the last glacial cycle 

2235 throughout South America, except perhaps in Tierra del Fuego and in some mountains of 

2236 Patagonia, was reached long before the GLGM, which is between approximately 60 ka 

2237 and 40 ka. A similar pattern is also evident in mountains of East Africa (Shanahan and 

2238 Zreda, 2000; Mahaney, 2011), New Zealand (Schaefer et al., 2015; Darvill et al., 2016) 

2239 and Kerguelen (Jomelli et al., 2018). Outside the Southern Hemisphere, an early 

2240 maximum advance during the last glacial cycle has also been proposed in some mountains 

2241 in Mexico (Heine, 1988), in the central Pyrenees, the Cantabrian Mountains (Oliva et al., 

2242 2019), and in the High Atlas (Hughes et al., 2018). However, these cases are exceptional 

2243 and are not located in any latitudinal zone; rather they are purely regional. Some authors 

2244 have suggested the idea of an aborted termination around 65-45 ka in the Southern 

2245 Hemisphere, after glaciers had achieved their maximum extents (Schaefer et al., 2015).

2246 Although the GLGM was not the last time that glaciers advanced in the Southern 

2247 Hemisphere, it was a period of widespread glacier expansion under a mainly cold and wet 

2248 climate. As in the Andes, many glaciers in the mountains of East Africa (Shanahan and 

2249 Zreda, 2000; Mahaney, 2011) and New Zealand (Schaefer et al., 2015; Darvill et al., 

2250 2016; Shulmeister et al., 2019) advanced during the GLGM and left outer moraine 

2251 systems. This advance has been attributed to a southward migration of the ITCZ and 

2252 westerlies in response to strong cooling in the Northern Hemisphere (Kanner et al., 2012; 

2253 Schaefer et al., 2015; Darvill et al., 2016). Paleoclimate records from central Chile, 

2254 northwestern Patagonia, and the southeast Pacific, however, imply a northward shift in 

2255 southwesterly winds during the GLGM (Heusser, 1990; Villagrán, 1988a, 1988b; Heusser 

2256 et al., 1999; Lamy et al., 1999; Moreno et al., 1999, 2018).

2257 Deglaciation in the Patagonian Andes began at 17.8 ka, consistent with Antarctic ice core 

2258 records (Erb et al., 2018) and New Zealand glacial chronologies (Schaefer et al., 2015; 

2259 Darvill et al., 2016; Barrell et al., 2019; Shulmeister et al., 2019). It occurred two or three 
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2260 millennia after the inception of deglaciation in the Northern Hemisphere, although 

2261 researchers have noted that ice recession and moderate warming took place during the 

2262 Varas Interstade, between ~24 and ~19 ka (Mercer, 1972, 1976; Lowell et al., 1995; 

2263 Denton et al., 1999; Hein et al., 2010; Mendelova et al., 2017).

2264 The GLGM was more than a climatic period; it was the time when the world’s glaciers 

2265 achieved their maximum extent after the previous interglacial. However, ice masses did 

2266 not all behave in the same way because their activity was affected by topography, regional 

2267 changes in ocean and atmospheric circulation, local climatic conditions and climate 

2268 feedbacks (Liakka et al., 2016; Patton et al., 2017; Liakka and Lofverstrom, 2018; 

2269 Licciardi and Pierce, 2018). Although many glaciers reached their maximum extent well 

2270 before the GLGM, especially in the Southern Hemisphere, the northern ice sheets grew 

2271 more-or-less continuously towards the GLGM. Many glaciers, also in the Northern 

2272 Hemisphere, achieved their largest size just before the GLGM. Within each region, 

2273 glaciers advanced many times, conditioned by the geographical constraints arising from 

2274 their own expansion. When the next warm orbital cycle began to affect the Northern 

2275 Hemisphere, around 21 ka, deglaciation started in all areas, although it was somewhat 

2276 delayed in the Southern Hemisphere. Again, the duration and intensity of deglaciation 

2277 after the GLGM differed greatly and was regional rather than latitudinal.

2278 8.3 Glaciers in the Americas during HS-1 in a global context

2279 Records of glacier behavior in the Americas during HS-1 are consistent with records from 

2280 other continents, albeit with considerable local variability in each region. HS-1 did not 

2281 have a strong impact on the LIS and European ice sheets (Patton et al., 2017). Around 

2282 17.8 ka, however, some of the margins of these ice sheets stabilized or advanced and 

2283 moraines were built at their margins. Retreat began again shortly thereafter, around 17.5 

2284 ka, with some local oscillations superimposed on overall retreat through the rest of HS-1 

2285 (Cuzzone et al., 2016; Hughes A.L.C. et al., 2016; Peters et al., 2016; Stroeven et al., 

2286 2016; Gump et al., 2017; Patton et al., 2017). Although there may have been an internal 

2287 reorganization of flow patterns and ice sheet geometry at this time, we note that there is 

2288 little evidence for any major readvance of the LIS during during HS-1, and retreat likely 

2289 continued in most regions including the southern margin (Heath et al., 2018). The 

2290 European ice sheets evolved in a similar manner (Toucanne et al., 2015), with 

2291 deglaciation beginning between 21 ka and 19 ka (Patton et al., 2017) and rapidly leading 

2292 to huge ice losses. The meltwater contribution to the North Atlantic, mainly from the LIS, 
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2293 was enough to drastically reduce the AMOC (Toucanne et al., 2015; Stroeven et al., 

2294 2016).

2295 Knowledge of the impacts of HS-1 on mountain glaciers in Europe is stronger than in 

2296 North and Central America. Glaciers advanced in the Alps during HS-1 (Gschnitz 

2297 stadial), occupying valley bottoms that had been deglaciated earlier. The main advance 

2298 was at the beginning of HS-1, around 17-16 ka, and its moraines are recognized in many 

2299 valleys (Ivy-Ochs, 2015). An advance of the same age has been documented in the Tatra 

2300 Mountains, (Makos, 2015; Makos et al., 2018). Up to three readvances have been 

2301 recognized in the Appenines during HS-1 (Giraudi et al., 2015), and glaciers advanced 

2302 on the Anatolian Peninsula near the end of HS-1 (Sarıkaya et al., 2014, 2017). Glacial 

2303 advances around 17-16 ka are recognized in almost all mountain ranges on the Iberian 

2304 Peninsula (Oliva et al., 2019). As in the Alps, glaciers on the Iberian Peninsula reoccupied 

2305 the lower reaches of valleys, approaching the moraines of the GLGM (Palacios et al., 

2306 2017a). This was the case in the central and eastern Pyrenees, the Central Range and the 

2307 Sierra Nevada (Oliva et al., 2019). All of these European advances happened at about the 

2308 same time as the HS-1 glacier advances in North and Central America. In the Rocky 

2309 Mountains, Mexico and Central America, maximum GLGM advances appear to have 

2310 extended into HS-1, although it is possible that glaciers readvanced during HS-1, 

2311 surpassing and erasing GLGM glacial landforms. The most recent summaries of the 

2312 glacial chronology of the California Sierra Nevada (Phillips, 2017), Wyoming’s Wind 

2313 River Range (Dahms et al., 2018, 2019; Marcott et al., 2019), the European Alps (Ivy-

2314 Ochs, 2015), and Iberian Sierra Nevada (Palacios et al., 2016) indicate that the glaciers 

2315 in these mountain systems behaved in similar ways during HS-1.

2316 The marked glacier advances in the tropical Andes during HS-1 have been attributed to 

2317 an intensification of the South American monsoon under a colder climate (Kanner et al., 

2318 2012). The monsoon produced a wet period on the Altiplano and caused glaciers to 

2319 advance in the surrounding mountains, in many cases beyond the limits of the GLGM 

2320 moraines. Again, it is difficult to compare South American tropical glaciers to other 

2321 glaciers at similar latitudes. There is little information on the glaciers of East Africa; ages 

2322 bearing on deglaciation have a large margin of error that precludes assigning events to 

2323 HS-1 with confidence, although many of the glaciers show evidence of large late-glacial 

2324 oscillations (Shanahan and Zreda, 2000; Mahaney, 2011).
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2325 It is much easier to compare glacier behavior between temperate southern latitudes, such 

2326 as Patagonia and the Southern Alps of New Zealand and Kerguelen Archipelago. In these 

2327 mountain ranges, deglaciation accelerated during HS-1 (Darvill et al., 2016). The glaciers 

2328 retreated throughout the entire HS-1 period in the Southern Alps (Putnam et al., 2013; 

2329 Koffman et al., 2017), Kerguelen (Jomelli et al., 2018) and the same happened in 

2330 Patagonia (Mendelova et al., 2017) and Tierra del Fuego (Hall et al., 2013). Moraines in 

2331 some valleys of the Southern Alps dated to 17 ka were built at the end of a prolonged 

2332 GLGM and mark the beginning of large-scale deglaciation (Barrell et al., 2019; 

2333 Shulmeister et al., 2019).

2334 On both continents, deglaciation began about 21 ka and became much more widespread 

2335 after 19-18 ka, resulting in a steady rise in sea level, cooling of the North Atlantic, and 

2336 reduction of the AMOC. HS-1 was a short period of stabilization and reduction in ice 

2337 loss. Strong cooling occurred in temperate northern latitudes, and mountain glaciers 

2338 advanced close to the limits reached during the GLGM, in some cases even surpassing 

2339 them. This happened in spite of increased aridity, which was a consequence of the 

2340 southward migration of the polar front. The ITCZ also migrated southward, particularly 

2341 over the tropical Atlantic, thereby intensifying the South American monsoon and 

2342 increasing precipitation in tropical latitudes, where glaciers advanced considerably. In 

2343 contrast, in the temperate latitudes of the Southern Hemisphere, HS-1 was a warm period 

2344 and glaciers began or continued their rapid retreat under a climate that was opposite that 

2345 in the temperate latitudes of the Northern Hemisphere.

2346 8.4 Glaciers in the Americas during the B-A and ACR in a global context

2347 We have seen above that the southern and western margins of the LIS retreated during 

2348 the B-A, whereas there was minimal retreat along its northern margin. In the rest of North 

2349 and Central America, many glaciers retreated significantly or disappeared altogether by 

2350 the end of HS-1 and during the B-A. However, some studies have suggested that there 

2351 were short periods of glacier advance in Europe, as in North America, during this period 

2352 of general deglaciation. The European ice sheet retreated from the sea and through central 

2353 Europe during the B-A (Cuzzone et al., 2016) and separated into smaller ice sheets 

2354 centered on the Scandinavian Peninsula, Svalbard and Novaya Zemlya (Hughes A.L.C. 

2355 et al., 2016; Patton et al., 2017). Along the southern and northwestern margins of the 

2356 Scandinavian Peninsula, there are moraine systems that mark the end of GS-2.1, and other 

2357 moraines inboard of them relate to the cold stage of GI-1d, called the Older Dryas 
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2358 (Mangerud et al., 2016, 2017; Stroeven et al., 2016; Romundset et al., 2017). Moraines 

2359 were built at the margin of the British-Irish ice sheet about 14 ka in the Older Dryas, but 

2360 that ice sheet had nearly disappeared along the B-A (Ballantyne et al., 2009; Hughes 

2361 A.L.C. et al., 2016; Wilson et al., 2019). The ice sheet covering Iceland retreated and left 

2362 important parts of the interior of the island free of ice during the B-A, with a climate 

2363 similar to that of today (Pétursson et al., 2015). In summary, we conclude that European 

2364 ice-sheets behaved in a similar manner to American glaciers during the B-A.

2365 Glaciers in the European Alps experienced the same rapid deglaciation during the B-A as 

2366 in North and Central America. After advances during HS-1, alpine glaciers retreated 

2367 considerably during the B-A and had practically disappeared by the end of this period 

2368 (Ivy-Ochs, 2015). Older Dryas (Daun stadial) moraines have been identified in many 

2369 alpine valleys, indicating stagnation or an advance of glaciers between the two 

2370 interstadials (Ivy-Ochs, 2015). After an advance in the Tatra Mountains at about 15 ka, 

2371 glaciers retreated rapidly (Makos, 2015; Makos et al., 2018). This retreat was interrupted 

2372 by readvances of glaciers during the Older Dryas (Marks et al., 2019). Glaciers also 

2373 rapidly retreated in the eastern Mediterranean during the B-A (Dede et al., 2017; Sarıkaya 

2374 and Çiner, 2017; Sarıkaya et al., 2017). The same pattern is evident in the Balkans (Styllas 

2375 et al., 2018), the Apennines (Giraudi et al., 2015), and the Iberian Peninsula where 

2376 glaciers disappeared from some mountain systems or retreated into the interior of cirques 

2377 (Oliva et al., 2019). Some moraines in these mountains may have been built in the Older 

2378 Dryas cold period, but uncertainties in the cosmogenic ages are sufficiently large that this 

2379 possibility cannot be confirmed. Examples are found in the central Pyrenees (Palacios et 

2380 al., 2017b).

2381 Conditions were warmer in Venezuela, and glaciers retreated, during B-A. The B-A warm 

2382 interstadial is not reflected in Central and Southern South American glacier behavior. 

2383 Rather, there is clear evidence from the northern and tropical Andes of advances during 

2384 the ACR. These advances occurred under cold and arid conditions caused mainly by 

2385 temperature changes related to the strengthening of the AMOC (Jomelli et al., 2014). 

2386 Although there is currently no evidence of these advances in northern Chile and the 

2387 central Andes of Argentina, they are clear in Patagonia, where after a retreat of glaciers 

2388 during HS-1, there was an advance during the ACR (Strelin et al., 2011; García et al., 

2389 2012). Evidence has been found also of a glacier advance during the ACR in the Fuegian 
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2390 Andes on Tierra del Fuego (Menounos et al., 2013), although there is no conclusive 

2391 evidence of an ACR event in the adjacent Cordillera Darwin (Hall et al., 2019).

2392 Again, a comparison of the behavior of South American glaciers to glaciers in other areas 

2393 of the Southern Hemisphere is almost impossible. In East Africa, as is the case on other 

2394 continents, it is very difficult to place the ages of some moraines within the ACR or YD 

2395 (Mahaney, 2011). However, in the Southern Alps of New Zealand, at Kerguelen (Jomelli 

2396 et al., 2018) as in Patagonia, there is evidence of glacier advances during the ACR, but 

2397 with large regional variations, possibly related to the westerlies (Darvill et al., 2016). In 

2398 any case, most of the possible ACR moraines in New Zealand have been dated to 13 ka, 

2399 at the boundary between the ACR and the YD (Shulmeister et al., 2019). There are 

2400 indications of a decrease in temperature of 2-3ºC at that time, at least in some areas of the 

2401 Southern Alps (Doughty et al., 2013). In spite of the limited knowledge of glacier 

2402 evolution over much of this region, we conclude that South American glaciers evolved in 

2403 a similar way to glaciers at similar latitudes on other continents and opposite to that of 

2404 glaciers in the Northern Hemisphere.

2405 Deglaciation of the Northern Hemisphere accelerated under a warm climate in the lead-

2406 up to the interglacial period. Again, we observe differences in glacial behavior within 

2407 each region, in both North America and Europe, but these differences are local and relate 

2408 to the geography of ice sheets and mountain glaciers and not to latitudinal trends. In the 

2409 best-studied regions where glacial landforms are well preserved, the impacts of short cold 

2410 intervals on glaciers have been detected, especially in the Older Dryas. However, in most 

2411 cases, uncertainties in dating preclude correctly assigning landforms to brief climatic 

2412 periods. Thus, it is not yet possible to determine whether any moraines in the Northern 

2413 Hemisphere belong to the ACR or the Older Dryas. Glacier behavior in the Southern 

2414 Hemisphere is different from that in North America and on other northern continents. The 

2415 impact of cooling during the ACR is clear in some of its regions. In the Southern 

2416 Hemisphere, there was no massive, continuous glacier melt, but rather a tendency towards 

2417 stagnation or glacier advance. As was the case for HS-1, the north and the south 

2418 responded in opposite ways to climate change during the B-A/ACR period.

2419 8.5 Glaciers in the Americas during the YD in a Global Context

2420 In many cases, the glaciers in North and Central America responded to the YD by 

2421 advancing. Retreat of the LIS slowed, and some sectors advanced. At the end of the YD 

2422 period, the LIS renewed its retreat. Similarly, several fronts of the Fennoscandian Ice 
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2423 Sheet advanced during the YD, although there was great variability in its different 

2424 margins (Cuzzone et al., 2016; Hughes A.L.C. et al., 2016; Mangerud et al., 2016; 

2425 Stroeven et al., 2016; Patton et al., 2017; Romundset et al., 2017). It appears that the 

2426 maximum advance occurred at the end of the YD period, at least at some margins 

2427 (Mangerud et al., 2016; Romundset et al., 2017). At the beginning of the Holocene, retreat 

2428 of the Fennoscandian Ice Sheet began anew, although this was interrupted during the 

2429 short-lived Preboreal oscillation, at 11.4 ka. Afterwards, retreat continued until the ice 

2430 sheet disappearance at 10-9 ka (Cuzzone et al., 2016; Hughes A.L.C. et al., 2016; 

2431 Stroeven et al., 2016). During the YD, ice caps in some sectors of Britain, Franz Josef 

2432 Land and Novaya Zemlya also expanded (Hughes A.L.C. et al., 2016; Patton et al., 2017; 

2433 Bickerdike et al., 2018). The glaciers in Iceland recovered during the YD and again 

2434 brought their fronts close to the present shoreline and, in some cases, beyond it (Pétursson 

2435 et al., 2015). With the Holocene came rapid retreat, interrupted by the Preboreal 

2436 oscillation at 11.4 ka (Andrés et al., 2019). In summary, the remnant European ice sheets 

2437 grew during the YD, but similar growth is less evident for the LIS.

2438 The impact on glaciers of the YD is currently being studied in the mountains of North 

2439 and Central America. In Alaska, the only clear evidence reported to date is in the south. 

2440 However, it is evident that there were small advances during the YD in many valleys of 

2441 British Columbia and the North Cascades. Recent dating has provided much more 

2442 evidence of small advances in the Wyoming and the Colorado Rocky Mountains 

2443 (Leonard et al., 2017a; Dahms et al., 2018, 2019) and possibly the California Sierra 

2444 Nevada (Phillips, 2017). YD advances are clear in central Mexico and increasingly 

2445 certain in Central America. Glaciers advanced throughout the European Alps during the 

2446 YD (Egesen stadial) and built moraines intermediate in position between those of the 

2447 Oldest Dryas and those of the Little Ice Age (Ivy-Ochs, 2015). In some valleys, there are 

2448 moraines dating to the Preboreal oscillation that lie between those of the YD and the Little 

2449 Ice Age (Ivy-Ochs, 2015). From glacier ELA depressions, it can be inferred that the 

2450 annual temperature was 3-5ºC cooler in the Alps, the Tatra Mountains and elsewhere in 

2451 the Carpathians (Rinterknecht et al., 2012; Makos, 2015). New information shows that 

2452 glaciers advanced in cirques in the Mediterranean mountains, for example in the 

2453 Anatolian Peninsula (Sarıkaya and Çiner, 2017), the Balkans (Styllas et al., 2018), the 

2454 Apennines (Giraudi et al., 2015), the Iberian mountains (García-Ruiz et al., 2016; Oliva 

2455 et al., 2019), the French Pyrenées (Jomelli et al., under review) and the High Atlas 
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2456 (Hughes et al., 2018). At this time, we can conclude that the activity of glaciers in North 

2457 America and Europe during the YD is more similar than it appeared a few years ago.

2458 Glaciers also apparently advanced in the northern Andes during the YD. However, in the 

2459 central Andes, the YD was a period of glacier retreat, with the exception of the Altiplano 

2460 where the Coipasa wet phase coincided with advances in the surrounding mountains. 

2461 Glaciers may also have advanced in these mountains at the beginning of the Holocene, 

2462 around 11 ka, but they all retreated after 10 ka. Glaciers in Patagonia and on Tierra del 

2463 Fuego retreated after the ACR, in the latter area probably beyond the limits of the Little 

2464 Ice Age. Glaciers in East Africa retreated immediately after constructing ACR or YD 

2465 moraines (Mahaney, 2011). In the Southern Alps, as in Patagonia, the YD was a period 

2466 of glacier retreat (Shulmeister et al., 2019) with temperatures about 1ºC warmer than 

2467 today (Koffman et al., 2017).

2468 Glaciers in the Northern Hemisphere responded synchronously to YD cooling by either 

2469 stabilizing or advancing, but the timing of the maximum extent differs spatially, as does 

2470 the magnitude of advance; in many areas, there is no evidence for YD glacier activity. In 

2471 the Southern Hemisphere, the South American monsoon intensified, thereby increasing 

2472 humidity, which caused tropical glaciers to advance. However, in the temperate latitudes 

2473 of this hemisphere, glaciers retreated, once again showing their antiphase behavior 

2474 compared to those in the north.

2475

2476 9. Conclusions

2477 The decrease in temperature in the Americas during the GLGM was 4-8 ºC, but changes 

2478 in precipitation differed considerably throughout this large region. Consequently, many 

2479 glaciers of North and Central America reached their maximum extent during the GLGM, 

2480 whereas others reached it later, during the HS-1 period. In the Andes, for example, 

2481 glaciers advanced during the GLGM, but this advance was not the largest of the Last 

2482 Glacial, except possibly on Tierra del Fuego. HS-1 was a time of glacier growth 

2483 throughout most of North and Central America; some glaciers built new moraines beyond 

2484 those of the GLGM. Glaciers in the tropical Andes stabilized or advanced during HS-1 

2485 and, in many cases, overrode GLGM moraines. However, glaciers in the temperate and 

2486 subpolar Andes retreated during this period. Glaciers retreated throughout North and 

2487 Central America during the B-A interstadial and, in some cases, disappeared. Glaciers 
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2488 advanced during the ACR in some parts of the tropical Andes and in the south of South 

2489 America. This advance was strong in Patagonia. Limited advances have been documented 

2490 in high mountain valleys in North and Central America during the YD. In contrast, 

2491 glaciers retreated during this interval in South America, except in some sectors of the 

2492 northern Andes and on the Altiplano where glacier advances coincided with the highest 

2493 level of the Coipasa paleo-lake cycle. 

2494 In summary, the GLGM was the culmination of glacier growth during the last glacial 

2495 cycle. Glaciers achieved their maximum extent in many sectors before the GLGM, and 

2496 even in individual sectors at different times, but the main northern ice sheets were largest 

2497 within the GLGM. The latter explains why orbital forcing triggered deglaciation 

2498 beginning about 21 ka across the Northern Hemisphere and somewhat later in the 

2499 Southern Hemisphere.

2500 Glaciers in North America and Europe exhibit common behavior at all latitudes through 

2501 the Last Glacial Termination. This synchronous behavior extended almost to the Equator. 

2502 This commonality was clearly influenced by pronounced shifts in ocean circulation (e.g. 

2503 the AMOC), but probably also reflected proximity to the great Northern Hemisphere ice 

2504 sheets that profoundly affected atmospheric circulation and temperature.

2505 Glaciers at temperate latitudes in the Southern Hemisphere fluctuated synchronously, 

2506 especially those in Patagonia and the Southern Alps of New Zealand. Their behavior is 

2507 generally opposite to that of Northern Hemisphere glaciers during HS-1 and the B-

2508 A/ACR, but the two are similar at the beginning and end of Last Glacial Termination.

2509 Glaciers at tropical latitudes in the Southern Hemisphere show greater diversity in their 

2510 behavior, which is most likely related to shifts in the ITCZ. A striking feature of the 

2511 glacial history of Central America and the tropical Andes is the persistence of relatively 

2512 extensive mountain glaciers through the Younger Dryas, long after those in North 

2513 America and Europe had retreated close to Holocene limits. One significant difference 

2514 between much of the Andes and the Northern Hemisphere is that the combination of 

2515 extreme elevation and aridity produces a larger sensitivity to precipitation than for the 

2516 lower and wetter mountain ranges of North America and Europe.

2517 Once deglaciation began, there was a seesaw between the hemispheres, which affected 

2518 not only marine currents but also atmospheric circulation and glacier behavior. This 

2519 seesaw explains the opposing behavior of many glaciers in the Northern and Southern 
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2520 Hemispheres during HS-1 and the B-A/ACR. At the end of the B-A, it appears that many 

2521 mountain glaciers and minor ice sheets had achieved sizes similar to those of the early 

2522 Holocene. Subsequently, the YD ended deglaciation in the south and led to the re-advance 

2523 of some glaciers in the north.
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4550 Figure captions

4551 Figure 1. Locations of the main sites in North and Central America cited in the text.

4552 Figure 2. Locations of the main sites in South America cited in the text.

4553 Figure 3. Glacier extent during the Global Last Glacial Maximum in the Americas. 

4554 Coloured areas represent regions containing glaciated mountain ranges and in many cases 

4555 are, for purposes of visibility, much larger than actual glaciated areas. AK = Alaska, BC 

4556 = British Columbia (Cordilleran Ice Sheet and northern Cascades), CS = central/southern 

4557 Cascades, SN = Sierra Nevada, NRM = northern Rocky Mountains, SRM = southern 

4558 Rocky Mountains, MX = Mexico, CA = Central America, NA = Northern Andes, PB = 

4559 Peru/Bolivia, NCA = north-central Andes, ACA = arid central Andes, PA = Patagonia, 

4560 TdF = Tierra del Fuego. The coastline corresponds to the GLGM sea-level low. Figure 

4561 information comes from author interpretations and refecences cited in Table 1.

4562 Figure 4. Glacier extent during H-1 in the Americas. See Figure 3 for full caption. Figure 

4563 information come from author interpretations and refecences cited in Table 2.

4564 Figure 5. Glacier extent during the B-A and ACR in the Americas. See Figure 3 for full 

4565 caption. Figure information comes from author interpretations and refecences cited in 

4566 Table 3.

4567 Figure 6. Glacier extent during the YD in the Americas. See Figure 3 for full caption. 

4568 Figure information comes from author interpretations and references cited in Table 4.

4569 Figure 7. Glacier extent during the early Holocene in the Americas. See Figure 3 for full 

4570 caption. Figure information comes from author interpretation and references cited in 

4571 Table 4.

4572 Figure 8. Glacial landforms at Deming Glacier on Mount Baker in the North Cascade 

4573 Range, Washington State. Late-glacial moraines below the present-day terminus of 

4574 Deming Glacier are numbered 1 through 7. Moraines 1 and 7 and the dashed black line 

4575 represent the maximum late glacial (Bølling?) limit of Deming Glacier. Moraine number 

4576 4 marks the YD limit with its associated adiocarbon ages. Note Neoglacial - Little Ice 

4577 Age terminus. 

4578 Figure 9. GLGM moraines in in the Beartooth Range, Rocky Mountains, Montana. A) 

4579 Location of the photos. B) Moraines; view west. C) Moraines; view east. The moraines 

4580 have been dated to 19.8 ka (Licciardi and Pierce, 2018). Photos by Nuria Andrés.
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4581 Figure 10. A) Location of the Wind River Range in the Rocky Mountains of Wyoming, 

4582 Montana and Idaho, and the Middle and North forks of the Popo Agie River (red box) on 

4583 the southeast flank of the range. B) Overview of LLGM and Late-glacial (pre-Holocene) 

4584 moraines in the Middle and North fork catchments of the Popo Agie River. Only the 

4585 farthest extents of the dated moraines are indicated in the main valleys. Yellow – 

4586 Positions and 10Be ages of terminal LGM and post-LGM (Pinedale and post-Pinedale) 

4587 moraines. Green – Positions and 10Be ages of moraines associated with glacial activity 

4588 during the H-1/Oldest Dryas period. Red – Positions and 10Be ages of moraines associated 

4589 with the YD period. The glacial geology and chronology of this area were originally 

4590 described by Dahms (2002, 2004) and Dahms et al. (2010), and were subsequently 

4591 revised by Dahms et al. (2018, 2019). Source: Google Earth images. 

4592 Figure 11. LLGM moraines on the east side of the Teton Range, Wyoming, near Taggart 

4593 and Jenny lakes. A) Locations of photos. B) Moraines east of Taggart Lake. C) Moraines 

4594 west of Jenny Lake. The moraines have been dated to between 14.4 and 15.2 ka (Licciardi 

4595 and Pierce, 2018). Photos by Nuria Andrés.

4596 Figure 12. Recessional moraines along the Yellowstone River in the Rocky Mountains of 

4597 Montana. A) Locations of photo. B) Moraines; view from the northeast. The moraines 

4598 have been dated to between 14.4 and 15.1 ka (Licciardi and Pierce, 2018). Photo by Nuria 

4599 Andrés.

4600 Figure 13. GLGM moraines in the Clear Creek watershed, Sawatch Range, central 

4601 Colorado Rocky Mountains). A) Location of photos. B) Moraines; view to the West. C) 

4602 Moraines; view to the east. The moraines have been dated to between 19.1 and 21.7 ka 

4603 (Young et al., 2011). Photos by Nuria Andrés.

4604 Figure 14. Overview of late Pleistocene moraines at Bishop Creek, eastern Sierra Nevada, 

4605 California. Extents of preserved moraines are indicated for the Tioga 1 (early GLGM), 

4606 Tioga 2/3 (late GLGM), and Tioga 4 (H-1) advances. Recess Peak moraines (B-A or YD) 

4607 are numerous throughout the headwaters area, but only one representative moraine is 

4608 shown. The obvious terminal moraines northeast of the Tioga 1 moraine date to MIS 6 

4609 age. The geology and chronology of this drainage are described in Phillips et al. (2009) 

4610 and updated in Phillips (2017).

4611 Figure 15. Glacial landforms between ~3100 and 4200 m a.s.l. in Gavidia Valley in the 

4612 Mérida Andes The valley has a U-shaped cross-profile, and has numerous outcrops of 
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4613 striated and polished bedrock (roches moutonnées). Deglaciation happened in two stages: 

4614 slow retreat between ~22 and 16.5 ka, followed by the complete deglaciation at ~16 ka 

4615 (Angel et al., 2016). Photo by Eduardo Barreto.

4616 Figure 16. LLGM and H-1 glacial landforms at the top of Cerro Tunupa (19.8°S, 67.6°W; 

4617 5110 m asl); view toward the southeast (Blard et al, 2013a; Martin et al., 2018). In the 

4618 background is the Salar de Uyuni. Photo by Pierre Henri Blard.

4619 Figure 17. Glacial landforms on Hualcahualca volcano, southern Peru. A) Locations of 

4620 photos. B) Prominent well-preserved LLGM moraine on the east flank of the volcano. C) 

4621 H-1 and YD moraines on the north flank of the volcano (Alcalá-Reygosa et al., 2017). 

4622 Photos by Jesus Alcalá-Reygosa.

4623 Figure 18. Glacial landforms in the arid Chilean Andes, from north to south: A) Glacial 

4624 valley at El Tatio (22.3° S), view upvalley from the LGM right-lateral moraine that has 

4625 yielded 36Cl ages of 20-35 ka (Ward et al., 2017). Truck circled for scale. B) View 

4626 upvalley from LGM right-lateral/frontal moraine near Co. La Torta (22.45° S) dated to 

4627 25-30 ka (Ward et al., 2015). Dirt track visible for scale. C) Inner ridge of the western 

4628 terminal complex of the former Chajnantor ice cap (23.0° S), last occupied at the LLGM 

4629 (Ward et al., 2015; 2017). View to the southwest; backpack circled for scale. D) Eastern 

4630 terminal moraine complex at Chajnantor, likely MIS 3 (Ward et al., 2015, 2017). View 

4631 to the north; largest visible boulders are ~1.5 m in diameter. E) View upvalley from likely 

4632 MIS 6 terminal moraine of the southern outlet glacier of the former ice field at Cordón 

4633 de Puntas Negras (23.85° S). Sharper inner lateral/frontal moraines have yielded ages that 

4634 support an LGM and/or MIS 3 age (Thornton, 2019). Locations of photos: 1 - A; 2 -B , 3 

4635 - C and D, 4 - E. Photos by Dylan J. Ward.

4636 Figure 19. Glacial landforms on the east side of Nevado de Chañi in the central Argentina 

4637 Andes. A) Locations of the photos. B) View to the east (down-valley) of Refugio Valley 

4638 showing the GLGM l (red) and H-1 (purple) moraines. The green circle marks a hut for 

4639 scale. C) YD lateral/frontal moraines in the Chañi Chico valley, which is a tributary of 

4640 Refugio Valley. These moraines are located inboard of those shown in panel A. Photos 

4641 by Mateo Martini.

4642 Figure 20. Glacial landforms on Tierra de Fuego. A) Locations of photos B-E. B) The 

4643 inner LGM-age moraine at Bahía Inútil, southern Chile. View to the east, parallel to the 

4644 moraine (marked by the white dashed line). The large boulders are granite derived from 
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4645 the Cordillera Darwin. C) Ice-scoured terrain in the Cordillera Darwin characteristic of 

4646 areas deglaciated during H-I. View to the north along the Beagle Channel. D) Aerial view 

4647 to the southwest of Marinelli fjord. The dashed line shows the location of a late Holocene 

4648 moraine, marking a historic glacial margin. The white dot shows the approximate location 

4649 of a core site that provides evidence that ice receded from the Strait of Magellan and back 

4650 into the fjord by ~17 ka. The black dot shows the location of photo E. E) Bog in Marinelli 

4651 fjord; view to the south. The late Holocene moraine is visible in the background. Ice had 

4652 cleared this site, within view of the historic position, by 16 ka. Photos by Brenda Hall.

4653 Figure 21. ACR moraine in Gueshgue valley in the Cordillera Blanca, Peru (dated by 

4654 Stansell et al., 2017). Photo by Joseph Licciardi.

4655 Figure 22. ACR moraine at Nevado Huaguruncho in the Eastern Cordillera of Peru (dated 

4656 by Stansell et al., 2015). Photo by Joseph Licciardi.

4657 Figure 23. ACR (continuous white line) and Holocene (dashed line) moraines in the 

4658 Tranquilo Valley, close to Mount San Lorenzo, Patagonia. Photo by Esteban Salgedo.

4659 Figure 24. Glacial landforms in Alcalican Valley, southwest of Iztaccíhuatl in central 

4660 Mexico. Moraine from the Late Pleistocene-Holocene transition. Elevations are ~3865 m 

4661 at the bottom of the valley at the end of the moraine and ~5200 m a.s.l. on the mountain 

4662 summit. Moraines of this group have been 36Cl-dated at 13-12 to ~10.5 ka and could be 

4663 YD in age. Note the three moraine ridges on the right side of the valley. Photo by Lorenzo 

4664 Vázquez.

4665

4666 Table captions

4667 Table 1. The main climate and glacial evolution features during the Global Last Glacial 

4668 Maximum (26.5-19 ka) in the Americas.

4669 Table 2. The main climate and glacial evolution features during the Heinrich 1 Stadial 

4670 (17.5-14.6 ka) in the Americas.

4671 Table 3. The main climate and glacial evolution features during the Bølling-Allerød 

4672 interstadial and Antarctic Cold Reversal (14.6-12.9 ka) in the Americas.

4673 Table 4. The main climate and glacial evolution features during the Younger Dryas (12.9-

4674 11.7 ka) in the Americas.

8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791





















































Table 1. The main climate and glacial evolution features during the Global Last Glacial Maximum (26.5 to 19 ka) in the Americas

REGION Climate  during GLGM in relation to 
present

ELA 
depression in 

LGM in 
relation to 

present

Local Last Maximum Ice Extension and 
its relation to GLGM

Initial 
deglaciation 
chronology

Key References

Laurentia 6-7 ˚C colder and great local variability 
in precipitation

During GLGM
Probably from 28 to 20 ka (even 17 ka) 

with great local variability
LIS near-maximum extent for several 

thousand years

23 to 20 ka, 
depending on 
area, but slow 
prior to 17 ka

Dyke et al., 2002; Ullman et 
al., 2015b; Robel and 
Tziperman, 2016; Stokes et 
al., 2016; Margold et al., 
2015; 2018; Stokes, 2017

Alaska More arid and relatively warm 
conditions 200-500 m During GLGM

From 24 to 21 ka in the whole region 
~20 ka

Kaufman et al., 2003; 
Tulenko et al., 2018;
Pendleton et al., 2015;
2012; Putnam et al., 2013; 
Briner et al., 2017

Cordillera Ice 
Sheet and

North 
Cascades

6-7 ºC colder and 40% lower mean 
annual precipitation 1000–750 m

CIS in the north during GLGM and in the 
west and south, later up to 16 ka

During LGM in North Cascades, from 25 to 
21 ka

From 21 to 16 ka
Clague, 2017; Riedel et al. 
2010; Bartlein et al. 2011; 
Riedel, 2017

Yellowstone-
Tetons 

Around 5.4ºC colder and similar 
precipitation as at present 900 m

During GLGM
From ~22 ka, but in some valleys up to 17-

16 ka

~20 to 17 ka, 
depending of the 

valleys

Licciardi and Pierce, 2018; 
Pierce, et al., 2018

Wind River    
Range, WY

(Est.) > 5.4ºC colder and similar 
precipitation as at present ~900 m During GLGM

From ~24-22 ka <22 ka
Dahms 2004; Dahms et al., 
2018, 2019; Shakun et al., 
2015

Colorado Around 5.4-8ºC colder and similar 
precipitation as at present 900 m

During GLGM
From ~24 ka, but some valleys up to 17-16 

ka

~20 to 17 ka, 
depending of the 

valleys

Young et al., 2011; Leonard 
et al., 2017a, b ; Brugger et 
al., 2019

Sierra Nevada 5-6ºC lower, 140% higher precipitation 1200 m During GLGM
From 26 to 20 ka

Began at 19 ka 
and accelerated 

rapidly after 18 ka

Plummer, 2002; Phillips, 
2016, 2017

Mexico 6 - 9°C colder, precipitation lower than 
modern

1000 m in the 
interior; 

1200-1500 m 

During GLGM. Interior part of central 
Mexico at 21-19 ka, extending to 20-14 ka 

near the coasts
15 to 14 ka

Vazquez-Selem and Heine, 
2011; Vázquez-Selem and 
Lachniet, 2017



near the 
coasts

Central 
America 6 - 9°C colder 1100-1400 m

During GLGM and post-LGM
Maximum at~25-23 ka in Cordillera 

Talamanca; subsequent deglaciation and 
moraines formation ca. 18-16 ka

~17 ka
Roy and Lachniet, 2010; 
Cunningham, 2019; Potter et 
al., 2019 

Northern 
Andes

8°C colder
and wetter 1420-850 m Pre-GLGM but during the GLGM, 

~21 ka in Sierra Nevada, Venezuela 
From ~21 to 16 

ka

van der Hammen, T., 1981; 
Schubert and Rinaldi, 1987; 
Thouret et al., 1996;
Stansell et al., 2007; 
Brunschön and Behling, 
2009; Angel, 2016; Angel et 
al., 2016; Angel et al., 2017

Peru and 
Bolivia

~5-8° C colder
precipitation was slightly higher

Variability, 
from 800 to 

1200 m

Pre-GLGM; GLGM and post GLGM, with 
average of 25 ka, from 32 to 17 ka

From ~22 to ~17 
ka

Seltzer et al., 2002; Mark et 
al., 2005; Rodbell et al., 
2008; Mark, 2017

Northern 
Chile

Colder and strong spatial gradients in 
moisture availability from north to 

south
900 m

Pre-GLGM 45-35 ka
30-25 ka and GLGM ~22-19 ka,  and in 

some sectors 17-15 ka,

North Arid 
Diagonal, up to < 
15 ka. South 17 

ka

Ward et al., 2015; Cesta and 
Ward, 2016; Ward et al., 
2017; Martin et al., 2018

Central Andes 
of Argentina Colder and slightly wetter conditions 800 m

Pre-GLGM (~40-50 ka), with LGM minor 
and variable expansion:  between ~26 and 

~19 ka
 From ~21 ka

Martini et al., 2017; 
Moreiras et al., 2017; Zech 
J. et al., 2017; Terrizano et 
al., 2017;
D’Arcy et al., 2019

Patagonia 6-7° C colder and wetter in northern 
Patagonia ca. 900 m

Pre-GLGM (~48 and ~30 ka), with LGM 
minor expansion and variable: between 

~26.9 and 18.8 ka

between 19.5-
17.5-ka

Moreno et al. 2015; Darvill 
et al., 2016; Hein et al., 
2017; Garcia et al., 2018; 
Hubbard et al., 2005; Denton 
et al., 1999

Tierra del 
Fuego 6-7oC colder ~1000 m?

Pre GLGM?  GLGM expansion by ~25 ka, 
but pre-GLGM moraines may be more 

extensive
~18 ka Hall et al., 2013, 2017; 

Menounos et al., 2013



Table 2. The main climate and glacial evolution features during the Heinrich 1 Stadial (17.5 to 14.6 ka) in the Americas.

REGION Climate  during H-1 in relation 
to present

ELA depression 
in H1 in relation 

to present
Glacial evolution during H-1 Key References

LAURENTIA

No clear evidence for major glacial readvances during or soon 
after H-1.

Important changes in the location of ice dispersal centres, with 
subsequent effects on ice flow patterns and some lobe advances.

In general, ice sheet thinning tendency

Stokes et al., 2005; Koester 
et al., 2017; 

ALASKA Cold, mild 200-500 m
Identified some standstills or re-advances in glacial fronts at 
~17-16.5 ka, but there was significant recession of most of 

glaciers over all this period

Pendleton et al., 2015;
Kopczynski et al., 2017; 
Briner et al., 2017

Cordillera Ice 
Sheet and

North 
Cascades

6-7 ºC colder and 40% lower mean 
annual precipitation

influenced by CIS expansion

1000–750 m
few hundred 

meters above the 
LGM

The ice sheet reached its maximum extent during H-1
Some glaciers left moraines closely nested inside the LGM 

moraines, that could belong to the H-1 expansion

Cosma et al., 2008;
Troost, 2016; Clague, 2017; 
Kaufman et al., 2004; Porter 
and Swanson, 2008; Riedel 
et al., 2010

Yellowstone-
Tetons Colder and similar precipitation 900 m, with great 

local variability
Some valleys reach their local maximum ice advance at ~17 ka, 

while others experienced extensive recession.
Licciardi and Pierce, 2018; 
Pierce et al., 2018 

Wind River 
Range, WY Est. colder w/ similar precipitation 60-170m (S-to-N)

Stagnant ice remains w/in 13 km of LLGM max in some trunk 
valleys while riegels become ice-free, suggesting de-coupling of 
cirque from valley ice ~18-17 ka. ‘Temple Lake’ moraines form 

15-14 ka

Shakun et al., 2015a; Dahms 
et al., 2018, 2019; Marcott et 
al., 2019.

Colorado Colder and similar precipitation 900 m, with great 
local variability

Some valleys reach their local maximum ice advance at ~17-16 
ka, while others experienced extensive recession. Rapid retreat 

afterwards.

Laabs et al., 2009; Young et 
al., 2011; Shakun et al., 
2015a; Leonard et al., 
2017a, b; Brugger et al., 
2019

Sierra Nevada 3º colder and 160% of 
precipitation 900 m Strong evidence of glacial advance during H1 at 16.2 ka. 

Extensive retreat afterwards
Plummer, 2002; Phillips, 
1996, 2017

Mexico Cold and dry 
900 m in the 

interior; 1200-1500 
m near the coasts

Minor recession in the interior but overall strong evidence of 
glacial advance or stillstand coeval to H-1  (17-15 ka)

Vázquez-Selem and 
Lachniet, 2017



Central 
America Cold conditions Unknown Moraine formation dated at ca. 18-16 ka; glacier recession by 15 

ka
Cunningham et al., 2019; 
Potter et al., 2019

Northern 
Andes

Cold temperatures but higher than 
in the LGM

Unknown, but 
likely with great 

variability

Local glacial advances from 17.5-15 ka in the context of general 
deglaciation

Rull, 1998; Brunschön and 
Behling, 2009; Angel et al., 
2016; 2017

Peru and 
Bolivia

The coldest period since LGM 
with cooling of ~3°C. 
Drier in central Peru.

 In the Altiplano the first part of 
H1 (~18 to 16.5 ka) was drier, 
followed by the Lake Tauca 

highstand from 16.5 to 14.5 ka 
with an increase of precipitation > 

130 %

Large variability, 
from similar to 
LGM to few 

hundred meters

Most of the glaciers retreated just prior to H-1, but multiple 
glaciers re-advanced during H-1, in Peru and Bolivia, with 

average moraine age of 16.1 ka with a standard deviation of 1.1 
ka

Alcalá-Reygosa, 2017; 
Mark, 2017; Martin et al., 
2018

Northern 
Chile

~3.5ºC colder and sharp 
precipitation gradient with 

decreasing precipitation from Lake 
Tauca to the south.

900 m of regional 
difference in 
relation to 

precipitation 
distribution

Moraines dating to the LGM and earlier were overridden during 
the Tauca highstand wet phase (~17-15 ka) in mountains 

surrounding Lake Tauca, but to the south the Tauca-phase 
moraine is either absent or found high in the valleys.

Ward et al., 2017; Martin et 
al., 2018

Central Andes 
of Argentina

Glacial advances occurred 
synchronous with the  expansion 

of Altiplano lakes 
620 m

New advances in some sectors between 17 and 15 ka and in 
other sectors, deglaciation from 17 ka. Moraines of H-1 located 

up-valley from those of the LGM.

Zech J. et al., 2009 , 2017; 
Martini et al., 2017;

Patagonia
Warming tendency throughout the 

period. Average interglacial 
temperatures by 16.8 ka

Trending toward 
values similar to 

the present

Widespread deglaciation along the region, with exception of 
short stabilization at ~16.9-16.2 ka in a few glaciers. 

Glaciers in central Patagonia were near to modern ice limits 
before ~16 ka

Boex et al. 2013; Moreno et 
al. 2015;  Henriquez et al., 
2017; Mendelova et al., 
2017; Bendle et al., 2017

Tierra de 
Fuego Sudden, large-scale warming.  

Unknown, but 
likely within a few 
hundred meters of 
present by 16.8 ka

Rapid glacier recession, with no evidence of stillstands.
Cordillera Darwin icefield had contracted to within the present-

day fjords by 16.8 ka

McCulloch et al., 2005b; 
Kaplan et al., 2008; 
Menounos et al., 2013; Hall 
et al., 2013, 2017



Table 3. The main climate and glacial evolution features during the Bølling-Allerød interstadial and Antarctic Cold Reversal (14.6–12.9 ka) in the Americas.

REGION Climate during B-A/ACR in 
relation to present

ELA depression 
during  BA/ACR 

in relation to 
present

Glacial evolution during B-A/ACR Key References

LAURENTIA

General ablation in marginal areas in B-A and marked retreat 
acceleration along the southern and western margins, with 

development of proglacial lakes. Some readvances not related to 
climatic forcing.

Northern margin stable.

Carlson et al., 2012; Ullman 
et al., 2015b; Margold et al., 
2015; 2018; Dyke, 2004; 
Stokes, 2017

ALASKA Unknown but some data suggest 
an important climate change

Widespread glacier retreat around the time of the Bølling onset. 
Glaciers were smaller than their eventual late Holocene extents 

by 15 ka

Badding et al., 2013; 
Pendleton et al., 2015

Cordillera Ice 
Sheet and

North 
Cascades

Positive temperature anomaly of 
1–2 ºC early in the BA, and 

increase in mean annual 
precipitation of 250 mm.

Brief cold periods with -1.5 ºC 
temperature drop caused the small 
glacier advances later in the BA

CIS lowered more 
than 500 m in the 
early BA. ELAS 

~500-700 m

Rapid disintegration of the CIS in the North Cascades and 
western Canada from 14.5–14.0 ka

Glacial tongues transformed into a labyrinth of dead ice in 
valleys and between CIS and LIS

Minor glacial advances between 13.6 and 13.3 ka.
Top-down deglaciation of the ice sheet led to exposure of valley 

heads and cirques before adjacent valley floors

Liu et al. 2009; Peltier et al. 
2015; Menounos et al. 2017; 
Lambeck et al. 2017; Riedel 
2017; Clague 2017

Yellowstone-
Tetons warming climate Increasing to 

present day

Some valleys continue advancing after 16 ka in the SW, due to 
their exposure to greater precipitation, the Yellowstone as a 

whole experienced an intensive deglaciation 15-14 ka

Licciardi and Pierce, 2018; 
Pierce et al., 2018

Wind River     
Range, WY

Warming prior to cooling during 
IACP/ACR

Increasing to near 
present

Glaciers retreat behind their H-1 moraines by ~15 ka, possibly to 
cirque headwalls. 10Be ages suggest some begin to re-advance 

~13.6-3 ka correlative with the Inter-Ållerød Cold Period (IACP) 
and the ACR

Dahms et al., 2018, 2019 ; 
Shakun et al., 2015.

Colorado temperature and summer 
insolation increasing

Increasing to 
present day

Deglaciation was culminated by ~14 ka, and by 13 ka most of 
the glaciers had disappeared

Laabs et al., 2009; Young et 
al., 2011; Shakun et al., 
2015a; Leonard et al, 
2017a,b

Sierra Nevada summer-warm and high-insolation

Increasing to 
present day, with a 
short depression of 

~150 m

Glaciers had retreated to cirque headwalls by about 15.5 ka, well 
before the start of the BA at 14.7 ka.

Bowerman, 2011; Phillips, 
2016, 2017



Glacier advanced following the Bølling-Ållerød transition, for 
short interval, correlative with both the Inter-Ållerød Cold 

Period and the ACR, but also the YD

Mexico Warming tendency rose at least 200 m
Initial deglaciation, allowing for the formation of small 

recessional moraines close to those of the maximum advance 
from 15 to 14 ka and accelerated from 14 ka.

Vázquez-Selem and 
Lachniet, 2017

Central 
America Warming trend Unknown Glacier retreat and standstills 15-10 ka Potter et al., 2019

Northern 
Andes

2.9°±0.8°C colder and 10% 
increase in annual precipitation

Depression of 500 
m

Glacier advances have been related to ACR in the Sierra Nevada 
del Cocuy, Colombia Jomelli et al., 2014, 2016

Peru and 
Bolivia

Colder in the beginning and end of 
the ACR and variability in the 

precipitation

Great variability, 
from similar to 

present to 
depression of 500 

m

Glaciers advancing in multiple regions of Peru of Bolivia around 
13.5 ka

Jomelli et al., 2014, 2016, 
2017; Stansell et al., 2015; 
2017 

Northern 
Chile Drier than H1 or YD

No glacial advances have been dated with sufficient precision to 
distinguish between the YD and the ACR, but possible ACR 

moraines at recessed positions
Ward et al., 2015; 2017

Central Andes 
of Argentina

Similar to present-day 
precipitation

No generalized glacial activity in the region, but possible ACR 
moraines D’Arcy et al., 2019

Patagonia 1.6-1.8°C colder Depression of 260 
m

Several advances during ACR south of 47°S but no evidence of a 
glacial advance north of 47°S

Moreno et al., 2009; Glasser 
et al., 2011; Sagredo et al., 
2011; Strelin et al., 2011; 
García et al., 2012; Nimick 
et al., 2016; Sagredo et al., 
2018

Tierra de 
Fuego Colder

Cirque moraines in the Fuegian Andes have been dated to the 
ACR. Overall, little work has been done on ACR ice extent in 

this region. 
Menounos et al., 2013



Table 4. The main climate and glacial evolution features during Younger Dryas (12.9–11.7 ka) in the Americas.

REGION Climate during YD in 
relation to present

ELA 
depression 

during YD in 
relation to 

present

Glacial evolution during YD Final stages of deglaciation Key References

LAURENTIA

Glacial recession slowed and some 
moraine systems were built because of 

some marginal re-advances. 
Several ice streams switched on caused by 

climatically forced. However, there was 
rapid retreat along other margins.

Following the YD, 
deglaciation occurred rapidly. 
Retreat towards the positions 

of the major ice dispersal 
centres with some 

interruptions, such  as the 8.2 
ka event, to be completed by 7 

ka

Dyke, 2004; Margold et al., 
2018; Lakeman et al., 2018;

ALASKA

Cooling is notable only in 
the South and in the 

beginning of YD. The rest 
was warmer than the late 

Holocene. Increase in 
precipitation due to 

transgressive flooding of 
Bering Strait around the 

time of the YD.

<0-80 m

Limited evidence for glacier re-advances 
and most of the glaciers retreated up-

valley of their late Holocene extent prior 
to the YD

Briner et al., 2002; 2017; 
Kaufman et al., 2010

Cordillera Ice 
Sheet and

North 
Cascades

The climate was variable at 
the century time scale, with 
maximum cooling of ~2–3 

ºC 

ELA 200-400 
m below 

modern values 
in the North 

Cascades, but 
fluctuated 
100-200 m 

Many alpine glaciers and at least two 
remnant lobes of the CIS advanced. They 

were small advances, only several hundred 
meters beyond late Holocene maximum 
positions attained during the Little Ice 

Age.
In North Cascades there are multiple 

closely nested YD moraines 

Ice-free by 11.6 ka in many 
sites in western Canada. In 

British Columbia extent was 
only slightly larger at 11 ka 

than today. 

Osborn et al., 2012; 
Menounos et al., 2017; 
Riedel, 2017; 

Yellowstone-
Tetons

The only glacial advance detected is in the 
Lake Solitude cirque in the east slope of Licciardi and Pierce, 2008



Teton Range, with a moraine that closed a 
small cirque at 12.9 ± 0.7 ka

Wind River    
Range, WY Cooling; Precip ? ~40-80m (S-

to-N)

‘Alice Lake’ moraines in fifteen cirque 
valleys 0.1-0.5 km behind H-1/Oldest 

Dryas moraines. 13.6-11.2 ka in Stough 
Basin and Cirque of the Towers; 13.3 ka 

in Titcomb Basin. 

Ice-free until Late Holocene. 
Two re-advances (pre-LIA 

pro-talus/moraines; LIA 
moraines).

Dahms, 2002; Dahms et al., 
2010, 2018, 2019; Shakun et 
al., 2015.

Colorado Cooling evidence
Most of the valleys were largely ice-free 

by ~15-13 ka with no clear evidence of re-
advance during the YD.

Leonard et al., 2017a

Sierra Nevada
Evidence of 1°C cooling 
and 140 % precipitation 

increase

Unclear whether Recess Peak advance is 
YD or pre-YD Bowerman, 2011

Mexico ~4-5°C colder and 
relatively dry conditions 650-800 m

In the mountains of central Mexico >4200 
m glaciers formed a distinctive group of 
closely spaced moraines at 3800-3900 m 

from 13-12 to ~10.5 ka

Mountains <4000 m in central 
Mexico were ice-free by 11.5 
ka; mountains <4200 m ice-
free between 10.5 and 10 ka; 

highest peaks of central 
Mexico (>4400 m) have 
evidence of a short but 

distinctive advance 8.5 to 7.5 
ka

Vázquez-Selem and 
Lachniet, 2017

Central 
America

Conflicting evidence: full deglaciation 
prior to YD, ca. 15.2 ka (Cunningham et 

al., 2018); glaciation coeval to YD and full 
deglaciation before 9.7 ka (Orvis and 

Horn, 2000; Potter et al., 2019)

Ice-free before 9.7 ka or 
probably as early as 15.2 ka, 

depending on the authors

Orvis and Horn, 2000; 
Cunningham et al., 2019; 
Potter et al., 2019-

Northern 
Andes

2.2-3.8°C colder than 
today, and drier climate in 

the Venezuelan Andes

Evidence of glacier advance is limited and 
mainly located at elevations higher than 

3800 m a.s.l.

Salgado-Labouriau and 
Schubert, 1977; Carrillo et 
al., 2008; Rull et al., 2010; 
Stansell et al., 2010; Angel 
et al. 2017

Peru and 
Bolivia

More precipitation in the 
South indicated by high 

level of Coipasa paleolake 

Scarce records 
and

great 
variability

The ice was in a general retreating phase 
during the YD. Only local evidence of 
advances at the start of YD, mainly in 

southwestern Peru.

Multiple glaciers advanced or 
experienced stillstands in the 

Central Andes during the early 
Holocene. Glaciers then seem 

Mark et al.,  2017; Bromley 
et al., 2011; Alcalá-Reygosa 
et al., 2017



to have rapidly retreated 
through the remaining early 

Holocene

Northern 
Chile

100-150% wetter than 
modern

There are no glacial landforms in the 
immediate vicinity of the Arid Diagonal 

dated with sufficient precision to 
distinguish between the YD and the ACR; 

possible YD moraines in recessed 
positions at a few locations.

Ward et al., 2015

Central Andes 
of Argentina

Cooler and wetter 
conditions. Synchronous 

with the expansion of 
Altiplano lakes

480 m Evidence of local advances during YD After the YD or H-1 there is 
no widespread glacial activity

Martini et al., 2017;
D’Arcy et al., 2019

Patagonia No clear cooling and great 
variability in precipitation

After reaching their maximum late-glacial 
extent during the ACR, Patagonian 

glaciers underwent net recession and 
thinning during the YD. This general trend 

was interrupted by stillstands or minor 
readvances that deposited small moraines 

south of 47ºS

A widespread warm/dry 
interval is evident between 11-
8 ka and the glaciers continued 

decreasing through the early 
Holocene, when most glaciers 
approached their present-day 

configuration

Moreno et al., 2010; Strelin 
et al., 2011; Kaplan et al., 
2016; Glasser et al., 2012; 
Sagredo et al., 2018; Moreno 
et al., 2018a,b 

Tierra de 
Fuego No clear cooling  

A glacier in the Fuegian Andes had 
reached positions comparable to the Little 
Ice Age by 12.5-11.2 ka. Probably glaciers 

were in recession throughout Tierra del 
Fuego.

Recession may have been 
rapid in the early Holocene

Menounos et al., 2013; Hall 
et al., 2013; 2017
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