
HAL Id: hal-02639534
https://hal.science/hal-02639534

Submitted on 28 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SCALING OF COMPRESSIBLE
MAGNETOHYDRODYNAMIC TURBULENCE IN

THE FAST SOLAR WIND
Supratik Banerjee, Lina Hadid, Fouad Sahraoui, Sébastien Galtier

To cite this version:
Supratik Banerjee, Lina Hadid, Fouad Sahraoui, Sébastien Galtier. SCALING OF COMPRESSIBLE
MAGNETOHYDRODYNAMIC TURBULENCE IN THE FAST SOLAR WIND. The Astrophysical
journal letters, 2016, 829 (2), pp.L27. �10.3847/2041-8205/829/2/l27�. �hal-02639534�

https://hal.science/hal-02639534
https://hal.archives-ouvertes.fr


SCALING OF COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE IN THE FAST SOLAR WIND

S. Banerjee1,2, L. Z. Hadid2, F. Sahraoui2, and S. Galtier3
1 Universität zu Köln, Institut fur Geophysik und Meteorologie, Pohligstrasse 3, D-50969 Köln, Germany; biswayan@gmail.com

2 LPP, CNRS-Ecole Polytechnique-UPMC-Université Paris-Sud, F-91128 Palaiseau, France
3 LPP, Université Paris-Sud, Ecole Polytechnique, F-91128 Palaiseau, France

Received 2016 May 24; revised 2016 August 31; accepted 2016 September 3; published 2016 September 28

ABSTRACT

The role of compressible fluctuations in the energy cascade of fast solar wind turbulence is studied using a reduced
form of an exact law derived recently for compressible isothermal magnetohydrodynamics and in situ observations
from the THEMIS B/ARTEMIS P1 spacecraft. A statistical survey of the data revealed a turbulent energy cascade
over a range of two decades of scales that is broader than the previous estimates made from an exact
incompressible law. A term-by-term analysis of the compressible model reveals new insight into the role played by
the compressible fluctuations in the energy cascade. The compressible fluctuations are shown to amplify by two to
four times the turbulent cascade rate with respect to the incompressible model in ~10% of the analyzed samples.
This new estimated cascade rate is shown to provide the adequate energy dissipation required to account for the
local heating of the non-adiabatic solar wind.
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1. INTRODUCTION

The solar wind is an excellent natural laboratory for the in situ
study of space plasma turbulence(Bruno & Carbone 2005;
Galtier 2006). Due to the relatively weak density fluctuations
(~10%), fast solar wind (FSW) turbulence is often described at
low frequencies (<0.1Hz) by incompressible magnetohydrody-
namics (MHD;Goldstein & Roberts 1999; Sorriso-Valvo
et al. 2007; Galtier 2012). However, the high correlation
between the velocity and the magnetic field in the FSW leads to
a strong imbalance between the outward and inward propagating
Alfvén waves, which in turn makes the incompressible nonlinear
cascade small. A compressible cascade may overcome this
problem and explain the turbulent character of the FSW.
Furthermore, it may provide a natural source for a local heating
that is required to understand the slow decrease of the solar wind
temperature with the heliospheric distance(Marsch et al. 1982;
Vasquez et al. 2007). Pioneering works(Bavassano &
Bruno 1989; Marsch & Tu 1990) included attempts to
understand the origin and the nature of the density fluctuations,
as well as their spectral laws. A Kolmogorov-like -5 3
spectrum for the density fluctuations led to the conclusion that
the density acts as a passive scalar in the solar wind. However, in
the following years, several studies explored the plausibility of
an active participation of the density fluctuations using
parametric decay of solar wind turbulence (Grappin et al.
1990; Malara et al. 2000). More recently, a study by Hnat et al.
(2005) showed that the scaling of extended self-similarity of the
density fluctuations does not coincide with that expected for a
passive scalar (e.g., the magnetic field magnitude for incom-
pressible MHD turbulence).

A direct evidence of the presence of an inertial energy
cascade in the solar wind was observed using the so-called
Yaglom law (Sorriso-Valvo et al. 2007; Marino et al. 2008). It
is a universal law derived analytically from the incompressible
MHD equations (Politano & Pouquet 1998, hereafter PP98)
under the assumptions of homogeneity, stationarity, and
isotropy of the turbulent fluctuations. Later, a first attempt
was made to include the compressibility using a heuristic
model (Carbone et al. 2009; Marino et al. 2011, hereafter C09).

The application of C09 to FSW turbulence showed a better
scaling relation of the energy flux than with PP98. Further-
more, a significant increase of the turbulent cascade rate was
evidenced and shown to be sufficient to account for the local
heating of the non-adiabatic solar wind expansion (Carbone
et al. 2009). Although those results are original and constitute a
real leap forward in studies of solar wind turbulence, (i) C09
remains a heuristic model (i.e., not derived analytically as the
exact law of PP98) and gives a different origin of the
amplification of the energy cascade rate than the one evidenced
in the present work; (ii) by following incompressible MHD
turbulence, C09 attempted to verify two scaling relations
corresponding to two pseudo-energy conservations, however,
in compressible turbulence only the total energy is conserved
(not the individual pseudo-energies) (Marsch & Mangeney
1987; Banerjee & Galtier 2013); and (iii) the frequency range
chosen for the study does not seem to correspond fully to the
MHD inertial range (Forman et al. 2010; Sorriso-Valvo
et al. 2010).
In this letter, we present for the first time a statistical study of

scaling properties of FSW turbulence using a reduced form of
an exact law derived recently by Banerjee & Galtier (2013,
hereafter BG13) for compressible isothermal MHD turbulence
(see also Galtier & Banerjee 2011). Our findings show the new
role played by the compressible fluctuations in the turbulent
cascade and the local heating of the FSW.

2. DIFFERENT MODELS

In the course of this letter, we compare two solar wind
turbulent MHD models, namely the incompressible PP98 and
the compressible isothermal BG13 exact laws. For the sake of
clarity, we recall their different relationships written for the
dissipation rate of the total energy. We recall that these laws are
derived under the assumptions of a homogeneous, stationary
turbulence, and in the asymptotic limit of large kinetic and
magnetic Reynolds numbers.
Incompressible Model. The PP98 law is written in terms of

the Elsässer variables = z v vA, where v is the flow
velocity, m rºv bA 0 is the magnetic field normalized to a
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velocity, and r is the plasma density (in this incompressible
model, we take r r= á ñ). It reads (in the isotropic case):

e
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where the general definition of an increment of a variable y is
used, i.e., dy y yº + -x xℓ( ) ( ). The longitudinal compo-
nents are denoted by the index ℓ with ºℓ ℓ∣ ∣, á ñ· stands for the
statistical average and eI is the dissipation rate of the total
energy. Note that in S.I. units, we have the rela-
tion rá ñ = ´ á ñ- n1.673 10 p

21 .
Compressible Model. The exact law BG13 can schematically

be written as
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where eC denotes the dissipation rate of the total compressible
energy. The flux term writes
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where, by definition, dy y yº + +x xℓ 2( ( ) ( )) and e is the
internal energy ( r r= á ñe c lns

2 ( ), with cs as the constant
isothermal sound speed, rá ñ the mean density, and
r r r= á ñ + 1). Note that C reduces to I when r = 01
(implying also that dr = 0). Furthermore, we have

b
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where the primed and unprimed variables correspond to the
variables at points +x ℓ and x, respectively, and b = c v2 s A

2 2

gives the local ratio of thermal to magnetic pressure (note the
difference between the definition of β used here and in
Banerjee & Galtier 2013). The last term,  , is a source term
that includes the local divergences of v and vA. The main goal of
this study is to evaluate for the first time the compressible
effects in solar wind turbulence with an exact law. This
objective will be partly achieved by evaluating the first two
terms in the right-hand side of Equation (2). The source term
will be left aside because a reliable evaluation of local velocity
divergences is not possible using single spacecraft data. Thus,
we implicitly assume that  is subdominant. Note that this
situation, not proved for the solar wind, is well observed
numerically in supersonic HD turbulence (Kritsuk et al. 2013)
and in a preliminary study using numerical simulations of
isothermal MHD turbulence (S. Servidio 2015, private
communication).

We may try to estimate Φ, which is not a pure flux term but
can be reduced to it if the plasma β is relatively stationary. In
this particular case, we obtain after simple manipulations

b
r r

b
d d rF =  á ¢ - ¢ ¢ ñ = -  á ñv v ve e e

1 2
. 5ℓ ℓ· · ( ) ( )

This term can now be merged with the flux terms in
Equation (3). This results in modifying the last term of C

from d d r+ ve v 2A
2

1( ) ( ) to d b d r+ +- ve v1 2A
1 2

1[( ) ] ( ). As
a last step, one can integrate relation(2) over a ball of radius ℓ

and get the equivalent of the isotropic relation (1) for
isothermal compressible MHD turbulence, namely,

e- = +Fℓ ℓ
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Equations (6)–(8) will be evaluated using spacecraft data in the
FSW. It is worth noting that the condition of uniform β used to
obtain the new form of  ℓ3( ) in Equations (8) is a stringent
requirement in selecting the data used in the present study. We
note, however, that it is the local β that is used in evaluating the
flux terms and not its mean.

3. ESTIMATION OF THE ENERGY CASCADE RATES

3.1. Data Selection

We used the THEMIS B/ARTEMIS P1 spacecraft data during
time intervals when it was travelling in the free-streaming solar
wind. In particular, we used the plasma moments and magnetic
field data which were measured by the Electrostatic Analyzer
(ESA) and the Flux Gate Magnetometer (FGM) with a time
resolution of 3 s (i.e., spin period), respectively. Because we are
interested in FSW, we selected a total of 148 intervals between
2008 and 2011 for which > -V 450 km ssw

1, where Vsw is the
solar wind speed. Furthermore, we tried as much as possible to
avoid data intervals that contained significant ecliptic dis-
turbances, such as coronal mass ejection or interplanetary
shocks. Besides these criteria, we paid a particular attention to
choosing only intervals that showed relatively stationary
plasma β and QVB, the angle between the local solar wind
speed V and the magnetic field B. The stationarity of the
plasma β is imposed to fulfill the condition used to derive
Equations (6)–(8), as discussed in the previous section. The
stationarity of the angle QVB is required to guarantee that the
spacecraft is sampling nearly the same direction of space with
respect to the local magnetic field (when the Taylor hypothesis,

t~ℓ V , is used), which would ensure a better convergence in
estimating the cascade rate. Indeed, if the angle QVB changes
significantly in a single time interval (e.g., from ~ 0 to ~ 90 ),
this means that the analysis would mix between the two
cascade rates estimated along the direction parallel and
perpendicular to the local magnetic field, known to be very
different. This is based on anisotropic MHD turbulence models
and on spacecraft observations in the solar wind (MacBride
et al. 2008; this point will be discussed in more detail in an
upcoming paper). The obtained intervals that fulfilled all the
previous criteria were divided into a series of samples of equal
duration ∼35 mn, which corresponds to ∼700 data points with
a 3 s time resolution. This sample size is much larger than those
used in previous studies based on ACE spacecraft data that had
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a time resolution of 24 s (e.g., MacBride et al. 2008). The
sample size of 35 mn ensures having at least one correlation
time of the turbulent fluctuations estimated to vary in the range
~20 30– mn. The data selection yielded 170 samples and a total
number of data points~ ´14 104. An example of the analyzed
time intervals is shown in Figure 1. The average solar wind
speed and plasma β for all the statistical samples are shown in
Figure 2.

3.2. Results

We constructed temporal structure functions of the different
turbulent fields involved in the BG13 exact law at different
time lags τ and verified their linear scaling with respect to τ. To
probe into the scales of the inertial range, known to lie within
the frequency range ∼[ -10 , 14 ]Hz (based on the observation of
the Kolmogorov-like −5/3 magnetic energy spectrum, Bruno
& Carbone 2005; Marino et al. 2008), we vary the time lag τ
from 10 to 1000 s, thereby being well inside the targeted
frequency range.

Figure 3 (bottom) compares the energy cascade rates eI C, of
the incompressible and compressible models respectively for a
number of intervals (including that of Figure 1 as the primary
plot). They were estimated using expressions (1) and (6). The
compressibility, defined as r r rá ñ - á ñ á ñ2 2( ) , is about 14%.
One can see that the energy cascade rate from BG13 gives a
smoother scaling than the PP98 model over two decades of
(time) scales τ, which defines in a more rigorous way the size
of the inertial range. This behavior is representative of most of
the other studied intervals, as can be seen from the few cases
shown in the inset of Figure 3 (bottom). The value
corresponding to the plateau gives an estimate of the rate of
the total energy dissipation per unit volume (Vasquez et al.
2007; Marino et al. 2008). In the case of the isothermal
compressible law, we obtain e ~ ´ -6 10 JC

17∣ ∣ m−3 s−1. The
estimate from the incompressible law gives a value about three
times smaller.

To quantify the contribution of the different compressible
fluctuations, we show in Figure 3 (top) the different flux terms
1, 2 and 3 separately. Note that the flux 1 can be seen as
the generalization to the compressible case of the PP98 flux
since it converges to it in the incompressible limit. For that

reason, we call it the Yaglom flux. We clearly see that the main
contribution comes from the new pure compressible fluxes 2
and 3 with up to an order of magnitude of difference with 1.
These results are confirmed in the statistical survey of all the

samples. Figure 4 (right) compares the ratio between the
estimated cascades rates from the PP98 and the BG13 models.

Figure 1. From top to bottom: the solar wind magnetic field components, ion
velocity, ion number density, QVB angle and total plasma beta (b b b= +i e)
measured by the FGM and ESA experiments onboard the THEMIS B spacecraft
on day 2008 June 29 from 05:02 to 05:37.

Figure 2. Histograms of the solar wind speed (left) and total plasma β (right)
for all the statistical samples. Each sample represents 35 mn (∼700 points)
of data.

Figure 3. Top: a comparison of the different terms 1∣ ∣, 2∣ ∣ and 3∣ ∣ (see the
text for the definitions) of the flux  +FC . Bottom: a comparison between the
turbulent cascade rates given by the PP98 and BG13 models. The
compressibility is 13.7%. The inset shows other examples for which BG13
model gives a smoother cascade rate over two decades than the PP98 model.
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It is interesting to note that while the compressible and
incompressible models converge toward the same value of the
cascade rate for most of the events, some cases show that the
compressible rate is a few times larger than the incompressible
one. These ratios remain however smaller than those reported
in Carbone et al. (2009); this point will be discussed elsewhere.
The absolute values of the compressible cascade rate eC
(Figure 4—left) shows some spread around the mean value
~ ´ -1.5 10 16 J m−3 s−1.

More insight is gained when analyzing statistically the
contribution of the different compressible fluxes, 1, 2, and
3, relative to the incompressible (Yaglom) flux I . The result
is shown in Figure 5. A first observation is that most of the
samples have their compressible Yaglom flux (1) of the order
of the incompressible flux (I). This confirms the previous
result that the density fluctuations entering into the compres-
sible Yaglom flux does not play a leading role in amplifying the
compressible cascade rate with respect to the incompressible
one. This role is rather played by the new compressible fluxes
2 and 3: high values of e eá ñ á ñC I∣ ∣ ∣ ∣ (up to ∼4) are observed
when   á ñ + á ñ á ñ > 1I2 3( ∣ ∣ ∣ ∣ ) ∣ ∣ . Although a similar ampli-
fication has been reported in Carbone et al. (2009), given by an
heuristic modification of the incompressible (Yaglom) term via
density fluctuations, the one observed here has a totally
different origin: it is essentially due to the pure compressible
terms 2 and 3 derived in the exact model of BG13. Finally
note that the highest ratio e eá ñ á ñC I∣ ∣ ∣ ∣ (i.e., the highest
amplification of the cascade rate due to compressible fluctua-
tions) is observed in the top right quarter of Figure 5, which
corresponds to the cases when all the three terms 1,2, and3
dominate over the incompressible (Yaglom) term I .

4. DISCUSSION AND CONCLUSION

Unlike the incompressible PP98 model, the compressible
flux obtained from BG13 model gives a uniform value of eC
estimated above over two decades of scales, thereby assuring a
physical cascade process in FSW turbulence. Using the
heuristic model, Carbone et al. (2009) found intervals for
which either the inward or the outward flux scales linearly with
the fluctuation scale. This problem has been overcome in the
current study by using the flux of total energy which is an
inviscid invariant of compressible MHD turbulence unlike the
inward/outward flux separately.

The turbulent cascade implies a forward flux of energy that
ultimately will be converted at small scales into heating by
some kinetic processes(see, e.g., Sahraoui et al. 2009, 2010).

Using a simple power-law model (Vasquez et al. 2007; Marino
et al. 2008), we may obtain an estimate for the energy needed
to heat up the FSW at 1 au. For a power law of type

~ x-T r r( ) , with T the proton temperature and r the
heliocentric distance, the model can be written as

⎜ ⎟⎛
⎝

⎞
⎠e x= -

V k T r

m r

3

2

4

3
, 9h

B

p

sw ( ) ( )

where eh is the energy flux rate (per unit mass). Using the
average flow velocity Vsw and temperature T for all the
statistical events, with the value x = 0.49 (corresponding to the
upper bound of the estimated temperature using Ulysses data;
Marino et al. 2008), we estimated the required
 =  ´ - -2.7 1.9 10 J kg sh

4 1 1. This value is of the order of
the estimated energy cascade rate from BG13 model,
á ñ = ´ ~ ´- - - - -1.5 10 J m s 5.5 10 J kg sC

16 3 1 4 1 1∣ ∣ (using
un average density = ´ -n 1.7 10 mi

6 3), and is also in
agreement with the finding of Carbone et al. (2009). However,
unlike the current study, a considerably low incompressible
flux (º10 times smaller than the compressible flux) is reported
in Carbone et al. (2009) that can possibly be assigned to the
absence of large-scale drivers in the high latitude solar wind
during solar minimum (MacBride et al. 2008).
However, this model can be improved in the future by using

polytropic closure (Banerjee & Galtier 2014), taking the non-
homogeneity and the expansion of the wind into account
(Verdini et al. 2015) and also by considering the local
anisotropy of the turbulence which is known to be impor-
tant(Matthaeus et al. 1990; Stawarz et al. 2009; Narita
et al. 2010; Sahraoui et al. 2010; Osman et al. 2011; Galtier
2012). Previous studies(MacBride et al. 2008) have indeed
shown that the heating is smaller in the parallel direction than
in the perpendicular one, the latter being comparable however
to the isotropic heating. A simple observational approach to
account for anistropy would be to examine the dependence of
the compressible cascade rate on the angle QVB. A more
complete approach would consist of splitting the flux term in
Equation (2) into two parts by assuming cylindrical isotropy
around the local mean magnetic field direction. These problems
will be investigated in a forthcoming paper where a detailed
study of the nature of the cascade (direct versus inverse, inward

Figure 4. Left: histogram of the average cascade rate for all the analyzed
intervals. Right: histogram of the ratio between the compressible (BG13) and
incompressible (PP98) cascade rates.

Figure 5. Estimation of the contribution of the compressible fluxes with respect
to incompressible (Yaglom) flux to the total cascade rate.
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versus outward) and a comparison between the fast and slow
solar winds will be made (L. Z. Hadid et al. 2016, submitted).

The THEMIS/ARTEMIS data come from the AMDA data
base (http://amda.cdpp.eu/). We are grateful to Dr. O. Le
Contel and Dr. L. Sorriso Valvo for useful discussions. F.S.
acknowledges financial support from the ANR project
THESOW, grant ANR-11-JS56-0008. The French participation
in the THEMIS/ARTEMIS mission was funded by CNES
and CNRS.
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