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Introduction
Since the identification and cloning of BRCA1 in 
1994,1 and shortly thereafter of BRCA2,2 genetic 
tests of germline DNA to identify pathogenic vari-
ants in genes linked to hereditary breast and ovarian 
cancer (HBOC) have become mainstream.3 These 
tests are critical to identify women at increased 
risk relative to the general population. Women 
at moderate risk (2≤relative risk (RR) <4) may 
benefit from enhanced screening and chemopre-
vention while those at high risk (RR >4), including 
those with BRCA1 and BRCA2 pathogenic variants, 
may also benefit from preventive surgery. Germ-
line mutation testing is also becoming increasingly 
relevant in the cancer treatment setting because 
carriers of pathogenic variants in BRCA1/2 may 
benefit from poly-ADP ribose polymerase (PARP) 
inhibitors.4 5 Importantly, genetic tests can identify 
individuals in HBOC families who do not carry the 
relevant predisposing allele and are not at elevated 
risk of cancer.6

A significant fraction of documented variants 
in BRCA1 and BRCA2 are considered variants of 
uncertain clinical significance (VUS), for which 
cancer association has not been assessed or could 
not be determined due to insufficient information 
(table 1). In ClinVar (https://www.​ncbi.​nlm.​nih.​gov/​
clinvar/), a clinically oriented database, currently 
~37% of BRCA1 and ~45% of BRCA2 unique vari-
ants recorded are VUS. Thus, there is a critical need 
to classify variants according to their pathogenicity.

Over the past decade, functional assays have 
emerged that can be included as a source of 
evidence to classify variants according to their 
pathogenicity, with the potential to greatly accel-
erate classification.7 Here, we discuss several tech-
nical and conceptual aspects relevant for the use of 
functional assays in the classification of variants. We 
present best practice recommendations to improve 
annotation quality and accuracy, and to provide a 
basis for the comparison and integration of func-
tional data from different laboratories (box 1). For 
the coming years, we anticipate that recent techno-
logical developments such as VAMP-Seq (variant 
abundance by massively parallel sequencing) or 
high-throughput Clustered Regularly Interspaced 

Short Palindromic Repeats (CRISPR)-based satura-
tion mutagenesis will enable the functional assess-
ment of every missense variant for all moderate-risk 
and high-risk HBOC genes.8–10 Once established 
and validated, these catalogues of functional data 
will provide valuable information for clinical anno-
tation. The recommendations proposed here are 
the result of a discussion that started at a Nether-
lands Cancer Institute workshop on Functional 
Analysis of Sequence Variants in Hereditary Breast 
and Ovarian Cancer Genes (Amsterdam, The Neth-
erlands) and was followed by additional discussion 
and extensive refinement. It represents a consensus 
view that was self-developed by an international 
group of investigators (the authors) who have been 
active in this field.

Assessment of the evidence for 
association of each gene with HBOC risk
The first step in developing or interpreting results 
from functional assays is to understand the level of 
evidence that links a particular gene to breast and 
ovarian cancer risk.3 To date, there are nine genes 
for which an association between protein-truncating 
variants and breast cancer risk has been established 
(ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, 
PTEN, STK11 and TP53) and several more (BARD1, 
FANCM, NBN, NF1, MLH1, MSH2, MSH6, PMS2, 
RAD51C and RAD51D)3 11–13 for which associa-
tion has been suggested but not yet firmly estab-
lished. At least 12 genes have been implicated in 
ovarian cancer risk (ATM, BRCA1, BRCA2, BRIP1, 
MLH1, MSH2, MSH6, PALB2, PMS2, RAD51C and 
RAD51D).14 15

Development of functional tests for emerging 
genes provides opportunities to uncover new mech-
anistic aspects of their biology and identify func-
tional domains. However, developers of functional 
assays should consider that clinical recommen-
dations are unlikely to be made based on variants 
in genes for which the association has not been 
robustly established. Thus, a detailed understanding 
of the strength of evidence for association between 
each gene (and its variant alleles) and HBOC risk 
should be sought to evaluate the clinical utility of a 
proposed functional assay.
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Table 1  Fraction of VUS in BRCA1 and BRCA2

Databases

BIC* ClinVar† BRCA Exchange‡ gnomAD§

N % (%VUS) N % (%VUS) N % (%VUS) N %

BRCA1 unique variants 1781 100 5821 100 7898 100 2936 100

BRCA1 VUS 891 50.0 (100) 2146 36.9 (100) 5186 65.7 (100) n/a n/a

BRCA1 missense 607 34.1 (68.1) 1715 29.5 (79.9) 1892 24.0 (36.5) 938 31.9

BRCA1 missense VUS 569 31.9 (63.9) 1633 28.1 (76.1) 1714 21.7 (33.1) n/a n/a

BRCA2 unique variants 2000 100 8119 100 10 422 100 4262 100

BRCA2 VUS 1065 53.3 (100) 3615 44.5 (100) 6980 67.0 (100) n/a n/a

BRCA2 missense 891 44.6 (83.7) 3111 38.3 (86.1) 3484 33.4 (49.9) 1909 44.8

BRCA2 missense VUS 838 41.9 (78.7) 3011 37.1 (83.3) 3190 30.6 (45.7) n/a n/a

*BIC (https://research.nhgri.nih.gov/bic/) is a locus-specific database established in 1995 for BRCA1 and BRCA2 variants, including loci primarily found in clinical or research 
testing.
†ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) is a public archive of reports of the relationships among human variations and phenotypes and includes submissions 
reporting variants found in patient samples from clinical or research testing, and from the literature (note: ClinVar also includes BIC data).69 VUS counts also include conflicting 
assessments.
‡BRCA Exchange (http://brcaexchange.org/) pools data on BRCA1/2 genetic variants and corresponding clinical data from around the world (including BIC, ClinVar, 1000 
Genomes Project). BRCA Exchange is part of the Global Alliance for Genomics and Health. VUS counts also include ‘not yet reviewed’.
§gnomAD (http://gnomad.broadinstitute.org/), initially released as ExAC aggregates and harmonises both exome and genome sequencing data from a wide variety of large-scale 
sequencing projects. It does not contain pathogenicity assessments. All searches were conducted in December 2017.
BIC, Breast Cancer Information Core; gnomAD, The Genome Aggregation Database; VUS, variants of uncertain clinical significance.

Box 1 S ummary recommendations for the development, 
reporting and interpretation of functional assays

►► Assess the strength of evidence for association between 
each gene and hereditary breast and ovarian cancer risk to 
evaluate the potential clinical utility of a proposed functional 
assay.

►► Consider the assumptions, biological characteristics, controls 
and limitations of each assay.

►► Choose genomic DNA/cDNA/protein sequences that 
correspond to the coding sequence of the most commonly 
found haplotype in non-affected individuals to be used as a 
reference (wild-type).

►► A minimal set of non-pathogenic and pathogenic variants 
should be used as internal reference for each run of an assay.
Larger sets of reference variants should be used to assess the 
overall sensitivity and specificity of an assay.

►► Verify that elements of the assay (reagents and data) have 
been through quality control, including periodical verification 
of cell line and strain identity (eg, identity by short tandem 
repeat analysis for mammalian cells and phenotyping for 
yeast strains) and quality (mycoplasma testing).

►► Due to protein stability issues, exercise caution when 
developing and interpreting results from model organisms 
that are cultured at temperatures lower than 37°C.

►► Inspect data to identify and correct batch effects.
►► Do not assume that intermediate levels of activity necessarily 
reflects intermediate risks.

►► In addition to loss-of-function effects also consider dominant 
negative and gain-of-function effects.

►► When reporting results use explicitly defined terminology and 
aim for the development of a controlled vocabulary.

►► Be explicit about assay’s limitations, performance metrics and 
thresholds used to classify variants.

An additional aspect to consider when developing a functional 
assay is the proportion of missense VUS that are probably patho-
genic. Missense variation is unlikely to significantly affect the 
overall protein function when located in disordered regions or 

in repeat motifs. Therefore, functional assays for these regions 
(or for a protein with a large portion of its coding sequence 
composed by these regions) may not be a priority.

Assessment of variant pathogenicity
Genes implicated in HBOC are tumour suppressor genes and 
therefore variants leading to disruption of function(s) are usually 
considered pathogenic for clinical purposes. Notable excep-
tions of variants with dominant negative or gain-of-function 
have also been reported.16 Loss-of-function genetic alterations 
include frameshift and nonsense variants leading to truncation 
of a functionally important segment of the protein, alterations 
of donor and acceptor splice sites and large genomic rearrange-
ments altering segments of the coding region. Conversely, synon-
ymous changes without effect on mRNA splicing are considered 
non-pathogenic. These variants can be reliably classified by a 
rule-based system that incorporates general DNA/RNA/protein 
rules and takes into account exceptions specific to each gene 
(ENIGMA rules for classification of BRCA1 and BRCA2 vari-
ants: https://​enigmaconsortium.​org/​library/​general-​documents/​
enigma-​classification-​criteria/).

For a significant fraction of rare variants pathogenicity cannot 
be predicted based on DNA changes alone. Primarily, these vari-
ants include small deletions or insertions that do not disturb the 
reading frame, missense changes, intronic and exonic variants 
that may lead to altered mRNA splicing and in-frame exon dele-
tions or duplications. Missense variants represent the largest 
contributor to this class, making up to 79.9% and 86.1% of all 
BRCA1 and BRCA2 VUS in ClinVar, respectively (table 1).

Classification of these BRCA1/2 variants for clinical use can 
be based on the American College of Medical Genetics and 
Genomics/Association for Molecular Pathology (ACMG/AMP)) 
guidelines in which pathogenicity is determined by the entire 
body of evidence.7 In this proposed five-tier classification, vari-
ants with >90% certainty of being pathogenic (which includes 
likely pathogenic and pathogenic variants), are considered action-
able, and carriers are managed as high risk (RR ≥4). Evidence 
is qualitatively weighed as strong, moderate, supporting or not 
used. Functional data provide strong (PS3: well-established func-
tional studies show a deleterious effect) and moderate (PM1: 
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Figure 1  Circos plot illustrating the concordance between alignGVGD 
predictions and experimental data derived from analysis of BRCA1 C-
terminal variants (aa 1396–1863). Variants were analysed using the 
transcription activation assay29 and assigned to functional classes by 
VarCall.57 Blue ribbons show that all variants scoring C0 and C15 in 
alignGVGD and predicted to have no or little functional impact score as 
non-pathogenic or likely non-pathogenic (fClass 1 or 2) in a validated 
functional assay. Conversely, most variants scoring as C65 and predicted to 
have a functional score as fClass5 (thick purple ribbon). Despite the strong 
concordance between alignGVGD and the transcriptional assay, a small but 
significant fraction of variants scoring as fClass1 were incorrectly predicted 
(C45–C65).

mutational hot spot or well-studied functional domain without 
benign variation) evidence for pathogenicity; and strong (BS3: 
well-established functional studies show no deleterious effect) 
evidence for benign impact.7 Reproducible and robust functional 
assays that have been validated are considered the most well-
established source.

Alternatively, classification of BRCA1/2 variants can be based 
on a multifactorial statistical model that incorporates data on 
family history, co-segregation and co-occurrence with another 
allele with a known pathogenic variant in the same gene (because 
biallelic inactivation is embryonic lethal while biallelic partial 
loss of function leads to Fanconi anaemia).17 In the International 
Agency for Research on Cancer (IARC) proposed five-tier clas-
sification, variants with >95% certainty of being pathogenic 
are considered actionable.18 Variants that reach >1.0% allele 
frequency in the population are considered unlikely to be patho-
genic on their own but there is simply insufficient clinic and 
family-based genetic information to determine the likelihood of 
pathogenicity of many uncommon (<1.0%) variants. Currently, 
functional data are not integrated in these multifactorial statis-
tical models.

The effects of these rare VUS can be predicted by a wide 
variety of publicly available in silico tools with variable perfor-
mance.19 20 For tools that use multiple sequence alignments, 
performance has been tied to the choice of alignments and 
calibration.21–23 Reliance on multiple sequence alignment and 
evolutionary approaches may also generate false negatives. For 
example, Kondrashov et al have estimated that approximately 
10% of variants that are classified as ‘tolerated’, because a corre-
sponding amino acid residue is found in the cognate position in 
another species, only score as ‘tolerated’ because of compen-
satory variation elsewhere in the protein sequence.24 Despite 
these limitations, algorithms are constantly improving and the 
concordance between some predictors and empirical data is 

sufficiently high (figure 1) to guide prioritisation of variants for 
functional assessment. However, empirical functional data will 
be necessary for the robust clinical annotation of uncommon 
variants.

The spectrum of low-risk, moderate-risk and high-
risk alleles in HBOC genes
When developing or interpreting a functional assay for VUS 
classification, the level of risk conferred by pathogenic vari-
ants should be considered. Findings of pathogenic variants in a 
low penetrance gene (RR <2) currently do not trigger clinical 
recommendations making the development of a functional assay 
a low priority. It is also plausible that variants within the same 
gene may span the spectrum of low (RR <2), moderate (2≤RR 
< 4) and high (RR ≥4) risk. In other words, distinct ‘patho-
genic’ variants in the same gene may carry significantly different 
levels of risk.

Currently, the multifactorial statistical model for classification 
of BRCA1 or BRCA2 variants determines whether a variant is 
likely to be pathogenic. The clinical inference of the IARC clas-
sification is based on variants that typically are associated with 
a high cancer risk comparable to a truncating variant in BRCA1 
or BRCA2 (RR ≥4).18 However, it is now clear that some patho-
genic missense variants in BRCA1 (p.R1699Q and p.V1736A) 
and BRCA2 (p.Y3035S and p.G2508S) confer only moderate 
breast cancer risk (2≤RR <4).25–27 On the other hand, the 
BRCA2 p.K3326X, classified by the model as non-pathogenic, 
was shown to confer a mildly increased risk (RR=1.4) of breast 
and ovarian cancer.28 Although finding this variant would not 
trigger a change in clinical recommendation currently, this 
variant can contribute to polygenic risk scores based on common 
genetic variants that are now being used for risk stratification, 
and may prove effective for selection of screening and preven-
tion options.

Some assays may have the ability to reflect different levels of 
risk depending on the dynamic range of the read-out and on the 
specific biological assay being performed. It is important to stress 
that it should not be assumed that intermediate levels of activity 
in a biochemical or biological assay necessarily reflects interme-
diate risks. Several reference variants with known intermediate 
risks should be used to determine the ability of an assay to reflect 
the continuum of risk. While the transcription activation assay 
for BRCA1 does not seem to discriminate between variants with 
intermediate risks from variants associated with high risk,29 the 
BRCA2 homologous recombination (HR) assay may be able to 
distinguish high from moderate and low/neutral as suggested 
by functional assessment of variant p.Y3035S.30 For genes in 
which pathogenic variants are clearly associated with disease 
risk, a two-stage reporting system has been proposed, that is, the 
first stage would establish pathogenicity of the variant based on 
multiple criteria and the second stage would denote the likely 
severity or clinical consequence for that variant (high, moderate 
or low risk).31 Capturing the full spectrum of risk associated with 
distinct pathogenic variants is a critical challenge for assay devel-
opment and for reporting laboratories.

Classification from both ACMG/AMP and multifacto-
rial models are designed to distinguish high-risk variants (RR 
≥4; actionable) from not high-risk (RR <4) variants and are 
currently not suitable to identify moderate-risk variants. From 
a clinical standpoint, while these models have a binary outcome 
(actionable vs non-actionable), carriers of moderate-risk variants 
(2≤RR <4) may also benefit from enhanced screening.32
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Functional assays for HBOC gene variant 
classification
For the purposes of our discussion, ‘function’ is considered as 
any aspect defined by the Gene Ontology Consortium33 molec-
ular function, cellular component and biological processes. A 
‘functional assay’ is generally defined as any in vitro and in vivo 
system able to determine the impact of a variant by assessing 
its effect on protein stability, conformation and function. Thus, 
assays for splicing alterations are not considered functional assays 
for the purposes of this manuscript (for assessment of splice vari-
ants please refer to Thomassen et al and Walker et al34 35).

Several characterised functions of the BRCA1 and BRCA2 
proteins have been exploited in the development of functional 
assays.36–38 Reflecting their central role in DNA damage repair, 
many assays revolve around measuring the ability of the variant 
to promote survival following DNA insults, such as treatment 
with ionising radiation or DNA damaging compounds. In addi-
tion to these viability assays, specific biochemical assays such 
as those measuring HR or ubiquitylation are also rooted in the 
known biology of BRCA1 and BRCA2. Finally, more limited 
biochemical assays, measuring binding to specific interacting 
proteins have also been applied to the functional analysis of 
variants.36–38

In general, there is enough evidence to tie each of these func-
tions to the aetiology of tumours arising in carriers. However, 
their individual contribution to cancer risk is unclear, making 
it difficult to determine which assay is more or less biologically 
appropriate, or to assign different weights to results obtained 
from different assays. Rather, the determination of which assays 
should be used for clinical annotation relies on their accuracy, 
and not on their biological properties. Preliminary analysis has 
shown that these functional assays display high (>80%) sensi-
tivity and specificity (table 2).39

After the development of a large number of functional assays 
for high-risk genes (BRCA1, BRCA2 and TP53),36 37 40 significant 
attention has been focused on developing assays for other high-
risk/moderate-risk genes such as PALB2, ATM and CHEK2.41–46 
However, here we will focus on functional assays for missense 
variants of BRCA1 and BRCA2 as exemplars from which we have 
derived general guidelines.

Functional assays can be defined by three broad categories 
according to their experimental set-up (cell-free or cell-based), 
host (human or model organism) and read-out. Result inter-
pretation requires careful consideration of the assumptions, the 
biological characteristics and limitations of each assay.

Cell-free systems either test a specific biochemical activity in 
vitro (eg, phosphopeptide binding, ubiquitin ligase activity, DNA 
combing, DNA binding, DNA recombination), protein-protein 
interactions (eg, yeast two-hybrid screening, co-immunoprecip-
itations) or the effect of different factors on protein structure 
and stability (eg, protease sensitivity, calorimetry). Interpreta-
tion of results from cell-free assays should consider that they 
are restricted to specific functions, sometimes limited to specific 
regions of the protein, and may be particularly sensitive to 
temperature, buffer conditions and concentrations of exogenous 
substrates.

Cell-based systems use a human or model organism (eg, yeast, 
bacteria or mouse) host cell as the basis for the assay. Cell-based 
systems can be further distinguished as in cellulo (when the assay 
context is a single cell) or in vivo (in the context of a whole 
metazoan organism), although there are currently no established 
in vivo functional assays for VUS. We recommend periodical 
authentication of cell line and strain identity by short tandem 

repeat analysis and phenotyping, respectively. Cell lines should 
be checked regularly for mycoplasma infection. Interpretation of 
results from assays performed in model systems should consider 
the degree of divergence of proteins from the host involved in 
the assay, differences in biology and in growth conditions.

Cell-based assays can be further defined by read-out. Reporter 
systems include those in which the read-out for functional 
impact is an ectopic reporter (eg, transcription activation or HR 
assays) or in which ectopic overexpression in a heterologous 
system leads to a defined phenotype (eg, small colony pheno-
type in yeast). Limitations of reporter systems based on ectopic 
expression may include artefacts of over expression. Alter-
natively, assays in which the full length variant allele/protein 
replaces the endogenous gene/protein and defined biological 
processes are assessed are considered complementation/pertur-
bation assays. Some assays may combine reporter systems and 
complementation.

Ultimately, the value of an assay will depend on its perfor-
mance, defined using a set of known non-pathogenic and 
pathogenic control variants as reference (see below). Given the 
complexity of the interaction of multiple biochemical func-
tions and breast and ovarian cancer phenotype, it is uncertain 
that there will be a single comprehensive and highly accurate 
functional assay. Rather, the combination of approaches using 
diverse sources of data obtained with transparent methodology 
and careful interpretation is likely to solve the challenges of VUS 
in HBOC genes.

Mouse models, although not suitable for high throughput 
analysis, can be helpful in determining the effect of such variants 
on tumour predisposition and treatment response. Brca1 mutant 
mice expressing the p.I26A variant showed that the E3 ubiquitin 
ligase activity of BRCA1 is dispensable for tumour suppression 
and mice expressing 185delAG (c.68_69delAG; p.E23VfsTer17) 
revealed the hypomorphic nature of this pathogenic variant in 
response to therapy.47–49 A knock-in mouse model of the BRCA2 
p.G25R variant, which had no effect on ES cell viability but had 
subtle defect in HR, showed a significant increase in tumour 
formation in mutant animals.50 Similarly, the effect on tumour 
predisposition of an alternatively spliced Brca2 transcript lacking 
exons 4–7 was revealed in mutant mice lacking these exons.51

Requirements for a clinically relevant functional 
assay
The analytical validity is the degree of accuracy with which a 
functional assay correctly classifies variants as pathogenic or non-
pathogenic. For each assay performance metrics (true positive 
rate or sensitivity; true negative rate or specificity; false positive 
and false negative rates; positive and negative likelihood ratios; 
false discovery rate; false omission rate; positive predicted value 
or precision; negative predictive value; accuracy and diagnostic 
OR) should be derived from testing a panel of known pathogenic 
and non-pathogenic variants. The recommendation is to chose a 
set of pathogenic and non-pathogenic missense controls whose 
likelihood of pathogenicity has been established by the multifac-
torial statistical model and can be found in a recent ENIGMA 
publication.36 37 52

There are no specific recommendations about which threshold 
of sensitivity or specificity should be used to consider the inclu-
sion of data from a functional assay for variant classification. 
Plon et al18 have pointed out that clinical decisions based on 
predictive values of 80%–85% are normally used in oncology. 
A more strict approach would require that the lower bound of 
the 95% CI be above the suggested 80%–85% threshold but that 
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Table 2  Categories and performance of functional assays for BRCA1 and BRCA2

Gene Assay Set-up Read-out

# of variants assessed
(# of known non-
pathogenic; pathogenic)*

Sensitivity 
(95% CI)†

Specificity 
(95% CI)† Reference

BRCA1 Colony size Cell-based (yeast) Complementation/perturbation 40 (15; 25) 0.96
(0.80 to 1.00)

0.93
(0.68 to 1.00)

58

BRCA1 Yeast localisation Cell-based (yeast) Complementation/perturbation 40 (15; 25) 0.84
(0.64 to 0.95)

0.93
(0.68 to 1.00)

58

BRCA1 Transcription activation Cell-based (HEK293T) Reporter system 204 (25; 40) 1.00
(0.75 to 1.00)

1.00
(0.83 to 1.00)

29

BRCA1 BARD1 binding Cell-based (yeast) Reporter system 35 n/a n/a 70

BRCA1 UbcH5a binding Cell-based (yeast) Reporter system 35 n/a n/a 70

BRCA1 Uniquitin ligase activity Cell-free (in vitro) In vitro enzymatic activity 35 n/a n/a 70

BRCA1 Protease sensitivity Cell-free (in vitro) In vitro binding activity 117 (10; 14) 0.79
(0.49 to 1.00)

0.80
(0.44 to 0.98)

56

BRCA1 Phosphopeptide 
binding activity

Cell-free (in vitro) In vitro binding activity 117 (10; 14) 0.86
(0.57 to 0.98)

1.00
(0.69 to 1.00)

56

BRCA1 Phosphopeptide 
binding specificity

Cell-free (in vitro) In vitro binding activity 117 (10; 14) 1.00
(0.77 to 1.00)

0.99
(0.56 to 1.00)

56

BRCA1 ES cell survival Cell-based (mouse ES 
cells)

Complementation/perturbation 86 (25; 9)‡ n/a n/a 62

BRCA1 Cisplatin sensitivity Cell-based (mouse ES 
cells)

Complementation/perturbation 86 (25; 9) 1.00
(0.63 to 1.00)

1.00
(0.83 to 1.00)

62

BRCA1 BARD1 binding Cell-based (yeast) Reporter system 1287 (3; 19) n/a n/a 71

BRCA1 Uniquitin ligase activity Cell-free (in vitro) In vitro enzymatic activity 1287 (3; 19) n/a n/a 71

BRCA1 Haploid cell survival Cell-based (HAP1 cells) Complementation/perturbation 3893 (22; 162)§ 0.967 0.982 10

BRCA1 Homologous 
recombination

Cell-based
(RG37-shBRCA1 cells)

Complementation/perturbation 78 (6; 7) 1.00 1.00 72

BRCA1 Localisation Cell-based
(RG37-shBRCA1 cells)

Complementation/perturbation 78 (6; 7) 0.714 1.00 72

BRCA1 Protein expression and 
stability

Cell-free (in vitro) In vitro solubility and 
thermostability

78 (6; 7) 0.714 0.83 72

BRCA1 Phosphopeptide 
binding activity

Cell-free (in vitro) In vitro binding activity 42 (5; 2) n/a n/a 72

BRCA1 Homologous 
recombination

Cell-based
(HeLa-DR-FRT)

Complementation/perturbation 1056 (5; 8) 0.875 1.00 9

BRCA1 Homologous 
recombination

Cell-based (HEK293T) Complementation/perturbation 35 (23; 5)¶ 1.00 1.00 73

BRCA2 Homologous 
recombination

Cell-based (V-C8 cells) Complementation/perturbation 64 (18; 13) 1.00
(0.75 to 1.00)

1.00
(0.82 to 1.00)

30

BRCA2 Homologous 
recombination

Cell-based (V-C8 cells) Complementation/perturbation 139 (12; 13) 1.00
(0.75 to 1.00)

1.00
(0.69 to 1.00)

74

BRCA2 Homologous 
recombination

Cell-based (mouse ES 
cells)

Complementation/perturbation 43 (20; 15) 1.00
(0.78 to 1.00)

1.00
(0.83 to 1.00)

75

Only assays in which >30 variants were tested are listed.

*Known pathogenic and non-pathogenic variants used for estimating sensitivity and specificity are those classified using the multifactorial model as IARC classes 1, 2, 4 or 5,18 
unless otherwise indicated.
†As originally published, unless otherwise stated.
‡Used missense variants classified by multifactorial model as IARC classes 1, 2, 4 or 518 plus the recently classified G1770V variants as pathogenic.
§Used ClinVar as a source of known pathogenic and non-pathogenic variants.
¶Used as non-pathogenic variants alignGVGD grade of C0 and IARC class 1, and as pathogenic variants alignGVGD grade of C35–C65 and IARC class 5.
IARC, International Agency for Research on Cancer.

may be difficult to achieve for genes for which there are very 
few known pathogenic and non-pathogenic variants to use in a 
validation set, which will be reflected as wider 95% CIs.

Controls are critical for validation of assays, assessment of 
dynamic range, and to determine metrics of performance such 
as sensitivity and specificity. Some thought should be given to 
decide on genomic DNA/cDNA/protein sequence that corre-
sponds to the coding sequence in the most commonly found 
haplotype in non-affected individuals to be used as a reference 
(wild-type). Note that differences in frequency of common alleles 
may exist across different populations. This reference cDNA or 

genomic sequence must be included in every experiment. Vari-
ants are scored as having functional impact or not depending on 
how much they differ from the reference.

It is recommended that within each run of the assay, in addi-
tion to the reference sequence, at least one known missense 
pathogenic and one missense non-pathogenic variant is included. 
If possible, known missense variants for each protein domain 
are recommended. To account for the range of variation of non-
pathogenic variants, additional known non-pathogenic variants 
should also be included. Addition of hypomorphic (attenuated) 
variants with established intermediate risk may help calibration 
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of assay results. Concerning VUS in genes for which there are 
no known missense non-pathogenic and pathogenic variants, 
alternative approaches, such as the use of missense variants with 
greater than 1.0% allele frequency and truncating variants as 
benign and pathogenic controls, respectively, might provide a 
yardstick. Results from assays using only truncating variants as 
pathogenic control should be interpreted with caution as trun-
cating variants may not produce detectable protein, with impli-
cations to measuring baseline activity.

Lessons from BRCA1 and BRCA2 functional 
assessment
BRCA1 and BRCA2 have 1863 and 3418 codons, respectively. 
If we consider all possible single nucleotide changes in these 
codons, 11 015 and 20 169 unique missense variants are gener-
ated (some changes will result in the same amino acid changes), 
respectively. Because many have never or only sparsely been 
observed, we expect that most are rare (<0.01%) such that data 
from functional assays will be required to assess their likelihood 
of pathogenicity. In order to maximise the chances of identifying 
pathogenic variants, investigators have focused on functional 
domains and motifs in which it seems more likely that variants 
affect protein function. Thus far, most assays have focused on 
variants at the RING and BRCT domains of BRCA1 and at the 
DSS1 and DNA interaction domain of BRCA2.9 10 36 37 Several 
functional assays have been described for BRCA1 and BRCA2, 
but few have tested large (>30) sets of variants (table 2).

For specificity and sensitivity calculations, variants are classi-
fied according to a binary classification based on the functional 
data: functional impact versus no functional impact. Variants 
with intermediate scores are ignored. This classification is then 
compared with a binary classification of a reference panel which 
combines the non-actionable IARC classes 1 and 2 (benign and 
likely benign) or actionable classes 4 and 5 (likely pathogenic 
and pathogenic). This simplification allows for the estimation 
of the assay’s ability to correctly identify actionable and non-
actionable variants. Most published functional assays have 
reported high sensitivity and specificity, often close to 100% 
(table 2). However, these numbers partially reflect the relatively 
low numbers of known variants used to assess specificity and 
sensitivity. To obtain a better sense of an assays performance, it 
is critical to record and report the lower bounds of the 95% CI.

Several assays have been developed using yeast (Saccharo-
myces cerevisiae), which provides a cost-effective and practical 
platform to evaluate missense variants. However, caution is 
warranted when interpreting results from model organisms that 
are cultured at temperatures lower than 37°C. Some patho-
genic variants are relatively stable at lower temperatures (30°C 
vs 37°C) and may score as false negatives,53–55 reflected in the 
assay’s slightly lower sensitivity (table 2).

It is important to note that contradictory results, for example, 
a variant scoring pathogenic in a functional assay while being 
classified by clinical and family data as non-pathogenic, provide 
opportunities for discovery. BRCA1 variant p.V1736A scored as 
pathogenic in several functional assays and by in silico prediction 
tools56 despite being classified as non-pathogenic due to a co-oc-
currence with the known pathogenic p.D821Ifs*25 variant in 
the same patient. However, on further examination it was found 
that the carrier presented several features (eg, developmental 
delay, microcephaly, short stature, very early onset ovarian 
cancer) pointing at hypomorphic BRCA1 activity.25 Detailed 
genetic and functional investigation of the p.V1736A variant 
led to the discovery of the first documented carrier of biallelic 

pathogenic variants in BRCA1. This analysis established the exis-
tence of variants with intermediate effects and highlighted the 
power of functional assessment.25

Although there are several missense variants that have 
displayed intermediate effects in vitro or in mouse models, only 
three variants, in addition to p.V1736A, have been established 
as hypomorphic in humans.25 27 BRCA1 variant p.R1699Q 
(c.5096G>A; OR=4.29) and BRCA2 variants p.Y3035S 
(c.9104A>C; OR=2.52) and p.G2508S (c.7522G>A; 
OR=2.68), have been shown to confer moderate increased risks. 
There are currently no consensus guidelines about their clinical 
management but the ENIGMA consortium has recommended 
breast surveillance for female carriers of p.R1699Q based 
on mammogram annually from age 40 and bilateral salpingo-
oophorectomy should be considered based on family history.32 
Care should be exercised in the choice of statistical treatment of 
the data generated in functional assays. Results from assays are 
usually normalised using the mean of the activity of the wild-type 
or reference sequence. Normalisation allows for comparisons 
across multiple experiments and, in some cases across multiple 
assays since variant activity is being represented as a percentage 
of the wild-type activity. Batch effects may be problematic (vari-
ance of the wild-type activity across multiple batches should also 
be taken into account) and some statistical models have taken 
that in consideration.57

A more difficult task is the decision of a specific threshold 
of activity to separate pathogenic from non-pathogenic variants. 
Several approaches use arbitrary thresholds (eg, 20% or 50% of 
wild-type activity; number of SD from the wild-type reference; 
highest activity of a pathogenic variant and lowest activity of a 
non-pathogenic variant) or linear regression. Recent approaches 
have moved towards providing a probabilistic interpretation (ie, 
likelihood of pathogenicity of the variant given the functional 
data).57 58

Probabilistic approaches also provide a path for integration of 
functional data with other data sources used to classify variants. 
By generating likelihood ratios (LRs) from the raw or processed 
functional read-outs (eg, viability counts, luciferase activity, 
Green Fluorescent Protein intensity), these approaches allow 
for the incorporation of functional assays as a data source into 
traditional multifactorial models that have so far not integrated 
functional data.57

Integration of functional data can also be achieved using the 
ACMG/AMP classification model. According to the ACMG/
AMP, ‘well-established assays’ can be used to obtain a PS3 or BS3 
(strong evidence) criterion but there are no specific guidelines, 
which are likely to be established by expert panels for each gene. 
For example, concordant results from at least three indepen-
dent validated assays would be needed for PS3 or BS3 (strong) 
criteria, while concordant results in two independent validated 
assays would generate a PM1 (moderate) criterion.

Functional assays based on sensitivity to 
therapeutic compounds
Insight in the importance of BRCA1 and BRCA2 for HR led to 
the development of carrier-specific treatment modalities for 
breast and ovarian cancers,59–61 in particular with the use of 
PARP inhibitors (PARPi), which are synthetic lethal with BRCA1 
or BRCA2 deficiency. The therapeutic window for these types 
of treatment is greatly increased by the fact that BRCA1 and 
BRCA2 mutation carriers are generally heterozygous for the 
pathogenic allele, while tumour cells frequently undergo loss of 
the wild-type allele. Thus, while the tumour cells are not viable 
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in the presence of PARPi, non-tumour cells survive, making the 
therapy highly effective yet well tolerated.

Because inactivation of the gene product is required both 
for disruption of HR and sensitivity to PARPi or platinum 
compounds, functional assays based on sensitivity to these 
compounds can be used as an indirect read-out for HR to classify 
germline variants according to their pathogenicity.62

In addition to the classification of germline variants according 
to associated cancer risk, there is an emerging need to classify 
germline and somatic variants according to their response to 
PARPi or DNA damaging compounds to predict drug response. 
PARPi have been approved in the USA and Europe for treat-
ment of advanced and metastatic breast and ovarian cancers. 
It is unclear the extent to which sensitivity to PARPi or plat-
inum compounds measured in a functional assay predicts in 
vivo tumour sensitivity. Pathogenic variants conferring high 
cancer risk with hypomorphic activity towards PARPi response 
are known to exist. For example, mouse tumour cells carrying 
the pathogenic Brca1 p.C61G variant showed a poor response 
to platinum compounds and to PARPi, and resistance rapidly 
emerged.63 Importantly, determining whether a BRCA1 or 
BRCA2 variant found in tumour tissue confers sensitivity to a 
given drug may need further clinical information to calibrate the 
functional assays for this purpose.

Many other genes implicated in HBOC (such as ATM, CHEK2, 
PALB2 and TP53) are involved in the DNA damage response, 
suggesting that associated tumours may also have a targetable 
DNA repair defect. Importantly, recent results from the NOVA, 
Study 19 and ARIEL3 studies have raised the possibility of a 
significant benefit of PARPi in ovarian cancer irrespective of 
BRCA mutation status.64–66

Future challenges and opportunities
As we move forward, functional assays should be able to face 
a significant increase in the number of genes and variants to be 
analysed for clinical use. The number of alleles for genes predis-
posing to breast and ovarian cancer is expected to be very large. 
BRCA1 and BRCA2 have 7898 and 10 422 unique alleles docu-
mented (table  1; BRCA Exchange: http://​brcaexchange.​org/) 
and other HBOC genes are expected to significantly add to the 
number of predisposing alleles. In addition, recent systematic 
germline sequencing efforts of breast and ovarian cancer cases 
are expected to reveal additional genes and variants associated 
with risk.

To face the rapid increase in variants, high-throughput func-
tional assays that can generate and analyse large numbers of vari-
ants have been developed for BRCA1.9 10 Initially, these consisted 
of the large-scale generation and analysis of ectopically expressed 
cDNA constructs. Recent development of CRISPR-assisted gene 
targeting has now also allowed saturated mutagenesis at endog-
enous loci, exemplified by high-troughput mutagenesis of the 
BRCA1 RING and BRCT domains in haploid cells.9 10 Likewise, 
assays based on human primary cells from carriers may also be 
used to capture more subtle functional defects that depend on the 
carrier’s genetic background, but may be less amenable to high-
throughput approaches.42 Such high-throughput approaches 
can provide catalogues of potentially pathogenic variants that 
can aid in the interpretation of newly observed VUS. CRISPR-
assisted gene targeting is also expected to accelerated the pace at 
which mouse models can be generated.67 68

The path to clinical implementation will necessarily involve 
the inclusion of clinically calibrated functional data into compre-
hensive multifactorial statistical models. Functional assays are 

specialised tests that most diagnostic testing laboratories are 
currently not able to provide. In the USA, results from such 
tests cannot be directly used for clinical decisions unless they 
are conducted under Clinical Laboratory Improvement Amend-
ments guidelines. However, if data have been validated (ie, eval-
uated for a comprehensive series of performance metrics such 
as sensitivity, specificity, accuracy, precision, repeatability and 
robustness), functional assays reported from research labs can 
be used as evidence for clinical annotation.7 It is important to 
consider that mistakes may occur in the processing of a sample 
in the absence of standard operating procedures. Those mistakes 
include clerical mistakes in reports (eg, reporting pathogenic 
when it should be non-pathogenic), sample swapping, errors in 
measurements due to lack of equipment calibration or improper 
staff training. Thus, evidence from functional studies performed 
in a research setting must be carefully verified to determine data 
quality, reliability and the degree of confidence in the results. 
In the context of risk assessment, we caution against the use 
of functional data as the sole source of information for clinical 
recommendations. Despite these challenges, the value of func-
tional assessment of variants to improve cancer care, based on 
international and multidisciplinary collaborations, is expected to 
be high and therefore we envisage the clinical implementation 
of functional assays for classification of VUS to proceed at an 
accelerated pace.
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