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Can the Evidence for Explanatory Reasoning
Be Explained Away?

Igor Douven

Abstract—Recent evidence appears to show a close con-
nection between explanation and belief revision, specifi-
cally, the revision of graded beliefs. Insofar as this is also
evidence of violations of Bayesian norms of reasoning, the
question arises whether we are facing a new bias here,
on a par with previously discovered biases in probabilistic
reasoning. We consider an apparently successful attempt
by Costello and Watts to explain away a number of known
such biases in terms of sampling error, which makes those
biases look entirely innocuous and compatible with the
descriptive adequacy of Bayesian psychology in any but the
most uninteresting way. Specifically, we query whether this
attempt can be extended to neutralize the aforementioned
evidence allegedly showing that explanatory considerations
influence our reasoning in ways inconsistent with Bayesian
prescriptions.
Index Terms—Bayes’ rule, belief updating, biases, expla-

nation, probability, reasoning.

I. Introduction

THERE is growing evidence that explanation plays a
variety of important roles in human cognition. (For an

overview, see [23].) Recent evidence also appears to show
a close connection between, on the one hand, explanation
and questions of explanatory goodness and, on the other,
how people revise (or “update”) their degrees of belief or
subjective probabilities ([2], [10], [11]). Specifically, people
tend to reward hypotheses on the basis of how well they
explain the available evidence, where the reward consists
of a probability boost over and above what would be
warranted by Bayesian norms, in particular Bayes’ rule.
According to Bayes’ rule, we should update our degree of
belief in a hypothesis 𝐻 upon the receipt of evidence 𝐸 by
adopting as our new unconditional degree of belief in 𝐻
whatever our degree of belief in 𝐻 conditional on 𝐸 was
before we received that evidence. People tend to violate
this prescription to the extent that they find 𝐻 a good
explanation of 𝐸, in which case their new degree of belief is
likely to exceed their previous conditional degree of belief,
an excess that comes at the expense of one or more of 𝐻’s
rival hypotheses, which is or are believed to a degree less
than prescribed by Bayes’ rule.
Questions concerning the normative status of explana-

tory reasoning have been hotly debated for several decades
now. According to some (e.g., [8], [13], [7]), explanatory
reasoning is fine, and under certain circumstances even
recommendable, possible inconsistencies with Bayesian
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cision, 75005 Paris, France (e-mail: igor.douven@sorbonne-universite.fr).

norms notwithstanding. Authors in this camp tend to favor
some version of the so-called inference to the best explana-
tion, which licenses inference to, or at least the investment
of high confidence in, the hypothesis that explains the
available evidence best. But this is a minority position. Most
researchers interested in the matter would say that the
aforementioned finding betokens a bias (e.g., [22], [31]).
Giving extra credits for explanatory goodness may be a
deeply entrenched tendency in some (or even all) of us,
but from a normative standpoint, that practice is to be
condemned.
Normative questions to the side, that explanatory consid-

erations appear to have this influence on people’s reasoning
puts pressure on the descriptive adequacy of Bayesian ap-
proaches to rationality. While this pressure may not be felt
so much by Bayesian philosophers and economists, who
primarily see Bayesian norms as providing an ideal that
may be outside our reach but to which we should never-
theless aspire, there is a growing number of psychologists
drawn to the view that people often do comply with those
norms, at least by and large (e.g., [25], [29]).
This paper looks at recent attempts by Costello and Watts

[5], [6] to explain away deviations from Bayesian norms in
terms of “noisy” sampling from memory. The deviations
addressed by these authors were not directly related to the
updating of degrees of belief, but there is nothing in their
approach per se to suggest that it might not apply equally
to registered deviations from Bayes’ rule. What would
thereby be achieved is not that somehow what appear to
be deviations fall into place as being in accordance with
Bayesian updating after all. Instead, while there would
still be evidence of a probabilistic bias, this bias would
be of an utterly boring kind, not really brought about by
some illegitimate influence of explanatory considerations
on reasoning, but simply due to the well-recorded fact that
human memory is all too fallible. In other words, the bias
would be of a kind we should expect to observe even if
people did what they could to meet Bayesian standards.
If so, then that would show that descriptive Bayesianism
can still be correct—to the extent that any theory of
rationality can be descriptively correct, given some long-
known human imperfections.

II. Explanation and updating
Evidence that people update their degrees of belief in

ways inconsistent with Bayes’ rule dates back at least
to the 1960s. Phillips and Edwards [27] used an at the
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time new experimental paradigm to show that people’s
probability estimates after the receipt of new evidence
differed systematically from what they should have been
according to Bayes’ rule. In this paradigm, participants are
informed that one container (e.g., an urn or a bookbag)
holds two different types of objects (e.g., red chips / blue
chips, or black balls /white balls) in one specific ratio,
and another container holds those same types of objects
in a different ratio. The participants are then shown a
collection of objects sampled randomly from one of the
containers, without being told from which, and are asked
to estimate the probability that the sample comes from
the first container rather than from the second. That the
estimates deviate reliably from Bayesian updates has been
replicated in numerous experiments since (see, e.g., [14],
[18], [28]).
None of the early work on updating was concerned with

explanatory reasoning. The first researchers to look into
the connection between updating and explanation were
Pennington and Hastie, in their influential work on juror
decision making [26]. This work showed the importance
of the order in which evidence is presented to jurors,
specifically, that participants are much more inclined to
judge a defendant guilty if the prosecutors present their
evidence in an order that facilitates the mental construc-
tion of an explanatory story of how the crime unfolded.
Pennington and Hastie also found evidence that how the
different pieces of evidence impacted their participants’
degrees of belief differed consistently from what descriptive
Bayesianism would predict.
In an even more direct attempt to compare Bayesian and

explanatory reasoning, Bes et al. [2] gave participants in-
formation both about causal relations among three random
variables and about statistical correlations among those
variables. Their results were strong evidence that the partic-
ipants had tended to ignore the statistical information and
to base their probability judgments strictly on the causal
information. Although they were not thereby violating
Bayes’ rule (which is not meant to cover the provision
of statistical information; see [16]), they were violating a
closely related principle, almost equally widely endorsed
by Bayesians, to wit, the so-called principal principle [21],
which dictates that one’s degree of belief in 𝐻 on the
supposition that 𝐻’s statistical probability equals 𝑥, ought
to equal 𝑥 as well.
According to Bes et al., the effect of the causal in-

formation on their participants’ probability judgments is
likely related to the extent to which the participants could
process that information into an explanatory story. It was
not part of these authors’ design to ask participants to
judge the explanation quality of the statements whose
probabilities they were asked to estimate. Had they done so,
the data might have revealed a strong correlation between
those judgments and the probability estimates that their
participants did provide.
That, at least, is suggested by the experimental results

from Douven and Schupbach [10]. These authors fell back
upon the “bookbags-and-pokerchips” paradigm [14] used

in the earliest studies on probabilistic updating, though
they added some twists. In this paradigm, Douven and
Schupbach designed a sequential probabilistic updating
task that would allow them also to measure the degree
to which explanatory factors influenced the updating.
More specifically, they interviewed participants individu-
ally, showing them, at the start, two urns, each of which
contained 40 balls. Participants were shown that one urn
(“urn A”) contained 30 black balls and 10 white ones,
and that the other (“urn B”) contained 15 black balls
and 25 white ones. This information stayed available, in
the form of a picture of those contents, during the whole
interview. Then the experimenter flipped a coin and, based
on the outcome, chose one or the other urn, outside of the
participants’ view, after which 10 balls were drawn, one
by one, from the selected urn and were lined up before
the participants. The participants were asked to answer
three questions after each draw. In order, these were (i)
how well the hypothesis that urn A had been selected
explained the results from the drawings so far; (ii) how
well the hypothesis that urn B has been selected explained
those results; and (iii) how probable it was, in their opinion,
that urn A had been selected, in view of the results so far.
Participants had to answer the questions about explanatory
goodness by marking a point on a continuous scale with
anchors “extremely poor explanation” and “extremely good
explanation.”
In the main part of their analysis, Douven and Schup-

bach fitted three mixed-effects models, each with the col-
lected participants’ responses to the third question as fixed
effect, at least the objective conditional probabilities as
predictor variable, and random slopes and intercepts for
participants. In one model (model MMO, in [10]), objective
conditional probabilities were the only predictor. A second
model further included both the collected responses to
the first question and the collected responses to the sec-
ond question as predictors (MMOAB). A third model had
next to objective conditional probabilities the computed
difference between the participants’ responses to the first
question and their responses to the second question as
predictor (MMOD). Because including more predictors will
in general lead to better model fit, these models were
compared using criteria that penalize for extra predictors,
in particular the so-called Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC), which
weigh (in slightly different ways) model fit against model
complexity. The results from the model comparisons are
summarized in Table I.
AIC values and BIC values are to be interpreted as

penalties, meaning that lower is better. Also, they only
make sense comparatively, and then only for models that
are fit to the same data. The difference in AIC value
between MMO and either of the other models was greater
than 10, which according to Burnham and Anderson [3] is
to be interpreted as indicating that the former model enjoys
no support from the data, given the availability of the other
models. The pattern is the same for the BIC values.
These model comparisons would seem alarming for
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Table I
Model comparison results concerning the main models from Douven and Schupbach (2015).

𝑘 LL AIC ∆AIC BIC ∆BIC
MMO 6 282.34 −552.68 82.37 −531.32 68.12
MMOAB 15 329.13 −628.26 6.79 −574.85 24.59
MMOD 10 327.53 −635.05 0.00 −599.44 0.00
Note: 𝑘 is the number of parameters and LL the log-likelihood. ∆AIC is the difference in AIC value with the model with lowest AIC
value, and similarly for ∆BIC.

Bayesians, at least for those holding that Bayesian norms
also achieve greater predictive accuracy than competing
norms. After all, again by the principal principle, Douven
and Schupbach’s participants, after each draw, should have
set their degree of belief that urn A had been selected equal
to whatever the objective conditional probability was that
that urn had been selected, given all registered draws at
that point. It is not just that this failed to materialize. The
bigger problem is that, while from a Bayesian perspective
it should appear puzzling why the participants’ judgments
of explanatory goodness reliably helped to predict their
degrees of belief, the previously mentioned rival norm of
inference to the best explanation predicts that to happen:
according to that norm, judgments of explanatory goodness
should guide our belief updating.

III. Just noise?

Perhaps Bayesians can avoid this problem. Recent work
by Costello and Watts shows that a number of experimental
findings that have been reported in the literature as poten-
tially undermining descriptive Bayesianism may in fact be
perfectly compatible with the correctness of that position,
properly qualified. The same may hold true for the data
from Douven and Schupbach’s study.
At the root of Costello and Watts’ work [5], [6] is

the utterly plausible contention that people make random
errors in estimating probabilities, including estimating con-
ditional probabilities. For example, on their account we
would estimate the conditional probability that a student
will pass a given exam on the supposition that he or
she studies hard by sampling from memory students who
worked hard for an exam and then counting among those
the ones who passed the exam. But this process is error-
prone: our memories are not fully dependable, and we may
thus misremember a student who worked hard but failed
to have passed the exam, or the other way around; indeed,
we may even misremember a student to have worked hard
for an exam. Costello and Watts [6, p. 9] make the general
assumption that “events have some chance 𝑑 < 0.5 of ran-
domly being read incorrectly.” They demonstrate that, for
some probabilistic identities, such errors tend to cancel out,
whereas for others they do not or even get compounded.
They muster an impressive amount of evidence for their
hypothesis and show how that helps to explain a number
of well-known biases, including order effects in sequential
probability judgments [24] and the celebrated conjunction
fallacy [30].

The aim of Costello and Watts is not to show that
these and related biases are unproblematic, contrary to
what the mainstream believes. Rather, it is to identify their
source, namely, the noise present in the process by which
we determine probabilities. Thus—the claim is—the said
biases do not refute descriptive Bayesianism, given that this
position is not committed to the assumption that human
memory is failsafe.1 Because “our reasoning processes are
necessarily subject to noise” [5, p. 131], any alternative to
descriptive Bayesianism faces the same problem that it can
only be accurate up to the biasing effects of sampling errors.
Costello and Watts do not consider deviations from

Bayes’ rule.2 But they are right to remark that their re-
sults present a challenge that goes beyond non-Bayesian
explanations of the biases they did consider:

random noise in reasoning can cause systematic biases
in people’s responses even when people are using
the rational reasoning processes of standard frequen-
tist probability estimation. To demonstrate conclusively
that people are using heuristics, researchers must show
that observed biases cannot be explained as the result
of systematic effects caused by random noise. [5, p. 132]

Surely the same is true for attempts to explain biases by
reference to mechanisms other than heuristics, like for
instance attempts to attribute the findings summarized in
the previous section to the influence of explanatory consid-
erations on people’s updating their degrees of belief. Might

1To forestall misunderstanding, “Bayesianism” is understood here as
being committed to Bayes’ rule being the only rational update rule. (The
term is used somewhat loosely by both psychologists and philosophers,
and different authors may use it to designate slightly different positions;
see [15] and [11].) Thus understood, it is neutral regarding the exact
nature of conditional probabilities, so in particular regarding the question
of whether these are to be interpreted in terms of betting dispositions,
relative frequencies, as introspectively given, or some combination of these
possibilities. To see that a commitment to Bayes’ rule does not ipso facto
commit one to the aforementioned possibilities, note that Bayes’ rule only
relates conditional degrees of belief at one point in time to unconditional
degrees of belief at a later point in time, while being silent on where the
former come from. This terminological issue is important, inasmuch as
Costello and Watts [5, p. 132] seem to understand the Bayesian position
as being incompatible with the idea that conditional probabilities can be
interpreted as relative frequencies. See also footnote 2.

2That is, they do not consider deviations from what is here called
“Bayes’ rule,” which is an update rule. They do consider what they
call “Bayes rule identities,” by which they mean the most direct con-
sequences of the standard ratio definition of conditional probability,
such as that Pr(𝐴 |𝐵)Pr(𝐵) = Pr(𝐵 |𝐴)Pr(𝐴), or that Pr(𝐴 |𝐵) =
Pr(𝐵 |𝐴)Pr(𝐴) ÷ Pr(𝐵). Costello and Watts [5] refer to the latter as
“Bayes’ rule.” That is fine, the terminology not being very consistent in
the Bayesian literature. Note, however, that their Bayes’ rule is actually
a theorem of probability theory (and is therefore more often referred to
as “Bayes’ theorem”) and does not concern any updating of probabilities,
time not being a parameter in probability theory.
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that ostensible influence not also be in reality attributable
to estimation errors?
First, there are some a priori reasons to doubt that

Douven and Schupbach’s results are due to the kind of
sampling noise that figures in Costello and Watts’s account.
As said, that noise is supposed to arise from the fact that we
estimate probabilities, including conditional probabilities,
by sampling and counting from memory, and in that pro-
cess sometimes make mistakes. While plausible in general,
it is to be recalled that in the experiment reported in [10],
participants at all times had the drawing of the urns with
their contents in front of them, and were allowed to consult
this memory aid as often as they wanted. At a minimum,
their estimation of conditional probabilities would seem to
have carried a lesser risk of being affected by noise than
if these conditional probabilities had been the result of
sampling from memory.
Second, adopting Costello and Watts’ proposal to account

for the deviations from Bayes’ rule recorded by Douven and
Schupbach would raise an explanatory challenge. For then
where would the predictive superiority of the explanatory
models come from? Given that, in Costello and Watts’
model, the noise is supposed to be random, how could it
moderate people’s probability judgments precisely in such
a way that their explanatory judgments would come out as
highly significant predictors in the mixed models analysis
Douven and Schupbach conducted? There does not appear
to be anything in Costello and Watts’ model that could
account for a close link between the (putative) random
noise at work in people’s probability estimates and those
same people’s judgments of explanatory goodness.
But raising a priori doubts about the applicability of

Costello and Watts’ proposal to the data at issue will only
take us so far. After all, while it is uncontroversial that
human memory is error prone, researchers have identified
various sources of noise in the nervous system that can
have behavioral consequences, including causing informa-
tion processing slips [17]. So, random noise may corrupt
the estimation of conditional degrees of belief even if that
estimation does not involve any sampling from memory.
And for the Bayesian purpose of explaining away the
seeming influence of explanatory considerations, the exact
provenance or nature of the noise are immaterial. Indeed,
while Costello and Watts’ assumption that the errors they
measured are due to memory glitches may be plausible,
there is nothing in their papers to exclude that those errors
are not actually, or not partly, of a different origin.3
Thus, a better way to answer the question of whether

Costello and Watts’ model can account for Douven and
Schupbach’s findings is to try and predict the subjective
updated probabilities reported by the latter authors not by
the objective conditional probabilities but instead by the
“noisy” version of that predictor, transformed according to
a formula given by Costello and Watts.

3Nor would it matter to their overall conclusion. See the citation given
earlier in this section, where they refer to random noise in reasoning in
general.

To do so, we first defined a function that takes Costello
and Watts’ error parameter 𝑑 as input and outputs the
transformed predictor O (the objective conditional proba-
bilities), to be designated as 𝑓(O, 𝑑), for the given value
of 𝑑. The function 𝑓 is based on Equation 17 in [6],
according to which

Pr∗(𝐴 | 𝐵) = ((1 − 2𝑑)2 Pr(𝐴 ∧ 𝐵) +
𝑑(1 − 2𝑑)(Pr(𝐴) + Pr(𝐵)) + 𝑑2) ÷

((1 − 2𝑑) Pr(𝐵) + 𝑑),

where Pr∗(𝐴 | 𝐵) is the noisy estimate of the probability of 𝐴
conditional on 𝐵, and with the noise parameter 𝑑 ∈ [0, .5).
Notice that if 𝑑 = 0, indicating that there is no noise, then
Pr∗(𝐴 | 𝐵) = Pr(𝐴 ∧ 𝐵)/ Pr(𝐵) = Pr(𝐴 | 𝐵).
We used the MixedModels.jl package [1] for the scien-

tific computing language Julia [4] to fit, for 𝑑 going from 0
to 0.5 in increments of 0.005, mixed models like the ones
specified above except that the new models have the noisy
objective conditional probabilities, 𝑓(O, 𝑑), rather than the
untransformed ones, O, as a predictor. If the deviations
from Bayes’ rule reported in Douven and Schupbach are
due to the interference of noise in registering frequencies,
in the manner of Costello and Watts, then we should find
that for some values of 𝑑 the corresponding Bayesian model
with 𝑓(O, 𝑑) as its only predictor does best, and adding
judgments of explanatory goodness as predictors should not
lead to any improvement.
Figure 1 shows the AIC values of all the models that

were fit. It is immediately obvious that replacing O by
𝑓(O, 𝑑), for any admissible value of 𝑑, only led to worse
fit and that in particular for no value of 𝑑 did the Bayesian
model—or at least the model that does not take judgments
of explanatory goodness into account—come close, in terms
of model fit, to the models that do take such judgments into
account (whether directly or indirectly, via the difference
in goodness between the two urn hypotheses). Comparison
in terms of BIC values led to qualitatively identical results.
(See this Jupyter notebook for details; the data from [10],
which are required to run the notebook, can be downloaded
here.)
In short, not only is there a priori little reason to believe

that Costello and Watts’ proposal might also hold the key
to understanding the deviations from Bayesian updating to
be found in the data from [10], but there is also no support
from the data.

IV. Conclusion
We had a second look at data that, at face value,

undermine descriptive Bayesianism, according to which
people accommodate new information by updating their
degrees of belief via Bayes’ rule, that is, by making their
former conditional degrees of belief, on the supposition that
the information they acquired holds true, into their new
unconditional degrees of belief. The point of this endeavor
was to see whether a new proposal used by Costello and
Watts in an attempt to explain away some long-known

http://nbviewer.jupyter.org/github/IgorDouven/ExplainingAway/blob/master/CostelloWatts.ipynb
https://ars.els-cdn.com/content/image/1-s2.0-S0010027715000955-mmc1.csv
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Figure 1. AIC values of the models with the same predictors as MMO, MMOAB, and MMOD, respectively, except that O is replaced by f (O, d), for d
going from 0 to 0.5 in steps of 0.005.

probabilistic biases could also account for the deviations
from Bayes’ rule.
Costello and Watts’ proposal relied on the idea that

people arrive at their conditional degrees of belief by sam-
pling from memory, and the further—by itself eminently
plausible—idea that by doing so they are susceptible to
making random errors. We thus considered a great number
of transformations of the objective conditional probabili-
ties that, from a descriptive Bayesian standpoint, should
have been able to best account for the participants’ belief
changes in Douven and Schupbach’s [10] experiment, and
we checked whether one or more of those transformations
did in fact best account for those belief changes, notably
better than the models that also attended to the partic-
ipants’ judgments of explanatory goodness. The answer
turned out to be negative.
Thus, the evidence for holding that the way people

change their degrees of belief is influenced by explanatory
considerations still stands. Whether this is evidence for a
bias—something regrettable even if perhaps unavoidable—
or for people’s updating their degrees of belief rationally,
just not according to the rationality criteria advocated by
Bayesians, is a question we explicitly sidestepped here.
It is to be emphasized that nothing said in the above

jeopardizes Costello and Watt’s proposal. First, these au-
thors are concerned to show that data that have been
taken to be evidence for people’s relying on heuristics
rather than probability theory can actually be interpreted
as being evidence for people’s relying on probability theory
while being subject to sampling errors. And Bayes’ rule,
as understood in this paper, is an update rule, that is,
a rule connecting degrees-of-belief functions at different
points in time, and as such is not part of probability theory
(see note 2). Indeed, there are versions of inference to the
best explanation that comply perfectly with the axioms of
probability theory ([9], [12], [19], [20]).
Second, Costello and Watts nowhere claim that their

proposal is meant to apply to each and every deviation
of any norm proposed by Bayesians. As mentioned, they

point out that the success of their proposal in explaining
away some probabilistic biases raises a challenge for anyone
claiming to have discovered another such bias, but that
leaves open the possibility that the challenge can be met.
In the present case, it could.4
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