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Priors and payo↵s are known to a↵ect perceptual decision-making, but little is understood about how they influence confidence judgments. For optimal perceptual decision-making, both priors and payo↵s should be considered when selecting a response. However, for confidence to reflect the probability of being correct in a perceptual decision, priors should a↵ect confidence but payo↵s should not. To experimentally test whether human observers follow this normative behavior for natural confidence judgments, we conducted an orientation-discrimination task with varied priors and payo↵s that probed both perceptual and metacognitive decision-making. The placement of discrimination and confidence criteria were examined according to several plausible Signal Detection Theory models. In the normative model, observers use the optimal discrimination criterion (i.e., the criterion that maximizes expected gain) and confidence criteria that shift with the discrimination criterion that maximizes accuracy (i.e., are not a↵ected by payo↵s). No observer was consistent with this model, with the majority exhibiting non-normative confidence behavior. One subset of observers ignored both priors and payo↵s for confidence, always fixing the confidence criteria around the neutral discrimination criterion. The other group of observers incorrectly incorporated payo↵s into their confidence by always shifting their confidence criteria with the same gains-maximizing criterion used for discrimination. Such metacognitive mistakes could have negative consequences outside the laboratory setting, particularly when priors or payo↵s are not matched for all the possible decision alternatives.

Introduction

In making a perceptual decision, it is wise to consider information beyond the available sensory evidence. To maximize expected gains, one should consider both the baseline probability of each possible world state, i.e., priors, as well as the associated risks and rewards for choosing or not choosing each response alternative, i.e., payo↵s. In the Signal Detection Theory (SDT) framework, priors and payo↵s alter the threshold amount of evidence required to choose one alternative versus another, that is, a shift in the criterion for reporting option "A" versus option "B" in a binary task. For example, consider a radiologist trying to detect a tumor in an x-ray image. The radiologist should be more likely to report a positive result for a suspicious shadow if the patient's file indicates they are a smoker, as this means they have a higher prior probability of cancer. Similarly, the high cost of waiting to treat the cancer should also bias the radiologist towards declaring a positive result. In both real and laboratory environments, observers have been found to factor in priors and payo↵s to varying extents when setting the decision criterion [START_REF] Maddox | Toward a unified theory of decision criterion learning in perceptual categorization[END_REF]Bohil, 1998, 2000;[START_REF] Maddox | On the relation between base-rate and costbenefit learning in simulated medical diagnosis[END_REF][START_REF] Wolfe | Rare items often missed in visual searches[END_REF][START_REF] Ackermann | Suboptimal decision criteria are predicted 754 by subjectively weighted probabilities and rewards[END_REF][START_REF] Horowitz | Prevalence in visual search: From the clinic to the lab and back again[END_REF].

Decisions about the state of the world (cancer or not cancer, cat or dog, tilted clockwise or counter-clockwise) are referred to as stimulus-conditioned responses or Type 1 decisions. Judgments can also be made about our Type 1 decisions, such as our confidence in the decision, which are referred to as response-conditioned responses or Type 2 decisions [START_REF] Clarke | Two types of ROC curves and definitions of parameters[END_REF][START_REF] Galvin | Type 2 tasks in the theory of signal detectability: Discrimination between correct and incorrect decisions[END_REF][START_REF] Mamassian | Visual confidence[END_REF]. Confidence judgments are often operationalized in binary decision-making experiments as a subjective estimate of the probability the Type 1 response was correct [START_REF] Pouget | Confidence and certainty: distinct probabilistic quantities for di↵erent goals[END_REF]. Confidence plays a broad role in guiding behavior, subsequent decision-making, and learning in a multitude of scenarios for both humans and animals (Metcalfe and Shimamura, 1994;[START_REF] Smith | The comparative psychology of uncertainty monitoring and metacognition[END_REF][START_REF] Beran | Foundations of 763 Metacognition[END_REF].

How does an ideal-observer radiologist modify confidence judgments in response to varying priors or payo↵s? Intuitively, a radiologist should be more confident in a positive diagnosis when the patient is a smoker, given that they have been educated on the prior scientific evidence on the health risks of smoking. Additional confirmatory information should boost confidence in that positive diagnosis, and contrary evidence should reduce confidence, because priors (smoker or non-smoker) and sensory evidence (cancerous-looking shadow) are both informative about the probability of possible world states. However, this is not the case for payo↵s. Incentivizing the di↵erent responses with rewards or punishment (e.g., delivering good or bad news) does not change the uncertainty about the world state. The radiologist should not be more or less confident in their cancer diagnosis if the type of cancer would be deadly or benign or if the surgical procedure is expensive or not, even though these factors should a↵ect their initial diagnosis. In fact, sometimes payo↵s will lead the decision-maker to choose the less probable alternative and this should be reflected by low confidence in the decision, such as the radiologist erring on the side of caution for a patient with an otherwise perfect health history.

The literature is scarce on the issue of how human observers adjust confidence in response to prior-payo↵ structures. In one perceptual study, the prior probabilities of target present versus absent a↵ected the placement of the criteria for Type 1 and 2 judgments [START_REF] Sherman | Prior expectations facilitate metacognition for perceptual decision[END_REF], with some evidence that confidence better predicts performance for responses congruent with the more probable outcome than those that are incongruent. In the realm of social judgments, prior probabilities have been shown to modulate the degree of confidence, with higher confidence assigned to more probable outcomes [START_REF] Manis | Base rates can a↵ect individual predictions[END_REF]. However, others have found counter-productive incorporation of priors, with over-confidence for low-probability outcomes and under-confidence for high-probability outcomes [START_REF] Dunning | The overconfidence e↵ect in social prediction[END_REF]. In regards to payo↵s, early work on monetary incentives in human perceptual categorization did collect confidence ratings, however they were not included in any analyses [START_REF] Lee | Factorial e↵ects in the categorization of externally distributed stimulus samples[END_REF]. A recent study, however, has found motivational e↵ects of monetary incentives on the calibration of perceptual confidence [START_REF] Lebreton | Two sides of the same coin: Monetary incentives concurrently improve and bias confidence judgments[END_REF]. In contrast, consideration of payo↵ structures is ubiquitous in animal studies of confidence that employ wagering methods [START_REF] Smith | The comparative psychology of uncertainty monitoring and metacognition[END_REF]. For example, in the opt-out paradigm, the animal is o↵ered a choice between a small but certain reward and a risky alternative with either high reward or no reward, for correct and incorrect perceptual responses respectively. The fact that the animal chooses the small but certain reward in di cult trials is taken as evidence that it can distinguish between low and high levels of confidence [START_REF] Kiani | Representation of confidence associated with a decision by neurons in the parietal cortex[END_REF].

We sought to characterize how human observers adjust their perceptual decisions and confidence in response to joint manipulation of priors and payo↵s within the same perceptual task. We placed our participant in a visual orientation-discrimination task by presenting oriented Gabor patterns tilted left or right of vertical with a fixed orientation magnitude. In separate sessions we adjusted the prior-payo↵ structure by selecting the probability of a leftward-tilted versus rightward-tilted Gabor and by assigning di↵erent rewards for each of the response alternatives. We considered three classes of confidence behavior in our modeling. In the normative-shift models, priors but not payo↵s determine the placement of confidence criteria; as discussed above, this is what participants should theoretically aim for. In the gains-shift models, both priors and payo↵s determine confidence criteria; this is what would happen if participants ignored the reason why they shifted the Type 1 criterion. Finally, in the neutral-fixed models, the observer is insensitive to the prior-payo↵ context when placing confidence criteria. We also considered the possibility that participants were not optimal in using priors and payo↵s in the discrimination decision. Therefore, variants of models within each class included 1) the nature of Type 1 criterion placement relative to optimal (e.g., decision conservatism), and 2) whether Type 1 conservatism was also present when participants were making their Type 2 decision. We found that almost all observers were best fit by either a gains-shift model or neutral-fixed model, neither of which constituted normative confidence behaviour. Furthermore, all observers who shifted the confidence criteria in response to changes in priors/payo↵s maintained their Type 1 conservatism at the Type 2 metacognitive stage of decision-making. These results demonstrate that natural confidence judgments fail to correctly handle both priors and payo↵s for metacognitive decision-making.

The Decision Models

Before presenting the outcome of our experiment, we describe the rationale and background for the modeling of Type 1 and Type 2 decision-making. This will allow us to directly interpret our behavioral results. We follow the example of a left-right orientation judgment followed by a binary low-high confidence judgment to match the experimental paradigm used in the present study. First the range of Type 1 models are identified, which assess the placement of the discrimination-decision criterion under di↵erent prior-payo↵s scenarios. Then the Type 2 models are outlined, describing the di↵erent potential relationships between the decision criteria for confidence and the criterion for discrimination.

The Type 1 Decision

To make the Type 1 decision, observers must relate a noisy internal measurement, x, of the stimulus, s, where s 2 {s L , s R }, to a binary response, which in the context of our experiment is "tilted left" (say "s = s L ") or "tilted right" (say "s = s R "). This is done by a comparison to an internal criterion, k 1 , such that if x < k 1 , the observer will respond with"tilted left", and otherwise "tilted right" (Figure 1a). The only component of the Type 1 model the observer controls is the placement of the criterion. The optimal value of k 1 (k opt ) maximizes the expected gain, ensuring the observer makes the most points/money/etc. over the course of the experiment. The value of k opt depends on three things:

(i) The sensitivity of the observer, d 0 . In the standard model of the decision space,

P (x|s L ) ⇠ N (µ L , L ) and P (x|s R ) ⇠ N (µ R , R ), with µ L = µ R and L = R = 1.
Under this transformation, the sensitivity d 0 corresponds to the distance between the peaks of the two internal measurement distributions.

(ii) The prior probability of each stimulus alternative, P (s L ) and P (s R ) = 1 P (s L ).

(iii) The rewards for the four possible stimulus-response pairs, V r,s , which are the rewards (positive) or costs (negative) of responding r when the stimulus is s.

An ideal observer that maximizes expected gain [START_REF] Green | Signal Detection Theory and Psychophysics[END_REF] uses criterion

k opt = ln opt d 0 , (1) 
where the likelihood ratio opt at the optimal criterion is a function of priors and payo↵s:

opt = P (s L ) P (s R ) V L,L V L,R V R,R V R,L . (2) 
In our experiment, 0 points are awarded for incorrect answers, allowing us to simplify:

ln opt = ln P (s L )V L,L P (s R )V R,R = ln P (s L ) P (s R ) + ln V L,L V R,R . (3) 
Thus,

k opt = k p + k v ,
where k p is the optimal criterion location if only priors were asymmetric and k v is the optimal criterion if only the payo↵s were asymmetric. As can be seen in Eq. 3, the e↵ects of priors and payo↵s sum when determining the optimal criterion (illustrated in Figure 1b). When the priors are more similar, or the payo↵s are closer to equal, k opt is closer to the neutral criterion k neu = 0. Note that in the case of symmetric payo↵s, k opt maximizes both expected gain and expected accuracy, whereas when asymmetric payo↵s are involved, k opt maximizes expected gain only (i.e., k opt 6 = k p ). This is because to maximize expected gain, from time to time the observer is incentivized to choose the less probable outcome because it is more rewarded.

Conservatism

Often, human observers use a sub-optimal value of k 1 when the prior probabilities or payo↵s are not identical for each alternative. A common observation is that the criterion is not adjusted far enough from the neutral criterion towards the optimal criterion, k neu < k 1 < k opt or k neu > k 1 > k opt , a behavior referred to as conservatism [START_REF] Green | Signal Detection Theory and Psychophysics[END_REF][START_REF] Maddox | Toward a unified theory of decision criterion learning in perceptual categorization[END_REF]. It is useful to express conservatism as a weighted sum of the neutral and optimal criterion:

k 1 = (1 ↵)k neu + ↵k opt = ↵k opt , (4) 
with 0 < ↵ < 1 indicating conservative criterion placement. The degree of conservatism is greater the closer ↵ is to 0 (Figure 1c). Several studies have contrasted the conservatism for unequal priors versus unequal payo↵s, typically finding greater conservatism for unequal payo↵s [START_REF] Lee | Factorial e↵ects in the categorization of externally distributed stimulus samples[END_REF][START_REF] Ulehla | Optimality of perceptual decision criteria[END_REF][START_REF] Healy | Probability matching and the formation of conservative decision rules in a numerical analog of signal detection[END_REF][START_REF] Ackermann | Suboptimal decision criteria are predicted 754 by subjectively weighted probabilities and rewards[END_REF] with few exceptions [START_REF] Healy | The e↵ects of payo↵s and prior probabilities on indices of performance and cuto↵ location in recognition memory[END_REF]. This may result from an underlying criterion-adjustment strategy that depends on the shape of the expected-gain curve (as a function of criterion placement) and not just on the position of the optimal criterion maximizing expected gain [START_REF] Busemeyer | An adaptive approach to human decision 766 making: Learning theory, decision theory, and human performance[END_REF][START_REF] Ackermann | Suboptimal decision criteria are predicted 754 by subjectively weighted probabilities and rewards[END_REF] or a strategy that trades o↵ between maximizing expected gain and maximizing expected accuracy [START_REF] Maddox | Toward a unified theory of decision criterion learning in perceptual categorization[END_REF][START_REF] Maddox | A theoretical framework for understanding the e↵ects of simultaneous base-rate and payo↵ manipulations on decision criterion learning in perceptual categorization[END_REF]. Given that the e↵ects of priors and payo↵s sum in Eq. 3, we will consider a sub-optimal model of criterion placement that has separate conservatism factors for payo↵s and priors:

k 1 = 1 d 0  ↵ p ln P (s L ) P (s R ) + ↵ v ln V L,L V R,R = ↵ p k p + ↵ v k v . (5) 
The conservatism factors, ↵ p and ↵ v , scale these individually before they are summed to give the final conservative criterion placement, taking into account both prior and payo↵ asymmetries. This formulation allows for di↵ering degrees of conservatism for priors and payo↵s.

Type 1 Decision Models

We consider four models of the Type 1 discrimination decision in this paper, including the optimal model (i) and three sub-optimal models that include varying forms of conservatism (ii-iv):

(i) ⌦ 1,opt : k 1 = k opt = k p + k v (ii) ⌦ 1,1↵ : k 1 = ↵k opt = ↵ (k p + k v ) (iii) ⌦ 1,2↵ : k 1 = ↵ p k p + ↵ v k v (iv) ⌦ 1,3↵ : 8 > > > > > > < > > > > > > : k 1 = ↵ pv k opt if k p 6 = 0 and k v 6 = 0 (i.e., both asymmetric) k 1 = ↵ p k p if k v = 0 (i.e., payo↵s symmetric) k 1 = ↵ v k v if k p = 0 (i.e., priors symmetric).
Thus, we consider models with no conservatism (⌦ 1,opt ), with an identical degree of conservatism due to asymmetric priors and payo↵s (⌦ 1,1↵ ), or di↵erent amounts of conservatism for prior versus payo↵ manipulations (⌦ 1,2↵ ). In the fourth model, we drop the assumption (that was based on the optimal model) that e↵ects of payo↵s and priors on criterion sum, i.e., that behavior with asymmetric priors and payo↵s can be predicted from behavior with each e↵ect alone (⌦ 1,3↵ ). We consider this final model because the additivity of criterion shifts (Eq. 3) has not yet been experimentally confirmed with human observers [START_REF] Stevenson | Judgement and decisionmaking theory[END_REF].

In all models, we also consider an additive bias term, , corresponding to a perceptual bias in perceived vertical. The bias is also included in the neutral criterion k neu = . For clarity, however, we have omitted it from the mathematical descriptions of the models.

Note that any observer best fit by ⌦ 1,opt but with a significantly di↵erent from 0 would no longer be considered as having optimal behavior.

Confidence Criteria

Confidence judgments should reflect the belief that the selected alternative in the discrimination decision correctly matches the true world state. Generally speaking, the a)

Internal Measurement Probability P (x|s L ) P (x|s R )
say "left" say "right"

k 1 b) P (s L ) = 0.75 V L,L = 2 P (s R ) = 0.25 V R,R = 4 k neu k p k v k opt + = c) k opt k neu k 1 ? ↵ = 0 .2 ↵ = 0 .4 ↵ = 0 .6 ↵ = 0 .8 d) k 2 k ⇤ 1 = k 1 k 2 high conf low conf low conf high conf e) k ⇤ 1 = k p k v k 1 = k o p t k 2 k 2 f) k ⇤ 1 = k p k v k 1 = k o p t k 2 k 2
Figure 1: Illustration of the full SDT model. a) On each trial, an internal measurement of stimulus orientation is drawn from a Gaussian probability distribution conditional on the true stimulus value. The Type 1 criterion, k 1 , defines a cut-o↵ for reporting "left" or "right". The ideal observer in a symmetrical priors and payo↵s scenario is shown. b) The ideal observer's criterion placement with both prior and payo↵ asymmetry. This prior asymmetry encourages a rightward criterion shift to k p and the payo↵ asymmetry a leftward shift to k v . The optimal criterion placement that maximizes expected gain, k opt , is a sum of these two criterion shifts. For comparison, the neutral criterion, k neu is shown.

As the prior asymmetry is greater than the payo↵ asymmetry, 3:1 vs 1:2, k opt 6 = k neu . c) A sub-optimal conservative observer will not adjust their Type 1 criterion far enough from k neu to be optimal. The parameter ↵ describes the degree of conservatism, with values closer to 0 being more conservative and closer to 1 less conservative. d) In the case of symmetric payo↵s and priors, the Type 2 confidence criteria, k 2 , are placed equidistant from the Type 1 decision boundary by ± , carving up the internal measurement space into a low-and high-confidence region for each discrimination response option. e) For the normative Type 2 model, the confidence criteria are placed symmetrically around a hypothetical Type 1 criterion that only maximizes accuracy (k ⇤ 1 = k p ). This figure shows the division of the measurement space as per the prior-payo↵ scenario in (b). As a lefttilted stimulus is much more likely, this results in many high-confidence left-tilt judgments and few high-confidence right-tilt judgments. Note that left versus right judgments still depend on k 1 . f) The same as in (e) but with a small value of . Note the low-confidence region where confidence should be high (left of the left-hand k 2 ). This happens because in this region the observer will choose the Type 1 response that conflicts with the accuracymaximizing criterion, hence they will report low confidence in their decision. Note that the displacements of the criteria from the neutral criterion in this figure are exaggerated for illustrative purposes. further the internal measurement is from a well-placed decision boundary, the more evidence there is for the discrimination judgment. This is instantiated in the extended SDT framework by the addition of two or more confidence criteria, k 2 (Maniscalco andLau, 2012, 2014). There are two such criteria for a binary confidence task and more confidence criteria when more than two confidence levels are provided. We restrict our treatment to the binary case, which can be trivially extended to include more gradations of confidence.

As illustrated in Figure 1d, for the case of symmetric payo↵s and priors, there is a k 2 confidence criterion on each side of the k 1 decision boundary. If the measurement obtained is beyond one of these criteria relative to k 1 , then the observer will report high confidence, and otherwise will report low confidence. Stated another way, the addition of the confidence criteria e↵ectively divides the measurement axis into four regions: highconfidence left, low-confidence left, low-confidence right, and high-confidence right. The closer to the discrimination decision boundary that the observer places k 2 , the more high-confidence responses they will give. We denote this distance as . is not always assumed to be identical for both confidence criteria (e.g. Maniscalco and Lau, 2012), but we assumed a single value of for model simplicity. Type 2 judgments were not incentivized in our experiment to allow observers to make a discrimination decision that was not influenced by a monetary reward on the confidence decision. Thus, there is no explicit cost function to constrain the distance parameter , so the precise setting of will not factor into the evaluation of how well the normative model fits observer behavior.

The Counterfactual Type 1 Criterion

The above description of how confidence responses are generated is well suited to cases where the payo↵s are symmetric. This is because the optimal Type 1 decision criterion maximizes both gain and accuracy. For an internal measurement at the discrimination boundary, it is equally probable that the stimulus had a rightward versus leftward orientation. Expressed another way, the log-posterior ratio at k opt is 1. Thus, the distance from the discrimination boundary is a good measure for the probability that the Type 1 response is correct (i.e., confidence as we defined it above). This, however, is not the case when payo↵s are asymmetric (k 1 = k p + k v = k opt where k v 6 = 0), as the ideal observer maximizes gain but not accuracy. The log-posterior ratio is not 1 at k opt but rather it is equal to 1 at k p .

To extend the SDT model of confidence to asymmetric payo↵s, we introduce a new criterion. We call counterfactual criterion, k ⇤ 1 , the criterion that the ideal observer would have used if they ignored the payo↵ structure of the environment and exclusively maximized accuracy and not gain (i.e., k ⇤ 1 = k p ). It is this discrimination criterion that confidence criteria are yoked to in our normative model (Figure 1e). Note that whenever 1f illustrates a situation unique to this model that may occur when payo↵s are asymmetric. Here, the value of is su ciently small that both k 2 criteria fall on the same side of k 1 . As a result, the region between k 1 and the left-hand k 2 criterion results in a low-confidence response despite being beyond the k 2 boundary (relative to k ⇤ 1 ). This occurs because this region is to the right of k 1 and thus, due to asymmetric payo↵s, the observer will make the less probable choice, which then results in low confidence in that choice. E↵ectively, the left-hand confidence criterion is shifted from k 2 to k 1 . Here, we rely on the assumption that the confidence system is aware of the Type 1 decision (for further discussion of this issue, see [START_REF] Fleming | Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation[END_REF].

payo↵s are symmetrical (k v = 0), k 1 = k ⇤ 1 . Figure
The notion of an observer computing additional criteria for counterfactual reasoning is not new. For example, in the model of Type 1 conservatism of Maddox and Bohil (1998),

where observers trade o↵ gain versus accuracy, k 1 is a weighted average of the optimal criteria for maximizing expected gain (k opt ) and for exclusively maximizing accuracy (k p ).

In [START_REF] Zylberberg | Counterfactual reasoning underlies the learning of priors in decision making[END_REF], observers learned prior probabilities of each stimulus type by an updating decision-making mechanism that computes the confidence the observer would have had if they had used the neutral criterion (k neu ) for their Type 1 judgment.

We suggest that for determining confidence in the face of asymmetric payo↵s, normative observers compute the confidence they would have reported if they had instead used the k p criterion for the discrimination judgment.

Type 2 Decision Models

In addition to the normative model we just described (i), we considered four sub-optimal models (ii-v) for the counterfactual Type 1 criterion about which the Type 2 criteria are yoked:

(i) ⌦ 2,acc : k ⇤ 1 = k p (ii) ⌦ 2,acc+cons : k ⇤ 1 = ↵ p k p (iii) ⌦ 2,gain : k ⇤ 1 = k opt (iv) ⌦ 2,gain+cons : k ⇤ 1 = k 1 (v) ⌦ 2,neu : k ⇤ 1 = k neu
All of these models are characterized by the placement of the counterfactual criterion, k ⇤ 1 ;

the distance is the only free parameter for all models and only alters the probability of a Type 2 response given the Type 1 response. That is, represents the propensity to respond low confidence, but the confidence criteria, k 2 , will be placed around k ⇤ 1 regardless of the particular value of . Thus, an observer's overall confidence bias will be independent from a test of normativity. In the normative-shift model (⌦ 2,acc ), the confidence criteria shift along with the discrimination criterion that maximizes accuracy and ignores possible payo↵s. We also consider a gains-shift model in which confidence criteria shift with the criterion that maximizes expected gain (⌦ 2,gain ), which is incorrect behavior in the case of asymmetric payo↵s. In the neutral-fixed model (⌦ 2,neu ), confidence criteria remain fixed around the neutral Type 1 criterion, regardless of the prior or payo↵ manipulation. Finally, for the classes of models that involve shifting confidence criteria (i.e., not the neutral-fixed model), we consider variants where conservatism in the discrimination criterion placement also a↵ects k ⇤ 1 : for the normative-shift model (⌦ 2,acc+cons ) or the gains-shift model (⌦ 2,gain+cons ). For the gains-shift model with carry-over conservatism,

k ⇤ 1 is identical to k 1 .
For all other models, some combinations of priors and payo↵s will decouple k ⇤ 1 from k 1 . For the normative-shift model with carry-over conservatism, the decoupling only occurs for asymmetric payo↵s. For the three remaining models, this decoupling occurs whenever priors and/or payo↵s are asymmetric.

For simplicity, our models assume that the k 2 criteria are placed symmetrically around k ⇤ 1 at a distance of ± . However, the ability to identify the underlying Type 2 model should not be a↵ected by this assumption. Consider an observer whose low-confidence region to the left of k ⇤ 1 was always greater than their low-confidence region to the right of

k ⇤ 1 , such that k ⇤ 1 k 2 > k 2+ k ⇤ 1 .
Then, the estimate of would be similar because the experimental design tested the mirror prior-payo↵ condition (i.e., for fixed k 2 , one condition would have k ⇤ 1 attracted to neutral and the other repelled, which is not the behaviour of k ⇤ 1 in any Type 2 model). Thus, the best-fitting model would be unlikely to change when is asymmetric, but the quality of the model fit would be impaired. Alternatively, an asymmetry in could be mirrored about the neutral criterion (e.g., the low confidence region closest to the neutral criterion is always smaller). Then, the asymmetry would be indistinguishable from a bias in the conservatism parameter. Although the confidence criteria are still yoked to k ⇤ 1 , ultimately it is the patterns of confidence-criteria shift from all conditions jointly that are captured by the model comparison.

3 Methods

Participants

Ten participants (5 female, age range 22-43 years, mean 27.0 years) took part in the experiment. All participants had normal or corrected-to-normal vision, except one amblyopic participant. All participants were naive to the research question, except for three of the authors who participated. On completion of the study, participants received a cash bonus in the range of $0 to $20 based on performance. In accordance with the ethics requirements of the Institutional Review Board at New York University, participants received details of the experimental procedures and gave informed consent prior to the experiment.

Apparatus

Stimuli were presented on a gamma-corrected CRT monitor (Sony G400, 36 x 27 cm) with a 1280 x 1024 pixel resolution and an 85 Hz refresh rate. The experiment was conducted in a dimly lit room, using custom-written code in MATLAB version R2014b

(The MathWorks, Natick, MA), with PsychToolbox version 3.0.11 [START_REF] Brainard | The psychophysics toolbox[END_REF][START_REF] Pelli | The VideoToolbox software for visual psychophysics: Transforming numbers into movies[END_REF][START_REF] Kleiner | What's new in psychtoolbox-3?[END_REF]. A chin-rest was used to stabilize the participant at a viewing distance of 57 cm. Responses were recorded on a standard computer keyboard.

Stimuli

Stimuli were Gabor patches, either right (clockwise) or left (counterclockwise) of vertical, presented on a mid-gray background at the center of the screen. The Gabor had a sinusoidal carrier with spatial frequency of 2 cycle/deg, a peak contrast of 10%, and a

Gaussian envelope (SD: 0.5 deg). The phase of the carrier was randomized on each trial to minimize contrast adaptation.

Experimental Design

Orientation discrimination (Type 1, 2AFC, left/right) and confidence judgments (Type 2, 2AFC, low/high) were collected for seven conditions defined by the prior and payo↵ structure. The probability of a right-tilted Gabor could be 25, 50, or 75%. The points awarded for correctly identifying a right-versus a left-tilt could be 4:2, 3:3, or 2:4. In the 3:3 payo↵ scheme, a correct response was awarded 3 points. In the 2:4 and 4:2 schemes, correct responses were awarded 2 or 4 points depending on the stimulus orientation. Incorrect responses were not rewarded (0 points). We were interested in people's natural confidence behavior, so confidence responses were not rewarded, allowing participants to respond with their subjective sense of probability correct. The prior and payo↵ structure was explicitly conveyed to the participant before the session began (Fig. 2b) and after every 50 trials. There were 7 prior-payo↵ conditions (Fig. 2c): no asymmetry (50%, 3:3), single asymmetry (50%, 4:2; 50%, 2:4; 25%, 3:3; 75%, 3:3), or double asymmetry (25%, 4:2; 75%, 2:4). Note that two of the possible double asymmetry conditions (25%, 2:4; and 75%, 4:2) were not tested because these conditions incentivized one response alternative to such a degree that they would not be informative for model comparison. Participants first completed the full-symmetry condition, followed by the single-asymmetry conditions in random order, and finally the double-asymmetry conditions, also in random order (Fig. 2d). Session order facilitated task completion and participants' understanding of the prior and payo↵ asymmetries before encountering both simultaneously. Each condition was tested in a separate session with no more than one session per day. In all sessions, participants were instructed to report their confidence in the correctness of their discrimination judgment.

Thresholding Procedure

A thresholding procedure was performed prior to the main experiment to equate di culty across observers to approximately d 0 = 1. Observers performed a similar orientationdiscrimination judgment as in the main experiment. Absolute tilt magnitude varied in a series of interleaved 1-up-2-down staircases to converge on 71% correct. Each block consisted of three staircases with 60 trials each. Participants performed multiple blocks until it was determined that performance had plateaued (i.e., learning had stopped).

Preliminary thresholds were calculated using the last 10 trials of each staircase. At the end of each block, if none of the three preliminary thresholds were better than the best of the previous block's preliminary thresholds, then the stopping rule was met. As a result, participants completed a minimum of two blocks and no participant completed more than five blocks. A cumulative Gaussian psychometric function was fit by maximum likelihood to all trials from the final two blocks (360 trials total). The slope parameter was used to calculate the orientation corresponding to 69% correct for an unbiased observer (d 0 = 1; [START_REF] Macmillan | Detection Theory: A User's Guide[END_REF]. This orientation was then used for this subject in the main experiment. Thresholds ranged from 0.36 to 0.78 deg, with a mean of 0.59 deg.

Main Experiment

Participants completed seven sessions, each of which had 700 trials with the first 100 treated as warm-up and discarded from the analysis. All subjects were instructed to hone their response strategy in the first 50 trials to encourage stable criterion placement.

The trial sequence is outlined in Fig. 2a. Each trial began with the presentation of a fixation dot for 200 ms. After a 300 ms inter-stimulus interval, a Gabor stimulus was displayed for 70 ms. Participants judged the orientation (left/right) and then indicated their confidence in that orientation judgment (high/low). Feedback on the orientation judgment was provided at the end of the trial by both an auditory tone and the awarding of points based on the session's payo↵ structure. Additionally, the running percentage of potential points earned was shown on a leaderboard at the end of each session to foster inter-subject competition. Participants' cash bonus was calculated by selecting one trial at random from each session and awarding the winnings from that trial, with a conversion of 1 point to $1, capped at $20 over the sessions. Total testing time per subject was approximately 8 hrs.

Model Fitting

Detailed description of the model-fitting procedure can be found in the Supplementary Information (Sections 1 and 2). Briefly, model fitting was performed in three sequential steps. First, we estimated a per-participant d 0 and meta-d 0 using a hierarchical Bayesian model. We used as inputs the empirical d 0 and meta-d 0 calculated separately for each prior-payo↵ condition. These per-participant sensitivities were fixed for all subsequent modeling. Second, we fit the discrimination behaviour according to the Type 1 models, selecting the best-fitting Type 1 model for each participant before the final step of fitting the confidence behavior according to the Type 2 models. For the Type 1 and Type 2 models, we calculated the log likelihood of the data given a dense grid of parameters (↵, , and ) using multinomial distributions defined by the stimulus type, discrimination response, and confidence response. All seven prior-payo↵ conditions were fit jointly.

Model evidence was calculated by marginalizing over all parameter dimensions and then a) 
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Results

We sought to understand how observers make perceptual decisions and confidence judgments in the face of asymmetric priors and payo↵s. Participants performed an orientationdiscrimination task followed by a confidence judgment. To account for the behavior, we defined two sets of models. Type 1 models defined the contribution of conservatism to the discrimination responses. Type 2 models defined the role of priors, payo↵s, and conservatism in the confidence reports. We were interested in which of three classes of models best fits confidence behavior: neutral-fixed, gains-shift, or normative-shift.

Model Fits

Type 1 models were first fit using the discrimination responses alone. Four models were compared: optimal criterion placement (⌦ 1,opt ), equal conservatism for priors and payo↵s (⌦ 1,1↵ ), di↵erent degrees of conservatism for priors and payo↵s (⌦ 1,2↵ ), and a model in which there was a failure of summation of criterion shifts in the double-asymmetry condition (⌦ 1,3↵ ). Fitting the Type 1 models also provided an estimate of left/right response bias, . We performed a Bayesian model selection procedure using the SPM12 Toolbox (Wellcome Trust Centre for Neuroimaging, London, UK) to calculate the protected exceedance probabilities (PEPs) for each model (Figure 3a). The exceedance probability (EP) is the probability that a particular model is more frequent in the general population than any of the other tested models. The PEP is a conservative measure of model frequency that takes into account the overall ability to reject the null hypothesis that all models are equally likely in the population [START_REF] Stephan | Bayesian model selection for group studies[END_REF]Rigoux et al., 2014).

Overall, an additional parameter in the double-asymmetry conditions was needed to explain Type 1 criterion placement, indicating a failure of summation of criterion shifts (i.e., the best-fitting model was ⌦ 1,3↵ ).

In the second step, the Type 2 models were fit using each participant's best Type 1 model and the associated maximum a posteriori (MAP) parameter estimates. The Type 2 models di↵ered in the placement of the Type 2 criteria, which split the internal response axis into "high" and "low" confidence regions, for each "right" and "left" discrimination response. We modeled the two Type 2 criteria as shifting to account for only the prior probability, maximizing accuracy with the confidence response (⌦ 2,acc ; normative-shift class), shifting the confidence criteria in response to payo↵ manipulations (⌦ 2,gain ; gainsshift class), or failing to move the confidence criteria away from neutral at all (⌦ 2,neu ;

neutral-fixed class). For the models with shifted confidence criteria, we also tested for e↵ects of Type 1 conservatism on Type 2 decision-making (⌦ 2,acc+cons and ⌦ 2,gain+cons ;

both sub-optimal). We again compared the models quantitatively with PEPs (Figure 3b).

The favored model was the gains-shift model with carry-over conservatism, ⌦ 2,gain+cons .

This model shifts the confidence criteria in response to both prior and payo↵ manipula-tions with the conservatism that participants exhibited in the Type 1 decisions a↵ecting placement of the confidence criteria.

Figure 3c shows the best-fitting models for individual participants, according to the amount of relative model evidence (here the marginal log-likelihood). All of the suboptimal Type 1 models (i.e., not ⌦ 1,opt ) were a best-fitting model for at least one of the ten participants. Similarly, no one was best fit by the normative-shift without Type 1 conservatism either (⌦ 2,acc ). Overall, there was no clear pattern between the pairings of Type 1 and Type 2 models.

Model Checks

We performed several checks on the fitted data to ensure that parameters were capturing expected behavior and that the models could predict the data well (reported in detail in Section 3 of the Supplementary Information). The quality of a model is not only dependent on how much more likely it is than others, but it is also dependent on its overall predictive ability. To visualize each model's ability to predict the proportion of each response type ("right" vs. "left" x "high" vs. "low"), we calculated the expected proportion of each response type given the MAP parameters for each model and participant.

We compared the predicted response proportions to the empirical proportions (Figure 4).

Larger residuals are represented by more saturated colors. For the best-fitting models, the residuals are small and unpatterned.

We also compared the Type 1 criteria and the counterfactual confidence criteria (Fig-

ure 5). We constrained the empirical counterfactual confidence criterion to be the midpoint between the two Type 2 criteria (i.e., k ⇤ 1 ⌘ (k 2 +k 2+ )/2). Using k ⇤ 1 , the predictions made by the Type 2 models are highly distinguishable. In the left-most column, predicted 
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Figure 4: Visualization of the raw and predicted response rates for two example participants. Grids are formed of the seven conditions (rows) and the eight possible stimulusresponse-confidence combinations (columns). See Figure S3 in the Supplement for condition order. The fill indicates the proportion of trials for that condition and stimulus that have that combination of response and confidence. Top row: Raw response rates of two example subjects. Subsequent rows, columns 1 and 3: Predicted response rates for each Type 2 model using the best-fitting parameters of the best-fitting Type 1 model for that individual. Columns 2 and 4: Di↵erence between raw and predicted response rates. 
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Figure 5: Comparison of the empirical and predicted k 1 and k ⇤ 1 . Top row: empirical criteria of two example observers. The k ⇤ 1 was calculated as the midpoint between the two empirical k 2 (see Figure S1 for k 2 calculation details). Left column: predicted relationship between the Type 1 and Type 2 criteria (d 0 = 1; all ⌦ 1,1↵ with ↵ = 0.5). Grey and square symbols: symmetry conditions. Triangles: prior asymmetry. Blue symbols: payo↵ asymmetry. Polar plots: residuals between empirical data and model prediction based on best-fitting parameters, plotted as vectors. Arrowheads: residuals greater than plot bounds. Colored circles by model names indicate purple: normative-shift models, green: gains-shift models, yellow: neutral-fixed model. behavioral phenomena. The response bias, , results in a shift in all criteria in the same direction, translating all data points parallel to the identity line. Conservatism is represented by an attraction of all data toward the origin on the x-axis for Type 1 and the y-axis for Type 2 judgments. The Type 2 models predict qualitatively di↵erent arrangements of the data points. If the prior and payo↵ asymmetries a↵ect the placement of the Type 1 criterion but not the Type 2 criteria (⌦ 2,neu ; neutral-fixed), the data are clustered along a single value on the y-axis. If the prior and the payo↵ a↵ect the placement of the Type 1 and Type 2 criteria equally, (⌦ 2,gain ; gains-shift), then the data fall on the identity line. With normative-shift behavior (⌦ 2,acc ), the prior asymmetry conditions (grey triangles) fall on the identity line because confidence tracks the prior, while in the payo↵ asymmetry conditions (blue squares), the data have the same k 2 midpoint as in the neutral condition (grey squares) because confidence does not track the payo↵.

Vectors in all 10 of the bottom right polar plots represent the di↵erence (i.e., the residual) between the empirical and the predicted criteria from the model fits. While the model prediction column is based on fixed parameters, the predicted data in the 10 polar plots use parameters that best fit the participant's data using that model. It is immediately clear that the normative-shift model without carry-over conservatism (second row) does a poor job of describing participants' behavior, and that, in general, conservatism is a necessary component of both the Type 1 and Type 2 models.

Type 1 Conservatism

While not the main focus of the study, it was important to consider the role of Type 1 conservatism to properly capture the Type 1 decision-making behavior. First, we remark on the relative magnitude of conservatism due to priors and payo↵s. Figure 6a shows fitted ↵ p and ↵ v under the most complex conservatism model (⌦ 1,3↵ ) and Figure 6b shows them under the best-fitting model for each observer. These figures show that eight of the ten participants were conservative in their criterion placement for both prior and payo↵ manipulations, as indicated by data points in the gray regions. Of the eight participants that displayed conservatism, five were significantly more conservative for . These parameters are only contingent on the conservatism in the single-asymmetry conditions. In this model, conservatism in the double-asymmetry conditions is captured by a separate model parameter. Darker marker fill: additional conservatism parameters were required to fit to that observer's data. Dashed line: equality line. Dark grey region: conservatism greater for prior than payo↵ manipulations (i.e., ↵ p < ↵ v ). Light grey region: conservatism is greater for payo↵s (i.e., ↵ p > ↵ v ). Data points outside these regions are not consistent with conservative criterion placement. b) Same as (a) using fit parameters from the bestfitting Type 1 model for each observer. c) Test of summation of criterion shifts using the ⌦ 1,3↵ model fits. Observers who required a third ↵ to capture their data (i.e., were best fit by ⌦ 1,3↵ ) had criterion shifts for the double-asymmetry conditions that were not well predicted as the sum of the shifts in the single-asymmetry conditions. d) Criterion placement in the double-asymmetry conditions. These are the same data as in the y-axis of (c), but extended to more easily compare the actual criterion placement with potential other task-relevant criteria. Horizontal criteria lines assume d 0 =1. payo↵ asymmetries than prior asymmetries (↵ v < ↵ p ), whereas only one was significant in the opposite direction (↵ p < ↵ v ). At the group level, however, we did not find a significant di↵erence between the best fitting ↵ v and ↵ p , either for the best-fitting Type 1 model or the winning model (paired t-tests, p > 0.05). Note that the negative ↵ values derive from a participant who shifted criteria consistently in the opposite direction expected from a rational observer in response to manipulations of payo↵s and priors.

An additional implication of SDT is that an ideal observer's criterion shift due to payo↵s and due to priors should sum [START_REF] Stevenson | Judgement and decisionmaking theory[END_REF]: 1b).

k pv = k p + k v (Figure
Figure 6c contrasts the prediction of this additive rule with the empirical results. The di↵erence between the predicted and actual criterion shift is significant (t = 2.41, p =

.039), with the e↵ect primarily driven by the four observers best fit by the non-additive conservatism model, ⌦ 1,3↵ . Each of these four observers had 95% CIs that did not overlap with the identity line. We show the criterion placement in the double-asymmetry cases in Figure 6d. Most observers did not shift their criterion far enough from neutral to the optimal placement, k opt . Three observers, however, placed their criterion beyond k opt , with two stopping short of the accuracy-maximizing criterion k p .

Discussion

Confidence Behavior

The primary focus of this study was to assess how observers assigned confidence to the discrimination decision for di↵erent prior-payo↵ scenarios. Three Type 2 model classes were characterized by the placement rule for the counterfactual Type 1 criterion, k ⇤ 1 , to which the confidence criteria, k 2 , were yoked. The classes were defined by the counterfactual criterion coinciding with the accuracy-maximizing criterion (normative-shift), the gainmaximizing criterion (gains-shift), or the neutral criterion (neutral-fixed). The majority of observers were best explained by the gains-shift model with carry-over conservatism (⌦ 2,gain+cons ) or the neutral-fixed model (⌦ 2,neu ), with the Bayesian model selection favoring the former. One participant was best fit by the normative-shift model with carry-over conservatism (⌦ 2,acc+cons ). Furthermore, we found no clear pattern between the number of Type 1 conservatism parameters required to explain discrimination behavior and the placement strategy for confidence criteria.

For the subset of observers who were best fit by the neutral-fixed model, the perceived tilt magnitude was predictive of confidence in all prior-payo↵ scenarios. While these observers correctly did not allow the payo↵ structure of the environment to a↵ect confidence, it was non-normative to ignore the additional information provided by the priors for the response alternatives. This notion of 'sticky' or fixed confidence criteria has been examined previously in the context of changing stimulus reliability, where confidence criteria should be shifted to avoid a preponderance of high-confidence reports for the low-reliability stimuli. Empirical results are mixed; [START_REF] Zylberberg | Variance misperception explains illusions of confidence in simple perceptual decisions[END_REF] found participants were reluctant to shift their criteria su ciently to account for the di↵erent reliabilities, whereas a fixed-criterion model was rejected by Adler and Ma (2018). Our results suggest that some observers can be insensitive to the prior-payo↵ context when it comes to placing confidence criteria, despite our e↵orts to present each prior-payo↵ context in separate sessions, keep stimulus reliability and attentional factors constant, and provide substantial context information and training.

In contrast, the confidence criteria of gains-shift observers tracked the placement of the criterion used for the Type 1 judgment. As such, priors were correctly incorporated into confidence judgments but payo↵s were inappropriately incorporated also. For such people, higher relative reward leads to selection of the highly rewarded alternative and, on average, higher confidence about reporting that outcome. In e↵ect, gains-shift behavior can be viewed as a naïve optimism for selecting the highly rewarded outcome: "this highly rewarding perceptual alternative that I have selected is certainly the state of the world". This bias for higher confidence with greater reward is consistent with what has been reported previously in the perceptual lottery tasks of [START_REF] Lebreton | Two sides of the same coin: Monetary incentives concurrently improve and bias confidence judgments[END_REF].

The finding that most observers did not appropriately dissociate Type 1 and Type 2 criteria is compelling, particularly so in the case of the gains-shift observers. By not selectively decoupling their k 1 and k ⇤ 1 for asymmetric payo↵s, these observers faced a trade-o↵ between maximizing gains with the discrimination report and faithfully representing perceived accuracy with the confidence report. Consider the following real-world example of a pilot judging whether their aircraft is heading for collision with an upcoming mountain peak using weak sensory evidence (e.g., night time or fog). A normative-shift pilot would make a corrective action because of the high cost of collision, but not be confident that a collision will occur. In contrast, a gains-shift pilot would similarly adjust the aircraft heading, but would also be likely to have high confidence that the collision was imminent despite the weak sensory evidence. The experience of the gains-shift pilot in a world full of dangerous possibilities would be unsettling. However, if this gains-shift pilot places their discrimination criterion somewhere between the gains-maximizing criterion and the accuracy-maximizing criterion (i.e., payo↵ conservatism), then their confidence judgments will better reflect the true state of the world. Subsequent laboratory experiments can examine this trade-o↵ by using more complex reward structures and/or elaborated decision scenarios.

We also note some simple experimental factors that may have produced the observed pattern of confidence results. First, the lack of adaptability of the neutral-fixed observers should not be taken as evidence of an inability to adapt. It is possible that these observers ignored the prior-payo↵ structure entirely for confidence because it changed from session to session, and instead opted for a criterion-placement strategy that would work best for all conditions of the experiment. This is unlikely, however, because they did not adopt such a strategy for discrimination. For the gains-shift observers, we note that a failure to understand the task instructions could explain their behavior. It is possible that observers did not report the probability they were correct, as per the experimenter instructions, but instead considered their expected gain from the trial when reporting confidence.

However, all participants deviated from normative behavior, making it unlikely that these experimental factors alone can explain our results.

Reward and Type 2 Behaviour

Our results describe the natural confidence behavior of humans in response to variations of priors and payo↵s. How might responses change under di↵erent experimental designs where reward interacts with confidence? Can normative behavior be assessed when pay-o↵s are asymmetric?

First we consider traditional wagering methods for measuring metacognition. One implementation is where selecting high confidence comes with greater risk in the outcome of the trial than low confidence [START_REF] Shields | Confidence Judgments by Humans and Rhesus Monkeys[END_REF][START_REF] Persaud | Post-decision wagering objectively measures awareness[END_REF]. Another is the opt-out paradigm, where a third, less rewarding but certain "low confidence" alternative is o↵ered [START_REF] Kiani | Representation of confidence associated with a decision by neurons in the parietal cortex[END_REF]. Both of these methods would fail to assess normative behavior as it is not possible to report confidence independent of reward; a high confidence response is incentivized by increasing the reward for one choice alternative, leading a decision-maker that maximizes expected gain to select that alternative with "high confidence" when indeed their true feeling is for "low confidence" as per normative

behavior.

An alternative wagering method developed by [START_REF] Lebreton | Two sides of the same coin: Monetary incentives concurrently improve and bias confidence judgments[END_REF] directly incentivizes confidence judgments. Here the decision-maker rates their confidence on a continuous probability scale, and then is either rewarded according to their discrimination response or a lottery according to a stochastic process. In this method, a participant maximizes their reward when their confidence rating is equal to the probability of being correct. Such a paradigm would allow for normative dissociations when payo↵s are symmetric. Further work could investigate whether incentivizing confidence in this manner could lead to normative behavior.

Discrimination Behavior

Before discussing the e↵ect of Type 1 conservatism on Type 2 criteria, we need to consider the secondary results of our study pertaining to discrimination behavior. Observers were generally conservative in the placement of the discrimination criterion, k 1 , as most participants were best described by a model with some form of conservatism, with the majority best fit with two or three separate ↵ parameters. In the Type 1 model comparison, the winner was the non-additive conservative model (⌦ 1,3↵ ), where three ↵ parameters were needed to capture discrimination behaviour [START_REF] Healy | Probability matching and the formation of conservative decision rules in a numerical analog of signal detection[END_REF]. Despite Bayesian model selection favoring the non-additivity model, only 40% of our sample population was best fit by this model, which is as similarly inconclusive as it was for previous attempts at testing additivity [START_REF] Stevenson | Judgement and decisionmaking theory[END_REF]. We found significant di↵erences at the individual-subject level, but not at the group level, that conservatism was stronger when the payo↵s were asymmetric than when the priors were asymmetric. Thus, the observed di↵erences in conservatism for priors and payo↵s in our study were less apparent than in most previous studies [START_REF] Lee | Factorial e↵ects in the categorization of externally distributed stimulus samples[END_REF][START_REF] Ulehla | Optimality of perceptual decision criteria[END_REF][START_REF] Healy | Probability matching and the formation of conservative decision rules in a numerical analog of signal detection[END_REF][START_REF] Maddox | Toward a unified theory of decision criterion learning in perceptual categorization[END_REF][START_REF] Ackermann | Suboptimal decision criteria are predicted 754 by subjectively weighted probabilities and rewards[END_REF], but not all [START_REF] Healy | The e↵ects of payo↵s and prior probabilities on indices of performance and cuto↵ location in recognition memory[END_REF].

Several factors may have contributed to the observed Type 1 conservatism. One hypothesis is that observers trade o↵ between maximizing gains and maximizing accuracy (Maddox and Bohil, 1998), as it may be hard for the observer to sacrifice accuracy for expected gain. In Section 4 of the Supplementary Information, we demonstrate that gainaccuracy trade-o↵ model of conservatism is equivalent to our ⌦ 1,2↵ model, indicating that the gain-accuracy trade-o↵ strategy alone cannot account for the observed nonadditivity. Alternatively, conservatism could depend on the criterion-adjustment strategy [START_REF] Busemeyer | An adaptive approach to human decision 766 making: Learning theory, decision theory, and human performance[END_REF], which suggests that observers will not shift their criterion far from neutral for an inconsequential gain, causing them to fall short of optimal. Nonadditivity is possible due to the non-linear e↵ects on the slope of the expected-gain function from combining asymmetric priors and payo↵s. However, 30% of observers placed their criterion beyond the optimal criterion in the double-asymmetry conditions, which is inconsistent with a reluctance to shift the criterion su ciently from neutral. In fact, these criteria are biased in the direction of the accuracy-maximizing criterion, as would be expected under the gain-accuracy trade-o↵ hypothesis. A mix of gain-accuracy trade-o↵ strategy and criterion-adjustment strategy [START_REF] Maddox | A theoretical framework for understanding the e↵ects of simultaneous base-rate and payo↵ manipulations on decision criterion learning in perceptual categorization[END_REF], that could produce both unequal conservatism and non-additivity, would better explain our results.

A metacognitive source of conservatism proposed by [START_REF] Kubovy | A possible basis for conservatism in signal detection and probabilistic categorization tasks[END_REF] implicates d 0 in Eq. 5. Observers likely form an estimate of their overall performance from experience with the task. If they happen to overestimate performance (i.e., d0 > d 0 ), then it follows from Eq. 5 that k 1 < k opt . Note that this is not confidence for a given discrimination response, but a metacognitive appraisal of the di culty of the task, such as the expected performance indicated by the uncertainty in the stimulus [START_REF] Zylberberg | Variance misperception explains illusions of confidence in simple perceptual decisions[END_REF]. According to this hypothesis, most of the observers would have been overestimating performance to be conservative, with the one observer with liberal criterion placement underestimating their performance. Observations of overconfidence are a common finding in metacognitive studies [START_REF] Baldassi | Visual clutter causes high-magnitude 759 errors[END_REF][START_REF] Mamassian | Overconfidence in an objective anticipatory motor task[END_REF][START_REF] Zylberberg | Variance misperception explains illusions of confidence in simple perceptual decisions[END_REF][START_REF] Mamassian | Visual confidence[END_REF][START_REF] Lebreton | Two sides of the same coin: Monetary incentives concurrently improve and bias confidence judgments[END_REF][START_REF] Charles | Evidence for metacognitive bias in 769 perception of voluntary action[END_REF] as is conservatism [START_REF] Lee | Factorial e↵ects in the categorization of externally distributed stimulus samples[END_REF][START_REF] Ulehla | Optimality of perceptual decision criteria[END_REF][START_REF] Healy | Probability matching and the formation of conservative decision rules in a numerical analog of signal detection[END_REF][START_REF] Maddox | Toward a unified theory of decision criterion learning in perceptual categorization[END_REF][START_REF] Ackermann | Suboptimal decision criteria are predicted 754 by subjectively weighted probabilities and rewards[END_REF].

However, overestimation of discrimination performance by itself is an insu cient explanation for conservatism, as it cannot explain the di↵erences in the degree of conservatism for priors versus payo↵s, observed for some participants, or the non-additivity results. But, if performance estimations di↵ered under manipulations of priors versus payo↵s, specifically larger overestimations of performance for asymmetric payo↵s, conservatism would be larger for payo↵s than priors. Furthermore, it is entirely plausible that the contribution of priors and payo↵s to performance estimation is non-linear, which would result in non-additivity of criteria.

Finally, we note that a simple experimental factor may have encouraged conservatism in general. By starting testing with the symmetrical prior-payo↵ design in the thresholding procedure and initial testing session, this session order may have encouraged participants to anchor the Type 1 decisions to the neutral criterion. However, this explanation cannot account for observed unequal conservatism or non-additivity. Overall, we conclude that the conservatism observed in this task is likely due to more than one of the following possible factors: noisy behavior, strategies to trade o↵ gain versus accuracy, sub-optimal criterion adjustment, and biases in participants' judgments of their own d 0 .

Type 1 Conservatism Applied to Type 2 Judgments

It is currently a matter of debate whether the internal sensory measurement used by the perceptual decision-making system is the same or similar to that used by the metacognitive decision-making system (e.g., [START_REF] Resulaj | Changes of mind in decision-making[END_REF][START_REF] Fleming | Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation[END_REF][START_REF] Peters | Perceptual confidence neglects decision-incongruent evidence in the brain[END_REF]. The standard SDT framework assumes the same internal measurement is used for both Type 1 and 2 judgments. However, there is substantial evidence to suggest that additional noise is applied to the internal measurement between the Type 1 and 2 judgments (Maniscalco and Lau, 2012;Fleming and Lau, 2014;Maniscalco and Lau, 2016;[START_REF] Bang | Sensory noise increases meta-cognitive 761 e ciency[END_REF]. We found supporting evidence of additional metacognitive noise in the form of reduced metacognitive sensitivity (a ratio of meta-d 0 to d 0 of 0.86 ± 0.04;

see Section 1 of the Supplementary Information), which we incorporated into our SDT model. We also consistently found that Type 1 conservatism carried over into the Type 2 confidence-criteria placement for the observers best fit by the gains-shift and normativeshift model classes. This raises a di↵erent, but related question: to what extent are decision-related parameters of the system, such as criteria placement, shared between the perceptual and metacognitive systems? And how is this information shared from the Type 1 to the Type 2 response? We speculate on several possibilities.

First is the simplest scenario: the Type 1 and Type 2 processes are computed jointly using the same information, with confidence being an additional readout of the same decision mechanism. However, in addition to the evidence of additional metacognitive noise, there is considerable evidence that neural processing occurs in distinct regions for perceptual and metacognitive decision-making [START_REF] Shimamura | Toward a cognitive neuroscience of metacognition[END_REF][START_REF] Fleming | Neural basis of metacognition[END_REF][START_REF] Rahnev | Causal evidence for frontal cortex organization for perceptual decision making[END_REF][START_REF] Shekhar | Distinguishing the Roles of Dorsolateral and Anterior PFC in Visual Metacognition[END_REF], suggesting this is unlikely the case.

Second, the Type 1 system might convey only relative information to the Type 2 system, such as how far the measurement was from the decision boundary, rather than noisily propagating the internal measurement itself. In this scenario, the additional metacognitive noise could be a result of computing this di↵erence. A relative measurement also has the advantage over the other hypotheses that it only requires one piece of information to be sent to the Type 2 system (i.e., the relative measurement and not context information). Despite being e cient, this hypothesis is not supported by our results. Given that the neutral-fixed observers were able to dissociate k 1 and k ⇤ 1 by keeping the latter fixed at the neutral criterion, this suggests that the Type 2 system does not receive an internal measurement coded relative to the discrimination criterion k 1 .

Third, the Type 2 system might be independent of the Type 1 system, but receives the same context information. It also produces conservatism, but is flexible enough to allow k ⇤ 1 to be independent of k 1 . All types of observers (gains-shift, normative-shift, and neutral-fixed) can be explained by such a Type 2 system. However, given the flexibility of such a system, why weren't observers able to reduce the influence of the payo↵ structure at the second processing step?

Fourth, the Type 1 system might directly inform the Type 2 system of both its decision boundary k 1 and the internal measurement. The gains-shift observers then can yoke their confidence criteria to k 1 , whereas the neutral-fixed observers can ignore this extra k 1 signal. This system is both relatively simple and explains the results of the majority of observers. Thus, we favor this interpretation, in which the discrimination decision boundary is propagated to the Type 2 system. Further work is required to understand why normative metacognitive behavior was not achieved, and why some observers may or may not incorporate k 1 into their confidence judgment.

Stability of Criteria, Sensitivity, and Response Bias

Often of concern when conducting psychophysical experiments is whether assumptions of criterion stability are valid. In some circumstances, criterion shifts within an experimental session are appropriate and expected, such as Type 1 criterion shifts in response to variable priors [START_REF] Norton | Suboptimal Criterion Learning in Static and Dynamic Environments[END_REF][START_REF] Zylberberg | Counterfactual reasoning underlies the learning of priors in decision making[END_REF] or Type 2 criterion shifts when intermixing stimuli of varying di culty [START_REF] Zylberberg | Variance misperception explains illusions of confidence in simple perceptual decisions[END_REF]Adler and Ma, 2018). In scenarios where they should be fixed, the best practices to encourage stable criteria are to only use one pair of stimuli (i.e., fixed di culty), collect the data in a single session, and to not combine data across participants [START_REF] Macmillan | Detection Theory: A User's Guide[END_REF]. We met all recommendations, as we ensured context e↵ects were kept constant within an individual session as would be done for fixing di culty (although our models did include some assumptions about criterion stability across sessions, see Models). However, issues of unstable criteria can occur even in studies with unchanging context (e.g., [START_REF] Yu | Sequential e↵ects: Superstition or rational behavior?[END_REF] or fixed di culty (e.g., Maniscalco and Lau, 2012). Type 2 criterion instability, indicated in the latter example, is mathematically equivalent to additional noise between the perceptual and confidence decisions (Maniscalco and Lau, 2016), which our models incorporate as meta-d 0 (see Supplementary Information, Section 1). But, more generally, how may criterion instability interact with our models? No particular patterns were evident between the best-fitting model and estimated d 0 , meta-d 0 , or their ratio (Supplementary Information, Section 1), although a larger sample of participants is likely needed to resolve any small di↵erences. Otherwise, we predict that unstable criteria impact the overall quality of the model fits, but do not introduce a bias in the Type 2 model selection.

Another concern is whether perceptual sensitivity remained stable across sessions or improved due to perceptual learning. As our analysis pooled all the d 0 estimates from each session for an individual into a single estimate, a learning e↵ect would likely impair model fit. However, we found no evidence of perceptual learning (see Supplementary Information, Section 3). Similarly, it is possible that information about prior asymmetries changed the response bias of participants (Hu and Rahnev, 2019), which would make our decision to pool over all sessions to get a single response-bias parameter inappropriate. Our additional analyses found no evidence that biases were smaller when prior probabilities were asymmetric (see Supplementary Information, Section 3).

Conclusion

By manipulating priors and payo↵s in a perceptual task, we found natural confidence judgments were non-normative in one of two ways: 1) observers did not consider the role of priors or 2) they incorporated payo↵s, which accord with the neutral-fixed and gainsshift classes of models respectively. Both of these strategies hinder decision-making. For example, a radiologist who ignores prior probabilities when assigning confidence might hesitate to recommend further tests for a patient who is a heavy smoker. Similarly, a radiologist who inappropriately incorporates payo↵s may be more confident in a positive diagnosis if he receives kickbacks from the imaging center to encourage future scans. The patterns of behavior found in this task point to explanations of why humans may consider trade-o↵s between maximizing gain and maximizing accuracy, as well as provide new insights about the role of the decision boundary in Type 1 versus Type 2 computations. The secondary results of our study pertained to the discrimination behavior.

Type 1 judgments were conservative, with unexpectedly similar degrees of conservatism for payo↵s and priors, and when both priors and payo↵s were asymmetric, we found that the criterion shifts were non-additive in contradiction with the predictions of SDT. 

a)

Internal Measurement

k 2 k 2+ A -B C- D b) Type 1: k 1 Internal Measurement
Type 2: criteria can be empirically calculated as per the standard method for deriving a criterion in Signal Detection Theory (SDT):

k 2 k 2+ ! ! ! c) 0.5 1 
k 2 = 1 2 ⇥ z(pA) + z(pB) ⇤ (S2)
and

k 2+ = 1 2 ⇥ z(pC) + z(pD) ⇤ . ( S3 
)
The corresponding regions A-D are best demonstrated graphically (Figure S1a). To compute meta-d 0 , we used an average of two d 0 -like measurements, from the empirical upper and lower confidence bounds respectively:

meta-d 0 ij = 1 2 ⇥ z(pA ij ) z(pB ij ) + z(pD ij ) z(pC ij ) ⇤ . ( S4 
)
The concept behind computing a separate sensitivity parameter for confidence is that additional noise may have been applied to the internal measurement between the Type 1 and Type 2 decisions (Maniscalco and Lau, 2016). In the standard SDT framework, the variances of the distributions are fixed, and so the additional noise is modeled as a shift in distributions means (see Figure S1b). As such, we use the confidence bounds to estimate the relative separation of p(x|S L ) and p(x|S R ) with this additional metacognitive noise. These confidence bounds can then be represented in the original Type 1 space by a simple transformation meta-d 0

d 0 k 2,space2 ! k 2,space1 , (S5) 
as explained by Maniscalco and Lau (2012) and illustrated in Figure S1b.

In the hierarchical Bayesian model, each observation j of d 0 for participant i was assumed to be drawn from a normally-distributed subject-specific prior,

d 0 ij ⇠ N (d 0 i , 2 i ), (S6)
where d 0 i is the aggregate estimate of that participant's d 0 for our next stage in modeling, and 2 i is their sensitivity variance, capturing both noise in the calculation from a limited number of samples and sessional changes in sensitivity (e.g., attention, motivation). Similarly, we modeled the estimates of meta-d 0 as meta

-d 0 ij ⇠ N (meta-d 0 i , 2 i ). (S7)
Again, we have a subject-level estimate of sensitivity, meta-d 0 i , for our modeling. The same variance parameter was used for both Type 1 and Type 2 estimates, because factors influencing noise in the observations are likely to be similar for both sensitivity measures. We also incorporated hyperpriors for both sensitivity measures, leveraging additional information we had about what to expect for these values. For d 0 , we used a normally-distributed hyperprior with a mean of 1.

d 0 i ⇠ N (1, 2 Type1 ), (S8) 
This decision was based on our expectations from the thresholding procedure, where the stimulus was adjusted to find d 0 = 1, and thus, on average, we expected this sensitivity for the observers in the main task. The population variance was 2 Type1 . We also used the following hyperprior for meta-d 0 :

meta-d 0 i ⇠ N (0.8d 0 i , 2 Type2 ). (S9)
Based on previous results, we expected the meta-d 0 of a participant to be, on average, about 80% of their d 0 sensitivity measure (Maniscalco and Lau, 2012). Thus, the mean of the metad 0 hyperprior was adjusted on a per-subject basis. There was a shared variance parameter, 2 Type2 , representing variations in meta-cognition across participants in the same manner as 2 Type1 . To ensure good model behavior, all free parameters had reasonable bounds imposed via a uniform prior either in addition to or in lieu of the other prior distributions described above: [0, 3] for d 0 i and meta-d 0 i , and [0.1, 5] for i , Type1 , and Type2 . The model was fit using custom-written scripts in the R and RStan programming languages [START_REF] Carpenter | Stan: A probabilistic programming language[END_REF], which implemented an MCMC fitting algorithm with 4000 iterations for each of 4 separate chains. The first half of the iterations were discarded as warmup. Parameter estimates and confidence intervals were calculated from the marginal posteriors (i.e., from the mean and percentile ranges of the samples).

The results of the model of Type 1 and Type 2 sensitivity are shown in Figure S1c. In general, there was greater sensitivity at the Type 1 level than at the Type 2 level, as expected (Maniscalco and Lau, 2012). The ratio of Type 2 to Type 1 sensitivity, also known as the m-ratio in the confidence literature (Fleming and Lau, 2014), was 0.86 ± 0.04 (mean±SEM). On average, participants' variability in d 0 over sessions was ˆ i = 0.19 ± 0.02 (mean±SEM).

Across participants, we saw a variability in Type 1 sensitivity of ˆ Type1 = 0.37 (95% CI: [0.23, 0.60] according to the posterior distribution of parameter fits), and at the Type 2 level, ˆ Type2 = 0.12 (95% CI: [0.1, 0.35]).

Multinomial Decision Model

Model fitting was performed in three sequential steps: (1) fitting of d 0 and meta-d 0 , (2) Type 1 models, and (3) Type 2 models. In each case, the best-fitting parameters (and the best-fitting model in the Type 1 case) from one step were fixed while fitting models in the subsequent step. Fitting d 0 and meta-d 0 was explained in the previous section.

For Type 1 fits, we chose a dense grid of parameters, bias ( ) and between zero and three conservatism parameters (↵), with which to calculate the likelihood. The likelihood was a binomial across the two possible discrimination responses. We assumed a fixed lapse rate, = 0.02, for all participants, so

P (data | ✓) = Y stim2{L,R} Y resp2{"L","R"} ✓ /2 + (1 ) p(resp | stim, ✓) ◆ N resp,stim , (S10) 
where N resp,stim is the number of trials in which that response was made for the discrimination of that stimulus. The probability of a response is given by the corresponding area under the normal distribution, as in standard SDT. We fixed the variances of the internal response distributions to be 1, and positioned them based on the participant's sensitivity at locations ±d 0 /2. Therefore, the probabilities for the correct responses, for example, were:

p("L" | L) = ✓ + k 1 + d 0 2 ◆ (S11) and p("R" | R) = 1 ✓ + k 1 d 0 2 ◆ , (S12) 
where is the standard cumulative normal distribution. Note here that k 1 is calculated from d 0 and ↵ according to the Type 1 model.

The Type 2 fits inherited bias ( ) and various conservatism (↵) parameters from the Type 1 model fits. The d 0 and meta-d 0 values were inherited from the hierarchical d 0 model fit. Thus, the counterfactual criterion k ⇤ 1 was already fixed, and the Type 2 modeling involved only a single free parameter, . Responses were modeled as a multinomial distribution with four possible responses to each stimulus, defined by the combination of the discrimination and confidence responses. We used the same lapse rate, but the probability of a particular random response was now halved because there were twice as many possible outcomes:

P (data | ) = Y stim2{L,R} Y resp2{"LH","LL","RH","RL"} ✓ /4 + (1 ) p(resp | stim, ) ◆ N resp,stim . 
(S13) The probabilities of each response depend on the Type 2 criteria, for example:

p("LH"|L) = ✓ k 2 + d 0 2 ◆ (S14) p("LL"|L) = ✓ k 1 + d 0 2 ◆ ✓ k 2 + d 0 2 ◆ (S15) p("RL"|R) = ✓ k 2+ d 0 2 ◆ ✓ k 1 d 0 2 ◆ (S16) p("RH"|R) = 1 ✓ k 2+ d 0 2 ◆ (S17)
k 2 and k 2+ are the e↵ective left and right confidence criteria respectively, and was left out of these equations for readability. In the double-asymmetry conditions, it is possible for an observer's Type 1 criterion to be outside the intended symmetric bounds of the Type 2 criteria with a small enough , as in Figure 1f. In this case, the e↵ective k 2 is actually equal to k 1 . Concretely, this would happen if an observer was highly confident that the stimulus was right-tilted, but the potential rewards are so asymmetric that they respond left-tilted anyway. Because of the potential for these cases, k 2 and k 2+ were not simply k ⇤ 1 ± , but rather

k 2+ = max(k 1 , k ⇤ 1 + ) ( S 1 8 ) k 2 = min(k 1 , k ⇤ 1 ). (S19)
We used flat priors on all parameters, so we calculated model evidence by marginalizing across each dimension of the posterior.

p(data|M ) = Z p(data|✓, M )p(✓)d✓ (S20)
To do this, we numerically integrated the posterior of our parameter grid with a rectangular approximation by summing the volume of each grid element:

p(data | M ) ⇡ X ✓ p(data | ✓, M ) x ✓ , (S21) 
where x ✓ is the product of step sizes for each dimension in the parameter grid. The model evidences for all models and all participants were used to compute the protected exceedance probability with the SPM12 Toolbox (Wellcome Trust Centre for Neuroimaging, London, UK) according to Rigoux et al. (2014).

Model Checks and Fits for All Subjects

Two of the model parameters make clear predictions about behavior. The fitted response bias parameter, , should be negatively correlated with the total proportion of trials the participants responded "right." Positive values indicate a rightward tilted line is perceived as vertical, leading to fewer rightward responses overall. Figure S2a confirms this relationship (r = 0.995, p < .0001). The average bias is = .04 ± .06, with 70% of participants significantly biased according to the posterior parameter distribution. Also, , half of the distance between the Type 2 criteria, should be inversely correlated with the proportion of "high confidence" reports; larger values of expand the low-confidence region (compare Figures 1e andf). This predicted relationship was obtained (Figure S2b; r = 0.986, p < .0001; = 1.00±0.13). These predictions are not trivial: idiosyncratic biases in one condition may disappear or reverse on a subsequent day in the inverse condition. Nevertheless, we find that the and parameters are meaningfully capturing patterns of behavior.

We used a single value of d 0 for each participant in our models, thereby assuming perceptual sensitivity had plateaued after the initial thresholding sessions (i.e., that d 0 was stable across sessions of the main experiment). We tested this assumption by checking if empirical d 0 increased with session (Figure S3a). We found no evidence that d 0 increased over session (linear mixed model with participant as random e↵ect and session and intercept as fixed e↵ects; analysis of deviance, Type II Wald chi-square test; 2 1 = 3.09, p = .08). Our models have a single subject-specific response bias, , for all sessions. However, a prior asymmetry may reduce the response bias (Hu and Rahnev, 2019). Therefore, we ) is plotted for each participant and session. We found no evidence that d 0 increased over sessions, permitting the use of a single, fitted d 0 in our models. b) Response bias by condition. For each participant, estimated response-bias magnitude in the full symmetry condition is plotted against estimated response-bias magnitude in prior asymmetry condition pair and payo↵ asymmetry condition pair. Response-bias magnitude was calculated by taking the absolute value of the empirical estimate of . For the full-symmetry case, the empirical was simply k 1 . In the asymmetric cases, we calculated the midpoint between the k 1 from the mirrored conditions. Colors: participant.

tested if the bias was smaller during the prior-asymmetry condition than during the fullsymmetry and payo↵-asymmetry conditions (Figure S3b). We took the baseline responsebias magnitude to be the absolute value of the discrimination criterion, k 1 , from the fullsymmetry condition because in this condition, the optimal criterion is neutral (k opt = k neu ), and therefore any criterion shift away from neutral was likely due to a response bias. We assumed that opposite single-asymmetry conditions (rows or columns in Figure 2c) would shift k 1 by an equal but opposite amount. Therefore, we estimated response-bias magnitude in the single-asymmetry conditions to be the absolute value of the mean of the empirical k 1 from each pair of asymmetry sessions. We selected the absolute value of all response biases in order to compare their magnitudes in the di↵erent conditions. We found no evidence that bias was reduced during the prior-asymmetry condition, as illustrated by Figure S3b 
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Figure S6: Comparison of the empirical and predicted k 1 and k ⇤ 1 for participants 1-5. Top row: empirical criteria. k ⇤ 1 was calculated as the midpoint between the two empirical k 2 (see Figure S1 for k 2 calculation details). Left column: predicted relationship between the Type 1 and Type 2 criteria (d 0 = 1; all ⌦ 1,1↵ with ↵ = 0.5). Grey and square symbols: symmetry conditions. Triangles: prior asymmetry. Blue symbols: payo↵ asymmetry. Polar plots: residuals between empirical data and model prediction based on best-fitting parameters, plotted as vectors. Arrowheads: residuals greater than plot bounds. Here, we show how the gain-accuracy trade-o↵ strategy of Maddox and Bohil (1998) is equivalent to the ⌦ 1,2↵ model. The gain-accuracy trade-o↵ strategy can be expressed mathematically as a weighted sum between the gain-maximizing criterion, k opt , and the accuracymaximizing criterion, k p , with weight w (0  w  1). We also applied a single general conservatism parameter in this weighting strategy, which can be thought of as acting on each separate component or equivalently to the sum of the components. A simple rearrangement shows how these two models are equivalent:

↵ v k v + ↵ p k p = w↵k opt + (1 w)↵k p = ↵(wk v + wk p + k p wk p ) = ↵(wk v + k p ) = ↵wk v + ↵k p (S22)
Therefore, we find that di↵erent degrees of conservatism for priors than payo↵s can arise as a result of weight values less than 1. Specifically, the weight value contributes to an increase in a general level of conservatism, ↵ v = ↵w and ↵ p = ↵, where the constraint w  1 ensures that ↵ v  ↵ p . If w = 1, then ↵ v = ↵ p = ↵, which is the single conservatism model ⌦ 1,1↵ .

Figure 2 :

 2 Figure 2: Experimental methods. a) Trial sequence including an outline of the initial condition information screen (see part (b) for details) and final (mock) leaderboard screen. Participants were shown either a right-or left-tilted Gabor and made subsequent Type 1 and Type 2 decisions before being awarded points and given auditory feedback based on the Type 1 discrimination judgment. b) Sample condition-information displays from a double-asymmetry condition. Below: Example Gabor stimuli, color-coded blue for leftand orange for right-tilted. The exact stimulus orientations depended on the participant's sensitivity. c) Condition matrix. Pie charts show the probability of stimulus alternatives (25, 50, or 75%) and dollar symbols represent the payo↵s for each alternative (2, 3, or 4 pts). Squares are colored and labeled by the type of symmetry. d) Timeline of the eight sessions. The order of conditions was randomized within the single-and within the double-asymmetry conditions.

Figure 3 :

 3 Figure 3: Model comparison for the Type 1 and Type 2 responses. a) The protected exceedance probabilities (PEPs; see text for details) of the four Type 1 models. b) PEPs of the five Type 2 models. Note that model comparisons were performed first for Type 1 and then for Type 2 responses, using the best-fitting Type 1 model and parameters, on a per-subject basis, in the Type 2 model evaluation. c) Best-fitting models for each participant. Purple: normative-shift models, green: gains-shift models, yellow: neutralfixed model.

k 1

 1 and k ⇤ 1 for each session are shown for each model, assuming d 0 = 1 and either ⌦ 1,opt or ⌦ 1,1↵ where ↵ = 0.5. In the top row, empirical criteria from the same two example participants as in Figure4are shown. Empirical criteria are calculated with the standard SDT method (detailed in Section 1 of the Supplementary Information, see FigureS1).The visualization in the top row and left-most column of Figure5illustrates several

Figure 6 :

 6 Figure6: Conservatism for Type 1 decision-making. a) A comparison of the extent of conservatism under payo↵ versus prior asymmetries. Each data point represents the bestfitting conservatism parameters of a single observer when fit by ⌦ 1,3↵ . These parameters are only contingent on the conservatism in the single-asymmetry conditions. In this model, conservatism in the double-asymmetry conditions is captured by a separate model parameter. Darker marker fill: additional conservatism parameters were required to fit to that observer's data. Dashed line: equality line. Dark grey region: conservatism greater for prior than payo↵ manipulations (i.e., ↵ p < ↵ v ). Light grey region: conservatism is greater for payo↵s (i.e., ↵ p > ↵ v ). Data points outside these regions are not consistent with conservative criterion placement. b) Same as (a) using fit parameters from the bestfitting Type 1 model for each observer. c) Test of summation of criterion shifts using the ⌦ 1,3↵ model fits. Observers who required a third ↵ to capture their data (i.e., were best fit by ⌦ 1,3↵ ) had criterion shifts for the double-asymmetry conditions that were not well predicted as the sum of the shifts in the single-asymmetry conditions. d) Criterion placement in the double-asymmetry conditions. These are the same data as in the y-axis of (c), but extended to more easily compare the actual criterion placement with potential other task-relevant criteria. Horizontal criteria lines assume d 0 =1.

  Figure S1: a) Depiction of example regions for the approximate meta-d 0 calculation. Hatched regions correspond to the probability of a high-confidence judgment for the four possible pairings of stimulus and discrimination response. b) Example of greater sensitivity for perception (Type 1) than confidence (Type 2). In the standard SDT model, this corresponds to an inwards shift of the distributions for confidence. c) Contrast of d 0 and meta-d 0 results. Each data point is an observer, with 95% CIs derived from the posterior distribution of parameter estimates. Marker color indicates best-fitting Type 2 model. Dashed equality line is also shown for comparison.

Figure S2 :

 S2 FigureS2: Checks on the fitted model parameters. a) Relationship between the bias in perceived vertical ( ) and the proportion of "right-tilt" judgments. Red cross: results for an unbiased observer. b) Relationship between the confidence criteria width parameter, , and the proportion of "high confidence" judgments. Small leads to more high confidence reports (over-confidence). This predicted relationship is supported by the data. Error bars: 95% CIs from the posterior.

Figure S3 :

 S3 FigureS3: Checks on model assumptions. a) Type 1 sensitivity across session. Perceptual sensitivity (d 0 ) is plotted for each participant and session. We found no evidence that d 0 increased over sessions, permitting the use of a single, fitted d 0 in our models. b) Response bias by condition. For each participant, estimated response-bias magnitude in the full symmetry condition is plotted against estimated response-bias magnitude in prior asymmetry condition pair and payo↵ asymmetry condition pair. Response-bias magnitude was calculated by taking the absolute value of the empirical estimate of . For the full-symmetry case, the empirical was simply k 1 . In the asymmetric cases, we calculated the midpoint between the k 1 from the mirrored conditions. Colors: participant.

Figure S7 :

 S7 Figure S7: Comparison of k 1 and k ⇤ 1 for participants 6-10 in the style of Figure S5.
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  and statistically via paired t-tests (p > .05 for full symmetry vs. prior asymmetry; p > .05 for full symmetry vs. payo↵ asymmetry).The following figures show the results of all subjects in the style of Figures4 and 5of the main paper.

	Predicted	Subject 1	Subject 2	Subject 3	Subject 4	Subject 5
	Empirical					
	2,acc					
	⌦					
	2,acc+cons					
	⌦					
	2,gain					
	⌦					
	2,gain+cons					
	⌦					
	2,neu					
	⌦					
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To fit the models presented in this paper, we required an estimate of discrimination sensitivity (d 0 ) and metacognitive sensitivity (meta-d 0 ) for each observer. Each participant completed a threshold procedure to find the Gabor orientation that would yield a d 0 of 1. We could have used this for all analyses, however we sought to utilize all of the decisions made in the main task to better estimate d 0 , as well as obtain a reasonable estimate of meta-d 0 . To achieve this, we implemented a hierarchical Bayesian model that leveraged all possible sources of information to yield a single estimate of d 0 and meta-d 0 for each participant. We computed the empirical d 0 for participant i in session j of the main task according to the standard formula

where pH was the probability of selecting "right" when the stimulus was truly rightward tilted, pFA was the probability of selecting "right" when the stimulus was leftward tilted, and z refers to the standard z-transform. In a similar fashion, we approximated the meta-d 0 from the lower and upper confidence criteria, k 2 and k 2+ respectively. These confidence

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure S4: Raw and predicted response rates for participants 1-5. Grids are formed from the seven conditions (rows) and the eight possible stimulus-response-confidence combinations (columns). Condition order: (1) full symmetry, (2) single asymmetry (p(R) = .75), (3) single asymmetry (p(R) = .25), (4) single asymmetry (V R : V L = 4 : 2), (5) single asymmetry (V R : V L = 2 : 4), (6) double asymmetry (p(R) = .75, V R : V L = 2 : 4), (7) double asymmetry (p(R) = .25, V R : V L = 4 : 2). Fill: proportion of trials for that condition and stimulus that have that combination of response and confidence. Top row: Raw response rates. Subsequent rows: di↵erence between raw and predicted response rates as per each model. Green boxes: winning models.