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Abstract: Plant viruses rely on both host plant and vectors for a successful infection. Essentially to 
simplify studies, transmission has been considered for decades as an interaction between two 
partners, virus and vector. This interaction has gained a third partner, the host plant, to establish a 
tripartite pathosystem in which the players can react with each other directly or indirectly through 
changes induced in/by the third partner. For instance, viruses can alter the plant metabolism or plant 
immune defence pathways to modify vector’s attraction, settling or feeding, in a way that can be 
conducive for virus propagation. Such changes in the plant physiology can also become favourable 
to the vector, establishing a mutualistic relationship. This review focuses on the recent molecular 
data on the interplay between viral and plant factors that provide some important clues to 
understand how viruses manipulate both the host plants and vectors in order to improve 
transmission conditions and thus ensuring their survival.  

Keywords: virus; vector; plant host; transmission; manipulation; defence mechanisms; 
pathogenicity factor; suppressor of RNA silencing  

 

1. Introduction 

The vast majority of plant viruses that are economically important in agriculture are transmitted 
by vectors [1]. Insects, especially whiteflies and aphids, transmit more than 50% of all vectored-
viruses. Two main modes of transmission by vectors are described: persistent or non-persistent 
transmission, depending on the time window required by vectors to acquire and further disseminate 
the virus [2,3]. Non-persistently transmitted viruses are retained only for seconds to minutes in the 
insect stylets or foregut and rapidly released during salivation; internalisation into the vector body 
does not occur. Persistent (also called circulative) viruses have to be taken up through the digestive 
tract and enter the insect body where they traffic in the haemolymph to reach the salivary glands 
from which they are injected with the saliva into new host plants. The virus can remain in the insect 
for a very long period up to the end of its life [1,4]. A small number of virus species also replicate 
within the cells of the vector and this transmission mode is therefore called circulative propagative 
[3]. Whatever the virus retention site or the journey through the insect, transmission relies on specific 
interactions between viral proteins and vector proteins [5]. Viral determinants are particularly well 
characterized [2,4,6] while their vector counterparts, in particular the receptor cuticular proteins, are 
only beginning to be characterized [7]. 

Plant viruses induce during infection numerous changes in the physiology of the host during 
infection which can influence the vector’s behaviour and/or performance, and which can, as a 
consequence, modify viral propagation, a topic covered by many recent reviews [8–13]. The 
manipulative effects of plant viruses on their vectors operate at several levels: modified perception 
of visual and volatile sensory cues, feeding behaviour (depending on the nutritious quality of the 
plant) and fecundity [14]. These virus-induced changes occur indirectly through the host plant and 
play a role in most vectored virus transmissions. However, some viruses can also alter the vector 
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behaviour directly, which means the modifications occur within the vector itself after it has acquired 
virus [13]. This is evidently the case for persistently transmitted plant viruses that replicate within 
insect vectors [15]. A few examples of circulative non replicative viruses have also been documented. 
For instance, aphids carrying luteovirids (viruses of the Luteoviridae family) showed preference for 
non-infected plants while non viruliferous aphids were attracted by volatiles emitted by infected 
plants [16,17]. The interactions between viruses and vectors can range from detrimental (due to the 
poor quality or even toxicity of the infected plant) to beneficial (the vector performances are 
improved). In this latter case, the relationship can be considered as mutualistic and both partners 
proliferate to a greater extent than being alone [12]. 

Recent interest has focused on a limited number of pathosystems for which the molecular 
mechanisms set up in infected plants by specific viral proteins have been studied. They induce 
changes that are beneficial or detrimental to insects and as a consequence, to the virus itself when 
dissemination to other plants and survival is considered. Some of these changes modify the visual 
and olfactory cues of the plant to attract or promote feeding of the insect. More often a distinct viral 
factor will target the plant defence mechanisms triggered by the vector, which will thus be attenuated 
and favour the insect attraction, settlement and performance and, as a consequence, foster the viral 
[10,18]. This review summarises the latest findings on the viral gene products of two non-persistently 
and three persistently transmitted viruses belonging to some of the most economically important 
viruses pathogenic to crops. The discussed proteins were often initially identified as pathogenicity 
factors or suppressors of gene silencing, and the interacting plant factors or pathways, mainly as 
defence-related pathways. Some lines of future research are suggested to further unravel this 
particularly exciting field of interactions between viruses, plant hosts and vectors. 

2. The Interplay between CMV 2b and JA Signalling 

Cucumber mosaic virus (CMV, Bromoviridae family) is a non-persistent virus transmitted by over 
80 species of aphids and it has an extremely broad host range [19,20]. It causes a serious disease in 
agriculture. Retention of CMV particles to the stylets of the aphid vector and release from them occur 
during brief test punctures on infected and healthy plants, respectively, and is mediated by the 
interaction of specific amino acids of the coat protein with unknown aphid receptors [4]. A large body 
of evidence has accumulated showing that CMV-infected plants are generally more attractive to 
aphids (reviewed in [9–11]). However, in a few cases, opposite effects on host-aphid interactions were 
observed, depending on the combination of the three partners including the viral strain [12]. The 
seminal work by Mauck et al. [21] on this non-persistent model showed that the preference of two 
generalist aphid species for Fny-CMV (Fny strain)-infected squash plants was related to higher 
emissions of volatile organic compounds (VOC) released by these plants. However, the poor 
nutritious quality of the infected plants incited the aphids to emigrate to new plants. A model 
conducive for non-persistent transmitted viruses, also called “push-pull strategy”, was proposed in 
which an initial increase in aphid attractiveness by deceptive volatiles is followed by feeding 
deterrence by plants distasteful to the insects, a situation favouring rapid dissemination of these 
viruses that are acquired during brief aphid punctures in the epidermis and mesophyll of infected 
leaves [22].  

Most reports on molecular mechanisms that rule plant and aphid changes induced by CMV 
infection focus on the 2b protein. 2b is the RNA silencing suppressor (RSS) of CMV. RNA silencing 
(or RNA interference, RNAi) is a highly conserved mechanism that inactivates gene expression to 
regulate a wide range of biological processes including antiviral defence [23,24]. Viruses are both 
inducers and targets of RNA silencing. RNAi-mediated antiviral plant immunity is triggered by 
double-stranded RNA (dsRNA) derived from replication intermediates of RNA viruses, secondary 
RNA structure or bidirectional transcription of DNA viruses. dsRNA is processed by RNAse III-type 
enzyme Dicer-like proteins (DCL) into viral small RNA duplexes (viRNA). The viRNAs are then 
loaded into ARGONAUTE (AGO) proteins, the main components of the RNA Induced Silencing 
Complex (RISC) that is able to cleave the target RNA (e.g., the viral RNA) sequence specifically. To 
counteract this defence mechanism viruses have developed proteins called RNA silencing 
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suppressors (RSS) that interfere with the RNAi pathway at virtually all steps. The case of the CMV 
2b protein is remarkable. Despite its small size (11.5 kDa) several modes of action and targets have 
been reported (reviewed in [25,26]) such as dsRNA binding to prevent the long distance spread of 
signalling signals, interacting with AGO1 to inhibit RISC slicer activity, and with AGO4 to modulate 
endogenous transcription. 

In a series of articles, the group of Carr investigated the role of 2b in plant defence signalling and 
its link to aphid transmission. By a transcriptional approach using transgenic arabidopsis plants 
constitutively expressing the 2b protein (Fny-CMV strain) they found that the viral protein repressed 
the expression of 90% of the genes regulated by jasmonic acid (JA), but not those involved in JA 
biosynthesis [27]. Conversely, a number of genes normally unaffected by salicylic acid (SA) became 
responsive. As JA is an important regulator in insect resistance, including aphids and whiteflies [28], 
Lewsey et al. [27] hypothesized that the 2b protein alters the hormonal balance in CMV-infected 
plants and thereby generates favourable conditions to promote aphid-mediated virus transmission. 
This hypothesis was confirmed by Ziebell et al. [29] who showed that a CMV∆2b mutant which does 
not express the 2b protein, elicits strong resistance to aphids in tobacco plants.  

More recently, Wu et al. [30] explored the molecular strategy developed by the 2b protein (SD-
CMV strain) to repress JA-signalling. They showed that like in the former experiments on squash [21] 
aphid vectors were attracted by odours emitted by CMV-infected arabidopsis. Attraction was 
specifically correlated to the presence of 2b, as shown both with transgenic plants expressing the 2b 
protein and with CMV-infected plants, compared to plants infected with CMV∆2b. Wu et al. [30] 
further demonstrated that the 2b protein specifically and directly interacted with several JAZ proteins 
(in particular with JAZ1). JAZ proteins are the key repressors of JA signalling [31,32]. Under 
controlled conditions, the low JA level favours the accumulation of JAZ proteins which bind to and 
repress the activity of transcription factors like MYC2 that positively regulate JA-responsive genes 
(Figure 1, panel A). Under stress conditions, JA level is highly increased and JA-specific degradation 
of JAZ proteins occurs via the 26S proteasome releasing the MYC factors which can activate the JA 
responses (Figure 1, panel B). When 2b binds to JAZ proteins, the JAZ degradation by the E3 ubiquitin 
ligase SCFCOI1 is repressed and JA signalling is inhibited. The higher attraction of aphids by plants 
expressing the viral 2b protein is recapitulated on arabidopsis mutants defective in JA perception 
(coi1-1) or in downstream JA-regulated genes (myc2/3/4) confirming that 2b represses JA-mediated 
signalling. This action is independent of its RSS activity as shown by the functionality of a 2b mutant 
lacking the RSS activity. Finally, the fact that the 2b proteins of different CMV host strains interact 
with JAZ proteins suggests an evolutionary conserved mechanism. 

As mentioned before, the outcome of an infection resulting from plant-aphid interactions can 
vary in different hosts and this can be elicited by different viral proteins. In contrast to the results on 
cucurbit plants [21] where Fny-CMV-infected plants emitted deceptive aphid-attracting volatiles and 
were of low nutrition quality, tobacco plants infected with the same strain did not modify the settling 
of aphids and were of higher quality for aphid survival and reproduction [33], a clear mutualistic 
situation. However, tobacco plants infected with CMV∆2b showed a dramatic reduction in aphid 
populations, indicating that the 2b protein was able to repress resistance to aphid infestation in 
tobacco. By using viral reassortants created by shuffling the genomic RNAs from Fny-CMV and LS-
CMV strains, Tungadi et al. [34] showed that in tobacco, Fny-CMV but not LS-CMV RNA 1 (or its 1a 
protein, a replication-associated factor) triggers resistance to aphids, while the 2b protein of both 
strains suppressed aphid resistance. In contrast, in arabidopsis aphid antibiosis is induced by Fny-
CMV 2b protein and 1a prevents 2b’s effect [35]. This shows that in the two host plants 1a and 2b 
proteins play antagonistic roles. The complexity of the interactions between the CMV proteins and 
the host factors was further exemplified [35]: in arabidopsis Fny-CMV induces the biosynthesis of the 
glucosinolate 4-methoxy-indol-3-yl-methylglucosinolate (4MI3M), an aphid deterrent molecule [36]. 
The synthesis of 4MI3M is under positive control of AGO1, which can be degraded by the RSS activity 
of 2b. This suggests that 2b can negatively regulate the accumulation of the toxic glucosinolate. An 
additional layer of regulation by the viral proteins 1a and 2a (the RNA-dependant RNA polymerase) 
has been proposed [35]. These studies, performed on one single pathosystem with two virus strains 
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and different plant hosts, highlight the complexity of the molecular interplay that drives the 
interactions between virus, plant host and vector. Such diversity in host adaptation, reported in 
several reviews [8,11,12], may become highly beneficial when aphids have to adapt to seasonal 
changes or host availability [35]. 

 
Figure 1. Model depicting the known targets of Cucumber mosaic virus (CMV)-2b, Tomato spotted wilt 
virus (TSWV)-NSs and begomovirus C2 and βC1 proteins in the pathways regulating plant defences 
and symptomatology. (A) In non-stressed conditions, the level of active jasmonate, Jasmonoyl-
Isoleucine (JA-Ile), is very low. JAZ repressors bind to MYC2 to repress its transcriptional activation 
on downstream genes of the JA signalling pathway. (B) Under herbivore insect attack, the strong 
increase of JA-Ile triggers the assembly of a JAZ-COI1 co-receptor that will be recruited by the E3-
ubiquitin ligase SCFCOI1 (SKP1/Cullin/F-box). JAZ repressors will undergo ubiquitination and be 
addressed to the 26S proteasome for degradation. (C) The transcription factor MYC2 and others are 
released and can activate the genes involved in JA response, like those in terpene biosynthesis, 
glucosinolate production, and other responses (grouped in the red box). During viral infection, viral 
suppressors of RNA silencing are produced and can antagonise some of these responses. Here are 
shown four of them, the CMV-2b (panel B), the begomovirus C2, the begomovirus satellite βC1 
(panels B and C) and the tospovirus NSs (panel C), interacting with their known targets 
compromising the SCFCOI1 complex activity (panel B) or some specific gene activations (panel C). Red 
bar-heads indicate the inhibitory effect of the viral proteins. The regulations between the various host 
genes are not reported. 
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3. Potyviruses: An Intriguing Strategy of Protein Relocalisation to Manipulate Aphids 

Potyviruses are one of the most widely distributed groups of plant viruses and many of them 
are efficiently transmitted by aphid vectors in a non-persistent manner [2,37]. Viral particles are 
transported to new plants by being transiently attached to the aphid’s stylets [4]. Former studies 
showed that aphids often prefer to settle on potyvirus-infected plants and reproduce better on them 
compared to control plants [9]. 

Casteel and collaborators conducted pioneer work to understand the mechanism underlying the 
potential synergism between Turnip mosaic virus (TuMV) and the aphid vector, Myzus persicae. In a 
first study, they transiently over-expressed ten individual TuMV proteins in Agrobacterium-
infiltrated Nicotiana benthamiana leaves and recorded their effect on aphid reproduction [38]. A single 
protein, the nuclear inclusion a-protease domain NIa-Pro, was found to significantly improve M. 
persicae’s growth and settling preference of apterous aphids. NIa-Pro is the main protease of TuMV 
cleaving the viral polyprotein into individual proteins. A non-specific DNAse activity has been 
demonstrated for the protein encoded by two other potyviruses [39,40], but no silencing suppression 
activity has yet been reported for NIa-Pro. The effect on aphid’s fecundity was reproduced on 
transgenic arabidopsis plants stably expressing the viral protein. Furthermore NIa-Pro-expressing 
leaves showed a significant reduction of callose induction, a well-characterized plant response to 
aphid feeding, suggesting a role of NIa-Pro in reducing plant defences. They further investigated the 
sub-localisation of NIa-Pro and could correlate the improvement of aphid performance to the 
targeting of the protein to the vacuole [41]. Using the same approach of transient expression of the 
GFP:NIa-Pro fusion protein in N. benthamiana, they showed that the presence of aphids triggered the 
relocalisation of the protein from the nucleus and cytoplasm to the vacuole, and that targeting is 
reversible. The high number of cells responding to aphids with vacuolar NIa-Pro suggested the 
existence of a systemic signal moving throughout the leaf to modify NIa-Pro’s localisation. This 
observation resembles a similar signalling event called transmission activation (TA) discovered in 
plants infected by Cauliflower mosaic virus, a virus transmitted by aphids in semi-persistent way [42]. 
TA occurs within seconds and is characterised by aphid-induced formation of transmissible viral 
complexes at the very early time points of aphid perception in viral-infected plants. Recently, a 
similar phenomenon has also been found with TuMV infections [43]. By using chemical drugs, 
Drucker and collaborators showed that TA depends on calcium and reactive oxygen species 
signalling for both viruses [44].  

Importantly, when GFP:NIa-Pro was expressed from the TuMV genome, the same relocalisation 
of the fusion protein to the vacuole was correlated to the aphid’s presence. NIa-Pro encoded by Potato 
virus Y, another aphid-transmitted potyvirus, behaved similarly suggesting that the vacuolar 
localisation is a conserved feature among members of the Potyvirus genus. Both plant-species specific 
and vector-specific factors seem to be involved as no effect was observed when the protein was 
transiently expressed in Nicotiana tabacum, and neither whiteflies nor leafhoppers were able to induce 
the strong relocalisation response of NIa-Pro. These observations suggest that NIa-Pro vacuolar 
targeting might be an important response to aphid’s presence aimed to inhibit aphid-induced plant 
defence signals potentially stored in the vacuole. 

Another line of research of Casteel’s group focused on the role of phytohormones in response to 
both TuMV and the aphid vector. They previously found that TuMV was able to reduce callose 
accumulation [38]. Using arabidopsis mutants and chemical inhibitors of ethylene (ET) synthesis they 
determined that TuMV can suppress plant resistance to M. persicae by altering the ET signalling 
pathway [45]. This effect was again attributed to NIa-Pro that alters a specific set of ET-responsive 
defence transcripts. Bak et al. [46] confirmed that ET production promoted aphid attraction to 
infected plants and virus spread with two potyvirus pathosystems on different host plants 
(PVY/potato and TuMV/arabidopsis) suggesting that ET signalling may be a general response to 
potyviruses.  
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4. Geminiviruses: Master Inventors of Outstanding Pathogenic Factors 

Geminiviridae represent a family of circular single stranded DNA viruses that are particularly 
successful in causing devastating diseases in many economically important crops worldwide [47]. 
They are persistently transmitted by whiteflies, leafhoppers, treehoppers and aphids in a circulative 
mode [3]. The most devastating and numerous of these viruses are the whitefly-transmitted 
geminiviruses (genus Begomovirus), which have emerged as major pathogens of crops worldwide [47–
49]. They are acquired from the phloem, translocated from the digestive tract into the haemolymph 
and then to the salivary glands. The viruses are transmitted via the saliva to a new host plant and can 
be retained in the insect for their entire life [6]. Tomato yellow leaf curl virus (TYLCV) interacts in the 
insect body with the symbionin protein produced by Bemisia tabaci endosymbiont which ensures 
stability to the virus [50]. Begomoviruses have either monopartite or bipartite genomes. Despite 
encoding only a few proteins, most begomoviruses are able to manipulate various host components 
and pathways. In particular, they have evolved diverse RSS targeting plant defence mechanisms and 
capable of reprogramming multiple pathways such as transcriptional and post-transcriptional gene 
silencing, hormonal responses, ubiquitin-dependant degradation, autophagy and antiviral 
chloroplast defence [51–53]. Most monopartite begomoviruses associate with betasatellites that 
enhance accumulation of the helper virus and are essential for induction of typical disease symptoms. 
Betasatellites share no significant sequence similarity with their helper virus, but depend on them for 
replication, movement in plants and insect transmission by trans-encapsidation [54]. They encode a 
single protein (βC1) that determines pathogenicity and symptom phenotype. Numerous studies have 
shown that βC1 is a key element targeted by plant defence mechanisms and able to repress and 
manipulate plant defences [54,55]. For instance, βC1 can reverse RNA silencing and interfere with 
two major protein degradation processes, the ubiquitin-proteasome system and the autophagy 
pathway [51].  

Owing to the diversity of host proteins involved in antiviral defence responses and targeted by 
begomoviruses and their betasatellites, it is conceivable that the RSS and/or the βC1 proteins may 
indirectly play a role in the feeding behaviour and reproduction of their whitefly vector. Yang et al. 
[56] addressed the molecular basis of βC1 pathogenic effect encoded by Tomato yellow leaf curl China 
Virus (TYLCCNV). Transgenic arabidopsis expressing βC1 phenocopied the severe disease 
symptoms naturally observed in virus-infected tobacco plants. The developmental defects were 
similar to those produced in plants overexpressing AS2, a plant transcription factor that functions 
together with AS1 to regulate leaf development. Interestingly βC1 was found to specifically interact 
with AS1, a negative regulator of plant immune response [57] by suppressing the accumulation of 
miR165/166 which mediate the cleavage of HD-ZIP III transcripts, regulators of leaf polarity. By 
binding to AS1, βC1 competes with AS2, antagonizes AS1/AS2 dimerization and modulates the 
expression of several leaf-specific and JA-responsive transcripts (Figure 1, panel C). The betasatellite-
induced symptoms could therefore be at least partially explained by the interference of βC1 with leaf 
morphogenesis. Moreover βC1/AS1 complexes trigger inhibition of several selective JA-responses 
which may attenuate plant defence response against whiteflies. This work provided the first 
experimental data in favour of a role of a betasatellite in the repression of the JA-regulated response 
that could potentially be beneficial to the vector.  

This hypothesis was later confirmed by the work by Zhang et al. [58] in which the betasatellite 
of TYLCCNV was shown to suppress the JA-regulated defences induced by whiteflies in tobacco and 
thus improve performances of the insects in infected plants. Similar responses on JA-responsive 
genes and whitefly population were observed on transgenic tobacco plants expressing the βC1 
protein.  

A founder study conducted by Li et al. [59] investigated the molecular basis of the lower 
resistance to whiteflies observed in plants infected with TYLCCNV and its betasatellite. By analysing 
the volatiles emitted by TYLCCNV-infected plants, they found that in presence of the satellite, 
emissions of terpenes were reduced by 75% and this effect was correlated with a significant increase 
in whitefly attraction. Plant terpenes function either as toxins to inhibit feeding and modify 
oviposition behaviour, or as repellent to whiteflies; but they can also attract natural predators 
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(parasitoids) [60]. Similar to infected plants, transgenic arabidopsis plants expressing βC1 produced 
less terpene and were more attractive to whiteflies which laid more eggs. In the same paper Li et al. 
[59] identified At-MYC2 as the direct target of βC1. As mentioned above MYC2 is a transcription 
factor and master regulator acting downstream of the JA biosynthesis pathway. myc-2 mutant lines 
showed significant reduction of terpene synthase transcripts and were more attractive to whiteflies 
than wild-type plants. By interacting with MYC2, βC1 also downregulates the glucosinolate-related 
resistance to whiteflies. Glucosinolates are secondary metabolites that have a defensive function 
against herbivorous insects [61]. Mechanistically the viral βC1 protein functions as an inhibitor of 
MYC2 dimerisation to manipulate MYC2-regulated terpene synthase genes, JA signalling and 
glucosinolate synthesis pathway, to suppress resistance against the whiteflies and promote 
begomovirus-whitefly mutualism (Figure 1, panel C). 

Interestingly in the absence of betasatellite, monopartite begomoviruses have developed other 
strategies to promote their vectors’ performance. For instance, the TYLCV encodes C2, a known 
transcription factor for viral genes and a suppressor of gene silencing [51] which can repress specific 
responses in plant hormone signalling, in particular JA-induced defences and secondary metabolism 
[62]. Li et al. [63] observed that TYLCV infection improved the survival rate of the whitefly vectors 
and increased their fecundity. C2-expressing transgenic plants phenocopied these effects and showed 
repression of specific genes of the JA signalling pathway involved in terpene biosynthesis. In the 
same paper Li et al. [63] also identified N. tabacum RPS27A (a protein with a ubiquitin domain fused 
to a ribosomal protein) that interacts directly with C2 through its ubiquitin domain. Silencing of 
RPS27A gene increased the performance of whiteflies which was correlated to inhibition of JAZ1 
degradation and repression of genes related to terpene synthesis [63]. Interaction between RPS27A 
and C2 seems evolutionarily conserved among satellite-less begomoviruses as RPS27A interacts with 
C2 from another monopartite begomovirus without betasatellite (PaLCuCNV) but not with C2 of 
TYLCCNV which is associated with a satellite able to promote the performance of whiteflies [64].  

Several pieces of evidence indicated that βC1 or C2 of different begomoviruses can interfere with 
several types of post-translational modifications such as ubiquitin-mediated proteasomal 
degradation, SUMOylation or phosphorylation [49,51]. No experimental data were produced to 
correlate these effects to a potential virus manipulation of the vector. However as seen before, βC1 
encoded by other betasatellites is directly involved in symptom induction and in repression of JA-
regulated genes. It is therefore worth mentioning here the following observations that may have a 
link with vector manipulation. Eini et al. [65] showed that expression of βC1 encoded by Cotton leaf 
curl Multan virus (CLCuMuV) in transgenic tobacco plants led to a global reduction in levels of 
polyubiquitinated proteins. CLCuMuV βC1 also interacted with Nicotiana benthamiana NbSKP1 
[66,67], an essential component of the SCF (SKP1-CUL1-F-box) complex of the E3 ubiquitin ligase 
family involved in polyubiquitination and subsequent degradation by the 26S proteasome [68] 
(Figure 1, panel B). SKP1 functions by linking the rest of the complex to an F-box protein, which 
provides specificity in binding to substrate proteins. Nearly 700 F-box proteins have been predicted, 
suggesting that plants have the capacity to form a plethora of SCF complexes controlling a multitude 
of biological processes, among which figure several hormone signalling pathways [68]. For instance, 
βC1 was shown to increase degradation of SCFCOI1 (JA receptor) and stabilize GIBBERELLIC ACID 
INSENSITIVE (GAI) a substrate of the SCFSYL1 leading to the repression of JA responses and 
gibberellic acid (GA) pathways, respectively [67]. Lozano-Duran et al. [69] also demonstrated that 
Tomato yellow leaf curl Sardinia virus (TYLCSV) C2 protein interacts with the catalytic subunit of the 
CSN (COP9 signalosome) complex, affecting the ability of the CSN to regulate E3 ubiquitin ligase 
complexes belonging to the SCF family. As a consequence, C2 impairs JA signalling pathway [62,69]. 
The consequences of JA signalling inhibition on vector behaviour and performance was not 
addressed in those articles, however it seems very likely that whatever the genome composition (with 
or without betasatellite), geminiviruses have developed a common strategy to suppress the JA 
response. Other lines of evidence have shown that geminiviruses interfere with more factors involved 
in ubiquitin-dependent proteosomal degradation but further link with vector manipulation was not 
investigated [66].  
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A recent outstanding report explored the case of begomoviruses able to reprogram plant 
immunity to promote the fitness of their whitefly vector and simultaneously reduce performance of 
two non-vector herbivores [70]. They showed that the βC1 proteins encoded by the satellites 
associated to Cotton leaf curl Multan virus (CLCuMuV) and to TYLCCNV can interact with the 
transcription factor WRKY20 and thereby induce a plant tissue-specific response against different 
herbivores. In arabidopsis WRKY20 is expressed in vascular tissue and regulates glucosinolate (GS) 
biosynthesis and other defensive compounds. By interacting with WRKY20, βC1 represses indolic GS 
biosynthesis in vascular tissues to benefit both the whitefly and the begomovirus while it induces 
aliphatic GS accumulation in non-vein organs to deter cotton bollworm, a non-vector leaf chewing 
herbivore. Furthermore, in non-stressed conditions WRKY20 represses SA signalling which is 
alleviated by the interaction with βC1. This leads to the activation of SA biosynthesis and signalling 
pathway. Deeper investigations are still required to gain a better understanding of these 
observations. 

5. Tospovirus: One More Virus Playing with JA Signalling 

The genus Tospovirus is the only plant-infecting genus in the Bunyaviridae family, the other 
genera infect vertebrates [71]. Tospoviruses have negative-stranded RNA, protected in enveloped 
virions. Tospoviruses are exclusively transmitted by thrips and the type member is Tomato spotted 
wilt virus (TSWV), efficiently transmitted by Frankliniella occidentalis. Both virus and vector have a 
particularly wide host range and a worldwide distribution, which makes this pathosystem extremely 
damaging for many economically important crops [71]. Transmission occurs in a persistent and 
propagative manner and replication within the vector is essential for high transmission. TSWV is 
acquired at the larvae stage but only adults can transmit the virus. From the midgut entry site, the 
virus moves to muscle cells and finally reaches salivary glands [71]. TSWV infection is known to 
influence behaviour, feeding and fecundity of the vector [72,73] and induce changes in the plant 
hormonal balance conducive to thrips performance [74]. Interestingly, by switching the host plant 
during vector development, adult thrips that were exposed to TSWV in their larvae stage showed a 
preference for healthy plants while the non-exposed thrips preferred the infected leaves [15]. This 
experiment is clearly a case of direct vector manipulation. 

In a recent study Wu et al. [75] investigated the molecular mechanisms underlying TSWV 
manipulation of the vector behaviour. TSWV-infected pepper or N. benthamiana were more attractive 
to thrips than healthy plants. At the molecular level, monoterpene synthase genes were induced by 
thrips infestation but repressed when plants were infected by TSWV. Conversely to non-infected 
plants, virus-infected-plants triggered a reduction in linalool emission which was correlated to the 
thrips preference. By producing individual TSWV proteins in peppers using a heterologous Potato 
virus X-expression system, NSs was found responsible for the change of the insect behaviour. NSs is 
a recognized RSS, functioning in both plants and insects, but its mode of action is not yet fully 
understood [76]. Wu et al. [75] further discovered that NSs interacts directly with MYC2 (Figure 1, 
panel C), but also with MYC3 and MYC4, three JA-responsive transcription factors. This finding 
correlates with the thrips’s clear preference for arabidopsis triple KO mutant myc2/3/4. This suggests 
that through its binding to MYC2, NSs could suppress the host defence mediated by MYC2, a core 
regulator of the JA signalling cascade. Therefore, Wu et al. [75] proposed that TSWV NSs represses 
JA signalling to attract thrips, increases their performance and thereby improves viral transmission 
and survival. This report provides an additional example of a viral pathogenicity factor that 
manipulates the JA signalling pathway induced by the herbivore vector (here thrips) to improve the 
plant traits for the vector’s benefit and finally for the virus’ propagation. 

6. Luteoviridae: Still a Puzzling Situation 

Members of the Luteoviridae family are persistent, circulative, non-propagative and phloem-
limited viruses [77]. Strictly transmitted by aphids, they are acquired by the vector during extended 
feeding on the phloem vessels. Their journey in the vector starts by crossing the gut barrier into the 
hemocoel to reach the salivary glands by successive endocytosis events, before being transmitted to 
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another host plant [4,77]. As mentioned above and conversely to non-persistent viruses, circulative 
viruses can remain viruliferous for very long periods. A large body of evidence has accumulated 
showing that viruses from the genus luteovirus and polerovirus alter the quality of their host plants, 
which then affects the aphid’s host preference, feeding behaviour and performance (reviewed in 
[9,10,13,18,78]). Infected plants become more attractive to aphid vectors than healthy plants and the 
aphid vectors often develop more rapidly and produce more offspring on infected hosts. This effect 
is qualified as an indirect vector manipulation by the virus through the host plant. Preferential 
colonisation of virus-infected plants by winged aphids was attributed to the yellowing of infected 
leaves, which are visually more attractive to aphids. However, apterous aphids settle preferentially 
on virus-infected plants, even in the absence of visual cues, indicating a prominent role of volatile 
emissions from infected plants that differ from non-infected plants [79,80]. Several studies have 
highlighted the difference in plant volatile organic compounds (VOC) composition in infected and 
non-infected plants, those induced by virus-infected plants being more attractive to vectors [81]. 
Interestingly, the VOC profiles also change with the development of viral infection which might 
account for the dynamic response of the aphids [82]. A few studies on luteovirids have also reported 
a direct role of the virus on the vector. Aphids carrying luteovirids showed a clear preference for non-
infected plants while non-viruliferous aphids were rather attracted by infected plants [80,83]. Ingwell 
et al. [16] reported that after having fed aphids on an artificial diet containing purified virus, aphids 
preferred to settle on healthy plants. Conversely aphids which had not been in contact with virus 
were preferentially attracted by infected plants. 

The first indications concerning the nature of the luteovirid viral proteins and the hormonal 
pathways involved in plant-aphid interactions were discovered only recently. Patton et al. [84] 
reported that increased aphid attraction and fecundity on Potato leafroll virus (PLRV)-infected potato 
plants correlated with a reduction of JA and ethylene signalling compared to uninfected control 
plants. PLRV is the member type of the Polerovirus genus. By using transient expression of individual 
viral proteins in N. benthamiana and phytohormone quantification upon aphid settling, they identified 
three PLRV proteins that triggered changes in plant-aphid interactions: P0, P1 and P7. P0 (which is 
encoded by poleroviruses but not by luteoviruses like Barley yellow dwarf virus) is the suppressor of 
RNA silencing which promotes the degradation of ARGONAUTE 1 by targeting the host protein to 
the autophagy pathway through a ubiquitin-dependant mechanism [85–87]. P1 is a replication 
associated protein containing a protease domain and the viral genome linked protein (VPg). P7 is a 
small protein with a nucleic acid binding activity [88]. Ectopic expression of both P0 and P1 inhibited 
aphid induction of SA and JA compared to control plants. In absence of aphids, P0 induced ethylene 
production and P7 inhibited ET emission compared to control plants. However, the presence of 
aphids had no effect. Deciphering the complex crosstalk of these hormonal pathways upon luteoviral 
infection will require additional investigations.  

6. Perspectives 

The five examples of viruses described in this review (cucumovirus, potyvirus, geminivirus, 
tospovirus and luteovirids) are transmitted by different insect vectors and cover through almost all 
transmission modes (persistent or non-persistent, propagative or non-propagative). They illustrate a 
potential common mode of action of viruses that aims to reduce the main plant defences triggered by 
the insects in the plants and consequently makes the plants more attractive for insects and improves 
their performance. All viral gene products described here repress the host plant defences induced by 
the herbivore vector attack and most of them target the JA-signalling pathway. This is not surprising 
as to promote a beneficial effect for vector-transmitted viruses, viruses have to inhibit the most 
deleterious plant defence system for the insects. Interestingly the viral proteins target the two main 
control centres of this pathway, JAZ and MYC2. JAZ degradation by the ubiquitin-dependant 
proteasome is impaired at the early stage of the pathway and MYC2 transcription activation of JA-
regulated genes is blocked further downstream (Figure 1). However other plant hormones are also 
involved in the plant stress/defence response like SA and ET [32,89]. ET signalling has been shown 
to mediate aphid attraction to plants infected with potyviruses [45,46]. Reactive oxygen species (ROS) 
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production is another strategy that viruses may use to manipulate vector to enhance virus acquisition 
and transmission. The RSS CMV-2b was shown to alter aphid’s feeding behaviour by increasing 
concentrations of H2O2 in infected plant tissues [90]. It will be important in the future to address the 
role of the cross-talk between JA and the other hormonal pathways in the relationship between 
viruses and their vectors.  

Most viral factors identified up till now that are able to manipulate the vector and the host plant 
to ensure viral transmission, are pathogenicity factors and often display also an RNA silencing 
suppression (RSS) activity. This is the case of CMV-2b, begomovirus βC1 and C2, tospovirus NSs and 
polerovirus P0. This dual function targeting two types of plant defence is presumably the key to the 
remarkable success of these particularly important pests that generate extremely high crop losses in 
agriculture. Undoubtedly more viral factors will be discovered in the near future and some potential 
candidates have been identified [91]. Interestingly in the case of potyvirus TuMV, the viral factor that 
displays activity to promote aphid’s attraction and reproduction is not a known RSS. Westwood et 
al. [92] showed that Potato virus Y (PVY) and its RSS HC-Pro both repressed the induction of JA-
dependant genes. HC-Pro expressed in transgenic plants also increased aphid colony growth rate, a 
feature that was not observed in PVY-infected plants. Westwood et al. [92] suggested therefore that 
(i) host-aphid interactions rely on more than just JA-regulated genes (already discussed above) and 
that (ii) more than one viral gene product is required to mediate plant and vector manipulation. This 
latter point could even be expanded to the idea that a single protein may have several targets, and 
viral proteins are indeed often multifunctional. In addition, by targeting one specific host factor that 
plays an essential role in regulatory functions, the virus could “kill two birds with one stone”. This is 
the case of the geminivirus RSSs βC1 that binds the MYC2 transcription factor controlling several 
downstream genes among which the terpene synthase genes control the emitted volatiles and the GS 
which are repellent secondary metabolites for insects. By targeting SKP1 protein, a common factor to 
many E3 ubiquitin ligases, βC1 can affect several pathways dependant on proteasome degradation. 
An essential issue is how the specific target genes are selected in order not to ruin the host plant 
homeostasis. This level of regulation remains a black box that requires more investigations.  

However, an interesting clue comes from Zhao et al. [70] who showed that the βC1 encoded by 
the satellites of two begomoviruses regulates a single gene expression in a cell-specific manner by 
interfering with the interactions between the main regulator WRKY20 and other cellular factors. 
WRKY20 is a vascular-specific gene that represses the biosynthesis of indole GS in the tissue where 
whiteflies feed. Conversely aliphatic GS produced in non-vascular tissues have a deterrent activity 
for other insects like the lepidoptera cotton bollworm. Such a tissue and even time-specific expression 
has previously been reported for a monoterpene synthase gene in Nicotiana attenuata which emits the 
pheromone β-bergamotene terpene [93]. This gene is induced at night in flowers to produce the 
pheromone and attract the pollinator and expressed during day time in the leaves to synthesize a 
defence compound against herbivory attack.  

Deciphering specific regulatory defence pathways to promote the viral vector and deter the non-
vector competitors presents a real challenge for the future. This task will require to study more 
sophisticated plant-virus-insect relations where multitrophic interactions with other herbivores occur 
in the host plant, moreover in an ecological complex environment. These sophisticated interactions 
which might be beneficial (synergy) or harmful (parasitism) to the tripartite pathosystem of interest 
(virus-plant-vector), may occur at different stages of host plant and insect development. The 
knowledge that will be gained will be of high interest to develop alternative methods to control 
vector-borne diseases. 

During the reviewing process of the manuscript, Wu and Ye [94] published a paper in the special 
issue “Plant Virus Transmission by Vectors” in Viruses. As it covers the role of JA signalling in the 
interactions among plant, virus and insect vectors, there are redundancies between the two papers. 
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