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Abstract

At low strain, geometrically necessary dislocations (GND) confined in the close vicinity of grain boundaries can be approximated as
a dislocation wall structure called a GND facet. Analytical solutions derived from Field Dislocations Mechanics (FDM) theory allow
calculating the stress components associated with the GND facets but are unable to account for the stress field variation induced by
finite size effect. Dislocation dynamics simulation is used to investigate the true stress field of GND facets. The geometry, dimension
and dislocation density of three generic types of GND facets (twist, tilt and epitaxial facets) are systematically studied. In all cases,
the stress field generated by GND facets is proportional to the surface GND density and its spatial distribution can be recovered
using FDM solution combined with two scaling parameters identified from DD simulation results. This calculation procedure can
be generalized to any crystal structure by relating the components of the surface Nye’s tensor to the solutions of simple cubic slip
systems. Finally, static and dynamic tests are made to validate the calculation of back stress within regular grains bounded by GND
facets.
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1. Introduction

Grain boundaries (GB) in polycrystals are surface defects
accommodating the crystalline disorientation between grains.
The atoms at GBs are repositioned and arranged into facets that
minimize the crystal elastic energy at room temperature (Hsieh
and Balluffi, 1989, Sutton and Balluffi, 1995). Influence of GBs
on the polycrystal properties are numerous, but its major ef-
fect is associated with the process of plastic strain hardening.
During plastic deformation, GBs impede the motion of dislo-
cations and reduce the dislocation mean free path, then a lar-
ger applied stress is required to produce plastic deformation.
In other words, dislocations accumulate at GBs and generate
increasing internal stresses with the plastic deformation, i.e.,
strain hardening (Jiang et al., 2019). GBs with a misorienta-
tion angle larger than 15 degrees are dominant in polycrystals
and act as strong barriers to dislocation dynamics. Configura-
tional energy makes such defects very stable and the transmis-
sion of dislocations from one grain to the next implies large
stresses (Kondo et al., 2016). Hence, the propagation of plastic
slip across adjacent grains is possible at low strain only by the
indirect transmission of dislocations in some particular GB fa-
cets (Priester, 2013) or with the activation of dislocation sources
(Lee et al., 1990, Malyar et al., 2017). A large number of dislo-
cations are then accumulated at or very close to the GBs during
the first stages of plastic deformation (Amouyal et al., 2005,
Shih and Li, 1975).
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Dislocations accumulation at GBs has been reported many
times for metals and alloys under monotonic and cyclic loa-
ding (Feaugas, 1999, Mughrabi, 1988). The dislocation micro-
structure observed at GBs is increasingly heterogeneous when
decreasing the grain size or increasing plastic deformation (Ca-
ballero et al., 2011, He et al., 2018). Unlike the forest or sta-
tistically stored dislocations (SSD) density measured inside the
grain, the dislocation density accumulated at GBs is polarized,
i.e. the total Burgers vector is non-zero. Hence, the disloca-
tion network observed at GBs is made of geometrically ne-
cessary dislocations (GND) (Ashby, 1970), which accommo-
dates the strain incompatibility imposed by a non-uniform plas-
tic deformation inside grains (Arsenlis and Parks, 1999a, Gao
and Huang, 2003). Then long-range stresses develop inside the
grains as a result of GND density accumulation at the GBs.
This stress is commonly defined as a “back stress” opposed to
the external loading (Cheng et al., 2018, Fleck et al., 2003, Wu
et al., 2015). Many attempts have been made to compute such
back stress using, for instance, strain gradient plasticity theory
(Aifantis, 1999, Fleck et al., 1994, Gao et al., 1999). Those at-
tempts were recently summarized in (Liu and Dunstan, 2017).
The main outcome of this analysis is that all existing quantita-
tive theories involve at least one length scale parameter to be
adjusted from experimental data.

Understanding the arrangement details of GND in crystals
is essential to develop a back stress model. This is why various
experimental techniques, including EBSD (Calcagnotto et al.,
2010, Jiang et al., 2013), TEM (Dubinko et al., 2017, Peeters
et al., 2001) and X-Ray Diffraction (Ohashi et al., 2009, Yang
et al., 2011), have been used to identify the GND distributions.
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Most techniques indicate the existence of a large GND den-
sity close to GBs even after a small plastic deformation. On the
modeling side, such feature was reproduced by crystal plasti-
city calculations of polycrystalline aggregates (Berbenni et al.,
2020, Cordero et al., 2012, Haouala et al., 2020, Sun et al.,
2019). In a recent investigation based on Dislocation Dynamics
(DD) simulations (Jiang et al., 2019), it was also shown that
the dislocation storage rate dρ/dγ recorded inside grains agrees
with a prediction of Ashby (Ashby, 1970), i.e., is proportional
to the inverse of grain size 1/d. In addition, DD simulations, in
good agreement with experimental observations, show that the
dislocation distribution inside the grains is made of SSD den-
sity in the bulk and a much larger GND density close to GBs.
This distribution of the dislocation density motivates possible
calculations of the back stress inside grains considering only
the GND density at GBs.

In the literature, many works investigated the long-range
stress field associated with dislocation walls or subgrain boun-
daries using the elastic theory (Gibeling and Nix, 1980, Li and
Needham, 1960, Lubarda and Kouris, 1996, Saada and Bou-
chaud, 1993). Those works allowed modeling the stress fields
associated with dislocation cell structures (Mughrabi, 1983),
geometrically necessary boundaries (Khan et al., 2004) or dis-
location network at precipitate interfaces (Huang et al., 2018).
In this paper, a new approach making use of the Field Dislo-
cation Mechanics (FDM) theory (Acharya, 2001) is proposed.
This empirical approach allows calculating the stress field as-
sociated with GND density organized in facets. Such facets are
equivalent to wall structures of finite size (in height and length)
containing discrete regularly spaced dislocations. The calcula-
tion we proposed is general and allows evaluating with semi-
empirical equations the internal stress inside grains with face-
ted shapes once the dislocation density deposited at the GBs is
known.

The paper is organized as follows. In §2, FDM theoretical
solutions to calculate stress fields for infinite dislocation walls
are briefly presented. In §3, a set of equations are developed to
predict the stress field associated with any type of GND facet.
In §4, a comparison is made between the proposed analytical
model and the results of DD simulations in the case of model
configurations. Finally, §5, is devoted to concluding remarks.

2. FDM theoretical solutions for infinite dislocation walls

In this section, analytical expressions for the stress field as-
sociated with finite polarized dislocation walls or GND density
facets are presented. Such expressions are based on the results
of FDM theory and are validated by comparison with discrete
dislocation solutions.

The FDM theory is rooted from the pioneering crystal plas-
ticity model first developed by Acharya (Acharya, 2001) and la-
ter extended in (Acharya, 2002, 2004). The FDM theory can be
applied to problems including the mechanical response associa-
ted with a single, a few or a distribution of dislocations in iso-
tropic/anisotropic and linear/nonlinear elastic solids. Examples
of FDM calculations solved with FEM simulations are reported
for divers configurations in (Roy and Acharya, 2005). While the

full theory includes solutions for the transport and evolution of
dislocation density, here we limit the FDM approach to the cal-
culation of stress and displacement fields of surface dislocation
density.

The FDM elasto-static field equations used in the present
study are derived from the elastic displacement field ue for any
dislocation density field constrained with conventional boun-
dary conditions. In a small strain setting, a dislocation density
inside the body B (with boundary ∂B) is assumed to be im-
mobile and the whole system is in equilibrium. Then, assuming
homogeneous linear isotropic elasticity, the following equations
must be satisfied :

curl U
∼ e = α

∼

σ
∼

= C
∼
∼

: U
∼

sym
e = C

∼
∼

: ε
∼e

div σ
∼

= 0

(1)

where α
∼

is the excess dislocation density tensor form usually
denoted as the Nye’s tensor (Nye, 1953), σ

∼
is the symmetric

Cauchy stress tensor, U
∼

sym
e = ε

∼e is the elastic strain tensor and
C
∼
∼

is the fourth-order elastic moduli tensor. Boundary conditions
are defined in a standard manner. A prescribed traction vector
field td is applied to a part ∂Bt of the boundary ∂B, and the
other part ∂Bu is subjected to the prescribed displacement ud
such that :

σ
∼
· n = td on ∂Bt

ue = ud on ∂Bu
(2)

The elastic distortion tensor of a continuum body elasto-plastically
deformed is written as the sum of two parts :

U
∼ e = U

∼

⊥

e + U
∼

‖

e (3)

Since the compatible part of the elastic distortion field U
∼

‖

e is by
definition curl-free, from Eq. (1) we see that the incompatible
part of the elastic distortion field U

∼

⊥

e can be simply determined
from the prescribed Nye’s tensor :

curl U
∼

⊥

e = α
∼

(4)

Note that the compatible part U
∼

‖

e is involved in the stress field
equations to satisfy the boundary conditions and balance mo-
mentum. In the case of infinite dislocation walls, the above
elasto-static field equations can be rewritten in the form of a
partial differential equation of Navier-type :

div C
∼
∼

: U
∼

‖,sym
e + div C

∼
∼

: U
∼

⊥,sym
e = 0 (5)

Since U
∼

⊥

e must satisfy the Poisson equation, the second term in
Eq. (5) can be derived from the Nye’s tensor :

div C
∼
∼

: U
∼

⊥

e = −curl α
∼

(6)

More details on these solutions can be found in (Acharya, 2004)
and (Berbenni et al., 2014). In addition, examples of stress field
calculation for different dislocation structures can be found in
(Roy and Acharya, 2005) and (Fressengeas, 2017).
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While the dislocation density tensor is a quantity well defi-
ned to characterize 3D polarized dislocation contents in a crys-
tal (Kröner, 1963, Nye, 1953), the accumulation of dislocations
at GBs is mathematically better characterized with a 2D singu-
lar function. This observation leads to the concept of surface
dislocation density tensor (Bullough and Bilby, 1956, Mura,
1987) we can derive from the FDM theory (Acharya, 2001).
When a dislocation distribution is restricted to a planar surface
(interface, boundary, wall, etc.), the Nye’s tensor α

∼
becomes

a direct measure of the content of the continuous distribution
of the Burgers vector (Bullough and Bilby, 1956). The compo-
nents of the Nye’s tensor are then dimensionless and that gives
rise to the idea of defining a surface Nye’s tensor α

∼

s. Calcula-
tion examples of surface Nye’s tensor can be found in (Fressen-
geas, 2017, Rey and Saada, 1976).

Surface Nye’s tensor can then be defined, each time a dis-
location microstructure is made of dislocation segments all be-
longing to a given plane. Adopting the FS/RH convention, the
surface Nye’s tensor can be defined as Acharya (2001) :

α
∼

s =
1
S

n∑
j

bi ⊗ l j (7)

where bi, l j and S are the segment Burgers vector, the segment
line vectors and the segment habit surface, respectively. Since
the distribution of dislocations is concentrated in a wall, we
adopte a solution proposed by Rey and Saada (Rey and Saada,
1976) ; a Dirac function δ(x) is used to indicate the location and
orientation perpendicular to the dislocations habit plane and the
dislocation density is assumed homogeneous in the latter plane.

One must differentiate three generic types of surface Nye’s
tensor corresponding to three model arrangements of GNDs in
a wall structure (Hirth and Lothe, 1982). Those 3 arrangements
are illustrated in Fig. 1 and are referenced in the following as :
(a) twist walls, (b) tilt walls and (c) epitaxial walls.

x

y

x

y y

x

(a)                     (b)                      (c)

Figure 1: Schematic illustrations of the 3 types of dislocation walls considered
in the following : (a) straight screw dislocations with Burgers vector in the z
direction build a twist wall, (b) straight edge dislocations with Burgers vector
perpendicular to the wall build a tilt wall and (c) straight edge dislocations with
Burgers vector parallel to the wall build an epitaxial wall.

The first type of dislocation arrangement we consider is a
“twist wall” and is sketched in Fig. 1a. It is formed of straight
screw dislocations periodically spaced in a plane. The asso-
ciated surface Nye’s tensor has only one non-zero component.
Thus, in accordance with the FDM theory, the connection bet-
ween the surface Nye tensor and the incompatible part of the

elastic distortion is summed up here in the simple equation :

αs
zzδ(x) = Uzy,x (8)

The integration of Eq. (8) gives the solution of the elastic
distortion field through a Heaviside function :

Uzy =

∫
αs

zzδ(x)dx = αs
zzH(x) + A (9)

Identification of the integration variable A in Eq. (9) re-
quires additional assumption. It is reasonable in our case to
use the Albenga’s rule stating that the average of the internal
stresses must vanish. In this case, the absolute values of the
stresses on both sides of the wall must be the same. This condi-
tion imposes that A = −0.5αs

zz. Next, derivation of Eq. (9) pro-
vides a strain field solution and applying Hooke’s law, one ob-
tains the stresses associated with an infinite twist wall. From
such calculation, we must notice that in the case of infinite twist
walls, the associated stress tensorσ

∼
has only two non-zero com-

ponents which are proportional to the surface Nye’s tensor va-
lue, hence to the surface GND density :

σzy(x ≥ 0) = σyz(x ≥ 0) =
µ

2
αs

zz (10)

with µ the crystal shear modulus. This solution satisfies the
equilibrium condition divσ

∼
= 0.

Repeating the same calculation in the case of infinite “tilt
wall” in Fig. 1b, one finds :

σxy(x ≥ 0) = σyx(x ≥ 0) =
µ

2
αs

xz (11)

Since the sign of the stress component must change when
crossing the habit plane, this solution in the Heaviside form
does not fulfill the equilibrium condition divσ

∼
= 0.

In the case of “epitaxial wall” in Fig. 1c, the non-zero com-
ponent of the surface Nye tensor is this time αs

yz. Following
again the methodology presented above, one finds Uyy = αs

yz/2
and the three non-zero normal stress components :

σxx(x ≥ 0) =
νµ

(1 − 2ν)
αs

yz

σyy(x ≥ 0) =
(1 − ν)µ
(1 − 2ν)

αs
yz

σzz(x ≥ 0) =
νµ

(1 − 2ν)
αs

yz

(12)

with ν the Poisson’s ratio.

Similarly to the tilt wall, the stress solutions calculated for
the infinite epitaxial wall are not correct. They do not fulfill
equilibrium condition. The reason is that the integration scheme
used in Eq. (9) does not include the compatible part of the elas-
tic distortion. As shown by Acharya (Acharya, 2001), it hap-
pens that the compatible part does not exist in the case if the
screw dislocation. This is why the solutions obtained from this
equation are correct only for the screw facet. In the other cases,
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(1)

(2)

(3)

Figure 2: Schematic of the 3 GND facets tested with DD simulations. The dis-
location Burgers vector b is parallel to [001]. The 3 facets made of straight
dislocation segments are lined up equidistantly and formed : (1) a twist facet,
(2) a tilt facet and (3) an epitaxial facet.

these solutions will be only used as scaling factor for the fitting
functions, see next chapter.
From the above calculations, we see that all the calculated stress
components are constant and proportional to the surface Nye’s
tensor α

∼

s. A comparison between such solutions and the predic-
tions of the dislocation theory in the case of discrete dislocation
walls (Hirth and Lothe, 1982) is informative. The stress solu-
tions derived above agree with the classical dislocation theory
analysis only in the case of the infinite twist wall (Eq. (10)).
Nevertheless, as it will be shown later, these solutions provide
appropriate scaling for the stresses induced by finite-size walls.

3. Simulation results

3.1. Stress fields of elementary GND facets

We now characterize the stress field associated with disloca-
tion walls having a finite height and a finite dislocation length.
For the sake of clarity, this type of dislocation walls is, hereafter,
referred as twist, tilt or epitaxial GND facets. A comparison is
made between the previous FDM infinite solutions and the so-
lutions calculated with the discrete dislocation dynamics (DD)
simulation code microMegas. The main features and parameters
of this code are reported in (Devincre et al., 2011).

The three different sets of GND facets considered in the si-
mulations are schematically shown in Fig. 2. For simplicity rea-
son, simple cubic crystal symmetry is used. The geometry and
dimension of the GND facets are reported in Tab. 1 and Tab. 2,
respectively.

Twist Tilt Epitaxial
Burgers vector b [001] [001] [001]
Plane normal n [010] [001] [010]
Line direction l [001̄] [010] [01̄0]

Table 1: Crystallographic definition of the three GND facets investigated with
the DD simulations.

All tested GND facets are of rectangular shapes, with two
independent dimensions ; the height H and the width L. For

S1 S2 S3 S4
H (µm) 10 5 10 5
L (µm) 10 5 5 10
R = H/L 1 1 2 0.5

Table 2: Definition of the different GND facet shapes investigated with the DD
simulations. All the tested GND facets are rectangular with height noted H and
width noted L. The denotation S1-S4 correspond to the facets shapes illustrated
in Fig. 3.

Figure 3: Four different shapes of GND facets are considered. The gray grid
indicates the nodes used to calculate the average stress amplitude as a function
of the facet distance. The images (a)-(d) correspond to the facets shapes S1-S4
as defined in Tab. 2.

each type of facet, different shapes and sizes were conside-
red (see Fig. 3). In the following, the dimensionless variable
R denotes the aspect ratio of the facet height H and the facet
width L. To compute an average stress as a function of the dis-
tance to the facet, the stress field of the dislocations equally
distributed on the facets is summed at the nodes of a 3D grid
(NX × NY × NZ) parallel to the normal of the facets (Fig. 3).
The height and the width of the averaging grids are by defini-
tion taken half of the tested wall height and width, respectively.
The dimensions and shape of these grids have been fixed kee-
ping in mind that we want to eventually develop the calculation
of an average back-stress in the center of grains whose boun-
dary is discretized with a small number of facets. Therefore, we
limit the stress computations in a volume normal the facet, with
a central axis passing through the center of each facet and late-
ral dimensions eliminating regions close to the facets frontiers
where the stress gradient is much larger. The simulations were
made using a constant surface GND density ρs

GND = 4.1 106

m−1. Three generic types of GND facets, illustrated with Fig. 2
are analyzed. Comparison is made with the solutions calculated
in the previous section for the infinite dislocation walls.

Twist GND facets
The average stress of different twist GND facets as a func-

tion of the distance (parallel to y-axis) to the facet plane is re-
ported in Fig. 4a. Those results are compared with the predic-
tion of Eq. (10) for an infinite twist wall. In all the cases, only
the stress component σzx is different from zero, independently
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of the facets dimensions and shapes. As expected for a GND fi-
nite ensemble, the amplitude of the stress is decreasing with the
normal distance to the facets. In addition, we note that the stress
maximum amplitude is also independent of the facet dimension
and shape. This maximum is always located at y ≈ 0 and agree
with the FDM solution of Eq. (10). Hence, the maximum of the
stress field profile is only function of the surface GND density.
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Figure 4: (a) Variation of σzx with the distance from the twist GND facets S1,
S2, S3 and S4. The solid line is the FDM solution. (b) Same curves as (a) but
normalized by σmax

zx and by the facet heights H (ŷ = y/H). Dashed lines are the
functions given in Eq. (13).

On the other hand, we can note in Fig. 4 that stresses indu-
ced by GND twist facets all exhibit a rapid decrease in the stress
amplitude with the distance from the facet. In addition, facets
with different shapes (different aspect ratio R), show different
stress profiles. As illustrated in Fig. 4b, a normalization of the
stress field and of the distance from the facet H does not merge
the different profiles.

Tilt GND facets
The average stress of different tilt GND facets as a function

of the distance (parallel to z-axis) to the facet plane are repor-
ted in Fig. 5a. Again for all tested facet shapes, only one non-
zero stress component, σzx, is found. This result agrees with
the infinite tilt wall solution. However, the stress profile obtai-
ned with tilt GND facets is very different from the one observed
for twist GND facets. All the calculated profiles exhibit : an in-
crease from zero stress (z ≈ 0) up to a maximum and a decrease
to zero far from the facets. The calculated maximum stress is
always much smaller than the FDM solution of Eq. (11) for the
infinite tilt wall.
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Figure 5: (a) Variation of σzx with distance for a tilt GND facet of different
shapes S1, S2, S3 and S4. The solid line corresponds to the FDM solution,
Eq. (11). (b) Same curves as (a) but normalized by theσmax

zx and by the interface
heights H (ẑ = z/H). Dashed lines are the functions resulting from Eq. (13).

Such stress profile with a maximum at some distance from

the dislocation plane is known in the case of tilt walls made
of infinite edge dislocations (Li, 1960, Saada and Bouchaud,
1993), but with a finite height. From such calculation, it was
reported that the stress peak, whatever the dislocation density
in the wall, always appears at a distance equal to half the wall
height. Our calculations based on finite GND facets exhibit a
stress peak systematically closer to the facets. For the facet
shapes S1 and S3, the facets’ height is H = 10 µm and the stress
maximum is located at z ≈ 3.5 µm. For the the facet shapes S2
and S4, the facets’ height is H = 5 µm while the stress maxi-
mum is found around z ≈ 2 µm. In addition, we note that the
stress maximum increases when the dislocation length in the
facets is increased. As illustrated in Fig. 5b, a normalization of
the stress field profile accounting for the GND height does not
standardize the results. The shape of each stress profile is then
function of the shape of the facet.

Epitaxial GND facets
The simulated epitaxial GND facets have a normal axis pa-

rallel to the x-axis and are made of edge dislocations with an
in-plane Burgers vector parallel to the z-axis (see Tab. 1). Un-
like the tilt and twist GND facets, epitaxial facets give rise to
three non-zero stress components σxx, σyy and σzz with very
different profiles illustrated in Fig. 6. In brief, the normal stress
componentσxx has a behavior similar to the one associated with
tilt facets, while the two normal stress components σyy and σzz

follow the same trend as the shear stress generated by twist fa-
cets. To facilitate the discussions, we denote the stress compo-
nents of epitaxial GND facets in the following order :

— The 1st component is parallel to the Burgers vector b.
— The 2nd component is parallel to the the plane normal n.
— The 3rd component is parallel to the the dislocation line

direction l.
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Figure 6: The three stress profiles associated with an epitaxial GND facet as
function of the facet normal distance. This example corresponds to the square
shape S1 of dimension 10 µm, (Tab. 2).

Stress profiles of the first component σzz calculated for dif-
ferent facet shapes (S1-S4) are plotted in Fig. 7a. Such stress
is always maximum close to the facet plane and decreases with
the distance along the x-axis. Like in the case of twist GND
facets, the maximum stress of profiles is a constant value only
function of the dislocation surface density and independent of
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the facet shape. Comparison between the solution of Eq. (12)
for an infinite epitaxial wall with the same surface GND den-
sity (σzz = 179 MPa) is in poor agreement with the calculated
stress σmax

zz = 64 MPa at x = 0.
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Figure 7: Variation of σzz (a), σxx (c) and σyy (e) with the distance normal to
the epitaxial facets S1, S2, S3 and S4 in Tab. 2. The FDM solutions of Eq. (12)
for an equivalent infinite epitaxial wall are given. (b), (d) and (f) are the same
curves as (a), (c) and (e), but normalized by the maximum stress and by the facet
heights H (x̂ = x/H). Dashed lines are the profiles calculated with Eq. (13).

Stress profiles of the second component σxx calculated for
the different facet shapes (S1-S4) are plotted in Fig. 7c. Similar
to stress variations we calculated for tilt facets, the amplitude
of this stress component first increases and then decreases. The
maximum stress amplitude is not influenced by the facet shape
and remains a constant around σmax

xx ≈ 12 MPa. The latter value
is much smaller than the solution of Eq. (12), σFDM

zz = 135 MPa
calculated for the same surface GND density. As illustrated in
Fig. 7d, a normalization of the stress field profile accounting for
the height of GND facets does not standardize the results.

Stress profiles of the third component σyy calculated for the
different facet shapes (S1-S4) are plotted in Fig. 7e. Variations
of this stress component are very close to σzz. A maximum
stress amplitude is found close to the facets and the stress am-
plitude decreases with the distance along the x-axis. The calcu-
lated maximum stress (much smaller than Eq. (12) solution) is
constant and is independent of the facet shape.

3.2. Tailoring the FDM solutions

In the previous sections, we showed that the analytical ex-
pressions (Eqs. 10-12) derived from the FDM theory provide

appropriate scaling for the stress profiles and allow identifica-
tion of the non-zero stress components. It is thus possible to
empirically adjust the computed profiles. Such adjustment pro-
cedure is carried out in two steps. We first determine, a scaling
factor F that relates the σFDM solution to the maximum stress
computed in DD σmax. Then, a shape function ξ is identified for
each non-zero component of the stress field. This shape func-
tion provides a quantitative description of the stress variation
profile with respect to the normal distance to the facet. At last,
the stress profileσ(x̂) of a given GND facet could be formulated
like :

σ(x̂) = FσFDMξ(x̂) (13)

with x̂ the true distance x from the facet center normalized by
the facet height H (x̂ = x/H).

Identification of the scaling factors F
The analysis made in the previous section supports the idea

that different scaling factors F must exist for the three different
types of GND facets, i.e., twist, tilt and epitaxial GND facets.

As illustrated in Fig. 4, the amplitude of σmax calculated
with all tested twist facets is constant and equal to the FDM
prediction in Eq. (10). Hence, in the twist facet case the scaling
factor is simply Ftw = 1.

For the tilt facets the computedσmax value is found to change
with the facet shape (see Fig. 5a). Nevertheless, when calcula-
ting the ratio (σmax/σFDM), it becomes clear that the scaling
factors Fti follows a simple geometrical rule which is a func-
tion of the aspect ratio of facets R :

Fcalc
ti = 1/ [2(1 + R)] (14)

In Tab. 3, the computed and calculated scaling factors predicted
from Eq. (14) are summarized for tilt facets of different shapes
and a good agreement is found between Fti and Fcalc

ti .

Facet shape Fti R = H/L Fcalc
ti

S1 0.25 1 0.25
S2 0.26 1 0.25
S3 0.17 2 0.17
S4 0.35 0.5 0.33

Table 3: Identification of the scaling factor accounting for the tilt facets. Fti is
the scaling factor estimated from the simulation results reported in Fig. 5a. R is
the aspect ratio of the tilt facets shown in Fig. 3. Fcalc

ti is the calculated scaling
factors using Eq. (14).

Lastly, the analysis of the epitaxial facets simulations repor-
ted in Fig. 6 leads to two main conclusions : a) three scaling fac-
tors must be defined for the three non-zero stress components
identified for the epitaxial facets. b) like in the case of twist
facets, such scaling factors are constants since σmax is unchan-
ged when changing the shape of the facets. Hence, following
the stress component order defined in the previous section, we
identified : Fep1 = 0.36, Fep2 = 0.09 and Fep3 = 0.16.

Identification of the shape functions ξ
Analysis of the stress profiles reported in Figs. 5-7 suggest

that only two shape functions denoted ξ1 and ξ2 are necessary to
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reproduce all the simulated stress profiles. The first shape func-
tion ξ1(x̂) is a one-parameter function which allows describing
a monotonous decrease of the stress field as a function of x̂ :

ξ1(x̂) = exp(−ax̂) (15)

The second shape function ξ2(x̂) is a two parameters function
describing concave stress profiles with a maximum value at
some distance from the GND facets :

ξ2(x̂) = exp
[
−

(x̂ − a)2

bx̂

]
(16)

in the two above equations, a and b are parameters whose va-
riations for each type of GND facets in different shapes can be
identified from the DD simulation results reported in Figs. 5-7.

In the case of twist facets, the parameter atw appearing in
the shape function is found to vary linearly with the aspect ratio
R and takes the form :

atw = 1.1 + 0.95R (17)

In the case of the tilt facets, the two parameters involved
in the shape function (Eq. (16)) are also found to vary linearly
with the aspect ratio. They take the simple forms :

ati = 0.4 − 0.05R and bti = 1 − 0.15R (18)

In the case of the epitaxial facets and following the remarks
made in the previous section, two cases must be differentiated.
The modeling of components σzz and σyy, involves shape func-
tion with only one fitting parameter (see Fig. 7b and f). Like in
the case of twist facets, the calculated solutions for the parame-
ter a for both stress components are found to vary linearly with
the aspect ratio R and they take the form :

aep1 = 1.8 + 0.9R (19a)
aep3 = 3.6 + 0.8R (19b)

Alternatively, the profile of σxx associated with epitaxial fa-
cets exhibits a peak (see Fig. 7d) and therefore involves a shape
function with two parameters. Fitted results of those two para-
meters give again a linear function of the aspect ratio R :

aep2 = 0.46 − 0.12R and bep2 = 1.2 − 0.33R (20)

The relevance of the chosen shape functions and the quality of
the fitting process can be checked in Figs. 4b, 5b and 7(b,d,f).

The effect of the GND density
In order to test the proportionality between the stress and

the GND density predicted by the FDM theory, additional si-
mulations with different GND density in facets of square shape
(S1) were performed (see Fig. 8), using the three generic types
of dislocation walls, i.e. twist, tilt and epitaxial characters.

The stress profiles of these 9 simulations were then fitted
using the same adjustment procedure as described above. The
identified parameters are given in Tab. 4 and can easily be com-
pared to the solutions given by Eqs. 17, 18, 19a, 19b and 20.

Figure 8: GND facets of shape S1 (see Tab. 2) are simulated with an increasing
number of equally spaced dislocation lines. The corresponding surface GND
density are (a) ρs

GND = 2.1 106 m−1, (b) ρs
GND = 4.1 106 m−1 and (c) ρs

GND =

8.1 106 m−1.

ρs
GND

(
106 m−1

)
Ftw atw Fti ati bti Fep1 aep1 Fep2 aep2 bep2 Fep3 aep3

2.1 1 2.28 0.25 0.34 0.85 0.36 2.70 0.09 0.33 0.83 0.16 4.62
4.1 1 2.19 0.25 0.33 0.82 0.36 2.74 0.09 0.33 0.82 0.16 4.59
8.1 1 2.20 0.25 0.33 0.81 0.36 2.76 0.09 0.33 0.82 0.16 4.58

Table 4: Identification of the scaling factors F and the parameters in shape
functions ξ(x̂) for twist, tilt and epitaxial facets with shape S1 for an increasing
surface GND density ρs

GND.

From those calculations it is apparent that all the parame-
ters identified in the previous section are precisely recovered.
We observe no significant variations of these parameters when
changing ρs

GND. These results validate the empirical approach
we proposed and confirm that the long-range stress field as-
sociated with GND facets is proportional to the surface GND
density.

3.3. Accounting for crystal structure

The dislocation distributions and configurations used in the
previous section were of simple cubic symmetry. In real crys-
tals, the dislocations accumulated at GBs are mostly of mixed
character and the dislocation glide planes intersect the GBs at
any angles. Therefore, the surface Nye’s tensor α

∼

s calculated
at a GBs may have up to nine non-zero components. The solu-
tion we propose to account for such complexity is as follows.
For the sake of simplicity, we consider a coordinate system in
which the GB is perpendicular to one of the cubic axis. In this
system, the GND tensor must have at least three zero compo-
nents whose line direction is out of the GB plane. Similarly
to the well-known vector decomposition of the mixed disloca-
tion into an edge and a screw components, we can consider that
every component of a surface GND tensor corresponds to the
surface density of a virtual set of GNDs belonging to one of the
three elementary GND characters introduced in the last section,
i.e., twist, tilt and epitaxial. For example, consider a grain boun-
dary containing a homogeneous distribution of dislocations of
one mixed character inducing three components in the Nye ten-
sor. These components correspond to three virtual GND density
of the three elementary characters. From a mechanical point of
view, the stress induced by such configuration is equivalent to
the sum of the stress tensors induced by every component of
the Nye tensor. This vector decomposition is possible due to
the proportionality between the stress and the Nye tensor com-
ponents.

Consequently, the stress induced by GNDs on every facet
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can be determined no matter their character. If the contributions
of every facet of the grain are added, the internal stresses at the
grain center can be determined.

α
∼

s bs ls x y z
αs

xx [100] [100] – Twist Twist
αs

xy [100] [010] Tilt – Epitaxial
αs

xz [100] [001] Tilt Epitaxial –
αs

yx [010] [100] – Tilt Epitaxial
αs

yy [010] [010] Twist – Twist
αs

yz [010] [001] Epitaxial Tilt –
αs

zx [001] [100] – Epitaxial Tilt
αs

zy [001] [010] Epitaxial – Tilt
αs

zz [001] [001] Twist Twist –

Table 5: Projection of the surface Nye’s tensor α
∼

s components on the simple
cubic symmetry. The Burgers vector bs and dislocation line vector ls are indi-
cated. The character of each component in surface Nye’s tensor is specified for
three possible configurations with facet normal along x, y and z axis. The sym-
bol “–” is associated with the null component of α

∼

s. Those null components
exist because there is no GND density out of the facet’s plane.

The one-to-one correspondence between Nye’s tensor com-
ponents and dislocation configurations that can be reconstruc-
ted with the simple cubic symmetry reported in Tab. 5. As an
example of calculation, the case of a GND facet in a crystal
with FCC symmetry and containing one type of mixed disloca-
tions is presented (see Fig. 9a). The size of the tested facet is
10 µm. The facet plane is normal to z-axis and contains mixed
dislocations of Burgers vector parallel to 1/

√
2[101] and line

direction parallel to 1/
√

2[110], equidistantly distributed. The
tested surface GND density is ρs

GND ' 5 106 m−1. The resulting
surface Nye’s tensor α

∼

s associated with such facet is thus :

α
∼

s =

 αs
xx αs

xy 0
0 0 0
αs

zx αs
zy 0

 = ρs
GND
‖b‖
2
δ(z)

 1 1 0
0 0 0
1 1 0

 (21)

where ‖b‖ ≈ 2.55 10−10 m the norm of Burgers vector for cop-
per and δ(z) is the Dirac distribution function. In concordance
with our calculation procedure, this GND facet is decomposed
as follows. The component αs

xx is attributed to a twist facet with
screw dislocations having bs = [100] and ls = [100]. The com-
ponent αs

xy is attributed to an epitaxial facet with edge disloca-
tions having bs = [100] and ls = [010]. The last two components
αs

zx and αs
zy are attributed to tilt facet configurations with edge

dislocations having bs = [001] and ls = [100] and bs = [001]
and ls = [010], respectively. This decomposition is part of a ge-
neral solution we summarized in the Tab. 5 for all GND facets
with normals parallel to axis x, y or z. Here it must be noted that
the same procedure can be applied to any facet orientation with
the help of additional rotation operations that spin the facet to a
reference basis defined with x, y and z axis.

Comparison is made in Fig. 9b between DD simulations re-
sults (open marks) and calculations (doted lines) based on the
decomposition procedure defined in the Tab. 5 and the solutions
of Eq. (13) for tilt, twist and epitaxial GND facets. A systema-
tic analysis of this calculation shows that the component αs

xx
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Figure 9: Example of stress calculation for a [001] facet made of mixed dislo-
cations of slip system 1/

√
2[101]. The size of the present facet is 10 × 10 µm

and the surface dislocation density is ρs
GND ' 5 106m−1. (a) The [001] facet

with mixed FCC dislocations ( b parallel to [101] and line direction l parallel to
[110]), (b) the full stress tensor as a function of the distance z to the interface.
Open symbols refer to the stress computed with DD simulations and the da-
shed lines correspond to the predictions made with the simple cubic symmetry
decomposition.

induces the stress σxy, the component αs
xy is at the origin of the

three normal stress σxx, σyy and σzz and the components αs
zx

and αs
zy induce the shear stress σyz and σxz, respectively. Com-

paring the calculated solutions and the DD simulation results,
an excellent agreement is found for each stress component. An
error, about 25%, exists only close to the facet and on the two
stress components σxx and σyy. This error is considered in the
following as acceptable since we are interested in the stress pre-
vailing in the bulk of the grain, i.e., at some distance from GB
facets.

4. Predicting internal stresses inside grains

In this section, a strategy to rapidly evaluate the internal
stress inside grains with surface GND density deposited at the
GBs is presented. The validation of the calculation is made with
comparisons to DD simulations in static and dynamic condi-
tions.

4.1. Static validation tests
To test the reliability of the calculation procedure, DD si-

mulations were used to explore different GND configurations
with increasing complexity. GND configurations are prepared
by DD simulations using cubic grains with the FCC symmetry.
The grain dimension is 10 µm and the GBs are impenetrable
to dislocations. Then we impose the expansion of dislocation
sources inside the grains to pave the GBs. Four static configu-
rations are tested in the following. First, three configurations
made of one grain embedded in an elastic infinite matrix are
illustrated in Fig. 10a-c. In the configuration (a) 100 disloca-
tion loops of the same slip system are uniformly distributed at
the GBs, (b) 150 dislocation loops taken from three non-parallel
slip planes are uniformly distributed at the GBs and (c) a GND
microstructure made of 100 dislocation loops of the same slip
system are randomly distributed at the GBs. Lastly, as illustra-
ted in Fig. 10d, a periodic polycrystal aggregate made of four
cubic grains was tested. This aggregate configuration includes
two grains having a GND microstructure built with 100 ran-
domly distributed dislocation loops of one slip system and two
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grains having a GND microstructure built with 150 randomly
distributed dislocation loops of 3 non-parallel slip systems.

(a)                      (b)                      (c)

(d)

Figure 10: Four different static GND microstructures assembled with DD simu-
lations are used to test the internal stress calculation procedure. The dimension
of each single cubic grain is 10 µm.

Details on each GND configuration are given in the text.

Two intermediate calculations between the unique facet pro-
blem presented in Fig. 9 and the more complex calculations ac-
counting for several facets presented in Fig. 10 are made. These
calculations correspond to the stress associated with a [001] fa-
cet taken from the configurations Fig. 10(b and c). The obtai-
ned stress profiles with the distance to the facet are shown in
Fig. 11. In both cases, the stress prediction (in dashed lines) is
in good agreement with the stress profile computed from the
DD simulations. The maximum discrepancy is systematically
observed close to the facets. The comparison between Fig. 9b
and Fig. 11b emphasizes the effect of uneven dislocation spa-
cing which introduces second order errors in the calculation
mostly observed close to the dislocations plane.

0 2 4 6 8 10
z (µm)

-100

-80

-60

-40

-20

0

20

�
ij

(M
P
a)

�xx

�yy

�zz

�xy

�xz

�yz

0 2 4 6 8 10
z (µm)

-10

0

10

20

30

40

50

�
ij

(M
P
a)

�xx

�yy

�zz

�xy

�xz

�yz
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Figure 11: Stress calculation for a [001] facet extracted from the grain configu-
rations illustrated in Fig. 10b and Fig. 10c. The facets dimensions are 10 × 10
µm. (a) The facet used for this stress calculation is made of approximately 100
mixed dislocations taken from three non-parallel slip systems and uniformly
distributed, (b) The facet used for this calculation is made of approximately 70
mixed dislocations taken from the same slip system (b parallel to [101] and line
direction l parallel to [110]) and randomly distributed. Open symbols refer to
the stress computed with DD simulations and the dashed lines correspond to
the predictions made with the simple cubic symmetry decomposition.

The inner area of the grains in the four tested configura-

tions reproduced in Fig. 10 is dislocation free. In the case (a-c),
the stress inside grains is uniquely associated with the surface
GND density accumulated at GBs. In the case (d), the stress
inside the four grains is computed using the 6 bounding facets
and for each facet the dislocations accumulated on both sides
are taken into account. It is then straightforward to calculate
the internal stress at grain center with the approach presented
above (τcalc) and to compare it with the DD simulations solu-
tion (τDD). τcalc and τDD are the resolved shear stress calculated
on the slip system considered inside the grains. τDD is the ave-
rage stress computed at the center of the simulated grain in a
volume of 5×5×5 µm. The relative error between τcalc and τDD

is estimated at the grain center using E = ‖(τcalc − τDD)/τDD‖.
When several slip systems are activated inside a grain, the pre-
diction error E is taken as the average of the different errors.
In the aggregate computation, the prediction error E is taken
as the average of the 4 grains calculations. The relative errors
of all the tested GND microstructures (listed in Fig. 10a-d) are
summarized in Tab. 6. In addition to the relative error E estima-
ted at the center of grain, a supplementary calculation is made
to evaluate the maximum error throughout the whole inner area
of grain using Emax = ‖(τcalc

max − τ
DD)/τDD‖. As we can see from

Fig. 9b, the stress prediction for a given GB facet is in good
agreement with the stress profile computed by DD simulations,
however a minor discrepancy exhibits when the distance to the
GB facet is shorter than ≈ 3 µm. As exepected, the region close
to the GBs is the place where the maximum errors is identified
whatever the tested cases. The Emax value calculated for each
case are summarized in Tab. 6.

(a) (b) (c) (d)
E 3% 5% 8% 15%

Emax 7% 15% 20% 23%

Table 6: Relative errors E and maximum errors Emax between the calculated
and simulated resolved shear stress for the four GND microstructures illustrated
in Fig. 10.

Overall, the maximum calculation errors are observed in the
GBs vicinity and is not representative of the state of internal
stress we want to evaluate at grains center. Calculated stress at
grain center is found to be in good agreement with DD simu-
lation results for the three grains (a-c), with an error less than
10%. Hence, one can conclude that the calculation approach we
proposed is quite efficient in predicting the stress induced by a
uniform and a random distribution of polarized dislocations de-
posited at GB facets. The prediction precision is, as expected,
nearly unchanged when the number of slip systems inside the
grains is multiplied (a to b). However, we note that the calcula-
ted error increases from 3 to 8% when the distribution of surface
GNDs becomes non-uniform (a to c).

In the last case of the periodic four-grain aggregate (d), it
must be noted that dislocations belonging to different slip sys-
tems are now accumulated on both sides of the GBs between
the adjacent grains. Therefore, the total GND density located
at the GB facets and used to calculate the internal stress at the
grain center is made of several slip systems accumulated on
both sides of the GBs. The averaged relative error in the four
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grains of aggregate is 15% (see Tab. 6). A more detailed analy-
sis of this calculation shows that such error is mostly associated
with the heterogeneous distribution of the GNDs accumulated
at the GBs facets. The calculation discrepancy is significantly
reduced when considering a more regular distribution of surface
GNDs at GBs.

4.2. Dynamic validation test

We now explore the possibility to use the decomposition
methodology described in § 3.3 to calculate the internal stress
or “back stress” during the plastic deformation in a grain and
to predict stress-strain behavior. To explore such possibility, a
tensile test is reproduced with a DD simulation. We plastically
deform a cubic grain of copper with size 10 µm and embedded
in an infinite elastic matrix. The tensile axis is orientated to de-
form the grain in single slip condition and like in the previous
simulations GBs are defined as impenetrable interfaces. The si-
mulation starts with a homogeneous distribution of Frank-Read
sources of length 3 µm inside the grain, equivalent to density
ρini = 5 1011 m−2. The simulated deformation is stopped at
εp = 0.2%, i.e., before a strong localization of the plastic defor-
mation is observed inside the grain.
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Figure 12: (a) Average distribution of the dislocation density ρ and (b) the
scalar GND density ρGND displayed with the distance to the GB normal to
y-axis. The definition of ρGND is derived from a norm of Nye’s tensor ||αi j ||

divided by Burgers vector b (see Eq. (22)). Both calculations are made using
sampling layers 0.05 µm thick.

The evolution of the dislocation density ρ inside the grain
as a function of the distance from the GB is tracked during the
computations and the last profile we have at the end of the si-
mulation is plotted in Fig. 12a. For such calculation, the dislo-
cation density is computed in layers of 0.05 µm thick parallel
to the GB. The dislocation density calculated close to the GB is
extremely high and then decreases rapidly to a plateau value of
the density. A ratio of about 20 exists between the dislocation
density found in the vicinity of the GBs and in the grain bulk.
Not shown in Fig. 12a, we checked that beyond the 1 µm re-
gion, the dislocation density remains almost constant and is not
polarized.

In case of simple cubic materials, a one-to-one correspon-
dence exists between the components of Nye’s tensor and the
scalar GND density defined in an appropriate reference frame
(Arsenlis and Parks, 1999b, Sun et al., 2000). A norm of Nye’s
tensor can then be defined to simply shows the proportiona-
lity between Nye’s tensor and the GND bulk density (El-Dasher

et al., 2003, Pantleon, 2008) :

ρGND =
1
b

∑
i

∑
j

‖αi j‖ (22)

For comparison, the profile of a scalar GND density ρGND

is shown in Fig. 12b. As expected, the profile of ρGND is very
close to the dislocation density profile. The magnitude of ρGND

abruptly decreases and goes to zero once moving away from the
GB. This result confirms that the concentration of dislocation
density accumulated close to the GBs is mostly composed of
GND while the much lower density of dislocations found inside
the grain is made of SSD.

However, it is not simple to define the transition distance
between the region close to the GBs composed of GND and
the grain inner area without GND. An empirical approach is
proposed to determine such frontier. First, the ρGND distribution
shown in Fig. 12b is normalized by the maximum value of ρGND

computed in the closest vicinity of GB. Then, we calculate the
derivative of this normalized ρGND to evaluate the decreasing
trend of ρGND. When the layer thickness approaches to 0.4 µm,
the derivative becomes lower than 0.1%. From this result and
other analyses we made for different simulation geometry, we
consider that, at plastic deformation lower or equal to 0.2%,
the GND density, which is accumulated within the grains, is
mostly stored in a region of 0.4 µm thick close to the GBs. Such
DD simulation result is in agreement with many experimental
results. For instance, highly polarized dislocation density was
recently observed by TEM in a thin area of 0.18 µm thick close
to the lath boundaries in bainitic steels at yield (He et al., 2018).

Therefore, two regions inside the grain must be differentia-
ted. One, the GBs region contains a large amount of disloca-
tion most exclusively made of GND. The rest of the grain bulk
contains a much lower dislocation density essentially made of
forest dislocations or SSD. Hence, it must be noted that in DD
simulations the evolution of both SSD and GND density can
simply be tracked by monitoring two different regions. Such
density can then be used to make a prediction of the inter-
nal stress inside the grain during plastic deformation. First, the
calculation of the SSD density ρS S D in the central volume of
the grain with the Taylor equation is used to evaluate the fo-
rest strengthening, τ f = 0.35µb

√
ρS S D. Second, the long-range

stress τGND introduced by the accumulation of GND at GBs is
determined inside the grain (at the grain center) with the cal-
culation procedure developed above. In brief , we compute the
surface Nye’s tensor associated with each GB facet. Then, we
calculate the corresponding internal stress tensor. Such calcu-
lation is repeated for all 6 bounding facets. At last, we sum
up the solution of the internal stress tensors calculated at the
grain center and resolve such stress tensor on the most active
slip system to evaluate τGND. The magnitude of the two har-
dening mechanism being very different, the flow stress inside
grains is possibly defined as a simple superposition of τ f and
τGND. A validation of this calculation procedure is presented
in Fig. 13 based on a comparison with the stress-strain curve
directly computed from DD simulation.

In Fig. 13, the green and the orange areas show the contri-
bution of τ f and τGND calculated respectively from the forest
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dislocations and the GND density monitored during the simu-
lation. A slight increase is observed in τ f because forest dis-
location density did not evolve significantly with the simulated
plastic deformation. The long-range stress τGND associated with
the surface GND density (calculated in a region of 0.4 µm thick
close to GBs) is identified at the grain center by assembling
the contributions of the 6 GB facets following the procedure
defined in the previous sections. The large increase of τGND ob-
served is related to the rapid accumulation of GND at GBs with
plastic strain. From such calculation, one can conclude that a
linear superposition of τ f and τGND gives a relatively good pre-
diction of the simulated stress-strain curve. Also, we see that the
contribution of τGND to the flow stress is about 80% and is res-
ponsible for most of the strain hardening. In other words, strain
hardening in a confined grain mainly arises from the long-range
stress generated by the GND density accumulated at GBs. Still,
our calculation underestimates the simulated stress-strain curve
by a few percents. This error comes mostly from the calculation
of τGND. Indeed, the calculation approach we proposed is assu-
ming a homogeneous density of GND at GBs facets, when the
DD simulations reproduce some inhomogeneity of such quan-
tity. This problem is critical in the DD simulations of cubic
grains we explore in the present study since very few disloca-
tions can, for geometrical reason, visit the grain corners during
plastic deformation.
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Figure 13: Comparison between the stress-strain (blue line) simulated with a
cubic grain (10 µm) embedded inside an elastic matrix and the predictions of
the forest and GND strengthening amplitude with the plastic strain. τ f in green
is the short-range internal stress associated with forest dislocations density cal-
culated in central volume of the grain and from the Taylor equation. τGND in
orange is the long-rang stress evaluated at the grain center with the calculation
method proposed in this paper. The surface GND density extracted from DD
simulation is evaluated from solid slice 0.4 µm thick on the GBs.

5. Concluding remarks

With the help of DD simulations, we show that at low plas-
tic strain, the accumulation of GND in crystal grains is essen-
tially localized in the close vicinity of GBs. The observed GND
microstructure is confined to very thin regions and therefore
can be approximated with a 2D planar distribution of disloca-
tions named as GND facets. To calculate the long-range stress
field associated with such GND facets a new approach based

on the Field Dislocations Mechanics (FDM) results has been
developed. Indeed, the FDM theory provides a simple solution
to calculate the stress field associated with infinite walls of dis-
locations based on the concept of surface Nye’s tensor.

In order to identify a general solution for the calculation
of the stress profile of GND facets, dislocation character, dis-
location density and facet shape are systematically investigated
using DD simulations. From such simulations, we show that the
combination of three generic types of GND facets, i.e., twist, tilt
and epitaxial facets, allows for the calculation of the stress field
profile associated with any type of GND network at GB. More
precisely, the analytical solution we proposed for the three ge-
neric types of GND facets make use of the FDM solutions for
infinite dislocation walls modified with 2 parametric functions
fitted with DD simulation results. The first term is a scaling
factor F that rescale the FDM solutions to the exact stress am-
plitude calculated in the DD simulations. The second term is a
shape function ξ(x̂) capturing the stress variation with the dis-
tance from the facet. Finally, the stress field associated with any
GB facets can be calculated by superposing the stress contribu-
tion of elementary facet solutions that are identified from the
surface Nye’s tensor at the GB facet.

With the above procedure, the stress at the center of regular
grains is calculated as the sum of the stress contributions from
the GND facets bounding the grain. Such calculation was tes-
ted on several sets of DD simulations made with simple FCC
grains. The cases of uniform, random and heterogeneous GND
distribution in single and multiple slip conditions in periodic
grains and aggregates are all considered. The comparison bet-
ween the internal stress directly computed in the DD simula-
tions and the one calculated with the facet decomposition gives
confidence in the empirical calculation procedure proposed. Ir-
regular distribution of GND at GBs is the main cause of the
discrepancy between the two calculations. This source of error
is thought to be acceptable at low plastic strain.

The model configurations we investigated in the present study
are far from being representative of real polycrystals, still they
reveal an essential feature of crystal plasticity. At low strain,
when GBs are strong barriers to dislocation glide, the grain me-
chanics can be reproduced with simple dislocation density mo-
dels and the strengthening mechanism taking place during plas-
tic deformation can be evaluated analytically with continuous
models. A prediction of the flow stress inside grains requires
2 independent calculations for the short- and long-range stress
contributions, i.e., the contribution of the SSD and GND den-
sity. In the present study, an original and numerically efficient
procedure is presented to calculate the internal stress associated
with GND density. Future work will focus on exploiting this
computational procedure for finite element modeling of crystal
plasticity.
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