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The in-plane current profile within multilayers of generic structure Ta/Pt/(CoNi)/Pt/Ta is in-
vestigated. A large set of samples where the thickness of each layer is systematically varied was
grown, followed by the measurement of the sheet resistance of each sample. The data are analyzed
by a series of increasingly elaborate models, from a macroscopic engineering approach to mesosco-
pic transport theory. Non-negligible variations of the estimated repartition of current between the
layers are found. The importance of having additional structural data is highlighted.

I. INTRODUCTION

From its very beginnings, spintronics is relying on me-
tallic and semiconductor multilayers. The samples where
giant magnetoresistance (GMR) was discovered were in-
deed (Fe/Cr) multilayers [1, 2], with current flowing in
the layers’ plane (CIP geometry). The spin-transfer tor-
que (STT) effect [3, 4], when used in the CIP geometry
to drive magnetic domain walls [5–8], also involves metal-
lic or semiconductor multilayers with magnetic and non-
magnetic parts. In such samples, only the total injected
current is known, and its distribution between the vari-
ous layers is an open question: how much of the current
is diverted by the buffer layer, or by the spacer layer (case
of spin-valve nanostrips [9], or of synthetic antiferromag-
net nanostrips [10]) affects the computed efficiency of the
STT-induced domain wall motion. The current in the
non-magnetic layers also gives rise to a non-compensated
Oersted field in the magnetic layer, which affects the
structure and dynamics of the domain walls [11]. The
spin-orbit torques (SOT), the latest family of current-
induced torques in the CIP geometry [12–15], also occur
in such multilayer samples. Here again, the distribution
of the current between the various layers is of crucial im-
portance.
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Presently there exists no direct method to observe how
current flows in the different layers of the multilayer sam-
ple, hence indirect methods must be used. The most
employed one consists in using an effective conductivity
for each layer, applying the parallel conductors rule of
macroscopic electrical engineering to evaluate how much
of the current flows in each layer. This effective con-
ductivity is either assumed, or in some cases obtained
by growing a series of samples with changing thickness
of the layer(s) [15], again using the rules of macroscopic
electrical engineering to obtain this conductivity.

However, the increase of the apparent resistivity of a
metal film when its thickness decreases below the mean
free path of electrons has been discussed as early as 1901,
by J.J. Thomson [16]. The development of this idea has
led to the so-called Fuchs-Sondheimer semi-classical mo-
del [17, 18], which has been further developed and refined.

In this paper, from an extensive series of metallic mag-
netic multilayer samples where all thicknesses were va-
ried, we quantitatively compare the samples conductivi-
ties with a number of models, with the goal of estimating
the current distribution among the layers. The samples
are emblematic of present studies of STT and SOT cau-
sing, for example, current-induced domain wall motion.

II. SAMPLES DESCRIPTION

The stack structure of the multilayer reference sample
used in this work is Ta 3/ Pt 1.6/ [Co 0.3/ Ni 0.6]x4/
Co 0.3/ Pt 1.6/ Ta 3, where thicknesses are given in
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nanometers. The stacks were deposited by dc magnetron
sputtering onto a thermally oxidized Si substrate.

In order to estimate the current profile across the
thickness, the thickness of each layer involved was va-
ried around its reference value, the other layers having
their reference thickness. This leads to a total of 42 sam-
ples, which were deposited consecutively with no change
of the deposition parameters. The sheet resistance of
each sample was measured, just after deposition, by the
four-probe technique, at 5 locations across the wafer, and
the average of these measurements was taken. The 5
values were extremely close (less than 1 % difference),
showing the uniformity of the film properties. The refe-
rence sample was therefore fabricated 5 times. Slightly
different resistance values were measured for this sam-
ple (from 58.2 to 64.3 Ω/sq, with no trend in time), the
average value being 61.2 Ω/sq and the standard deviation
2.3 Ω/sq, 3.7 % of the mean value. These variations can
only be attributed to slow fluctuations of the deposition
conditions, the noise with respect to the trend for each
thickness series being at most 1 Ω/sq. To remove this
noise in the raw data, the resistances of each thickness
series were multiplied by a series-specific factor such that
the resistance of the reference sample becomes 61.2 Ω/sq
(using the raw data increases the error of all fits because
of the data intrinsic noise, and trying to estimate the
actual thicknesses is delicate). The corresponding sheet
conductances are shown in Fig. 1. We recall that, for a
film of thickness d, the resistance of a strip of length L
and width W is R = ρL/(Wd) = (ρ/d)(L/W ) with ρ the
apparent layer resistivity. This introduces R� = ρ/d the
sheet resistance, in Ohms per square (Ω/sq), the aspect
ratio of the strip L/W being the number of squares of
edge W that can be inscribed in its length L. The sheet
conductance G� is the inverse of the sheet resistance,
with units Siemens.square (S.sq). In order to give the
same weight to each thickness series, the two Ta series
with only 5 data points were counted twice in the fitting.

III. INDEPENDENT LAYERS MODEL

The first analysis of the data that can be performed is
based on macroscopic electrical engineering, where cur-
rent flows in the different layers acting as parallel resis-
tors. Each layer (thickness di) is then described by a
resistivity ρi (conductivity σi = 1/ρi), its contribution
to the sheet conductance being σidi.

Model 1 determines the σi by a fit of the data, series
by series. The straight solid lines in Fig. 1 show that this
applies well to the data. The fitted slopes correspond to
resistivities 82.6, 79.3, 34.3, 32.9 and 27.1 µΩ.cm for the
tantalum underlayer, tantalum cap, platinum underlayer,
platinum cap and CoNi multilayer, respectively. The two
tantalum resistivities are close, and of the expected order
of magnitude for the high-resistivity β phase. Those of
platinum are close also, but about 3 times the pure me-
tal value (10.7 µΩ.cm). The apparent resistivity of the

(Co/Ni) multilayer is also about 4 times the values of co-
balt and nickel. At first sight, the resistivity values obtai-
ned from such an analysis may sound reasonable. When
computing the sheet conductance of the reference sample,
however, one gets with these values G� = 31.4 mS.sq,
close to twice the measured value (16.4 mS.sq). Discar-
ding the Ta thickness series results and assuming that no
current flows in Ta is not enough to solve the problem,
as this leads to G� = 23.9 mS.sq.

On the other hand, model 2 tries to fit globally all data,
according to

G� =
∑
i

σidi. (1)

The results of this model are shown in Fig. 1 by the
dashed lines. Negative resistivities are obtained for the
Ta underlayer thickness series (see Tab. I). This again
proves that one cannot treat the electrical conduction in
such multilayers made of nanometer-thick films by ma-
croscopic engineering arguments, a fact known for a long
time for single layers. Indeed, the well-known Fuchs-
Sondheimer model [17–20] with surface scattering leads
to a reduction of current density close to the surfaces, on
a scale given by the electron mean free path λ (for ex-
ample, with no specular scattering at both surfaces, the
apparent conductivity of a single layer is reduced by a
factor 2 for a thickness d = 0.46λ).

IV. FUCHS-SONDHEIMER MODEL

As the samples are multilayers, we use the multilayer
formalism described by Barnaś et al. [21] of the Fuchs-
Sondheimer (FS) model.

The detailed derivation of the model can be found in
the aforementioned publications, so here we present only
the resultant expressions. The distribution function for
electrons in a given layer can be written in the form:

f(z,v) = f0(v) + g(z,v), (2)

where f0(v) is the equilibrium distribution function and
g(z,v) corresponds to the contribution induced by the ex-
ternal electric field. The z-direction is perpendicular to
the interfaces (Fig. 2). By solving the Boltzmann equa-
tion, one obtains the general expression for g±(z,v) (g+
corresponding to the electrons moving in the positive z
direction, g− to the electrons moving in the negative z
direction), d being the layer thickness:

g+(z,v) =
eEτ

m

∂f0(v)

∂vx

[
1− F+(v) exp

(
−z
τ |vz|

)]
, (3)

g−(z,v) =
eEτ

m

∂f0(v)

∂vx

[
1− F−(v) exp

(
−(d− z)
τ |vz|

)]
,

where F±(v) are functions to be determined from the
boundary conditions. The symbols e (e > 0) and m are
the electron charge and effective mass, τ is the relaxation
time, vx and vz the components of the velocity vector in
x- and z-directions, respectively.
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Figure 1: Measured sheet conductances (dots) vs. thickness of each layer (a-e), followed by the thickness-resolved conductivity
plot for the reference sample, as derived from the models (f). The fit of each thickness series by a linear law (model 1) is
represented by solid lines, whereas the global fit according to Eq. (1) (model 2) is drawn with dashed lines. No structural
information is taken into account here, so that the models used are called 1a resp. 2a. The global rms error is 0.493 mS.sq
when fitting each series independently, increasing to 1.621 mS.sq for the global fit. In order to compare the slopes, all panels
(a-e) have the same scales.

Figure 2: Scheme of the sample structure with the various
parameters of the Fuchs-Sondheimer model applied to analyze
the conductivity data.

A. Direct application to the data

We impose the Fuchs boundary conditions at the
bottom and top interface using coefficients pbot and ptop
corresponding to the specularity factors [19]. For the
inner interfaces, similarly to Ref. 21, we introduce coeffi-
cients of specular transmission T and reflection R which
differ for each interface (Fig. 2), but we neglect any angu-
lar dependence of these coefficients, an approximation at

the heart of the FS model. We also neglect the refraction
effects that may occur when the Fermi velocities in ad-
jacent materials are different, and we assume the same
transmission and reflection coefficients for electrons in-
cident on the interface from the top and bottom. For
simplicity, we also neglect any spin dependency of the
coefficients, no magnetic field effects being investigated.
For the (Co/Ni) multilayer, given the small thickness of
the individual layers, the atomic proximity of Co and Ni,
their good alloying properties, and the observed weak
variation of resistivity with alloy concentration [22], it is
treated as a single layer (alloy).

Application of these boundary conditions leads to a set
of N equations of N variables, where N is twice the num-
ber of layers in the sample (for every layer we have F±).
These equations are the spin-independent versions of the
ones shown in Ref. [21]. We introduce β, the angle bet-
ween the z axis and the velocity vector v, and λ = vFτ
the electron mean free path, vF being the Fermi velocity.
Note that all mentioned parameters [λ, vF, τ,m] will ge-
nerally differ for each layer. In correspondence with [21],
we define yAB = mAτB

mBτA
to take into account the difference

in electronic properties of two adjacent materials A and
B. In our calculations we set yAB = σB/σA, where σA
(σB) is the bulk conductivity of material A (B). These
equations are solved numerically for each β to obtain
F±(β).

The final formula for the apparent conductivity of a
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Figure 3: Fuchs-Sondheimer fit of all the data, with assumptions described in the text, and without any input from the
structural characterization. The resulting rms error is 0.978 mS.sq (model 3a).

Figure 4: Fuchs-Sondheimer fit of all the data, taking into account a 2.0 nm oxidized Ta cap thickness. The corresponding rms
error is 0.829 mS.sq (model 3b).

single layer is:

σi = σ0,i −
3

4

σ0,i
di

λi

∫ π/2

0

dβ sin3 β cosβ [Fi,+(β) + Fi,−(β)]

(
1− exp

(
− di
λi cosβ

))
, (4)



5

where σ0,i and di are the bulk conductivity and thickness
of layer number i, respectively. By Eq.( 1), we obtain
the sheet conductance of the multilayer sample, which is
compared to the experimental results.

The total number of parameters entering the fit is 20
(Fig. 2), and it is further reduced. First, following Barnaś
[21], we neglect reflection at the inner boundaries, the
work functions being very close for all metal layers. Se-
cond, we fix the ρλ product to the reference values for
each layer [23, 24]. The values adopted for the ρλ pro-
duct (in fΩ.m2) were, from bottom (Ta underlayer) to
top (Ta cap) 0.74, 2.35, 1.26, 2.35, and 6.0; see next
section for justification of the choices for the Ta values.
Additionally, upper boundaries for the mean-free path λ,
equivalent to lower boundaries for the resistivity ρ given
by the best samples values, were set at 0.3, 22, 18, 22,
and 10 nm, respectively. Third, we set pbot = ptop = 0 on
the outer boundaries, as they correspond to layers car-
rying little current so that the fit error depends weakly
on them. After this reduction we are left with 9 parame-
ters for all 42 samples. We fit the mean free paths of all
the layers and transmission coefficients at all four inner
interfaces.

The best fit of all data by the FS model (model 3) is
shown in Fig. 3, together with the corresponding com-
puted current profile across the thickness, for the refe-
rence sample. The rms error of this fit is 0.978 mS.sq;
it is larger than that of the non-physical fit of each
thickness series (model 1), but much lower than the error
of the engineering-like independent layers model (model
2). The obtained parameters are given in Tab. I, and the
current partition between the different layers as compu-
ted by the various models are compared in Tab. II.

B. Use of structural data

On close inspection, the acquired data appear strange
at two instances. First, in the Ta cap series, one no-
tices that the first three points show nearly the same
conductivities. A cross-sectional transmission electron
microscopy (TEM) image of the reference sample, shown
in Fig. 5, reveals that the Ta cap layer is partly oxidi-
zed, with about 2 nm Ta consumed. Thus, the various
models’ fits were performed again under this assumption
(see Tab. I for the corresponding data). This variant of
the models is indicated by the suffix ‘b’, suffix ‘a’ indica-
ting that the models are applied to the data with nominal
thicknesses. For the independent layers model, the rms
error decreased to 0.423 mS.sq when fitting each series
separately, whereas in the case of the global fit the rela-
tive decrease was smaller, the error reaching 1.555 mS.sq.
For the FS model, as shown in Fig. 4, the quality of the
fit improves markedly.

The TEM image also reveals that the crystalline struc-
tures of the two Ta layers are different, the underlayer
showing no sign of crystallinity whereas the cap layer
does. This is reflected in the fitted values of the FS mo-
del with the product ρλ fixed according to the literature

values for the two phases of tantalum [24].
Second, the platinum underlayer series, when compa-

red to the FS fit, [Fig. 4(b)] shows a break for the three
lowest thicknesses (0.4-1.2 nm). This is tentatively at-
tributed to the formation of textured crystallites as the
Pt underlayer starts growing on the amorphous Ta un-
derlayer. These crystallites were directly imaged in TEM
(Fig. 6) for the reference sample, giving a typical lateral
size of 10 nm. The next section describes the modeling
of the additional electron scattering at the grain boun-
daries.

V. EXTENDED FUCHS-SONDHEIMER MODEL

The FS model alone is not sufficient for the repro-
duction of experimental data. One reason for that is
the polycrystalline structure of the layers in the sample,
revealed e.g. by TEM imaging both in transverse cut
(Fig. 5) and in plane view (Fig. 6). The boundaries bet-
ween crystallites introduce an additional scattering of the
electrons that is not covered by the FS model. This phe-
nomenon was addressed by Mayadas and Shatzkes [25].

The FS model also does not account for roughness and
thickness fluctuation of the layers, that naturally occur
in the samples. Several models have been proposed to
account for these phenomena; this will be studied in a
second part.

A. Mayadas-Shatzkes model

The model by Mayadas et al. [25, 26] introduces grain
boundary scattering into the FS model. For bulk sam-
ples or thick films, grain boundaries have little effect on
the resistivity of metals as the grain size is much larger
than the mean free path, however this is not the case for
thin films, where the distance between grain boundaries
is much smaller.

The modification of the FS model to account for the
grain boundary scattering is simple to implement (for
full derivation see Ref. [25]), the relaxation time being
redefined to

1

τ∗
=

1

τ

(
1 +

αvF
|vx|

)
=

1

τ

(
1 +

α

| sinβ cosφ|

)
:=

M(β, φ)

τ
,

(5)
where φ is the angle between the x axis and the projection
of the velocity vector v into the xy plane. The parameter
α carries the information about the grains and is defined
as

α =
λ

D

Rgrain

1−Rgrain
, (6)

with D the typical grain diameter and Rgrain the grain
boundary reflection coefficient.

The final formula for conductivity of a single polycry-
stalline layer thus reads
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Figure 5: High magnification cross-sectional TEM image of the reference sample.

Figure 6: Dark-field TEM plane view of the reference sample, obtained by filtering out the (220) diffraction for Pt, Co and Ni
(see diffraction pattern in inset).

σ =
3

π

σ0
d

∫ π/2

0

∫ π/2

0

dφ dβ
cos2 φ sin3 β

M(β, φ)

{
2d− λ cosβ

M(β, φ)
[F+(β, φ) + F−(β, φ)]

(
1− exp

(
−d
λ

M(β, φ)

cosβ

))}
. (7)

For the fits, the ρλ products and zero reflectivities are
kept as before to make results comparable, but Rgrain is
included as an additional fit parameter, resulting in 10
free parameters. The cross-sectional TEM image (Fig. 5)

gives information on the grain structure. The Ta under-
layer is found amorphous, thus no grains are considered
in the model (technically, Rgrain = 0 is assumed for the
Ta underlayer). For the Ta cap layer, results are weakly
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Table I: Models used to fit the resistance data, their rms errors and parameters (layers are numbered from bottom to top,
so 1 is the Ta underlayer etc.). Model 1 considers independent layers, fitting each thickness series separately. Model 2 also
considers independent layers, but fits all thickness series together. Model 3 is the Fuchs-Sondheimer model. Model 4 is the
Mayadas-Shatzkes model, with 2.0 nm oxidized Ta cap, the grain size varying in proportion to the fcc layers thickness (model
4), or to the Pt underlayer thickness (model 4*). Suffix ‘a’ indicates that the nominal thicknesses are considered, whereas suffix
‘b’ means that up to 2.0 nm of Ta cap was considered oxidized.

Model error ρ1 ρ2 ρ3 ρ4 ρ5 λ1 λ2 λ3 λ4 λ5 T12 T23 T34 T45 Rgrain

(mS.sq) (µΩ.cm) (nm) () ()

1a 0.49 82.6 34.3 27.1 32.9 79.3

1b 0.42 82.6 34.3 27.1 32.9 62.2

2a 1.62 -8300 54.8 36.9 46.8 2590

2b 1.56 -807 56.8 38.3 48.2 101

3a 0.98 287 22.7 25.2 16.4 75.5 0.26 10.3 5.00 14.4 7.95 0 0 0 0

3b 0.83 247 20.8 23.3 18.5 60.0 0.3 11.3 5.40 12.7 10.0 0 0 0 0.78

4b 0.71 247 31.1 18.0 11.8 60.0 0.3 7.6 7.0 19.9 10.0 0 0 0 0.97 0.19

4*b 0.67 247 29.7 12.1 14.1 60.0 0.3 7.9 10.4 16.7 10.0 0.24 1.0 1.0 1.0 0.57

Figure 7: Mayadas-Shatzkes fit, with assumptions described in the text, taking into account that 2.0 nm of the Ta cap were
oxidized, the grain size varying in proportion of the Pt underlayer thickness (model 4b). The resulting rms error is 0.705 mS.sq.
The curve downwards bend at low platinum thickness in panel (b) directly depicts the assumption of model 4; it is absent in
the other variant (model 4*, not shown).

sensitive to grains, and the cross-sectional TEM image
does not reveal them. No grain effect is therefore assu-
med for this layer (Rgrain = 0). For the two platinum
and the (Co/Ni) layers, that all grow with an fcc (111)
texture (Fig. 6), cylindrical grains are considered, with
the same reflection coefficient Rgrain.

In the absence of systematic TEM images, the varia-
tion of the size of the grains as a function of the thickness
of these three layers has to be modeled. The following

results are based on speculations about the grain sizes.
A study having observed that platinum grains grow li-
nearly with thickness below 50 nm [27], two models (at
least) can be considered: the grain size is proportional to
the Pt underlayer thickness (model 4), or to the total fcc
stack thickness (model 4*). In both cases, the proporti-
onality constant is such that, for the reference thickness,
the grain size matches the observed value of 10 nm.

Figure 7 shows the results for model 4. The obtained
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Table II: Current distribution in the sample calculated by the
various models (In is the proportion of the total current that
flows in layer n, in percent). See Tab. I for the definition of
models, their fitted parameters, and the residual error of each
fit. Model 0 is the uniform distribution of current throughout
the sample, the variant (model 0*) assuming that no current
flows in the tantalum, because of its very high resistivity in
the amorphous phase.

Model nominal thicknesses w/ oxidized Ta cap

(models ‘a’) (models ‘b’)

I1 I2 I3 I4 I5 I1 I2 I3 I4 I5

0 23 12 30 12 23 27 14 35 14 9

0* 0 23 55 23 0 0 23 55 23 0

1 12 15 46 16 12 12 16 49 17 6

2 -0.2 17 62 20 0.7 -2 17 60 20 6

3 6 12 58 13 11 7 12 61 14 6

4 7 9 63 14 6

4* 7 14 56 16 7

value Rgrain ≈ 0.2 is typical [25] (a variant of model 4 was
also tried, in which Rgrain = 0.2 was fixed; the resulting
rms errors are 0.705 and 0.755 mS.sq for the models ‘b’
and ‘*b’, respectively). A clear improvement is obtained
relatively to the FS model, the current partition between
the layers being slightly affected (see Tab. II). The evo-
lution of the fitted intrinsic parameters for the platinum
underlayer is surprising, and it differs from what is seen
for the other fcc layers. As the fit is still not fully satisfac-
tory (see the tantalum underlayer data), a parasitic effect
of the fit, which amounts to forcing data to comply to a
given framework, cannot be ruled out. Such an effect was
already observed for model 2, where negative resistivity
and current for the tantalum underlayer were obtained.
One should also not forget that, as more extrinsic scatte-
ring sources are added (the interfaces are added in model
3, the grains are added in model 4), the current distribu-
tion becomes less dependent on the intrinsic parameters
ρi and λi.

The alternative grain size hypothesis (model 4*) de-
livers a slightly better fit, and redistributes the current
more evenly among the fcc layers, due to the fact that
the fitted internal specularity factors have reached unity.
In addition, the grain reflection coefficient is found much
larger. This sensitivity of the fitting might just signal the
too large number of free parameters. Globally however,
models 4 and 4* predict similar current partitions.

B. Thickness averaging

All the above modeling was assuming layers that are
perfect in the z direction, despite the common observa-
tion that some sample roughness exists and that the layer
thicknesses fluctuate from place to place (see for exam-

ple the cross-sectional TEM image in Fig. 5). In the
literature, it has been proposed to account for this fact
either by modifying the specularity parameter [28–30],
or by averaging over a thickness distribution [31]. The
latter model, considering only one-dimensional thickness
fluctuations, is clearly oversimplified. Two-dimensional
fluctuations in conductor networks have been deeply stu-
died more recently, and an effective medium approxima-
tion (EMA) has been shown to describe well the regime
beyond the percolation transition [32]. For averaging in
two dimensions, the EMA formula is an implicit equa-
tion: 〈

σ − σEMA

σ + σEMA

〉
= 0, (8)

where the brackets denote the averaging over the proba-
bility distribution ρ(σ)dσ.

This effect has been implemented for all models, as-
suming that the fcc grains, being slightly disoriented as
proved by the diffraction image Fig. 6, can grow at diffe-
rent speeds with the largest speed when the (111) plane
lies perfectly horizontal. To model this, a normal dis-
tribution of the growth rate was taken, with a standard
deviation expressed as a percentage p as variable para-
meter. This corresponds to recent detailed studies in
magnetic ultrathin films of skyrmions morphology and
pinning [33], and of domain wall dynamics [34]. Typical
values of p extracted from these works are p = 1 − 3 %.
To compute the average in Eq. (8), for each data point,
the model values for all the fcc thicknesses modified ac-
cording to the same value of the normal probability law
were used for integration, repeating the average calcula-
tion for 10 values of σEMA close to the model value in
order to interpolate the solution of the EMA equation.

It was found that the EMA refinement led to negligible
fitting error improvements, and thus negligible changes
of the fitting parameters, even if values of p as large as
5 % were considered. The mathematical reason for this
is simple: as in Eq. (8) the low conductances get a larger
weight than the large conductances, the bias of the EMA
averaging is towards lower conductances, with shifts that
increase as the thickness variation is larger. This results
in a systematic negative curvature of the conductance
versus thickness curves, quite the opposite of the experi-
mental trend.

VI. CONCLUSION

The schematic types of models for the current distribu-
tion are: uniform current through the conductive layers
(model 0), constant conductivity for each layer, obtai-
ned from the corresponding thickness series (model 1),
and Fuchs-Sondheimer global model(model 3). We have
shown that increasingly better fits of the data are obtai-
ned by considering more and more elaborate models (de-
signated by higher and higher model numbers), taking
into account additional structural data.
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The remarks emerging from this work are.

• Comparing model 1 to 3, we see that the former
underestimates the current in the CoNi multilayer,
overestimates it in the Pt layers, and largely ove-
restimates it for the Ta layers. This was to be ex-
pected, due to mean-free path effects.

• Model 2 is too rarely employed, which is a pity as
this model shows directly the danger of model 1.

• The Fuchs-Sondheimer model (model 3) provides
results that are not bracketed by the simplest mo-
dels (models 0 and 1), as might have been assumed.
These models should therefore be taken as indica-
tive only.

• The Mayadas-Shatzkes model (model 4) does im-
prove the fit error, but does not modify much the
current distribution.

On this basis, the simplest way to improve model 1 seems
to perform a Fuchs-Sondheimer calculation with zero spe-
cularity coefficients at the interfaces, using reasonable
values for the intrinsic parameters.

The work reported shows that collecting as much as
possible structural data is desirable. From breaks of slope
in a thickness series one might guess that another phe-
nomenon is taking place, but it is always better to have
an independent observation of it. The effect of including
structural information is not negligible, compare for ex-
ample the current in the Ta cap layer as deduced from
models 3a and 3b.

Concerning non-uniformities, which are often invoked,
we have found that for these samples at least they play

a negligible role. This conclusion was reached using an
analytical averaging formula, simpler that numerical mo-
dels proposed previously [35]. This conclusion opposes
the one reached some time ago by Hoffmann et al. [36],
probably due to the better quality of the films prepared
nowadays.

One feature of the data that remains unclear is the
influence of the Ta underlayer thickness on the sample
conductivity. The observed increase of sheet conduc-
tance with thickness of this layer is indeed too large, so
that model 1 predicts a large percentage of current in
that layer. One may suspect that this is a texture effect.
The role of a Ta underlayer on the subsequent growth of
Pt, followed by Co, has been indeed recently highlighted
by measurements of the interfacial Dzyaloshinskii-Moriya
interaction [37], an anti-symmetric exchange term arising
at the Co/Pt interface, which is anticipated to depend
strongly on the interface quality [38]. To test this hypot-
hesis, TEM studies of the sample as the Ta underlayer
thickness is varied would be decisive.
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[11] V. Uhĺı̌r, S. Pizzini, N. Rougemaille, V. Cros, E. Jiménez,
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