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We describe the size of the sets of sojourn times E γ = {t ≥ 0 : |B t | ≤ t γ } associated with a fractional Brownian motion B in terms of various large scale dimensions.

Introduction

Describing the properties of the sample paths of stochastic processes is one of the leading threads of modern stochastic analysis: such a line of research started with the investigation of the almost sure continuity properties of the paths of a real-valued Brownian motion (B t ) t≥0 , such as Hölder continuity, followed by the important notions of fast and slow points introduced by Taylor. See e.g. the three classical references [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF][START_REF] Mörters | Brownian motion[END_REF][START_REF] Revuz | Continuous martingales and brownian motion[END_REF] for formal statements, as well as for an historical overview of this fundamental domain.

A naturally connected question consists in describing the geometric properties of the graph of {(t, B t ) : t ≥ 0}, in terms of box, packing and Hausdorff dimensions -see Section 2.1 for precise definitons. In this respect, the case of the Brownian motion is [START_REF] Taylor | The Hausdorff -dimensional measure of Brownian paths in n-space[END_REF][START_REF] Taylor | The α-dimensional measure of the graph and set of zeros of a Brownian path[END_REF][START_REF] Mörters | Brownian motion[END_REF] now very well understood, and many researchers have tried, often succesfully, to obtain similar results for other widely used classes of processes: fractional Brownian motions and more general Gaussian processes, Lévy processes, solutions of SDE or SPDE's (see [START_REF] Pruitt | The Hausdorff dimension of the range of a process with stationary independent increments[END_REF][START_REF] Pruitt | Packing and covering indices for a general Levy process[END_REF][START_REF] Ayache | Hausdorff dimension of the graph of the Fractional Brownian Sheet[END_REF][START_REF] Yang | Hausdorff dimension of the range and the graph of stable-like processes[END_REF][START_REF] Khoshnevisan | Additive Lévy Processes: Capacity and Hausdorff Dimension Progress in Probability[END_REF][START_REF] Shieh | Hausdorff and packing dimensions of the images of random fields[END_REF] for instance, and the numerous references therein). Despite these remarkable efforts, many important questions in this area are almost completely open for future research. Another description of random trajectories was proposed in terms of sojourn times. The objective is to describe the (asymptotic) proportion of time spent by a stochastic process in a given region. Sojourn times have been studied by many authors (see for instance [START_REF] Ciesielski | First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path[END_REF][START_REF] Ray | Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion[END_REF][START_REF] Uchiyama | The proportion of Brownian sojourn outside a moving boundary[END_REF][START_REF] Berman | Spectral conditions for sojourn and extreme value limit theorems for Gaussian processes[END_REF] and the references therein) and play a key role in understanding various features of the paths of stochastic processes, especially those of Brownian motion.

In this paper, we focus on the sojourn times associated with the paths of a fractional Brownian motion (FBM) inside the domain {(t, u) : t ≥ 0 and |u| ≤ t γ }, where γ ≥ 0. It is known that, with probability one, after some large time t, an FBM B := (B t ) t≥0 does not intersect the domain {(t, u) : t ≥ 0 and |u| ≥ t H+ε }, for every ε > 0. For this reason, in what follows we restrict the study to the case γ ∈ [0, H], and investigate the sets (1)

E γ := {t ≥ 0 : |B t | ≤ t γ }
in terms of various large scale dimensions: the Lebesgue density, the logarithmic density, and the macroscopic box and Hausdorff dimensions.

A simulation of the set E γ appears in Fig. 1.

The last two notions evoked above have been introduced in the late 1980s by Barlow and Taylor (see [START_REF] Barlow | Fractional dimension of sets in discrete spaces[END_REF][START_REF] Barlow | Defining fractal subsets of Z d[END_REF]), in order to formally define the fractal dimension of a discrete set. One of the main motivations for the theory developed in [START_REF] Barlow | Fractional dimension of sets in discrete spaces[END_REF] was e.g. to describe the asymptotic properties of the trajectory of a random walk on Z 2 , whereas the focus in [START_REF] Barlow | Defining fractal subsets of Z d[END_REF] was the computation of the macroscopic Hausdorff dimension of an α-stable random walk. Proper definitions are given in the next section. These dimensions have proven to be relevant in other situations, in particular when describing the high peaks of (random) solutions of the stochastic heat equation, see the seminal works of Khoshnevisan, Kim and Xiao [START_REF] Khoshnevisan | Intermittency and multifractality: A case study via parabolic stochastic pdes[END_REF][START_REF] Khoshnevisan | On the macroscopic fractal geometry of some random sets[END_REF].

The present paper can be seen as a follow-up and a non-trivial extension of [START_REF] Seuret | On sojourn of Brownian motion inside moving boundaries Stochastic Processes and their Applications[END_REF], where analogous results were obtained in the case of B being a standard Brownian motion. One of the principal motivations of our analysis is indeed to understand how much the findings of [START_REF] Seuret | On sojourn of Brownian motion inside moving boundaries Stochastic Processes and their Applications[END_REF] rely on the specific features of Brownian motion, such as the (strong and weak) Markov properties, the associated reflection principle, as well as the fine properties of local times. While all these features are heavily exploited in [START_REF] Seuret | On sojourn of Brownian motion inside moving boundaries Stochastic Processes and their Applications[END_REF], the novel approach developed in our paper shows that the dimensional analysis of sojourn times initiated in [START_REF] Seuret | On sojourn of Brownian motion inside moving boundaries Stochastic Processes and their Applications[END_REF] can be substantially extended to the non-Markovian setting of a fractional Brownian motion with arbitrary Hurst index. We believe that our techniques might be suitably adapted in order to study sojourn times associated with even larger classes of Gaussian processes or Gaussian fields.

From now on, every random object considered in the paper is defined on a common probability space (Ω, A, P), with E denoting expectation with respect to P.

Assumptions and main results

Densities and dimensions.

In what follows, the symbol 'Leb' stands for the one-dimensional Lebesgue measure. For any set A, we denote by |A| its cardinality whereas, for any subset

E ⊂ R + , pix(E) = {n ∈ N : dist(n, E) ≤ 1}
is the set of integers that are at distance less than one from E. It is clear that Leb(E) ≤ |pix(E)|, while the converse inequality does not hold in general.

We will now describe the main notions and concepts that are used in this paper, in order to describe the size of the set of sojourn times

E γ = {t ≥ 0 : |B t | ≤ t γ }.
The simplest way of assessing the size of E γ simply consists in estimating how fast the Lebesgue measure of E γ ∩ [0, t] grows with t. For a general set E ⊂ R + , this yields the following definition. Definition 1. Let E ⊂ R + . The logarithmic density of E is defined as

Den log E = lim sup n→+∞ log 2 Leb(E ∩ [1, 2 n ]) n .
This notion will be compared with a similar quantity, obtained by replacing the Lebesgue measure of a given subset of E by the cardinality of its pixel set. Definition 2. Let E ⊂ R + . The pixel density of E is defined by

Den pix E = lim sup n→+∞ log 2 |pix(E ∩ [1, 2 n ])| n
The last notion we will deal with is the macroscopic Hausdorff dimension, introduced by Barlow and Taylor (as discussed above), in order to quantify a sort of "fractal" behavior of self-similar structures sitting on infinite lattices.

Following the notations of [START_REF] Khoshnevisan | Intermittency and multifractality: A case study via parabolic stochastic pdes[END_REF][START_REF] Khoshnevisan | On the macroscopic fractal geometry of some random sets[END_REF], we consider the annuli S 0 = [0, 1) and S n = [2 n-1 , 2 n ), for n ≥ 1. For any ρ ≥ 0, any set E ⊂ R + and any n ∈ N * , we define

ν n ρ (E) = inf m i=1 Leb(I i ) 2 n ρ : m ≥ 1, I i ⊂ S n , E ∩ S n ⊂ m i=1 I i , (2) 
where I i are non-trivial intervals with integer boundaries (hence their length is always greater or equal than 1). The infimum is thus taken over a finite number of finite families of non-trivial intervals.

Definition 3. Let E ⊂ R + . The macroscopic Hausdorff dimension of E is defined as (3) Dim H E = inf ρ ≥ 0 : n≥0 ν n ρ (E) < +∞ .
Observe that Dim H E ∈ [0, 1] for any E ⊂ R + : indeed, choosing as covering of E ∩ S n the intervals of length 1 partitioning S n , we get ν n 1+ε (E) ≤ 2 -nε for any ε > 0, so that nε0 ν n 1+ε (E) < +∞. The macroscopic Hausdorff dimension Dim H E of E ⊂ R + does not depend on its bounded subsets, since the series in (3) converges if and only if its tail series converges. In particular, every bounded set E has a macroscopic Hausdorff dimension equal to zero -the converse is not true, for instance Dim H n≥1 {2 n } = 0.

Observe also that the local structure of E does not really influence the value of Dim H (E), since the "natural" scale at which E is observed is 1.

The value of Dim H E describes the asymptotic distribution of E ⊂ R + on R + . The difference between Dim H E and the previously introduced dimensions is that while Den pix E (or Den log E) only counts the number of points of E ∩ S n (or, equivalently, measures E ∩ [1, 2 n ]), the quantity Dim H E takes into account the geometry of the set E, in particular by considering the most efficient covering of E ∩ S n . For instance, as an intuition, the value of ν ρ n (E) is large when all the points of E ∩ S n are more or less uniformly distributed in S n , while it is much smaller when these points are all located in the same region (in that case, one large interval is the best possible covering).

Standard inequalities exploited in our paper are ( see [START_REF] Barlow | Fractional dimension of sets in discrete spaces[END_REF][START_REF] Khoshnevisan | Intermittency and multifractality: A case study via parabolic stochastic pdes[END_REF])

(4) Dim H E ≤ Den pix E and Den log E ≤ Den pix E.
These inequalities are strict in general, in particular the first one will be strict for the sets we focus on in this paper.

2.2.

Fractional Brownian motion. Throughout the paper, B = (B t ) t≥0 denotes a one-dimensional fractional Brownian motion (FBM) of index H ∈ (0, 1). This means that B is a continuous Gaussian process, centered, self-similar of index H, and with stationary increments. All these properties (in particular, the fact that one can always select a continuous modification of B) are simple consequences of the following expression for its covariance function R:

R(u, v) = E[B u B v ] = 1 2 u 2H + v 2H -|v -u| 2H .
One can easily check that (5)

I := [0,1] 2 du dv R(u, u)R(v, v) -R(u, v) 2 < +∞.
By virtue of this fact, the local time (L x t ) x∈R,t≥0 associated with B is well defined in L 2 (Ω) by the following integral relation:

(6) L x t = 1 2π R dy e -iyx t s du e iyBu ,
see e.g. [START_REF] Berman | Local Times and Sample Function Properties of Stationary Gaussian Processes[END_REF]. For each t, the local time x → L x t is the density of the occupation measure µ t (A) = Leb{s ∈ [0, t] : B s ∈ A} associated with B. Otherwise stated, one has that L t = dµt dLeb . A last property that we will need in order to conclude our proofs, and that is an immediate consequence of the Volterra representation of B, is that the natural filtration associated with FBM is Brownian. By this, we mean that there exists a standard Brownian motion (W u ) u≥0 defined on the same probability space than B such that its filtration satisfies [START_REF] Berman | Extreme sojourns of diffusion processes[END_REF] σ{B u : u ≤ t} ⊂ σ{W u : u ≤ t}.

for all t > 0.

2.3. Our results. Let the notation of the previous sections prevail (in particular B denotes a FBM of index H ∈ (0, 1)). The first result proved in this paper concerns the logarithmic and macroscopic densities of the sojourn times E γ , as defined in [START_REF] Adler | Random fields and geometry[END_REF].

Theorem 1. Fix γ ∈ [0, H). Then (8) Den pix E γ = Den log E γ = γ + 1 -H a.s.
Our second theorem deals with the macroscopic Hausdorff dimension of all sets E γ .

Theorem 2. Fix γ ∈ [0, H). Then [START_REF] Ciesielski | First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path[END_REF] Dim

H E γ = 1 -H a.s.
The fact that the macroscopic box and Hausdorff dimension differ asserts that the trajectory enjoys some specific geometric properties. This can be interpreted by the fact that the set E γ is not uniformly distributed (if it were, then both dimensions would coincide), which relies on the intuition that the trajectory of an FBM does not fluctuate too rapidly from one region to the other.

Actually, the lower bound for the dimension Dim H E γ ≥ 1 -H in Theorem 2 will follow from the next statement, which evaluates the dimension of the level sets [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] L x := {t :

B t = x}
and which is of independent interest.

Theorem 3. Fix x ∈ R. Then (11) Dim H L x = 1 -H a.s.
The connection between Theorem 2 and Theorem 3 can be heuristically understood by observing that, when t is large and for a fixed x, the relation t ∈ L x implies that t ∈ E γ , and therefore Dim H E γ ≥ Dim H L x , owing to the fact that, as explained above, the quantity Dim H A does not depend on the bounded subsets of a given A ⊂ R + . In what follows, C > 0 always denotes a constant whose value is immaterial and may change from one line to the other.

3.1. Upper bounds. Recalling the second part of (4), it is enough to find an upper bound for Den pix E γ , which will also be an upper bound for Den log E γ .

Fix γ ∈ (0, H), and consider Den pix E γ . First, we observe that

E(|pix(E γ ) ∩ [1, 2 n ]|) = 2 n m=1 P(∃s ∈ [m -1, m + 1], |B s | ≤ s γ ) = 2 n m=1 P(∃s ∈ [1 - 1 m , 1 + 1 m ], |B s | ≤ s γ m γ-H ) ≤ 2 n m=1 (A - 1/m + A + 1/m )
where

A - ε := P(∃s ∈ [1 -ε, 1], |B s | ≤ ε H-γ ) A + ε := P(∃s ∈ [1, 1 + ε], |B s | ≤ 2ε H-γ ).
Lemma 4. For every ε small enough ,

(12) max(A - ε , A + ε ) ≤ 3ε H-γ . Proof. Let us consider A - ε first. We have A - ε ≤ P(|B 1 | ≤ 2ε H-γ ) +P(∃s ∈ [1 -ε, 1], |B s -B 1 | ≥ ε H-γ ).
The term P(|B 1 | ≤ 2ε H-γ ) is easily bounded by Cε H-γ , so let us concentrate on the term P(∃s

∈ [1 -ε, 1], |B s -B 1 | ≥ ε H-γ ). Set X s = B 1 -B 1-s , s ∈ [0, 1].
Observe that X is also a FBM. We have

P(∃s ∈ [1 -ε, 1], |B s -B 1 | ≥ ε H-γ ) = P(∃s ∈ [0, 1], |X εs | ≥ ε H-γ ) = P(∃s ∈ [0, 1], |X s | ≥ ε -γ ) = P( sup s∈[0,1] |X s | ≥ ε -γ ) ≤ 2 P( sup s∈[0,1] X s ≥ ε -γ )
where last inequality makes use of the fact that X 

X ≥ u) ≤ e -(u-α) 2 2
, u ≥ 0.

(That α is finite is part of the result.) We deduce that

P(∃s ∈ [1 -ε, 1], |B s -B 1 | ≥ ε H-γ ) ≤ 2 e -(ε -γ -α) 2 2 = O(ε δ ),
for every δ > 0 when ε becomes small enough. Hence the result. An analogous argument leads to the same estimate for the set A + ε . Going back to A - 1/m and A + 1/m , we obtain from Lemma 4 that max(A - 1/m , A + 1/m ) = O(m γ-H ). We consequently conclude that

E(|pix(E γ ) ∩ [1, 2 n ]|) ≤ 2 n m=1 (A - 1/m + A + 1/m ) = O(2 n(γ+1-H) ).
Choosing ρ > γ + 1 -H, we have

n≥1 P(|pix(E γ ) ∩ [1, 2 n ]| > 2 nρ ) ≤ C n≥1 2 n(1+γ-H) 2 nρ < +∞.
Using the Borel-Cantelli lemma we infer that, with probability one,

|pix(E γ ) ∩ [1, 2 n ]| ≤ 2 nρ
for every large enough integer n. Hence Den pix E γ ≤ ρ.

Letting ρ ↓ γ + 1 -H leads to Den pix E γ ≤ γ + 1 -H.
Remark 1. We could have proved directly the upper bound for Den log E γ as follows. Introduce

(14) S γ (t) = Leb{0 ≤ s ≤ t : |B s | ≤ s γ }.
Its expectation can be estimated :

E(S γ (t)) = t 0 P(|B s | ≤ s γ ) ds = t 0 P(|B 1 | ≤ s γ-H ) ds ∼ Ct γ+1-H , (15) 
where the Fubini theorem, the self-similarity of B and then the fact that B 1 ∼ N (0, 1) have been successively used. The same argument (based on Borel-Cantelli) as the one used above to conclude that Den pix E γ ≤ γ + 1 -H, allows one to deduce the desired result.

Lower bounds.

To obtain the announced lower bounds, we first evaluate the second moment of S γ (t) (defined in ( 14)). We have, with Σ u,v denoting the covariance matrix of (B u , B v ),

E(S γ (t) 2 ) = [0,t] 2 P(|B u | ≤ u γ , |B v | ≤ v γ ) dudv = t 2 [0,1] 2 P(|B u | ≤ u γ t γ-H , |B v | ≤ v γ t γ-H )dudv = t 2 2π [0,1] 2 dudv det Σ u,v R 2 e -1 2 (x,y) T Σ -1 u,v (x,y) 1 |x| ≤ u γ t γ-H |y| ≤ v γ t γ-H
dxdy.

Upper bounding e -1 2 {...} , u and v by 1 and using that ( 5) is satisfied, we deduce that ( 16)

E(S γ (t) 2 ) ≤ C t 2γ+2-2H .
Applying the Paley-Zygmund inequality together with the estimate (15), we deduce from ( 16) that, for any fixed 0 < c < 1, there exists c > 0 such that

P(S γ (2 n ) ≥ c2 n(γ+1-H) ) ≥ (1 -c) E(S γ (2 n )) 2 E(S γ (2 n ) 2 ) ≥ c .
The Borel-Cantelli lemma ensures that, for infinitely many integers n, S γ (2 n ) ≥ c2 n(γ+1-H) . This fact implies that Den log E γ ≥ γ + 1 -H. Finally, using the right inequality in (4), we directly obtain Den pix E γ ≥ γ + 1 -H. Let us fix 0 ≤ γ < H, as well as η > 0 (as small as we want). We are going to prove that Dim H E γ ≤ 1 -H + η. Letting η tend to zero will then give the result.

Fix ρ > 1 -H + η. Consider for every integer n ≥ 1 and i ∈ {0, ..., 2 n-1 /2 n γ H } the times

t n,i = 2 n-1 + i2 n γ H .
The collection t n,i generates the intervals I n,i = [t n,i , t n,i+1 ), together with the associated event

E n,i = {∃ t ∈ I n,i : |B t | ≤ t γ }, Set ε n,i = 2 n γ H /t n,i , so that I n,i = [t n,i , t n,i (1 + ε n,i ))
, and observe that the ratio between any two of the quantities 2 n( γ H -1) , ε n,i and t γ H -1 n,i are bounded uniformly with respect to n and i. By self-similarity, we have that, when n becomes large,

P(E n,i ) = P(∃ τ ∈ [1, 1 + ε n,i ] : |B τ •t n,i | ≤ (τ • t n,i ) γ ) = P(∃ τ ∈ [1, 1 + ε n,i ] : |B t | ≤ t γ-H n,i τ γ ) ≤ P(∃ τ ∈ [1, 1 + ε n,i ] : |B t | ≤ 2t γ-H n,i ) ≤ P(∃ τ ∈ [1, 1 + ε n,i ], |B t | ≤ c ε H n,i ) ≤ P(∃ t ∈ [1, 1 + ε n,i ], |B t | ≤ ε H-η n,i
). The last estimate holds because η is a small positive real number and ε n,i tends to zero. By Lemma 4, we deduce that P(E n,i ) ≤ c ε H-η n,i and then

P(E n,i ) ≤ c 2 n(γ-H) H-η
H . Now observe that E n,i is realized if and only if E γ ∩ I n,i = ∅. So, using the intervals I n,i as a covering of E γ ∩ I n,i = ∅, we obtain from (2) that

E[ν n ρ (E γ )] ≤ E   2 n-1-n γ H i=0 Leb(I n,i ) 2 n ρ 1 1 E n,i   ≤ 2 ρn( γ H -1) 2 n-1-nγ/H i=0 P(E n,i ) ≤ c 2 n H-γ H (1-H+η-ρ) .
Thus, the Fubini Theorem entails E[ ∞ n=1 ν n ρ (E γ )] < +∞ as soon as ρ > 1 -H + η. This implies that for such ρ's, the sum ∞ n=1 ν n ρ (E γ ) is finite almost surely. In particular, Dim H E γ ≤ ρ for every ρ > 1-H +η. Since such a relation holds for an arbitrary (small) ρ > 0, we deduce the desired conclusion.

Lower bound Dim

H E γ ≥ 1 -H.
This lower bound follows from the lower bound in Theorem 3, as proved in Section 5.3.

Indeed, assume that Dim H L 0 ≥ 1 -H, which is an almost sure consequence of Theorem 3. Obviously L 0 ⊂ E γ , hence Dim H E γ ≥ 1 -H, which is the desired conclusion. 

νn ρ (E) = inf m i=1 Leb(I i ) 2 n ρ log 2 Leb(I i ) 2 n 1-ρ : m ≥ 1, I i ⊂ S n , E ∩ S n ⊂ m i=1 I i . (17) 
The introduction of a logarithm factor makes some computations easier in Section 5.3. The quantities ν n ρ lead to the same notion of dimension. Indeed, it is easily proved [START_REF] Khoshnevisan | Intermittency and multifractality: A case study via parabolic stochastic pdes[END_REF][START_REF] Seuret | On sojourn of Brownian motion inside moving boundaries Stochastic Processes and their Applications[END_REF] that one can replace ν by ν in (3), so that [START_REF] Pruitt | Packing and covering indices for a general Levy process[END_REF] Dim H E = inf ρ ≥ 0 :

n≥0 νn ρ (E) < +∞ .

Upper bound for Dim

H L x .
The argument exploited in the present section is comparable to the one used in Section 4.2. Since every levet set L x defined by ( 10) is ultimately included in E γ for every γ > 0, and since all the dimensions we consider do not depend of any bounded subset of E γ , we easily obtain from (4) and Theorem 1 that Dim H L x ≤ 1 -H + γ, for any γ > 0. Letting γ ↓ 0, one sees that Dim H L x ≤ 1 -H. 

Y x n = L x2 nH 2 n -L x2 nH 2 n-1 2 n(1-H) and F x N := N n=1 Y x n .
The random sequence (F x N ) N ≥1 is non-decreasing and we denote by F x ∞ its limit, i.e. F x ∞ = n≥1 Y x n . We remark from the self-similarity of B that Y x n d = Y x 0 , see formula [START_REF] Berman | Local Times and Sample Function Properties of Stationary Gaussian Processes[END_REF]. Let us start with a lemma connecting the r.v. Y x n to the macroscopic Hausdorff dimension. Lemma 5. With probability one, there exists a constant K > 0 such that, for every x ∈ R and every n ≥ 1,

νn 1-H (L x ) ≥ K -1 Y x n .
Proof. We start by recalling a key result of Xiao (see [START_REF] Xiao | Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields[END_REF]Theorem 1.2]), which describes the scaling behavior of the local times of stationary Gaussian processes. For this, let us introduce the random variables

X n := sup 0≤t≤2 n sup 0≤h≤2 n-1 sup x∈R L x t+h -L x t h 1-H (n -log 2 h) H .
Self-similarity of B implies

X n = sup 0≤t≤1 sup 0≤h≤1/2 sup x∈R L x2 nH 2 n (t+h) -L x2 nH 2 n t (2 n h) 1-H (-log 2 h) H d = sup 0≤t≤1 sup 0≤h≤1/2 sup x∈R L x t+h -L x t h 1-H (-log 2 h) H
By [26, Theorem 1.2], with probability one there exists a constant K > 0 such that [START_REF] Revuz | Continuous martingales and brownian motion[END_REF] for every n ≥ 1, X n ≤ K.

Now fix x ∈ R, and consider the associated level set L x defined by [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF].

Recall the definition ( 17) of νn 1-H (L x ). Choose a covering (I i ) i=1,...,m that minimizes the value in [START_REF] Pruitt | The Hausdorff dimension of the range of a process with stationary independent increments[END_REF], and set

I i = [x i , y i ]. We observe that νn 1-H (L x ) = m i=1 Leb(I i ) 2 n 1-H log 2 Leb(I i ) 2 n H = m i=1 |y i -x i | 2 n 1-H log 2 |y i -x i | 2 n H ≥ K -1 m i=1 L x2 nH y i -L x2 nH x i 2 n(1-H) = K -1 m i=1 L x2 nH (I i ) 2 n(1-H) ≥ K -1 L x2 nH 2 n -L x2 nH 2 n-1
2 n(1-H) where [START_REF] Revuz | Continuous martingales and brownian motion[END_REF] has been used to get the first inequality, and the last inequality holds because the local time L x . increases only on the sets I i (whose union covers L x ∩ S n ). This proves the claim.

Remark 2. The introduction of νn

ρ instead of ν n ρ in [START_REF] Pruitt | Packing and covering indices for a general Levy process[END_REF] is key in the last sequence of inequalities displayed in the previous proof, allowing us to use in a relevant way Xiao's result [START_REF] Revuz | Continuous martingales and brownian motion[END_REF]. Now, using Lemma 5, and recalling [START_REF] Pruitt | Packing and covering indices for a general Levy process[END_REF], in order to conclude that Dim H L x ≥ 1 -H and Theorem 3, it is enough to prove that the series n≥1 Y x n diverges almost surely. This is the purpose of the next proposition. Proposition 6. For all x ∈ R, [START_REF] Seuret | On sojourn of Brownian motion inside moving boundaries Stochastic Processes and their Applications[END_REF] P(F x ∞ = +∞) = 1. The proof of Proposition 6 makes use of various arguments involving local times, Brownian filtration and Kolmogorov 0-1 law. As a preliminary step, we start with the following lemma, showing that the previous probability is strictly positive. Our key argument can be seen as a variation of the celebrated Jeulin's Lemma [15, p. 44], allowing one to deduce the convergence of random series (or integrals), by controlling deterministic series of probabilities. Lemma 7. For every x ∈ R, one has that [START_REF] Shieh | Hausdorff and packing dimensions of the images of random fields[END_REF] P(F x ∞ = +∞) > 0. Proof. Recalling (6) we have, for every s ≤ t,

L x t -L x s = 1 2π R dy e -iyx t s du e iyBu . Using the self-similarity of B through E(B 2 u ) = u 2H E(B 1 ) = u 2H , we deduce: E(L x t -L x s ) = 1 2π R dy e -iyx t s du e -1 2 y 2 u 2H = 1 2π t s du R dy e -iyx e -1 2 y 2 u 2H = 1 √ 2π t s e -x 2 2u 2H u -H du.
We observe in particular that E(L x 1 -L x

) > 0, so

P (Y x 0 > 0) = P(L x 1 -L x 1 2 > 0) > 0. (23) 
Now fix γ > 0, and consider the event A = {F x ∞ ≤ γ}. We have, by Fubini, Since the summand does not depend on n, the only possibility is that it is zero, that is, +∞ 0 (P(F x ∞ ≤ γ) -P(Y x 0 ≤ u)) + du = 0.

γ ≥ E(1 1 A F x ∞ ) = n≥1 E(1 1 A Y x n ) =
This implies, for almost every u ≥ 0 and every γ > 0:

P(F x ∞ ≤ γ) ≤ P(Y x 0 ≤ u).
Letting γ → +∞ together with u → 0 + , and recalling [START_REF] Taylor | The Hausdorff -dimensional measure of Brownian paths in n-space[END_REF], we conclude that P(F x ∞ = +∞) ≥ P(Y x 0 > 0) > 0, which is exactly the desired relation [START_REF] Shieh | Hausdorff and packing dimensions of the images of random fields[END_REF].

It remains us to prove that not only P(F x ∞ = +∞) is strictly positive for every x, but in fact it equals 1. Such a conclusion will follow from the next statement, corresponding to a time-inversion property of FBM. It can be checked immediately by computing the covariance function of the process B introduced below. is also a FBM.

Let us denote by L x t , Y x n and F x N the quantities analogous to L x t , Y x n and F x N defined in [START_REF] Ray | Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion[END_REF], but associated with B (see [START_REF] Taylor | The α-dimensional measure of the graph and set of zeros of a Brownian path[END_REF]) instead of B. Obviously, (L x t ) x∈R,t≥0 and ( L x t ) x∈R,t≥0 have the same law. So

F x ∞ d = F x ∞ := +∞ n=1 L 2 nH x 2 n -L 2 nH x 2 n-1
2 n(1-H) .

For a fixed integer n ≥ 1, we have The event { F x ∞ = +∞} does not depend on the first term of the series, so is a tail event. Otherwise stated,

L x2 nH 2 n -L x2 nH 2 n-1 = 1 2π R dy e -iy2 nH x 2 n 2 n-1 du e iyu 2H B
{ F x ∞ = +∞} ∈ M ≥1 σ L x2 nH 2 n -L x2 nH 2 n-1 : n ≥ M .
Using now [START_REF] Berman | Extreme sojourns of diffusion processes[END_REF] (with B instead of B), we deduce that

{ F x ∞ = +∞} ∈ M ≥1 σ{W u : u ≤ 2 -M },
where W is a standard Brownian motion. By the Blumenthal's 0-1 law for W , we infer that P( F x ∞ = +∞) is either 0 or 1. Remembering Lemma 7, we can conclude that this probability is one, which implies (21) as claimed.
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 1 Figure 1. The red subset of the real line is a simulation of the set E γ , with γ = 0.22 and H = 0.43
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n≥1 +∞ 0 P

 0 (A ∩ {Y x n > u}) du.Using P(A ∩ B) ≥ (P(A) -P(B c )) + , we deduce that A) -P(Y x 0 ≤ u)) + du.

Lemma 8 .

 8 The reversed time process B[START_REF] Taylor | The α-dimensional measure of the graph and set of zeros of a Brownian path[END_REF] t -→ B u := u 2H B 1/u

2 n-

 2 L x2 nH 2 n-1 : n ≥ M ⊂ σ{B u : u ≤ 2 -(M -1) }.

  1/u , implying in turn that L x2 nH 2 n -L x2 nH 2 n-1 is σ{B u : u ≤ 2 -(n-1) }-measurable. As a consequence, for every M ≥ 1, σ L x2 nH
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