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Abstract

The presented work is dedicated to the mathematical and numerical modeling of unsteady single-
and two-phase flows using finite volume and penalty methods. Two classes of Navier-Stokes solvers are
considered in order to compare their accuracy and robustness, as well as to highlight their limitations.
Exact (or monolythic) solvers such as the Augmented Lagrangian and the Fully Coupled methods
address the saddle-point structure on the pressure-velocity couple of the discretized system by means
of a penalization term or even directly, whereas the approximate (or segregated) solvers such as the
Standard Projection method rely on operator splitting to break the problem down into decoupled
systems. The objective is to compare all approaches in the context of two-phase flows at high viscosity
and density ratios. To characterize the interface location, a volume of fluid (VOF) approach is used
based on a Piecewise Linear Interface Construction (PLIC). Various 2D simulations are performed
on single- and two-phase flows to characterize the behavior and performances of the various solvers.
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1 Introduction

The Navier-Stokes equations play a crucial role in several industrial and environmental applications such
as weather forecast, combustion and propulsion, civil engineering, aerodynamics and hydrodynamics
to name a few. However, their resolution causes many problems and remains a challenging task for
mathematicians as well as engineers. In the context of incompressible two-phase flows, the difficulties are
two-fold: on the one hand, the velocity-pressure coupling induced by the incompressibility constraint,
which must hold at every instant, gives rise to a saddle-point problem for which dedicated solvers must
be designed and, on the other hand, large density and viscosity ratios in the presence of large interface
distortions yield ill-conditioned linear systems. However, solving ill-conditioned linear systems is common
in many engineering problems (the reader is referred to [8] [6] for more information).

The cures to the pressure-velocity coupling challenge fall along one of the two following strategies. On
the one hand, segregated methods, introduced by Chorin [7] and Temam [33], approximate the original
system using time splitting, thereby resulting in two decoupled equations: one to update the velocity
field and the other the pressure field. This raises a number of issues, such as the appearance of numerical
artifacts as a consequence of the splitting error, or the need for pressure boundary conditions that do
not exist in the original problem. On the other hand, coupled methods solve both fields (velocity and
pressure) simultaneously, hence preserving the consistency of the discretized system with the continuous
equations (as opposed to segregated methods, which introduce a splitting error that is inconsistent with
the continuous system). The system to be solved in coupled methods is known as a saddle point system
on the pressure-velocity couple. This saddle point system can in turn be solved either directly (this
strategy will be referred to as the Fully Coupled (FC) method) or by means of a penalty method (Aug-
mented Lagrangian (AL)). The Augmented Lagrangian (AL) method was proposed initially by Fortin and
Glowinski [I3] primarily for single-phase Stokes flows. This approach was recently applied to two-phase
flows by Vincent and coworkers [21] [35]. This is an iterative method, where each iteration requires the



solution of the velocity equation modified to include an additional term that penalizes the incompress-
ibility constraint. A subsequent update of the pressure field is performed explicitly. Fully Coupled (FC)
methods on the other hand are purely algebraic, using specific block preconditionners so as to improve
the spectral properties of the original saddle point system. In recent years, significant efforts have been
dedicated to this approach, and several techniques have been proposed in the context of single-phase
flows, in the Stokes or steady regimes primarily, using finite element methods [23] [10].

In the context of two-phase flow modeling at high density and viscosity ratios, several techniques
have been investigated to tackle the induced stiffness. For projection methods (PR), Guermond and
Salgado [I7] have studied a new fractional time-step technique for variable density flows, which consist in
extracting the density from the Poisson equation by penalizing the divergence of the velocity. The validity
of this method is demonstrated for Rayleigh-Taylor instability at small density ratio. More recently,
Dodd and Ferrante [9] have proposed a fast pressure-correction method for simulating incompressible
two-phase flows with large density and viscosity ratios. The method is based on the splitting of the
pressure gradient into two terms, one with a variable density term which is explicitly treated and the
other one with a constant density term treated implicitly. The results obtained for a capillary wave show
that this method is able to treat two-phase flow problems with density and viscosity ratios up to 10°.
Nevertheless, the explicit treatment of the velocity prediction imposes a restriction on the time-step size
to maintain numerical stability. Another approach followed by Caltagirone and Breil [5] relies on a vector
projection of the velocity field, using only a velocity correction and Hodge-Helmholtz decomposition.
Three-dimensional tests show that this method is very effective for simulating two-phase flows with very
large ratios of density and viscosity (p2/p1 > 1000 and pe/p1 > 1000). However, the solution of large
sparse linear systems on all velocity components is complex, and as in the scalar projection method, it
also has a time spliting error.

Regarding the Augmented Lagrangian method, Vincent et al. [35] have proposed the Algebraic Adap-
tive Augmented Lagrangian (AAAL) for simulating two-phase flows. As opposed to the Standard Aug-
mented Lagrangian (SAL), where the penalty parameter is constant, AAAL automates the parameter
selection locally by analysing the matrix arising from the discretization of the penalized velocity equation.
The robustness of this method has been demonstrated by simulating the free fall of a dense cylinder, with
large density and viscosity ratios (10° and 1019 respectively). Although this method is very effective
for two-phase flows with large contrasts, it is computationally expensive, because the linear systems to
be solved are ill-conditioned and the only preconditioner identified by the authors as sufficiently robust
(ILU [30]) does not scale well in parallel implementation with distributed memory. For the Fully Cou-
pled method, studies on two-phase flows have been documented as well. In the case of steady Stokes
motions, Cai et al. [25] have investigated the rise of a bubble at high contrasts (r, = r, = 10%). For
unsteady Navier-Stokes equations, Bootland et al. [2] have proposed a new preconditionner (termed
Pressure Convection-Diffusion, or PCD). Numerical results for a dynamic dam-break problem (air-water)
showed that the PCD can be an effective approach for two-phase flows. A distinctive feature in the
aforementioned Fully Coupled methods is that they all rely on specific block-triangular preconditionners.

The main objective of the present work is to further investigate Fully Coupled methods, the robustness
of which can ultimately unlock new applications such as the simulation of two-phase flows at large density
and viscosity ratios. The challenge effectively lies at the algebraic level, and the poor conditioning of the
linear systems must be addressed in order to challenge the widespread use of segregated methods. In
this context, the main objective of the current study is to review robust parallel preconditioners able to
cope with these systems, and compare their performance with well-established alternatives. The paper is
organized as follows: in Sec. [2 the Naviers-Stokes equations are formulated for two-phase incompressible
flows, and the temporal and spatial discretizations are presented. The solution strategies used in our
simulations are delineated in Sec. [3| with a particular emphasis for the block preconditionners used on
the saddle point systems. Sec.[d]is dedicated to numerical results for single- and two-phase flows. This
section also provides detailed comparisons with respect to various documented solvers for incompressible
flows.

2 Governing equations

The one-fluid formulation, developped by Kataoka [22] for multiphase flows, is considered. In its incom-
pressible form, the one-fluid model consists of the Navier-Stokes equation augmented with the capillary
effect, supplemented by the divergence-free condition and a transport equation for a color function, de-
noted C, used to characterize the interface location and the fluid properties (mass density and viscosity).
In the proposed work, C' will be chosen as the volume fraction occupied by a reference phase. The



originality of the one-fluid model is that it takes implicitly into account the jumps relations across the
interface induced by surface tension, which revertes to the classical single phase Navier-Stokes equations
as soon as C' =1 or 0 everywhere.

Let © € R? be an open bounded domain, with continuous boundary I' = 9Q and n the unit normal
to I'. The one-fluid model equations governing the multiphase flow motion read:

dp(CHu

5 TV (p(Cueu)=—Vp+ V- [u4(C)(Vu+ vu')] + p(C)g + F, (1)
V-u=0, (2)
% +u-VC=0. (3)

Eq. [I| represents the conservation of linear momentum, Eq. [2] the conservation of volume (the phases
are immiscible and incompressible) and Eq. [3| the advection of color function C. In Egs. and [3] u
is the velocity field, p the pressure field, ¢ the time, g the gravity field, p and p are the mixture density
and dynamic viscosity, respectively, which depend on C, and F; is the capillary term, modeled in this
study by the continuum surface tension force model [3]. The mixture density and viscosity are defined
according to the following constitutive laws (arithmetic average):

p(C) = p1C+ (1 = C)pa, (4)

w(C) = paC + (1 = C)po. (5)

where p1, p2, p1 and po are the densities and the viscosities of fluid 1 and 2. By mixture density or
viscosity, it is understood that the aforementioned material properties are phase-wise constant. C' (and
p and p, therefore) vary spatially in the interface vicinity only, that is in the cells or control volumes cut
by the interface.

The current study focuses on solution techniques for the incompressible two-phase Navier-Stokes
equations [I] and 2] The solution of the advection equation [3]is performed with by the Volume-of-Fluid
(VOF) method, using the Piecewise Linear Interface Construction (PLIC) technique [36]. The spatial
discretization of the Navier-Stokes equations [I| and [2] is performed on a staggered mesh according to
the MAC scheme of Harlow and Welch [I8]. This mesh guarantees the consistency of the differential
operators such as the divergence and the gradient, it also avoids oscillations on the pressure field. A
centered approximation of the convective term alleviates any numerical viscosity. The resulting semi-
discrete system is advanced in time implicitly by means of a second order integration scheme (Gear,

Eq. @:

ou n+1 B %un+1 —2ut + %un—l 6

and the convective terms are linearized using Adams-Bashforth extrapolation (Eq. @:
un+1 ® un—i—l ~ (211” _ un—l) ® un-&-l. (7)

Here, n refers to a time index associated to physical time nAt and At is the assumed constant time step
of each solved iteration.

2.1 Physical boundary conditions

To complete the one-fluid formulation, the conditions for the velocity field u at the boundary I' = 02 must
be specified. As an implicit Fully Coupled (FC) resolution is targeted, a penalty method is considered [28].
This method allows to treat different types of boundary conditions, such as Dirichlet and Neumann

conditions, in a natural way. Numerically, this method is based on a control term Epenu (f(u) —u_),
which is added to the momuntum equation:

NSU™™) + Bpenu (f(0"™) —u_) =0 (8)

= oy 0
Bpe'nu = ( 0 OZU ) (9)

where



is a tensor field, whose diagonal components tend to infinity along the boundary I' and are identically
zero inside the fluid domain Q. Here, f(u"*!) (Eq. [10[ and Eq. is a discrete function of u"*! and

v"*1 which is written as a linear combination of resolved velocities u?;rl, v?jﬂ and their neighbors:
_ n+1 n+1 n+1 n+1 n+1
flw) = aou;; +aruly ; + a4 azug oy 4 asug (10)
_ n+1 n+1 n+1 n+1 n+1
flv)= aov; "+ a1y +aovi  + apu g+ agv] (11)

The treatment of the Dirichlet boundary conditions, applied to the left boundary for exemple (see Fig. ,

is controlled by the coefficients a; which must be fixed at the following values: ay = as = % and
a1 = a3 = aq = 0. Thus, the discrete momuntum equation on the left boundary becomes:
NS n+1 1 n+1 1 n+1 =0 12
(ui) + o 540, + U T Ueody | =0 (12)
To impose homogeneous Neumann boundary conditions, the coefficients have to be taken as ag = —1,
az = 1 and a1 = az = a4 = 0. The resulting equation in discrete form is:
+1 +1 +1 _
NS + o (—ug sttt —ugy ) =0, (13)
with U1 j = 0.
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Figure 1: Left: staggered pressure and velocity unknowns in the global domain and right, zoom on a left
boundary in 2D

The time-discretized system of the Fully Coupled formulation, referred to as the penalized one-fluid
model, finally reads:

n+1
p(c ) (3un+l o 2un 4 ]'un—l) 4 V . (p(Cn-i-l) (211” _ un—l) ® un+1)

At 2 2
+ Bpenu (F") —u_) = —Vp" + V- [u(C" ) (Va4 (Vu"“)T)] +p(C™ g+ Fy, (14)
V-u"t! =0, (15)

Cn+1 —_Cn N N
—x;  tu-ver=o (16)

3 Numerical Methods

As mentioned in the introduction, different approaches have been used to solve the Navier-stokes equa-
tions. In the following, the numerical methods utilized for solving the motion equations in the context of
two-phase flow modeling are presented.



3.1 Projection method

The litterature on projection methods is vast and many variants and formulations exist. In the present
work, the projection method proposed by Goda [I5] is considered. It keeps the pressure gradient in
the prediction step. As opposed to the original work of Goda, where the prediction step is performed
explicitly, an implicit resolution is chosen here so as to overcome the time-step restrictions to guarantee
numerical stability. The projection method essentially decouples velocity and pressure fields, and the
resulting algorithm consists of two steps: first, a velocity prediction is performed, where u* is computed
as the solution of a decoupled momentum equation.

p(CnJrl) (%u* —un + %unfl)
At
+ Bpenu (f(0) —u ) = =Vp" + V- [p(C")(Vu* + Vu'!)] + p(C" g + Fy (17)

+ V- (p(C™) (20" —u"!) @ u”)

The predicted velocity however does not satisfy the divergence-free condition Eq.[I5] In the second step,
therefore, the intermediate velocity is corrected by projecting it on a divergence-free subspace. This step
is performed by computing a pressure increment p* as the solution of the following Helmholtz equation,
with homogeneous Neumann boundary conditions:

At
v (Vp*> +op (f(p") —p)=V-u (18)
p(C) :
where the penalisation term «,, tends to infinity as I' is approached, and zero in ). The velocity and
pressure updates are performed as follows:

At
't =ut — —_Vp*, 19
o(C) (1)

pttt=p" +p*. (20)

The appeal for the projection method stems from its simplicity and ease of implementation. However,
this approach suffers from well-known limitations: the splitting operator introduces an error that reduces
the temporal accuracy of the numerical solution, and introduces the need for appropriate boundary
conditions for the pressure field in the projection step which do not exist in the original (coupled) system.
Indeed, the inconsistency of the boundary conditions induces numerical errors in the pressure field, giving
rise to artificial boundary layers as described in [16]. Additionally, when multiphase flows are simulated
with large density ratios, the challenging task is to solve the matrix system arising from the disretization
of the variable coefficient Helmholtz Eq. [I8] which become ill-conditionned due to discontinuities in the

. At *
Laplacian operator V - (mVp )

3.2 Augmented Lagrangian method

To alleaviate the difficulties related to the projection method, an exact method called Augmented La-
grangian (AL) has been proposed. Originally developped by Fortin and Glowinski [13] for single-phase
Stokes flows, this method has been extended recently for two-phase flows [21] [35] to take advantage of
its robustness and efficiency. The principle of this method is that the conservation equation of mass is
not used in its original form, but rather transformed into an explicit pressure Eq. [22] that will be coupled
with the velocity. The resolution consists in finding a saddle point on the couple (u”“, p”“). Starting
with u*? = u™ and p*® = p", the solution is given by an Uzawa algorithm [Z1]: while |V - u*™| > e,
solve

p(c) (%u*,m _ 211*’0 + %u*,fl)
At

+ V- (p(C) (200 — w1 @ u™) + Bpepy (f(05™) —u)
= -Vp*' +rV (V- -u"™) 4+ V- [u(C)(Vu*™ + Vu(*’m)T)] +pg+F,, (21)

p*,m — p*,O —rv- usm (22)

where € is the divergence threshold and m is the iteration index. So for m = 1,2 - - - n, the iterative process
simultaneously corrects the pressure and the velocity until convergence to the solution (u”“, p”“). In
practice, one iterative step of the Augmented Lagrangian (AL) with a suitable value of the parameter r



suffices to obtain good solution. A proper choice of parameter r should guarantee that the incompress-
iblity constraint Eq. [15]is satisfied, while simultaneously ensuring that the magnitude of the Augmented
Lagrangian (AL) term compares with the largest of the terms in the Navier-Stokes equations. Taking
very low values of r, the importance is given to the Navier-Stokes equations whereas when r is very large,
the velocity field will be divergence-free but will not satisfy the Navier-Stokes equations. In practice,
values of r between 10 to 1000 times larger than the other dimensionless terms yield satisfactory results.
The reader is referred to recent work on the automation of its computation for more information [34].

The Augmented Lagrangian (AL) method has many advantages. On the one hand, it avoids imposing
boundary conditions on the pressure field. On the other hand, using the Augmented Lagrangian (AL)
method, two-phase flows at high density and viscosity ratio (z—f < 1or 5—? > 1 as well as % <1
or ﬁ > 1) can be simulated, as opposed to the ranges achievable with the Standard Projection (PR)
method. However, the disadvantage of this method is its numerical expense, as a result of the effect of
parameter r. Indeed, the simulation of two-phase flows with high density and viscosity ratios, together
with large values of the parameter r, leads to ill-conditioned linear systems. In addition, it has to be
highlighted that the numerical solution strongly depends on the choice of the parameter r, itself largely
sensitive to problem parameters such as the density and viscosity ratios, and grid sizes.

3.3 Fully Coupled method

To date, the Fully Coupled (FC) method, although widely used in the finite element community in the
context of stationary and single-phase flow simulations, has not found much interest from the finite
difference and finite volume communities. The objective of this study is to investigate Fully Coupled
approaches in the context of unsteady two-phase flow simulated by finite volumes and penalty methods.
They require the solution of systems of the following form:

( £ MP + NP+ LY BE ) ( w! > _ < £ > (23)
Bu 0 pn 0

or Ax = b. Eq.[23]represents a non-symmetric saddle-point problem, where the matrix B, is the discrete

)

negative divergence and Bg represents to the discrete pressure gradient operator, ngp is the velocity

mass matrix, LSf‘ ) is the discrete velocity Laplacian, N,([’ ) denotes the convective matrix and f represents
the right-hand side vector.

To solve this sparse linear system, direct methods such as Gaussian elimination are very robust with
respect to various problem but do not scale well with problem size and are impossible to use in three space
dimensions. In the context of large-scale systems, methods of choice include iterative solution techniques,
such as the generalized minimal residual (GMRES [31]), algebric or geometric multigrid methods [32] and
the conjugate gradient and its variants [20]. In this study, the BiCGStab(2) algorithm [20] was found to
perform slightly bettter than GM RES (10% on average) for both Fully Coupled (FC) and augmented
Lagrangian (AL) systems, and was therefore preferred in spite of the favorable monotonous convergence
property of GMRES that BiCGStab(2) does not share.

Because the performances of the iterative methods depends on the conditioning of the system, the
use of an efficient preconditioning proves necessary to accelerate the convergence of the iterative solver
and to avoid possible numerical instabilities. The preconditioning can be considered as a transformation
of the original system Ax = b into an equivalent one P~!Ax = P~'b, where the preconditioning matrix
P is an approximation of A (P & A) whose inverse can be efficiently applied.

In order to build a suitable preconditionner P, we consider the block LDU decomposition of the
original matrix A, given by:

T —1pT
F., B, _ Iu,l 0 F, 0 I, F,'B, (24)
B, 0 B, F, 1, 0 S, 0 1,
Here S, = fBuFJIBg is the Schur complement of the pressure block and F,, = ﬁ Ml(/’) + NQSP) + Lg”)

is the convection-diffusion-reaction operator. In this work, one of the most popular block triangular
preconditioner for saddle point problems is used, by taking the DU product of Eq. :

(5 )

Thus, the application of the preconditioner of Eq. 25] entails solving the following system of equations by

backward substitution: .
F, B z r
u p u — u
(0 SP>(ZP) (%) (26)



Algorithm Triangular preconditionner

1: Solve Spzp =1 .
2: Update r, <— ry — Bgzp .
3: Solve F,z, = r,.

r r
where ( T“ > = b and p and ( T“ = b, vk, s* t¥ and w* are a sequence of vectors generated at
P

P
each BICGSTAB(2) (for further details, see Appendix [A]).

When the triangular preconditionner P~! is applied to A, the preconditionned system P~'A has a
single eigenvalue A = 1 of multiplicity n, + n,. The characteristic polynomial of P~1A has degree 2,
which guarantees that a Krylov subspace solver such as GMRES converges in two iterations. Indeed,
by considering the eigenvalue problem for the preconditionned system P~1'A, this values can easily be
obtained from the following generalized eigenvalue problem:

(5 5) ()5 %))
B, 0 P 0o S, P

From the first line of equation of 27| we obtain (1 — X)(F,u+ Bl p) = 0, admitting two possible solutions.
The first is eignvalue A = 1 of multiplicity n,, and the second corresponds to u = —F,; 135 p. Then, the
substitution of u in the second row of [27|leads to — B, F,; 1Bg p = ASpp, wich gives the second eigenvalue
A =1 of multiplicity n,.

Likewise, if instead of the upper triangular preconditioner P = DU, the diagonal block preconditioner
D is used, then it merges that A =1 is an eigenvalue of multiplicity at least n, — n, for any eigenvector
[uT,OT]TWith Bu = 0, while A = § + é of multiplicity n, as described in [I0]. As the convergence
depends on the eigenvalues A of the preconditioned system (the smaller the eigenvalue the faster the
convergence), the block triangular preconditionner is expected to perform better and is therefore selected
for this work.

This approach has however one major drawback, which is that the inversion of S, and F,, can not be
performed in realistic computations. They are indeed more expensive than solving the saddle point 23]
by direct methods. As a result, they must be approximated by matrices S and F,.

Finding an effective approximation for the Schur complement S is not obvious. In recent years, a
variety of preconditioners for incompressible flow problems have been introduced. These include the
Cahouet-Chabard preconditioner [4] for homogeneous Stokes flows. This preconditionner has been ex-
tended [25] to two-phase flows in the case of steady Stokes flow. The Augmented Lagrangian formulation
can also be used as a preconditioner, for example in the case of the Oseen problem [24] or the steady
Stokes equations with variable viscosity [24]. Recently for the resolution of two-phase flows, Bootland
and coworkers [2] have proposed two preconditioners called the pressure convection diffusion (PCD)
preconditioner and the least squares commutator (LSC) preconditioner. For these preconditioners, the
results show that the PCD preconditioner is more efficient than the LSC preconditioner. In this work,
the pressure convection diffusion (PCD) preconditioning with suitable scaling is therefore chosen, the
aforementioned study showing it to be the most effective at solving unsteady two-phase flows [2]. This
preconditionner is given by:

iMI@ )M (28)

Spop = (M) ™+ (A TN +

where Mpl/ " is the diagonal pressure mass matrix scaled by the inverse of the viscosity 1/pu, Mél) is the

(1)

diagonal standard pressure mass matrix, /N, ’ represents the standard convective matrix in the pressure

space and Azl,/ ” is the scaled Laplacian, which corresponds to the discretisation of the term V - (%VP).

In order to approximate the inverse of the Schur complement g;é p, the SMG (Semi Coarsening
Multigrid) solver of the HYPRE library [12] is used, where the action of A,()l/ ? s required, as the
multigrid solver is more appropriate for solving elliptic equations with variable coefficients. Then, the
inverse of two diagonal mass matrix are solved, namely (ME/ " ))*1 and (Mzgl))*l, by applying a rescaling
to suitable vectors and a matrix-vector product for the operator F,Sl) = Nzgl) + ﬁMél). As described in

the Work of Elman and al [I1], the use of this preconditionner requires appropriate boundary conditions,
which must be compatible with the physical boundary conditions applied to the velocity u. Indeed, the



Fouw Fuy Bgy Zy, Loy,
Solve 0 Fn B, Zy, = Iy,
0 0 Spcop Zp Zp
/ \
@ Approximate the inverse of Schur ngD @ Update r,, and r,,
1 i
_ T _ o
Two mass matrix solve (MYS/*))=1 and (M{V)~1 Ty, =Ty, — Bp,2Zp and ry,=ry, — Bp,zp
1)\
Zpl:(l\%/))) = Approxi i locity block
ZpQZ(Mp I3 )7lzp @ pproximate t le velocity block F,
Matrix-vector product for the operator Fp ’ Matrix solve Fyy 2y, =F yTy,
z,,=FLz
P3 P“p2

¥

Solve Laplace operator Allj/ 2 0
wy — T uvZu,

(AP -1
zp,=(Ap ") 2, update r,,, =r,, —f,

u

Matrix-vector product for the operator F

Zyp=Zp, +Zp, i

: _p-1
Matrix solve Fuu  Zu, =FgaTu,

Figure 2: Graphical representation of the application of the block triangular preconditioner

choice of Dirichlet boundary conditions for the velocity u, implies the application of Neumann boundary
conditions for the discrete operators A]()l/p) and Nzgl) + ﬁMIEl). On the other hand, the use of inflow or
outflow boundary conditions respectively for the velocity u, results the use of Robin conditions in the
case of inflow and Dirichlet or Neumann boundary (it depends on the Reynolds number) conditions in
the case of outflow for the discrete operators of the Schur approximation Speb.

Thus, to build a robust and efficient preconditionning P, a good approximation F, is required. Many
approximations of the velocity block F, have been documented, for the most part based on the use of
taylored multigrid implementations. These include the product splitting, block Jacobi, block Gauss-
Seidel, block diagonal and triangular preconditioner (see [I] for more details). In the current study, the
block Gauss-Seidel preconditioner

n Fuu Fu'u
Fu= ( 0 F, )

was found to perform satisfactorily. This preconditioner requires the solution of two linear systems,
F,, and F,,, which are both performed using the forementioned SMG. The algorithm applied to block
triangular preconditionner is summarized in the graphical representation, shown in Fig.

4 Numerical Results

4.1 Single phase flows: driven cavity

A first benchmark problem is considered, i.e. the driven cavity for viscous incompressible fluid flow,
in a two-dimensional square domain of side L = 1m. In this configuration, all boundaries are walls,
the top side moves at velocity ug = —1m - s~!, while the other three sides are no slip walls. For two
Reynolds numbers Re = 100 and 1000, the results obtained with the Fully Coupled solver are compared
with those proposed by Botella and Peyret [27]. Estimating the convergence rate is achieved by using a
Richardson extrapolation (for further details, see Apprendix . Concerning the numerical simulations,
several meshes are used on uniform Cartesian grids, with time step constant and equal to 10™3s. As only
the steady flow is considered here, the iterations are terminated when the stationnary criterion

max ([|u" ™ — u|[ [l = v"]) < emax ([l v (29)
is satisfied (e = 107%). The Reynolds number is defined as:
puoL

Y

Re

(30)




where p is the density, p is the dynamic viscosity, L is the length of the cavity, and ug is the reference
velocity of the flow.

Figs. and show the velocity plots along the middle-line of the cavity, obtained by the Fully
Coupled method for Re = 100 with various uniform Cartesian meshes. It is clear from these figures that
the results are qualitatively similar starting from the mesh 32 x 32 for both velocities components u and v.
Additionally, Table[I]includes the numerical values corresponding to the maximum of the velocity u on the
vertical centerline denoted 4., the maximum of the velocity v on the horizontal centerline represents
by Umaz, the vorticity weenter, the velocity teenter and veenter at the center of the cavity, compared to
benchmark solution. As can be seen in Table [I} all computational results are in good agreement with
those of Botella and Peyret [27], and the difference do not exceed 0.006%. The estimated accuracy for
Ucenter, Veenters Weenters Umaz aNd Umaz at the finest mesh are 2.00, 1.94, 2.05, 2.05 and 2.04, as expected
given the second order accuracy of the spatially centered scheme.
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Figure 3: Lid driven cavity at Re = 100 - (comparison of the horizontal and vertical velocity along the
centerline through the center of the cavity to results of Botella and Peyret [27])

N Ucenter  Order  Ueenter  Order  Weenter  oOrder Umaz order Umaz order

64 0.20876  1.39 0.05804 3.03 1.17746 5.01 0.21375 - 0.17991 3.72

128 0.20904 1.41 0.05767 2.34 1.17461 5.97 0.21395 1.65 0.17956  2.09

256 0.20912 1.85 0.05757 1.89 1.17446 1.29  0.21402 1.56 0.17959 2.10

512 0.20914 1.98 0.05754 1.82 1.17440 1.47 0.21403 2.53  0.17957 1.91

1024 0.20914 2.00 0.05753 1.94 1.17439 2.05 0.21403 2.05 0.17957 2.04
* = = = = 1.17439 - 0.21403 = 0.179560 -
Ref [27] - - - - 1.17441 - 0.21404 - 0.179572 -

Table 1: Lid driven cavity at Re = 100 - comparison of some characteristic values along the middle-line
to reference values of Botella and Peyret [27] -* is the Richardson interpolated value.

A second test is considered for Re = 1000, for which the flow dynamics are largely dominated by inertial
forces. The objective of this test is to investigate the ability of the solver to capture the different structures
such as primary, right secondary and left secondary vortex, and to evaluate the vorticity at these locations.
Again, the numerical results are compared to the reference solution of Botella and Peyret [27], keeping
the same numerical parameters as in the previous study.

At Re = 1000, the stream function of the flow is illustrated in Fig. The existence of three distinct
vortices is visible. The primary vortex denoted PV is large and centered in the cavity, the other secondary
vortices represented by LSV and RSV are small and located near the left and right bottom corner of
the cavity, respectively. In Fig. [} the velocity u extracted from the vertical centerline and the velocity
v along the horizontal centerline are presented. The numerical results show good agreement with [27],
which validates the accuracy of the solver. In addition, table [2 3] and [] summarize the values of the
vorticity at the center of each vortex and their positions. All results exhibit second order accuracy in
the asymptotic convergence zone. For the positions of the vortex, the difference is always smaller than
0.11%, and for the vorticity, the largest discrepancy is of the order of 0.06%.



Figure 4: Stream function contours of primary and secondary vortex, obtained at Re = 1000
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Figure 5: Lid driven cavity at Re = 1000 - (comparison of the horizontal and vertical velocity along the
centerline through the center of the cavity to reference results of Botella and Peyret [27])

N x order Y order w order
32 0.460674 0.545429 2.16344
64 0.467474 0.560757 2.07752
128 0.468837 1.31 0.564257 2.13  2.06684  3.01
256 0.469113 2.30 0.565009 2.21  2.06693 -
512 0.469185 1.93 0.565183 2.11  2.06737  2.29
Extra  0.469179 - 0.56518 - 2.067369 -
Ref 27]  0.4692 - 0.5652 - 2.067753 -

Table 2: Lid driven cavity at Re = 1000 - Richardson extrapolation for the primary vortex: (x,y) the
location of the center of the vortex, and w is the value of the vorticity at this location

4.2 Single phase flows: Green-Taylor vortex

The second test case is the unsteady Green-Taylor vortex, used as a benchmark to validate numerical
codes. This problem is defined in two dimensions on a square domain 2 = (0,1) x (0,1), with periodic
boundary conditions. In this case, the analytical solution has the following form with v = %:

u(z,y,t) = Vy cos(2mx) sin(2my

v(x,y,t) = =Vp sin(2rx) cos(2my
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N x order Y order w order

32 0.08940 0.08617 -1.50012

64 0.12906 0.10731 -1.23281

128 0.13438 2.89 0.11081 2.59 -1.13287 1.41

256 0.13556  2.16 0.11157 2.20 -1.11431 2.42

512 0.13586 1.96 0.11174 2.12 -1.11053 2.30
Extra  0.13584 - 0.11173 - -1.1105301 -
Ref [27]  0.1360 - 0.1118 - -1.109789 -

Table 3: Lid driven cavity at Re = 1000 - Richardson extrapolation for the left secondary vortex: (x,y)
the location of the center of the vortex, and w is the value of the vorticity at this location

N T order Y order w order
32 0.9073 0.0985712 -0.736348
64 0.9152 0.0808984 -0.401598

128 0.916427 2.68 0.0786425 2.96 -0.361584  3.06

256 0.916657  2.41 0.07821 238  -0.354138  2.42

512 0.916709 2.14 0.0781233 2.31  -0.352588  2.26
Extra  0.916708 - 0.078116 - -0.3525867 -
Ref [27]  0.9167 - 0.0781 - -0.3522861 -

Table 4: Lid driven cavity at Re = 1000 - Richardson extrapolation for the right secondary vortex: (x,y)
the location of the center of the vortex, and w is the value of the vorticity at this location

Using equations —, two interesting physical quantities can be evaluated: the kinetic energy Ej
and the enstrophy ( by:

1 pl g2 2 2 2
F=(t
E) :/ / pwdxdy: /)‘/07() (33)
1ol 2
¢ = / / p?dxdy =2712p V@ F2(t) (34)
0 Jo
Where w = (% — g—;) is the vorticity in two dimensions and F(t) = e=8mv ¢,

The following discrete analogs of the kinetic energy Fj and enstrophy ¢ are used:

p
By~ 5 (uy+vp) (35)
QP
= g W2 Q, (36)
QP

The squared velocity components uf, et vg are obtained by the following interpolations:

2

up = 5 (ufj +ui ;) (37)

02 =

» (v} +07551) (38)

The vorticity is defined as the rotational of the velocity (Jd = V x @). In 2D, the vorticity is reduced to
a scalar that will be expressed at the viscosity node (see Fig. @:

N = DN

w(z’,j) — U(i7j) _A’U:E.Z — 17j) _ U(Zm]) _Auy(i?j — 1) (39)

The square of vorticity wf, is obtained by the mean of the squares of the four vorticities that have been
just expressed. The following equation is obtained:
o Wi, ) +w(i+1,j) +w(i,j+1) +w?(i+1,j+1)

w, = 1 (40)
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Figure 6: Calcul of the kinetic energy Ej and the enstrophy ¢

In order to quantify the efficiency and robustness of the methods that were presented previously,
relative errors on the kinetic energy Fj and enstrophy ( are calculated in two case: viscous and inviscid
flows, respectively. The numerical results on the discrete mesh are confronted to the analytic values
obtained from —. So, let ¢f*%t be the exact quantity, ¢; the numerical quantiy and nt the number
of time steps. the error on ¢; is estimated by the following expression:

nt exact __ 2 1/2
Sty llgg=e! — ail ) (1)

2
Soriy llggmeet|

For this case, three solvers are used: the Fully Coupled with PCD, the Standard Augmented Lagrangian
(with r = 10° in the inviscid case and » = 10% in the viscous case) and the Standard Projection.
Five meshes are simulated, ranging from 16 x 16 to 256 x 256, with a residual of ¢ = 107!2 for the
BiCGSTAB(2). Concerning the time derivatives, a constant time step At = 10~3s is chosen and 2000
time steps are computed, corresponding to 0.3 secondes of the flow motion. The fluid properties are
1Kg-m~3 for the density and 1073Pa - s and 0Pa - s for the dynamic viscosity in viscous and inviscid
regimes respectively (Figs. [8| and E[) The characteristic velocity Vp is chosen equal to 1m - s~ 1.

Before comparing the three solvers more effectively, the effet of the Augmented Lagrangian parameter is
considered in the Fig. E, for r values in the range 10* and 107, and for each mesh size. It can be observed
in this figure that a value r = 10% of the Augmented Lagrangian parameter appears to be a good choice
in order to conserve the kinetic energy FEj to the order of machine precision. Note that beyond this
value, the cost of calculating with this method becomes very high because the use of an iterative solver
is difficult when the parameter r is very large.

The Lo error of the enstrophy ¢ and kinetic energy Fj are shown in Figs. [8a] and respectively for
the inviscid flow. There is no dissipation phenomon (¢ = 0Pa - s). For the enstrophy (, as the approxi-
mations of the derivatives are second order, all solvers have second order accuracy, except the Standard
Projection with At = 1073s which cannot give a desired accuracy. Concerning the kinetic energy Ej,
the results show that the Fully Coupled and the Augmented Lagrangian are better than the Standard
Projection, because they conserve the kinetic energy FEj to the order of machine accuracy. Therefore,
the impact of the time step At on the Standard Projection is clearly observed due to splitting operators
that introduces numerical dissipation. Indeed, when the time step is divided by 10, the error on the
kinetic energy error is divided by 100. The same case was simulated on physical times up to 20 seconds,
by keeping the same numerical parameters as in the case of 2 seconds. In this case, all solvers continue
to converge to machine precision, except the Standard Projection that fails after 6 secondes due to the
accumulation of errors, even for small time steps of the order At = 10~ %s. In addition, it has been shown

Brrs () = (
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Figure 8: Kinetic energy E), and enstrophy ¢ conservations and accuracy of the different methods in the
inviscid Taylor-Green test case

that skew-symmetric scheme preserve energy within machine accuracy on fine meshes [I4], and the other
methods that can achieve machine precision are spectral methods [29]. A centered scheme with either
Fully Coupled or Augmented Lagrangian techniques discretely conserves kinetic energy also, Which is an
interesting results of this work.

Result for the viscous case with i = 1073 Pa - s are presented in Fig. @ For the enstrophy ¢ and the
kinetic energy Fj, it is easily noticeable that the Fully Coupled and Augmented Lagrangian converge
with second order accuracy. The effect of the time step is visible for the Standard Projection. Indeed,
results with At = 10~%s are noticeably better than those obtained with At = 10~3s. It can be concluded
that the Standard Projection is not able to give good results with large time steps, because the splitting
introduces spurious dissipation, and therefore leads to significant numerical errors. Moreover, the effet of
numerical dissipation disappears for the Standard Projection, when small time steps are chosen, at the
cost of increased computational time.

Fig.|10|reports the CPU time (in second) for the three different solvers of Navier-Stokes in the viscous
and inviscid cases, on the finest mesh 256 x 256. Obtaining the same quality of numerical solutions
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Figure 10: CPU time(s) of Navier-Stokes solvers for Taylor-Green test case (fine mesh 256 x 256)

whatever the studied case (viscous and inviscid), it is seen that the Standard Projection method is the
most expensive in CPU time compared to the two other methods. We also observe for both cases, that
the Augmented Lagrangian method is faster than the Fully Coupled method. This can be explained by
the fact that the two solvers need one iteration to converge to the exact solution, and that the size of
the system to be solved in the case of the Fully Coupled method is larger than that of the Augmented
Lagrangian. In addition, the results show that the Fully Coupled method saves 84% (inviscid case) and
63%(viscous case) of the CPU time compared to the Standard Projection, while consuming more than
75% (inviscid case) and 22%(viscous case) of the CPU time compared to the Augmented Lagrangian.

4.3 Two-phase flows: rising buble

The rise of a two-dimensional bubble is studied numerically using the Fully Coupled approaches with the
PCD preconditioner, the Adaptative Augmented Lagrangian with » = 10% and the Standard Projection
method. Two configurations are studied : the first corresponds to a numerical benchmark proposed in
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[19]. Initially, a bubble of diameter D = 0.5m is centered in a rectangular 2m high and 1m wide domain.
Dirichlet and symmetric boundary conditions are used for the horizontal and the vertical boundaries
respectively. The bubble is driven up by a constant gravity g = 0.98m - s~2 in the negative y direction,
while the deformation of the bubble is counterbalanced by the surface tension, whose coefficient o is set
to 1.98N -m~t. The first case (p1/p2 = 10%, i1 /pz = 10!) was simulated, but in this case all the methods
give the same results as those of Hysing

The second configuration is characterized by high density and viscosity ratios, respectively (p1/p2 =
103 and pq/p2 = 10%). The main interest of this case is to compare the time-to-solution of the three
methods. To provide detailed comparisons, three time steps are chosen : At = 10735, 5-1073s and 10725
while target residual is keept constant (¢ = 10~7 for the BICGSTAB(2) solver).

In the following, the temporal evolution of two quantities will be considered in order to compare
qualitatively the different methods.

e Center of mass Y,

y, = 2. 9 (42)
¢ Jo, 1 da’
e Vertical velocity U,
Jo, U dz 3
o Jo, Tda~ (43)

Here Y, denotes the center of mass of the bubble, U, denotes the velocity at the center of mass of the
bubble, and 22 represents the subdomain occupied by the bubble.
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Figure 11: Vertical velocity and center of mass for test case 2 (,01 [p2 =103, py /g = 102). Comparisons
betwen the Fully Coupled method and all groups of Hysing and al. [I9]

Before comparing the three solver, the solutions computed on the finest grid h=1/320
with the Fully coupled method are compared with the corresponding results of the codes
TP2D(groupel), FreeLIFE(groupe2) and MooNMD (groupe3) given by Hysing and al. [19].
As can be seen in figure. the estimate of the center of mass by the Fully coupled
method is in good agreement with the references values. As regards to the rise velocity of
the bubble, the solutions seem to deviate from each other starting at t = 1-s. At long times
(t =2-5s), the solution of the Fully coupled method and the reference of group 2 seem to
converge although it is difficult to discriminate between methods in this case.

Figs. and show the vertical velocity and the center of mass of the bubble, obtained on the
fine mesh 320 x 640 with FC, ALL and PR method. The solutions provide results in good agreement
with those of Hysing and al. [19] even if they are not presented here. Also, the simulations show that
the results obtained by the Fully Coupled and the Augmented Lagrangian methods are insensitive to the
time step. Indeed, for these two methods the rise velocity and the center of mass profiles are qualitatively
similar regardless of the time step. This is in contrast with the projection method, for which large time
steps clearly induce significant errors on the rise velocity. Fig. compares the shape of the bubble at
t = 3s for all three methods using different time steps. It can be observed from these figures that the
Fully Coupled and the Augmented Lagrangian methods are more accurate than the projection method.
Indeed, in the resolved regions of the bubble, the overall shape of the bubble is converged, and the
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Figure 12: Vertical velocity and center of mass for test case 2 (p1 /p2 =103, 1 /o = 102) obtained by
the Fully Coupled method with several time steps. At = 10735 (represented by triangles), At = 5-1073s
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filamentary regions resemble the reference results [I9]. The solutions were not precisely compared with
those of Hysing, because even in the case of Hysing there is a significant dispersion between the methods,
none of which can serve as a reference solution. The overall shape of the bubble however is similar to that



of Hysing, whereas for the projection method, a large difference is noticed when the time step is changed,
in the solved regions but also on the point of break up. For the second case (p1/p2 = 103, 1 /2 = 10?),
we conclude that the Fully Coupled and the Augmented Lagrangian methods are able to give the best
results with large step time, which is not possible for the projection method.
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Figure 15: Bubble shapes at time ¢ = 3s for test case 2 (pl/pg =103, 1 /pz = 102) with several time
steps. At = 10735 (represented by dash-dotted line ), At = 510735 (represented by dashed lines) and
At = 10725 (represented by solid lines)

In the following, the CPU times necessary for each methods to simulate the rising bubble are con-
sidered. These CPU times are shown in Fig. For the three time steps, the Augmented Lagrangian
method is the slowest to converge. On the other hand, the difference between the Fully Coupled and
the Standard Projection method is significant, as well for the small time step At = 1073s the Fully
Coupled method saves 80% of the CPU time compared to the Augmented Lagrangian, while it saves 57%
more time than the Standard Projection. These large differences can be explained by the fact that the
Augmented Lagrangian and Standard Projection take a lot of iterations to converge. As large density
and viscosity ratio are considered, the use of a very large value of the parameter r is required to satisfy
the incompressibility constraint. This leads to ill-conditioned linear system, hence the high cost of the
Augmented Lagrangian method. For the Standard Projection, the cost of the computation is related to
the resolution of the Helmholtz’s equation with variable coefficients.

4.4 Two-phase flow: free fall of a dense square

The present test case aims at checking the ability of the Fully Coupled method to simulate multiphase
flows with high density and viscosity ratios, compared to other methods like the Augmented Lagrangian
and the Standard Projection. The two-dimensional free fall of a dense square is tested. Initially, a rigid
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Figure 16: CPU time(s) of Navier-Stokes solvers for rising bubble test case 2 (fine mesh 320 x 640)

square of side L = 0.00125m, density ps = 107kg - m~3 and dynamic viscosity ps = 10°Pa - s is released
without velocity in a quiescent gas. Gravity is set at ¢ = 9.81m-s~2 while the surface tension coefficient o
is set to zero. The square is centered at (0.05m,0.175m) in a rectangular cavity full of gas whose density
and viscosity are p; = lkg - m ™3 and u; = 1Pa - s respectively. The dimensions of the cavity are 0.2m
high and 0.1m wide. The interest of this case lies in the possibility of comparing numerical solutions
(eq. to an exact reference value for the falling velocity V. = —gt, obtained analytically by neglecting
the effect of the gas on the solid. Considering analytical solutions as the appropriate reference solution,
the errors committed in this test are evaluated using the deﬁnition Where ¢£%?<t is the falling velocity.

The case is simulated on four Cartesian grids (64x128, 128x256, 256x512 and 512x1024), with
a constant time step At = 5.107°s and a residual of e = 1077 for the BICGSTAB(2). Figs. [L7| and
illustrate the simulation results for the four grids at time ¢t = 0.15s after 3000 temporal iterations with the
AAL and FC methods. The corresponding vorticity magnitude and isoline C' = 0.5 of the color function at
the interface are presented. It can be seen that the Fully Coupled method and the Augmented Lagrangian
approaches give qualitatively similar results for the same time step (At = 5.107%s). On the contrary,
the Standard Projection method requires a smaller time step (At = 5.107%s) to obtain a comparable
result. So in spite of using this small time step, the simulation with the projection on a 128 x 256 grid
fails to converge after a few thousand iterations because the correction step was not able to reduce the
divergence of the predicted velocity.

L Ll il i)

Figure 17: Adaptative Augmented Lagrangian method (r = 103): vorticity magnitude and isoline (C =
0.5) for the free fall of a dense cylinder with 64 x 128, 128 x 256, 256 x 512 and 512 x 1024 meshes

Fig.[I9 presents in logarithmic scale, a comparison of the errors involved by the FC and AAL solvers on
the calculation of the vertical velocity at ¢ = 0.15s, as well as the corresponding CPU time. As shown in
Fig. the Fully Coupled method gives low relative errors, it also saves 25% of the CPU time compared

18



. Ll il i)

Figure 18: Fully Coupled method: vorticity magnitude and isoline (C' = 0.5) for the free fall of a dense
cylinder with 64 x 128, 128 x 256, 256 x 512 and 512 x 1024 meshes

to the Adaptative Augmented Lagrangian on the fines mesh 512 x 1024. Nevertheless, the solutions
obtained are always better with the Fully Coupled method than with the Augmented Lagrangian, even
if there is a saturation of the BiCG-Stab(2) when the number of iterations increases. However, it has
been seen that Standard Projection methods require a time step 10 times smaller than other methods to
achieve low levels of error. This method cannot converge on the mesh 128 x 256.
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Figure 19: CPU time(s) and error (%) of the vertical velocity for free fall of a dense cylindre
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5 Conclusion

Three methods were investigated to solve the Navier-stokes equations for incompressible single- and two-
phase flows at large density and viscosity ratios. In the case of the singe-phase, the results obtained for
lid-driven cavity case by the Fully coupled method agree well with those of the literature, and exhibit
second order accuracy. The unsteady Green-Taylor vortex cases has proven the ability of the Fully coupled
and Augmented Lagrangian methods to preserve energy within machine accuracy, whereas the Standard
Projection methods introduces numerical dissipation. As regard to two-phase flows, all methods were
validated on two benchmark: the rise of a two-dimensional bubble and the free fall of a dense object.
These benchmarks highlighted the fact that the Fully Coupled and Adaptative Augmented Lagrangian
methods are more efficient to solve two-phase flows (with larger time step At). On the contrary, the
Standard Projection (SP) method has difficulties for large time steps, due to the accumulation of errors
introduced by the pressure-velocity splitting. Large viscosity ratios however introduce a strong coupling
between the velocity components, and future work will therefore focus on the preconditioning of the
velocity block.
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A The BiCGSTAB(2) method

The biconjugate gradient stabilized method (BiCGSTAB(2)) is an iterative method introduced by Van
Der Vorst [20] to solve efficiently large, sparse and nonsymmetric linear systems. Contrary to other BiCG
variants such as the conjugate gradient squared algorithm (CGS) and the biconjugate gradient (BiCG),
this specific method combines two BiCG (called even and odd) with a Generalized Conjugate Residual
(GCR) algorithm. This solver is deemed robust and very stable, while reaching convergence quickly in
spite of the higher computational cost of each iteration.

In practice, for more difficult problems, it is essential to combine the BICGSTAB(2) algorithm with
a suitable preconditioner P of eq. [25] to accelerate the convergence of the iterative solver and to avoid
possible numerical instabilities. Instead of solving Az = b, we prefer to solve P~1Ax = P~1b, for which
cond(P~1A) << cond(A). Therefore, in the BICGSTAB(2) algorithm, every matrix-vector product
Az = p will be followed by the calculation P~ 'y = p, the same transformation must be applied to the
second member P~ = b. Then, to solve the Az = b system by giving an initial guess z(°), BiCGSTAB(2)
proceeds as below:

Algorithm Preconditionned BiCGSTAB(2) ( solve Az = b with the tolerance «)

1. Initializations
2@ e RN
b=P b
q=P'p
r® —=p— q
77(0) =po = 7"(
P =w? =1, =0

0)

2. For k=1,2,3,... until convergence do
R

Even step
pi = (7O, rF )
BE =Rk Jpb™, pf = pb
p=Auk!
Uk — P—lp
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Ak = (7O k), ok = gk /4

r =7r"—a"v
p=Ark
Sk — P—l
ph Tl = gk 4 ok k

0Odd step
ok = (7O, sF) | BE = ok pk / pk
vk = sk — ghyk
p=AvF
wk =P 1p
7k = (F(0)7wk)7 ok = PIS/’Yk
uk =k ghyk
Pk ok okyk
sk = g% + aFwk
p=As"
th =P 1p

GCR part
wh = (rk, %), pk = (s%,s%) | vk = (sF,1F)
TR = (th F) | wh = (rk tk) | 7k =7k sz’“

k_ (. k k k7, kY /. k k _ (. k k, k1 kY, k
wy = (w3 —viwy/p®) /T wi = (W) — vwy /V7) /e
zF =axF + w’fr’“ + wésk + aFu
rk =k — w’fsk — whtk
uF = uk — whok — whwk
3. test conveergence
If residual < € exit
end if
end for

B The Richardson extrapolation

In order to check the convergence of the numerical solutions, The Richardson extrapolation [26] is used. It
allows evaluating the convergence order « of the numerical method, but also obtaining an approximation
f€7 of the exact solution f, without the need for an analytical solution to the problem. For this purpose,
we choose generally (at least) three meshes (with size grids noted hq, hy and hg such as hy/hy = ho/hg3)
in the convergence region.

The Richardson extrapolation can be a useful method for extracting the convergence order and values
extrapolated to the higher order. So, let be f°* the extrapolated quantity, f;, the numerical solution on
the grid of size h;, a the convergence order and C\, is a coeficient depending on «. In practice, using
three grids with hy/he = ho/hs, the value of the convergence order is given as follows:

— In [(fhl - fh2)/(fh2 B fhs)}

@ . 44
In (hl/hz) ( )
By using Eq. [44] the extrapolated quantity f¢* is given by the folllowing:
fez = fh3 - Cozhg (45)
where
.= ff;z - f}:;. (46)
Thy = Thy
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