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Abstract 17 

Environmental DNA (eDNA) has the potential to provide more comprehensive biodiversity 18 

assessments particularly for vertebrates in species-rich regions. Yet, this method requires the 19 

completeness of a reference database, i.e. a list of DNA sequences attached to each species, 20 

which is not currently achieved for many taxa and ecosystems. As an alternative, a diversity of 21 

Operational Taxonomic Units (OTUs) can be extracted from eDNA metabarcoding. However, the 22 

extent to which the diversity of OTUs provided by a limited eDNA sampling effort can predict 23 

regional species diversity is unknown. Here, by modelling OTU accumulation curves of eDNA 24 

seawater samples across the Coral Triangle, we obtained an asymptote reaching 1,531 fish OTUs 25 
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while 1,611 fish species are recorded in the region. Besides, we also accurately predict (R² = 26 

0.92) the distribution of species richness among fish families from OTU-based asymptotes. Thus, 27 

the multi-model framework of OTU accumulation curves extends the use of eDNA 28 

metabarcoding in ecology, biogeography and conservation. 29 

Introduction 30 

Providing accurate biodiversity assessments is a critical goal in ecology and biogeography with 31 

estimations being constantly revised for some species-rich groups (1). This issue is increasingly 32 

important given the accelerating human footprint on Earth. The ongoing worldwide 33 

defaunation, characterized by massive population declines, may trigger the local or even global 34 

extinction of rare, elusive and cryptic species that are still unknown or poorly documented (2, 35 

3). Such biodiversity losses directly impact ecosystem functioning but also human health, well-36 

being and livelihood (4, 5). This urges scientists to improve the accuracy and extend the breadth 37 

of biodiversity inventories and monitoring. 38 

In the marine realm, the detection of species occurrences is particularly challenging due to the 39 

vast volume to monitor, the high diversity of habitats, the inaccessibility of some areas (e.g. 40 

deep sea) and the behavior of some species (cryptobenthic or elusive) (6, 7). Environmental 41 

DNA (eDNA) metabarcoding is an emerging tool that can provide more accurate and wider 42 

biodiversity assessments than classical census methods particularly for rare and elusive species 43 

(8, 9, 10). This non-invasive method is based on retrieving DNA naturally released by organisms 44 

in their environment, amplified by polymerase chain reaction (PCR) and then sequenced to 45 

ultimately identify corresponding species (11). However, inventorying and monitoring 46 

biodiversity using eDNA metabarcoding requires the completeness of a reference database to 47 

accurately assign each sequence to a given species (e.g. 9). 48 

By now, only a minority of fish species are present in online DNA databases for mitochondrial 49 

regions targeted by metabarcoding markers, limiting the extent to which species diversity can 50 

be revealed by eDNA. This proportion of sequenced species is even lower in species-rich regions 51 

and poorly sampled habitats or taxa while the effort to complete genetic reference databases is 52 

long and costly. As an alternative, a diversity of Operational Taxonomic Units (OTUs) can be 53 
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extracted from eDNA metabarcoding through filtering and clustering techniques (12). Even if 54 

environmental genomics approaches have a long tradition of using OTU-based bioindicators 55 

(13), the extent to which the diversity of OTUs from a limited number of eDNA samples can 56 

reveal or predict the diversity of vertebrate species in a given biodiversity hotspot has not yet 57 

been investigated. This is particularly challenging for cryptobenthic fish species that are key for 58 

reef ecosystems (14) but usually missed by classical surveys (7). We thus urgently need a 59 

regional case study with a wide breadth of fish families and traits to test the potential of OTU-60 

based assessment of biodiversity. 61 

The Bird’s Head Peninsula of West Papua (eastern Indonesia) is located in the center of the 62 

Coral Triangle which is known to host the world’s richest marine biodiversity (15, 16). The 63 

current checklist of coastal fishes in the Bird’s Head Peninsula identifies 1,611 species belonging 64 

to 508 genera and 112 families (15, 17) among which some are still poorly described or under 65 

severe threats (18, 19, 20). Providing a blind but accurate assessment of the level and 66 

composition of a well-known vertebrate diversity from eDNA OTUs is thus a critical step in 67 

conservation, biogeography and ecology, particularly in such biodiversity hotspots.  68 

Here, using eDNA metabarcoding from 92 seawater samples across the Bird’s Head Peninsula, 69 

we (i) assessed the diversity of coastal fish species based on an online reference database for 70 

the teleo primers region of the 12S mitochondrial rDNA gene (21), (ii) estimated the diversity of 71 

fish OTUs based on a custom filtering and clustering bioinformatic pipeline, and (iii) tested the 72 

capacity of OTU accumulation curves to predict the level and composition of regional fish 73 

diversity. 74 

Methods 75 

Sampling area and protocol 76 

A total of 92 water samples were collected during October and November 2017 along the south 77 

coast of the Bird’s Head region of West Papua (500 km) across different habitats but mainly 78 

coral reefs (Fig. S1). Samples were collected in DNA-free plastic bags at the surface from a 79 

dinghy boat, at depths between 10 – 100m during close circuit rebreather dives, and (iii) at 80 

depths between 100 - 300m using Niskin water samplers. A pressure and temperature sensor 81 
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was coupled to the Niskin bottle to control the sampling depth and characterize the water mass 82 

via the vertical temperature profile. For each sample, 2L of seawater were filtered with sterile 83 

Sterivex filter capsules (Merck© Millipore; pore size 0.22µm) using disposable sterile syringes. 84 

Immediately after, the filter units were filled with lysis conservation buffer (CL1 buffer 85 

SPYGEN©) and stored in 50 mL screw-cap tubes at -20°C. A contamination control protocol was 86 

followed in both field and laboratory stages (21, 22). Water sample processing included the use 87 

of disposable gloves and single-use filtration equipment, and the bleaching (50% bleach) of 88 

Niskin water sampler. 89 

DNA extraction, amplification and high-throughput sequencing 90 

The DNA extraction and amplification were performed following the protocol of (23) including 91 

12 separate PCR amplifications per sample (see Supplementary material for more details on the 92 

protocol). A teleost-specific 12S mitochondrial rDNA primer (teleo, forward primer-93 

ACACCGCCCGTCACTCT, reverse primer -CTTCCGGTACACTTACCATG, (21)) was used for the 94 

amplification of metabarcoding sequences, generating 63 ± 3pb (mean ± SD) long amplicons for 95 

all fish species referenced in EMBL database (European Molecular Biology Laboratory, 96 

www.ebi.ac.uk, version 138, downloaded on January 2019, (24). Eight negative extraction 97 

controls and two negative PCR controls (ultrapure water) were amplified (with 12 replicates as 98 

well) and sequenced in parallel to the samples to monitor possible contaminations. The teleo 99 

primers were 5’-labeled with an eight-nucleotide tag unique to each PCR replicate with at least 100 

three differences between any pair of tags, allowing the assignment of each sequence to the 101 

corresponding sample during sequence analysis. The tags for the forward and reverse primers 102 

were identical for each PCR replicate. 103 

The purified PCR products were pooled in equal volumes, to achieve a theoretical sequencing 104 

depth of 1,000,000 reads per sample. Library preparation and sequencing were performed at 105 

Fasteris (Geneva, Switzerland). A total of five libraries were prepared using the MetaFast 106 

protocol (Fasteris, https://www.fasteris.com/dna/?q=content/metafast-protocol-amplicon-107 

metagenomic-analysis), a ligation-based PCR-free library preparation. A paired-end sequencing 108 

(2x125 bp) was carried out using an Illumina HiSeq 2500 sequencer on three HiSeq Rapid Flow 109 

https://www.ebi.ac.uk/
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Cell v2 using the HiSeq Rapid SBS Kit v2 (Illumina, San Diego, CA, USA) following the 110 

manufacturer’s instructions. 111 

Sequence analyses and taxonomic assignment  112 

To evaluate the current completeness of the online database for the teleo region of the 12S 113 

mitochondrial DNA, an in silico PCR with 3 allowed mismatches using the teleo primers 114 

sequences was performed with ecoPCR (25) on the EMBL database. The generated list of 115 

sequenced species was compared to the checklists of fish species present in in the Bird’s Head 116 

of Papua region, provided by courtesy of Kulbicki et al. 2013 (17). 117 

The amplified DNA sequences from the water samples were processed following two 118 

metabarcoding workflows. The first workflow used the OBITools software package (26) based 119 

on direct taxonomic assignment of the sequences using the ecotag program (lower common 120 

ancestor algorithm) in EMBL database as a reference (see details in Supplementary materials). 121 

The ecotag algorithm can sometimes wrongly assign sequences to a given species or genus 122 

despite a low-similarity percentage due to the incompleteness of reference database. We thus 123 

set the following similarity thresholds, 100-98%, 90-98%, 85-90% and 80-85% bp to assign 124 

sequences at the species, genus, family and order level, respectively. All the assignments with a 125 

similarity percentage lower than 80% were discarded from the analyses. 126 

We evaluated the database completeness for the marker by running an in silico PCR on all fish 127 

mitochondrial DNA present in EMBL online database (downloaded the 20th of January 2019). A 128 

total of 394 species are sequenced in the Bird’s Head region (24.5%, Suppl. table S1).  129 

The second metabarcoding workflow was based on the SWARM clustering algorithm that 130 

groups multiple variants of sequences into OTUs (Operational Taxonomic Units (12)). Then, a 131 

post-clustering curation algorithm (LULU) was performed to curate data (see details in 132 

Supplementary material). 133 

The SWARM clustering workflow was used to investigate the taxa present in the samples but 134 

not revealed by the taxonomic assignment process because of gaps in the EMBL database. The 135 

number of taxa assigned in each family was corrected to avoid taxonomical redundancy 136 

assignment. For instance, the combined assignments to the genus Zanclus and the species 137 

Zanclus cornutus were considered as one taxa as potential PCR error may have produced two 138 
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different assignment levels from the same sequence. These corrected numbers of taxa were 139 

then compared to the number of OTUs from the SWARM workflow in each family to evaluate 140 

the magnitude of the diversity missed by the direct assignment method. In the SWARM 141 

workflow, a family level assignment was performed as well to remove the taxa that were not 142 

fish from nonspecific amplifications and investigate the intra family diversity. 143 

Statistical analyses 144 

To evaluate the number of taxa/OTUs present in the study area, a multimodel approach was 145 

implemented to fit asymptotes on the species and OTU accumulation curves. This approach 146 

considered 5 different accumulation models (Lomolino, Michaelis-Menten, Gompertz, 147 

asymptotic regression and logistic curve) and weighted them using the Akaike Information 148 

Criterion (AIC, (29)). For each curve, the accumulation model with the lowest AIC was selected. 149 

Accumulation curves and associated asymptotes were generated using the vegan R package. To 150 

estimate the sampling effort required to achieve a given proportion of asymptotes, we 151 

considered the model selected for accumulation curves. Then, we extracted the predicted 152 

number of samples producing a number of taxa/OTUs that outreached 90% and 95% of the 153 

asymptotes. 154 

Results 155 

High heterogeneity of fish species detection among families 156 

A total of 299,479,007 reads were produced using the OBITools pipeline over the 92 eDNA 157 

samples corresponding to 14,423 unique sequences with a mean of 307 unique sequences per 158 

sample (± 134 SD). In a conservative approach, stringent bioinformatic filters retained 9,345 159 

unique sequences so 65% of the total. These 9,345 unique sequences were then assigned to 160 

different taxonomic levels using the following genetic similarity thresholds: 100-98% for species, 161 

90-98% for genus, 85-90% for family and 80-85% for order. This set of thresholds retained 7,389 162 

unique sequences resulting in 678 taxonomic assignments (Suppl. Table S2). 163 

A total of 310 species were detected, including 211 coastal fish species present in the checklist 164 

of the Bird’s Head Peninsula and 99 fish species present in other regions but absent from this 165 

checklist (Fig. 1a). Conversely, 183 sequenced fish species which are present in the Bird’s Head 166 
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Peninsula were not detected in our eDNA samples using our stringent filters, representing 167 

53.6% of the sequenced species present in the checklist. Since 75.5% of fish species in the 168 

checklist of the Bird’s Head Peninsula were not sequenced for the 12S rDNA, the largest part of 169 

fish species diversity remained hidden through direct assignment (Suppl. Table S1).  170 

A total of 282 genera and 128 families of fish were detected compared to the regional checklist 171 

of 508 genera and 112 families out of which 46.1% and 72.3% are sequenced respectively 172 

(Suppl. Table S1). The number of fish species per family varied from 1 to 191 in the Bird’s Head 173 

checklist (Fig. 1b), the richest family being the Gobiidae. Only 12 species of Gobiidae were 174 

detected in our 92 samples. Meanwhile, the most represented family in the eDNA samples was 175 

the Labridae with 48 species (15.5% of the species found in the samples) out of 136 in the 176 

checklist (Fig. 1b). 177 

The percentage of fish species sequenced per family varied between 0 and 100% with a mean of 178 

40.3% (± 31% SD) in the Bird’s Head Peninsula checklist while the percentage of detected 179 

species per family varied between 0 and 100% with a mean of 27.1% (± 30.2% SD) in eDNA 180 

samples (Fig. 1b). These two percentages were significantly and strongly related (p < 0.001) with 181 

the percentage of species sequenced per family explaining 85% of variation in the percentage of 182 

detected species per family (Fig. 1c). 183 

High but underestimated diversity of OTUs 184 

Given that the low percentage of fish species sequenced for the 12S in the region is the main 185 

limitation to detect taxonomic diversity (Fig. 1c), we used an alternative approach based on 186 

unique clusters of genetic sequences called Operational Taxonomic Units (OTUs).  187 

From the 331,839,591 initial reads, 4,012 OTUs were generated using the SWARM clustering 188 

algorithm. After a series of post-clustering curation processes, 972 fish OTUs were filtered 189 

among which 819 were assigned to a family (Suppl. Table S3). The number of detected OTUs 190 

varied from 1 to 54 among fish families (Fig. 2a), the richest families (>50 OTUs) being the 191 

Gobiidae, Labridae and Pomacentridae. Overall the number of OTUs was superior to the 192 

number of assigned taxa (genus and species) in 64.7% of the families found in the samples 193 

(mean Δ = 4 ± 6.7 SD, Fig. 2a). This richness difference was null in 31.4% of the families and 194 
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negative in 3.9% of them (Fig. 2a). This difference was notably high in some rich families such as 195 

the Gobiidae and Pomacentridae where the number of OTUs was more than 2 times and 1.5 196 

times higher than the number of assigned taxa, respectively. By contrast, only 7 OTUs were 197 

produced compared to 11 assigned taxa for the Scombridae so Δ = -4 units or -66.7% of this 198 

family richness. 199 

The discrepancy between the two approaches (taxa and OTUs) was not significantly explained 200 

neither by the species richness of the family in the checklist (R² < 0.01, p = 0.08, Fig. 2b) nor by 201 

the percentage of sequenced fish species within each family in the checklist (R² = 0.09, p = 0.05, 202 

Fig. 2c). 203 

On average, the number of OTUs underestimated the total number of coastal fish species in the 204 

Bird’s Head Peninsula checklist with a mean net difference of 40.2% per family (± 38.8% SD, 205 

Fig.2d). For most families this difference was high, reaching the maximum value of 95% for the 206 

Pseudochromidae. However, this difference could also be negative with more OTUs detected 207 

than species present in the checklist as for the Dasyatidae, Leiognathidae and Orectolobidae for 208 

which this difference reached -50%. Overall, the difference was marginally but significantly 209 

explained by the species richness of the family in the regional checklist (R² = 0.09, p = 0.04, Fig. 210 

2d), suggesting that the bias is not proportional to the species richness of the family with 211 

species-rich families being more underestimated by OTUs than species-poor families. 212 

Prediction of fish species diversity from OTU accumulation curves 213 

Since the two approaches (taxa and OTUs) underestimated the level of taxonomic diversity 214 

within fish families with a high uncertainty, we modeled accumulation curves from the diversity 215 

of species and OTUs found across our 92 samples. The modeled asymptote of the assigned 216 

species reached 429 species, a value very close to the 394 sequenced species present in the 217 

Bird’s Head peninsula, but 3.7 times lower than the 1,611 species in the regional checklist (Fig. 218 

3a). Meanwhile, the OTU accumulation curve reached an asymptote of 1,531 ; a value close 219 

(95%) to the number of fish species (1,611) referenced in the checklist of the Bird’s Head 220 

Peninsula. 221 
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Applying this method to the 15 fish families which counted more than 10 OTUs and 10 species in 222 

the checklist permitted to assess the ability of eDNA-based accumulation curves to predict 223 

regional fish richness. For instance, the OTU accumulation curves for the Gobiidae, Labridae and 224 

Pomacentridae, the three richest families (51, 54 and 53 OTUs respectively), produced 225 

asymptotes and thus predictions of fish diversity much lower than those in the regional 226 

checklists with 107.5, 66.1 and 76.2 OTUs, i.e. 47.5%, 81.7% and 69.6% of the checklist richness 227 

respectively (Fig. 3b, c, d). 228 

We then tested the ability of the assigned taxa, the OTUs and the OTU accumulation curve 229 

approaches to predict fish species richness within families of the regional checklist so the 230 

predictive power of linear or proportional relationships. The total number of assigned taxa per 231 

family in our samples was a significant but weak predictor of the number of fish species per 232 

family in the checklist (R² = 0.60, p <0.001, Fig. 4a) with the richness of some families being 233 

largely underestimated (e.g. 87.4% of net difference with the checklist for the Gobiidae, Fig. 4a, 234 

d). The number of OTUs per family was a better predictor of the family species richness in the 235 

checklist (R² = 0.80, p < 0.001) but left 20% of unexplained variation among families with still a 236 

marked underestimation (73.3% of net difference with the checklist for Gobiidae, Fig. 4b, e). 237 

Using the asymptotes of OTU accumulation curves, we obtained a high predictive accuracy of R² 238 

= 0.92 (p < 0.001) for the species richness within families with less bias for the Gobiidae (43.7% 239 

of net difference with the checklist) (Fig. 4c, f). 240 

In addition, we observed that the net difference between the number of assigned taxa per 241 

family and the number of species per fish family in the checklist is not related to the number of 242 

species of the families (Fig. 4d) suggesting an absence of systematic bias towards the 243 

underestimation of species-rich families. By contrast, the net difference between the number of 244 

OTUs per fish family and the number of species per family in the checklist significantly increased 245 

(R2 = 0.35, p = 0.02) with the number of species per family (Fig. 4e). This bias towards the 246 

underestimation of species richness within species-rich families is nonetheless avoided when 247 

using the asymptotes of OTU accumulation curves (p = 0.24, Fig. 4f). Thus, asymptotes of OTU 248 

accumulation curves are most accurate and least biased eDNA-based predictors of fish species 249 

diversity within families in this marine biodiversity hotspot. 250 
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Sampling efforts necessary to achieve regional fish diversity inventory  251 

Not only the OTU accumulation curves and their asymptotes provide diversity estimates, they 252 

also provide crucial insights into the sampling effort needed to achieve a more complete census. 253 

Here, using the asymptote on the OTU accumulation curve for all fish species (Fig. 3a), we found 254 

that our 92 cumulated samples (representing 0.2 m3) achieved up to 63.5% of the potential fish 255 

OTU diversity in the Bird’s Head Peninsula (Fig. 5). To collect 90% of this regional fish diversity, 256 

we should have filtered seawater in 735 samples so 8 times the effort of our sampling 257 

campaign, representing an aggregated sampled water volume of 1.5 m3. This sampling effort 258 

would reach 1,883 samples (an aggregated water volume of 3.8 m3) to collect 95% of the 259 

regional fish OTU richness (Fig. 5). 260 

On average across fish families, our sampling effort achieved the detection of 77.1% (± 14.9 SD) 261 

of OTUs predicted by the asymptote of the accumulation curve with a variation among families 262 

ranging from 42.2% (Muraenidae) and 47.5% (Gobiidae) to 93.9% (Balistidae) (Fig. 5). The 263 

sampling effort needed to achieve 90% of the asymptotic number of OTUs in the region varied 264 

greatly among families, ranging from 37 samples for Chaetodontidae to 494 samples for 265 

Gobiidae, with a mean of 164 samples (± 123 SD). The estimated additional sampling effort to 266 

reach 95% from 90% of the OTU richness ranged from 20 more samples (Tetraodontidae) to 593 267 

more samples (Gobiidae). 268 

Discussion 269 

Overcoming incompleteness of genetic reference databases 270 

Environmental DNA metabarcoding has the potential to surpass most classical survey methods 271 

to assess biodiversity in both terrestrial and aquatic systems (30). Yet, genetic reference 272 

databases are often incomplete especially for species-rich ecosystems such as the Coral 273 

Triangle, the global marine biodiversity hotspot (14). For instance, the current completeness of 274 

the 12S rDNA online databases for the teleo primer covers only 24.5% of fish species in the 275 

Bird’s Head Peninsula. Meanwhile, this cover reaches 77.3% for the COI (mitochondrial 276 

cytochrome c oxidase subunit I) but fish COI primers still perform poorly in comparison to 12S 277 

markers (31). 278 
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With around 28% of families, 54% of the genera and 76% of species not sequenced for the 12S 279 

rDNA teleo primers region, the largest part of fish diversity in the Bird’s Head peninsula remains 280 

thus hidden through direct assignment. Additionally, sequences present in the reference online 281 

databases may have been collected from individuals not located in the region of interest. This 282 

can induce assignment errors due to biogeographical related genetic variation (e.g. (32)). The 283 

lack of sequencing coverage highlights the immense gap to be filled for online databases to be 284 

exhaustive, while numerous species still remain to be described (33). This limitation prevents 285 

metabarcoding approaches from characterizing entire fish assemblages through direct species 286 

assignment. Yet, the taxa-assignment method reveals the presence of 211 fish species 287 

referenced in the checklist of coastal fishes in the Bird’s Head peninsula (Fig. 1a). Conversely, 99 288 

assigned species were absent from this checklist. These 99 detections can either be true 289 

presences extending the distribution of some species and revisiting the regional checklist or 290 

false presences due to wrong assignments or possible contaminations. For instance, the Atlantic 291 

salmon (Salmo salar), probably a lab kit contaminant, was found in our study and removed from 292 

the analyses (see Methods). The large number of species present in the samples but absent 293 

from the regional checklist suggests that inventories of some families are still incomplete. On 294 

average 2.5 detected species per family (± 2.6 SD, Fig.1b) are absent from the checklist, ranging 295 

from 0 to 14 species (Apogonidae). This mismatch allows to target future sampling efforts 296 

towards families and their habitats to complete the regional checklist. 297 

As an alternative to species assignment, the use of OTUs as species proxy units is an option that 298 

has not yet been tested for vertebrates in species-rich ecosystems while currently used when 299 

the concept of species is debatable like for fungi or unicellular organisms (34, 35). 300 

Here, using a conservative and stringent bioinformatic pipeline, we show that the diversity of 301 

OTUs is a weak and biased estimator of species diversity with species-rich families being 302 

strongly underrepresented. To overcome this limitation, we propose to rely on OTU 303 

accumulation curves which provide an unbiased estimate of regional fish diversity and fish 304 

richness within families. The asymptotes underestimate the regional fish species richness but 305 

the bias is highly consistent among families (Fig. 4f). We thus propose to extend this method for 306 
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taxonomic inventories in poorly-sampled ecosystems like the deep sea to estimate the diversity 307 

at different taxonomic levels. 308 

Revealing the potential and limitation of eDNA metabarcoding inventories  309 

Fishes are the most diverse group of vertebrates on Earth with varying body sizes, 310 

environmental niches and diets. Monitoring fish assemblages in marine biodiversity hotspots 311 

like the Coral Triangle is a great challenge particularly for small, rare, cryptobenthic or elusive 312 

species. Here we show that the percentage of sequenced species is highly variable among 313 

families preventing any robust estimation of species richness. Instead Operational Taxonomic 314 

Units have the potential to reveal the presence of a broad range of fish species, i.e. from 315 

different lineages and with contrasted life-history traits. For instance, cryptobenthic families 316 

have been poorly documented and are often ignored in traditional visual censuses (7) while 317 

they strongly influence ecosystem functioning (13). Similarly, traditional visual censuses often 318 

miss highly mobile and elusive species such as sharks (9). 319 

Among the 310 assigned fish species, we detected the presence of small cryptobenthic species 320 

such as Gobiodon histrio or Ostorhinchus selas, a goby and a cardinalfish with a maximum length 321 

below 40 mm, respectively. We also detected large pelagic fish such as the dogtooth tuna 322 

(Gymnosarda unicolor) or the thresher shark (Alopias pelagicus) reaching over 2 m and 4 m long, 323 

respectively. Flagship species for conservation were also present in our DNA samples such as 324 

the over-exploited Napoleon wrasse (Cheilinus undulatus, Endangered, IUCN redlist, 325 

www.iucnredlist.org), the Scalloped hammerhead shark (Sphyrna lewini, Endangered) and 326 

several shark species being classified as Near Threatened (NT) (C. brevipinna, C. Leucas, C. 327 

sorrah, C. melanopterus, T. obesus). 328 

Even if not assigned at species-level, OTUs can be defined as distinct entities for which their 329 

distribution and temporal variability can be assessed and monitored (36). Moreover, the OTUs 330 

and their associated sequences can remain in public repositories until they are assigned to a 331 

species, subspecies or complex as databases improve (37). However, the major caveat of using 332 

OTUs for diversity inventories is that they cannot be directly considered as species with 333 

complete certainty. Species with intra-specific genetic variability can produce two separate 334 

OTUs, overestimating species diversity. Conversely, two species phylogenetically close to each 335 

https://www.iucnredlist.org/
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other with low genetic variability can be grouped into a single OTU, thus underestimating 336 

species diversity. The accuracy of diversity inventories using eDNA metabarcoding is thus 337 

directly based on the taxonomic resolution of the barcode used and genetic variability among 338 

families but also the number of samples. 339 

Here we also reveal the gap of biodiversity that remains to be detected using OTU accumulation 340 

curves. The effort can be massive for some families (Fig. 5) and more ambitious eDNA sampling 341 

campaigns should be on the agenda in species-rich regions like the Coral Triangle. OTU 342 

accumulation curves can also serve to evaluate the efficiency of a sampling method (e.g. 343 

punctual filtration, transect filtration), the sampled area or the diversity of habitats that are 344 

required (e.g. depth, complexity, distance from the seafloor) and their location (e.g. proximity of 345 

reefs, hotspots) especially when targeting rare, elusive, highly mobile or cryptobenthic families 346 

of fish. 347 

The contrasts between assigned taxa diversity, OTU diversity and OTU asymptote diversity show 348 

that the detectability varies strongly among fish families. These contrasts can be related to the 349 

ecology of the species but also to the state of the retrieved DNA fragments (intra or 350 

extracellular), their sources (e.g. gametes, larvae, feces), their release rate, their diffusion in the 351 

water column (limited or wide) and their transportation (38). For instance, a benthic fish species 352 

such as gobies with a small movement range would release DNA fragments through skin and 353 

feces on a small area. However, such species could release a massive number of gametes 354 

carried through the water column (13) so may appear highly detectable during breeding season. 355 

Further comparative works are urgently needed between visual, camera and eDNA 356 

metabarcoding surveys to better estimate the level of detectability of each species or family in 357 

order to provide reliable biodiversity assessments. For instance, coupling eDNA metabarcoding 358 

and video surveillance allows the detection of eighty-two fish genera from 13 orders on reefs 359 

and seagrass with only 24 genera in common (39). Investigating biodiversity should also 360 

consider its multiple components including functional and phylogenetic diversity that are key for 361 

reef ecosystem functioning (40). Associating OTUs to species might allow to fill this gap but it 362 

will require massive sampling and sequencing efforts. 363 
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Figure legends 497 

 498 

 499 

Fig. 1. Number of fish species present in the checklist of the Bird’s Head region (grey), 500 

sequenced in the European Molecular Biology Laboratory database (EMBL) (light blue) and 501 

detected in the eDNA samples (dark blue) (a) ; percentage of species detected in the samples 502 

(dark blue), sequenced in EMBL (light blue) in each family of species (b) ; percentage of 503 

species detected in the samples as a function of the percentage of sequenced species in EMBL 504 

(c). (b) The percentages of the species detected in the eDNA samples compared to the species 505 

present in the Bird’s Head region are displayed next to the points. The number of species per 506 
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family in the checklist and the number of species detected in the samples but not present in the 507 

checklist are both on the right of the figure in black and dark blue, respectively. Only the 508 

sequences assigned to species using ecotag program (similarity >98%) are used in this figure. (c) 509 

Each point corresponds to a fish family. 510 

 511 

 512 

Fig. 2. Number of taxa assigned by the OBITools workflow (blue) and number of OTUs 513 

generated by the SWARM workflow (orange) in the different fish families (a) ; distribution of 514 

the differences between the two workflows as a function of family richness (b) and as a 515 
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function of family sequencing coverage (c); distribution of the differences between OTUs and 516 

the number of taxa (species and genus) in the checklist as a function of family richness (d). 517 

(a)The difference of taxa/OTUs between the two methods (noted Δ) and the number of species 518 

in the checklist of the Bird’s Head region are on the right of the figure in grey and black, 519 

respectively. For the OBITools workflow, only the sequences assigned to species and genus 520 

using ecotag program (similarity > 98% and > 90% respectively) are used in this figure. For the 521 

SWARM workflow, only the OTUs curated by LULU and assigned to family (similarity > 85%) are 522 

used in this figure. 523 
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 524 

Fig. 3. Accumulation curves of species assigned (blue) and the OTUs (orange) obtained in the 525 

whole sampling (a) and within the three most diverse families: Gobiidae (b), Labridae (c) and 526 

Pomacentridae (d). The detection of species and OTUs was randomized 100 times and the 527 

results were used to generate the confidence intervals. The asymptotes were modeled by a 528 

multi-model approach weighted by the Akaike Information Criterion (AIC). Fish silhouettes are 529 

from phylopic.org (Kent Sorgon & Lily hughes) 530 
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 531 

Fig. 4. Linear regression of the diversity of the most diverse families as a function of the 532 

number taxa assigned (a), the number of OTUs (b), the asymptotes of the OTUs accumulation 533 

curves (c); and differences between the number of taxa assigned (d), the number of OTUs (e), 534 

the asymptotes of OTUs accumulation curves (f) and the number of species in the checklist as 535 

a function of the number of species in the checklist. Only the families with a number of OTU 536 

and a number of species in the checklist ≥ 10 are presented to provide accurate estimations. 537 



 

23 

 

 538 

Fig. 5. Percentage of the OTUs diversity covered by the current sampling effort (N = 92) in the 539 

families of fish (orange) and the estimated sampling effort required to achieve both 90% and 540 

95% of the diversity. Only the families with a number of OTU and a number of species in the 541 

checklist ≥ 10 are presented to provide accurate estimations. 542 


