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ABSTRACT

Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations.

To detect data errors, adequate quality check procedures must be designed. This paper presents procedures

that take advantage of the ever-growing observation databases that provide climatological knowledge of the

ocean variability in the neighborhood of an observation location. Local validity intervals are used to estimate

binarily whether the observed values are considered as good or erroneous. Whereas a classical approach

estimates validity bounds from first- and second-order moments of the climatological parameter distribution,

that is, mean and variance, this work proposes to infer them directly from minimum and maximum observed

values. Such an approach avoids any assumption of the parameter distribution such as unimodality, symmetry

around the mean, peakedness, or homogeneous distribution tail height relative to distribution peak. To reach

adequate statistical robustness, an extensive manual quality control of the reference dataset is critical. Once

the data have been quality checked, the local minima andmaxima reference fields are derived and themethod

is compared with the classical mean/variance-based approach. Performance is assessed in terms of statistics of

good and bad detections. It is shown that the present size of the reference datasets allows the parameter

estimates to reach a satisfactory robustness level to always make the method more efficient than the classical

one. As expected, insufficient robustness persists in areas with an especially low number of samples and high

variability.

1. Introduction

Monitoring and predicting the climate evolution at

short and longer time scales has been, is, and will be for

years to come the main challenge for the Earth sciences

community. For the atmospheric, continental and oceanic

domains, this challenging task benefits from the infor-

mation provided by the ever-increasing observation

networks and from an increased understanding of the

physical and chemical mechanisms contributing to the

dynamics of these coupled systems. In practice, these

mechanisms are simulated under both physical and

mathematical assumptions and technical constraints.

Thus, these climate analyses and predictions cannot

avoid inherent uncertainties that may make them

unrealistic.

In the last few decades, taking advantage of advances

in the atmospheric analyses, the ocean community has

focused on atmospherically forced ocean models to
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better reproduce the available observations, see Le

Sommer et al. (2018). Model simulations can provide

large and homogeneous sampling, but these models are

not a complete version of reality, due to their imperfect

representation of the full dynamics and numerical im-

precision. How can these predictions be improved using

observations that sample an unfiltered reality but with

heterogeneous and incomplete sampling? To answer

this question, two main activities have received the most

attention: 1) development and maintenance of in situ

observation networks and 2) design of adequate nu-

merical strategies for data assimilation. In Europe,

within the Copernicus Marine Environment Monitoring

Service, these activities are conducted at global and re-

gional scales, both in real time and delayed time. At the

global scale, Mercator-Océan carries out the modeling

and assimilation activities while Coriolis is involved in

the observational ones. For these complementary ac-

tivities to succeed, an essential and critical activity is

the data quality control (QC). This paper focuses on

QC procedures.

For meteorological data, Gandin (1988) distinguishes

three categories of errors: random, systematic and gross

errors. Random errors are due to instrument behavior

itself and unresolved environmental variability influ-

encing the instrument; they are intermittent and cannot

be eliminated, but it is often reasonable to describe them

as white noise using a Gaussian probability distribution,

zero mean, and specified variance. Systematic errors

are usually asymmetrically distributed, and their mean

value is called bias. They are usually caused by an un-

accounted for, persistent shift in the measurement.

These biases usually persist in time so that they can be

estimated from time-averaged data. If a priori infor-

mation about them is available, they may be corrected,

otherwise they must be treated as random errors with

bias and correlated noise. Gross errors are caused by the

malfunctioning of the device and by mistakes during

data processing, transmission, reception or decoding,

which usually affect only a very small fraction of the

data. However, such errors may be very large and se-

verely affect the downstream user. Small errors of this

type are usually neither dangerous nor detectable, and

can be incorporated into the estimated random errors.

In the past, manual QC has been used to detect them,

but the increasing data volume makes it excessively

time consuming, necessitating automatic, computer-

ized QC procedures.

Here, our attention focuses on gross errors that may

have a dramatic impact on the model analysis. Analysis

of the results obtained with the proposed approach in-

dicates some interesting ability in the early detection of

systematic errors. Formost oceanographic observations,

random errors are usually at least one order of magni-

tude smaller than gross errors.

Basic QC procedures usually check for errors in

platform identification, date, location, value, digital

encoding or stuck values, based on global criteria. Other

test categories focus on the temporal and spatial consis-

tency of data subsets. Typical tests on temperature/salinity

data detect frozen values or sudden changes in time series,

as well as spikes, unrealistic gradients or density inversions

in vertical profiles. Possible horizontal inconsistencies are

often addressed through comparison with local statistics

from a climatological reference dataset, checking that a

given value lies within a validity range:

X
min

#X#X
max

, (1)

where X stands for the relevant variable and [Xmin,

Xmax] defines the range of valid values. A common

practice defines the validity range from the climatolog-

ical mean and standard deviation (std) in the neigh-

borhood of the observation:

X
mean

2N3X
std

#X#X
mean

1N3X
std

, (2)

where N is an adjustable parameter; see Gandin

(1988), Boyer and Levitus (1994), Carton et al. (2000),

Delcroix et al. (2005), Reverdin et al. (2007), Ingleby

and Huddleston (2007), and Cabanes et al. (2013).

Under such an assumption, Eq. (2) is the statistical

equivalent of Eq. (1). Gandin (1988) implements this

test for his meteorological assimilation but does not

give details about the value assigned to N. Boyer and

Levitus (1994) used such a strategy when building

their World Ocean Atlas. They used such intervals to

select the observations that enter the computation of

their 58 3 58 climatological mean and standard devi-

ation; the N value is set to 3, except for coastal boxes

where it may reach 5 and measurements close to

strongly varying topography where it is set to 4.

Using the Simple Ocean Data Assimilation (SODA)

package for assimilating temperature and salinity pro-

files in the Geophysical Fluid Dynamics Laboratory

MOM2 model, Carton et al. (2000) also use such a

strategy to select the data to be assimilated; they choose

an N value of 4, which discards 10% of the total data. In

their analysis of sea surface salinity in the Pacific Ocean,

Delcroix et al. (2005) discard data using validity ranges

based on standard deviations and N values between

3.5 and 5.

During QC, the main objective is to both maximize

the detection of bad data and minimize erroneous re-

jection of good data (false alarms). In the following,

‘‘good’’ detections should be understood as errors that

the QC method is able to detect while ‘‘bad’’ detections
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refers to good observations that are erroneously detected.

Despite its wide use inQC procedures for hydrographical

datasets, the approach described by Eq. (2) implicitly

assumes that the data are symmetrically distributed

around a single modal value. While tuning the N value

may account for nonzero kurtosis, it cannot properly

represent skewness. Figure 1 schematically illustrates this

point. It is clear that this approach has a single degree of

freedom, the N parameter, that is insufficient to achieve

the two objectives: improving the number of false alarms

degrades the number of good detections, and vice versa.

As pointed out by Ingleby andHuddleston (2007) in their

discussion, ‘‘in anyQC system, there is a balance between

trying to reject all ‘bad’ observations and retain all ‘good’

ones, different users might require a different balance.’’

Thus, it is clear that the classical approach does not

account for asymmetry or skewness S in the local data

distribution. Further, there is no a priori choice for N in

Eq. (2). Whenever a constant value for N is defined, it

implies constant kurtosis K and it assumes that the

detection procedure has a constant statistical signifi-

cance or performance level, which is a reasonable ob-

jective. This classical model-based approach assumes

that the data distribution 1) is unimodal, 2) is symmetric,

and 3) has a constant kurtosis. Therefore, this approach

intrinsically lacks the flexibility to account for the

probability distribution in terms of peak enhancement

(or flatness) and relative amplitude of its tails. It is not

possible to simultaneously optimize the number of

good and bad detections.

Uncommon events may be labeled as erroneous if

they are too far from the mean, that is, at a distance

larger than N 3 std, even if they are realistic and in-

cluded in the climatological dataset used to build the

reference mean and standard deviation values.

In this paper, a different statistical estimator is used to

define the boundaries of the validity interval in Eq. (1).

The main characteristics of the method are as follows:

d Beyond global-range or basin-range QC procedures,

the objective is to detect those gross errors that lie

outside a local validity interval.
d The validity interval bounds are inferred from the

minimum and maximum values found in a reference

climatological dataset.
d Randommeasurement errors are assumed to be much

smaller than the observed variability (high signal-to-

noise ratio).
d Results do not depend on the probability distribu-

tion shape.
d Both good and bad detections are optimized.
d Minimum and maximum reference fields are easily

updated with a posteriori verification of uncommon

events that are outside the minimum–maximum in-

terval. Such an update will always reduce the amount

of rejected data (i.e., reduce—and never increase—the

number of detections).
d The detection efficiency only depends on the quality

and representativity of the reference minima and

maxima estimates and not on the choice of some

parameter value.
d The efficiency increases or decreases with low or high

variability, respectively, of the parameter (better at

depth than at surface; near the surface, better for

parameters with weaker seasonal cycle).
d If used as a strategy to identify data for manual QC, the

proposed approach should significantly reduce the op-

erator time spent on unnecessary visual data inspection.

FIG. 1. Scheme describing the impact of Gaussian assumptions

on the quality control of a realistic salinity distribution. The thin

black curve is an example asymmetric salinity distribution. The

thick black line is a skewed Student pdf model with same mean,

variance, skewness, and kurtosis. The blue line is a Gaussianmodel

with the same mean and variance and location of the validity in-

terval boundaries with (top) N 5 3 and (bottom) N 5 5. The ver-

tical black lines give the validity range based on minimum and

maximum values. The vertical blue lines give the validity range

based on 3 (top plot) and 5 (bottom plot) standard deviations. The

red patches indicate ranges of values for which the classical ap-

proach erroneously detects good data, and the green patches cor-

respond to ranges for which erroneous data are not detectable.
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The paper is organized as follows. Section 2 presents

the strategy to derive the minimum and maximum ref-

erence fields, the climatological datasets used as inputs

and the statistical parameters of interest. Examples of

the resulting fields are described, focusing on the inno-

vation relative to the classical approach and their sta-

tistical robustness. In section 3, examples of improved

detection using the new approach are presented. Section 4

presents the assessment of the detection method.

Concluding remarks are in section 5.

2. Building the minimum and maximum
reference fields

a. Strategy for local extrema estimation

The extreme values of a climatological dataset can be

used to define an efficient validity interval for a given

parameter. Indeed, it guarantees that an uncommon,

but realistic, event, even if observed only once, will not

be discarded when observed again in the future.

Nevertheless, estimation of extreme values turns out

to be a nontrivial challenge for in situ observations

subject to errors with various origins and magnitudes.

As minimum and maximum values are extremely

sensitive to measurement errors, an adequate strategy

must be set up: it should be manual, iterative and

based on the spatial consistency of the resulting min-

imum and maximum fields. The following steps are

adopted:

1) All prior quality flags are discarded. Depending on

the dataset, some nonlocal quality checks may be

applied (see section 2b).

2) Preliminary minimum and maximum values are

computed for bins of longitude, latitude and pres-

sure. As expected, these values are very noisy. For

all minimum and maximum values, the associated

measurement information is stored.

3) Within each geographic bin and pressure level, T/S/s

fields are displayed and visually scrutinized. For all

minimum (maximum) values judged as significantly

smaller (larger) than their immediate neighbors, the

corresponding T/S/s vertical profiles are displayed

together with 1) all profiles from the same geograph-

ical box and 2) all profiles from the same platform. A

decision is then made to accept these data as a

realistic uncommon event or to reject (flag) them.

4) Minimum and maximum values at all pressures are

recomputed. Field inspection, flag activation and

minimum and maximum update are repeated itera-

tively until all extremes are estimated to be realistic.

For the first version of the minimum and maximum

fields, several undesirable statistical artifacts appeared

and are detailed herein. A specific solution was designed

for each of them.

First, with a standard regular longitude–latitude grid,

extrema estimates (and statistical moments) are sys-

tematically noisier with increasing latitude. This is due

to the reduction of the cell surface and the resulting

decrease in the number of samples. An unstructured

grid, having the remarkable property of homogeneous

cell surface (see https://www.discreteglobalgrids.org or

Sahr 2011), was used to eliminate this problem.Hexagonal

cells with a 110-km distance between two opposite vertices

were selected. Since the statistical robustness of the ex-

trema estimates depends on the data coverage, the results

for this grid no longer systematically decrease with in-

creasing latitude. The resulting detection efficiency ismuch

more homogeneous.

Second, the vertical sampling scheme of the various

instruments used in the reference databases differs sig-

nificantly. As a result, the vertical data profiles may not

have a value within every pressure bin so that the ver-

tical profiles of minimum and maximum estimates may

be highly discontinuous. To avoid such a discontinuity,

themeasured values are propagated to themissing levels

from one level above and below to fill the data gap,

except for those gaps due to multiple erroneous obser-

vations; a maximum of one missing level is authorized.

In this case, and after the iterative QC procedure de-

scribed above, the profiles are linearly interpolated to

the center of the pressure bins located between two

consecutive valid measurements, and the iterative esti-

mation procedure is repeated. This procedure removes

most irregularities in the vertical extrema profiles.

Third, real uncommon events are often present in the

database, but probably not at all locations where they

may actually occur. As a result, in some cases, horizontal

discontinuities may still appear in these fields, even after

iterative and manual QC. It is then reasonable to con-

sider that such an uncommon event might be observed

in a near neighbor. Optionally, assuming that the sta-

tistics are locally ergodic, a smoothed version of the

reference fields is computed a posteriori by replacing

each minimum (maximum) value by the smallest (larg-

est) value for the cell itself and its immediate neighbors.

In the following, all reported statistics are estimated on

this basis, that is, provided on the 100-km hexagonal grid

but, for each cell, actually computed from the distribu-

tion of data corresponding to that cell together with its

immediate neighbors. The spatial resolution of the ref-

erence fields comes closer to 300 km rather than 100 km.

Such a resolution is satisfactory for the present study

at global scale and essentially based on observations

from the Argo network, but should probably be re-

visited when focusing at interior seas, marginal seas or
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continental shelves when both variability and sampling

scales might be somehow different. Spatially extending

these uncommon events reduces the number of false-

positive detections and improves the overall detection

quality (see the assessment section).

b. Datasets

1) ARGO

A snapshot of the Argo dataset was first downloaded

in September 2015 (http://doi.org/10.17882/42182#42342)

from the Global Data Assembly Center (GDAC) (see

Argo 2014). This dataset contained more than 1.4 million

profiles, from nearly 10000 platforms. Only ascending

profiles with delayed-time parameter values are used in

this analysis.

While Argo provides a relatively homogeneous cov-

erage of the global ocean, it is still sparse near continental

shelves and, for lack of deployment opportunities, in the

Southern Ocean. Consequently, the dataset is extended

using the following datasets.

2) CLIMATOLOGICAL CTD DATASETS

The International Council for the Exploration of the

Sea (ICES) also provides a high quality CTD database

focused on the Northern Atlantic and Arctic Oceans

(http://ices.dk/marine-data/data-portals/Pages/ocean.aspx;

13 000 profiles). Ifremer also maintains a database of all

CTD acquired onboard its research vessels (http://

donnees-campagnes.flotteoceanographique.fr; 7000 pro-

files). The Ocean Climate Laboratory (OCL; see https://

www.nodc.noaa.gov/about/oceanclimate.html) updates reg-

ularly its World Ocean Database (WOD); we collected

their historical dataset of CTD profiles at observed depth

levels. These three important climatological CTD datasets

are included. Practically,we accessed thesedata through the

Coriolis interface. At the time that the Coriolis website was

accessed, 43000 profiles were available from the WOD.

3) CTD MOUNTED ON SEA MAMMALS

Unprecedented sampling of the Southern Ocean is

provided by an observation network of CTDs mounted

on sea mammals. The data are available through the

Marine Mammals Exploring the Oceans Pole to Pole

(MEOP) portal (http://www.meop.net; 78 000 profiles).

Only data having passed delayed-time QC are retained.

c. Salinity statistical parameters

Once the datasets have been iteratively quality con-

trolled as described above, temperature, salinity and

potential density distributions are assembled over all

oceanic grid cells and 20-m-thick layers, as described in

section 2a. From these distributions, minimum and

maximum values, as well as standard statistical mo-

ments, are determined. In this section, all of these sta-

tistical parameters are presented and intercompared to

investigate the consistency of the minimum and maxi-

mum estimates. First, some statistical background is

recalled to provide some basics and help understand the

latter comparison. Then the spatial distributions of data

at the surface and 1000m are presented. Following this,

the minimum and maximum fields are introduced and

interpreted in terms of validity range; a similarity with

third- and fourth-order statistical moments is presented.

The robustness of the parameters is investigated through

Monte Carlo simulations to characterize systematic

errors due to insufficient sampling. Last, a consistent

statistical model is proposed and the minimum and

maximum values are interpreted in terms of equivalent

percentile to illustrate the degree of accuracy of their

distribution tail description.

For the sake of brevity, results are only presented for

salinity S. All salinity values are given as practical sa-

linity in the pss-78 scale and will be labeled ‘‘psu.’’

1) STATISTICAL BACKGROUND

Starting with Pearson (1895), statisticians have stud-

ied the properties of various higher-order statistics, and

have discussed their utility and limitations. Visual dis-

plays (e.g., histograms) often show asymmetry and/or

heavy-tailed characteristics. Skewness and kurtosis can

be used to characterize these features. Skewness is a

measure of lack of symmetry of the data distribution, and

for a normal distribution is zero. Kurtosis is a measure of

whether the data, relative to a normal distribution, accu-

mulate near the peak and the tails (high kurtosis) or at an

intermediate distance sometimes referred to as the shoul-

ders (low kurtosis). The kurtosis for a normal distribution

is 3. More precisely, kurtosis characterizes the dispersion

of a random variable around its (positive or negative)

standard deviation. Data distributions with high kurtosis

present enhanced peakedness and heavy tails, or large in-

terval width (maximum 2 minimum) values. Data distri-

butionswith lowkurtosis have light tails or heavy shoulders,

and the maximum–minimum range value is small.

In this context, it is interesting to recall the origin of

the Student’s t distribution. The t distribution arises

when a normally distributed process is assessed using the

sample variance rather than its true value. If the sample

variance is normally distributed around the true one, the

process distribution will thus depart from the true

Gaussian shape, and the resulting t distribution has an

increased kurtosis. Furthermore, the composition of pro-

cesses with differentmeans will impact the kurtosis, even if

the processes have the same variance. As addressed by

Darlington (1970), Hildebrand (1971), Moors (1986), and
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Knapp (2007), a bivalued mean may lead to negative

kurtosis anomalies. More generally, sample mean vari-

ability will tend to smooth out the distribution peak, re-

ducing the kurtosis, while sample variance variability acts

toward increasing the kurtosis.

For asymmetrical distributions, the skewness is non-

zero and, generally, kurtosis also increases. For a bi-

modality case, with two modes having different peak

locations and levels, the kurtosis reduction will be ac-

companied by a nonzero skewness. As such, skewness

and kurtosis are partially correlated, something that can

be written in a first-order description as follows:

K 5K
Scor

1K
S
(S ) . (3)

To help to derive a kurtosis-type parameter inde-

pendent of skewness, Blest (2003) proposed to define a

kurtosis adjusted by skewness estimates. Rosco et al.

(2015) improved Blest’s definition, and Jones et al.

(2011) provided an analytical expression of the skewness

dependence factor. The kurtosis is thus adjusted by the

skewness parameter to help interpret the minimum- and

maximum-derived parameters.

Note that statistical estimates of sample skewness and

kurtosis are often not robust. Various authors have

proposed more robust estimators, either from quartile,

octile or more generally quantile-based estimates [for

kurtosis, see Moors (1988), Kim and White (2004), and

Kotz and Seier (2009); for skewness, see Bowley (1920),

Hinkley (1975), Groeneveld and Meeden (1984), Mac

Gillivray (1992), and Johnson et al. (1994)]. The resulting

parameters are then usually found to be well correlated

with sample estimates but with a significantly improved

signal-to-noise ratio. In the following, the minimum and

maximum parameters are combined with other statistical

parameters to be interpreted in terms of such robust

asymmetry and peakedness characteristics so as to then be

compared with sample skewness and kurtosis.

Pearson diagram, a tool for distribution classification

In (S 2,K ) space, Pearson (1905) defined distribution

families. In this diagram, reference analytical laws are

identified, either by points (Gauss and Rayleigh), single

curves (Student, gamma, inverse gamma, andWeibull) or

partially bounded domains (generalized beta and beta

prime). Figure 2 displays such a diagram with colored

lines corresponding to the location of the Weibull,

gamma and inverse-gamma distributions. The distri-

bution of sample skewness and kurtosis is shown with

light gray contour lines. In section 2c(6), the Pearson

diagram is used to identify an analytical distribution

family that represents reasonably well our dataset on

the basis of the (S 2, K ) distribution.

2) NUMBER OF SAMPLES

The number of vertical profiles with observations in

the surface and in the 1000–1020-m layers are shown in

Fig. 3. Due to the Argo network sampling, the spatial

coverage is rather uniform over the global ocean.

Nevertheless, heterogeneities are present. Higher spa-

tial density appears in the vicinity of the Kuroshio and

Gulf Stream regions as they are the closing branch of the

subtropical circulation; lower density occurs in areas

where the platforms either have difficulty entering due

to the large part of their life spent at depth (continental

shelves, marginal seas) or are less deployed due to scarce

ship routes crossing them (South Atlantic and Southern

Oceans). The ICES dataset specifically contributes to

increased density in the North Atlantic, north of 508N.

The MEOP dataset improves the overall low sampling

of the Southern Ocean. TheOCL dataset contribution is

particularly obvious through the zonal and meridional

high density lines, particularly in the central equatorial

PacificOcean. It also has an important contribution over

the continental shelves. For the 1000-m layer, the spatial

FIG. 2. Pearson diagram: The light-gray lines are contours of the

normalized empirical (S 2,K ) histogram.Dark-gray lines refer to the

(S 2, K ) parameters as estimated using Eqs. (5)–(7). The pink, blue,

and green lines correspond respectively to Weibull, gamma, and in-

verse gammadistributions. Thedomainboundedby theblue andblack

lines corresponds to the generalized beta distribution, and the domain

below the green line corresponds to the beta prime distribution.
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distribution is similar to the one at the surface; differ-

ences come from vertical profiles that do not reach

such a depth, especially in the intertropical domain

(shallower Argo sampling) and in the Southern Ocean

(sea mammals do not reach such a depth).

As mentioned in section 2a, a particular spatial fil-

tering is applied a posteriori. To increase the statistical

robustness, all statistics provided for a given grid cell are

computed using data from the cell itself as well as its

immediate neighbors. From a theoretical point of view,

this is equivalent to a local ergodicity assumption under

which the poor description of the temporal variability is

improved assuming that it can be estimated from the

spatial variability in the near neighborhood.

3) MINIMA AND MAXIMA

The left and right columns of Fig. 4 display minimum

and maximum salinity fields, respectively. The top and

bottom panels show the surface and 1000-m layers, re-

spectively. In the surface layer, the classical large-scale

structure consisting of salinity maxima in the desertic

subtropics is a feature in both minimum and maximum

fields. In the 1000-m layer, the presence of outflows from

evaporation basins (Mediterranean Sea, Red Sea, and

Persian Gulf) is a striking feature in both field types,

with the Mediterranean outflow being associated with

a 2-psu difference between North Pacific and North

Atlantic waters. As an example, the minimum surface

salinity field displays signatures of seasonal (in an

Eulerian way) freshwater inputs such as rain in the

Pacific intertropical convergence zone (ITCZ), or run-

offs from the Amazon, Niger, Congo or Ganges Rivers.

Changes in the structure between the minimum and

maximum fields occur in zones of increased mesoscale

eddy activity; the Gulf stream front is clearly displaced

northward when shifting from the minimum to the

maximum fields; the westward return branch of the

Southern Hemisphere supergyre appears in the deep

maximum field with high salinities near 408S in the

Atlantic (eddies generated in the Agulhas retroflection

area) or oriented northwestward from the southwestern

tip of Australia (water coming from the Tasman leak-

age; see Rosell-Fieschi et al. (2013).

Variability interval amplitude

Variability intervals can be used in validity range

check forQC purposes. Here, the interval width obtained

from the minimum and maximum fields is compared

FIG. 3. Number of profiles per grid cell: (top) the 0–20-m layer and (bottom) the 1000–1020-m layer.
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with the classical approach based on standard deviation

estimates.

The upper panels in Fig. 5 display the amplitude of the

validity interval as computed from the maximum 2
minimum difference (left panel) or 2N times the standard

deviation (right panel), as defined in section 1 for the

classical approach. Under Gaussian assumption and with

N equal to 3, the ‘‘classical’’ interval contains 99.7% of

the data. The overall similarity between both interval

width estimates suggests that, at first order, the Gaussian

assumption is reasonable and the interval widths compare

well when N is equal to 3. This allows us to write

S
max

2 S
min

; 6S
std
. (4)

Nevertheless, local differences appear at second or-

der. In the next section, we propose to describe such

differences in terms of specific statistical parameters

characterizing the distribution shape.

4) INTERVAL CENTER SHIFT AND WIDTH RATIO

Rather than comparing the intervals from both ap-

proaches through their lower and upper bounds, we

propose to shift to a different framework more focused

on the distribution’s shape. New parameters are intro-

duced, the interval width ratio (IWR) and the normal-

ized interval center shift (NICS):

IWR5
S
max

2 S
min

23 S
std

and (5)

NICS5 63
[(S

min
1 S

max
)/2]2 S

median

S
max

2S
min

. (6)

In Eq. (5), IWR represents the ratio of their widths; it

can be considered as a robust kurtosis estimate based on

quantiles (see section 1) that characterizes distribution

tail height relative to height at 1 standard deviation from

the distribution mean. In Eq. (6), NICS represents the

difference in their center location; it vanishes when the

local distribution is symmetric and is normalized so as to

be interpretable as a deformation parameter; it can be

considered as a robust skewness estimate based on

quantiles. The factor 6 in Eq. (6) allows us to scale NICS

similarly to skewness, that is, as a ratio to 1 standard

deviation; see Eq. (4).

The middle panels in Fig. 5 display surface NICS (left

panel) and IWR (right panel) from the quality-controlled

dataset. In the surface intertropical Pacific and Atlantic

Oceans, the signatures of precipitations and runoff iden-

tified in the minimum field (see section 3) are clearly

present in the NICS field: relative to the mean value, the

validity interval is shifted toward negative values indicating

that large fresh anomalies are more likely to occur than

salty ones. A striking feature is visible in the Southern

Ocean, especially east of the Greenwich Meridian. The

subtropical front is a boundary with intense mixing be-

tweenwarmand salty South IndianCentralWater (SICW)

and fresher and colder sub-Antarctic Surface Water

(SASW). This produces an asymmetric NICS structure.

On the northern side, salty SICW is dominant, increasing

the mean salinity value, while meandering of the front and

the presence of SASWeddies produce intermittent fresher

anomalies, resulting in a negative shift of the validity in-

terval center. On the southern side, SASW is dominant,

the intermittent anomalies are saltier, inducing a positive

shift in the location of the validity interval center.

FIG. 4. (left) Minimum and (right) maximum salinity values for the (top) 0–20-m and (bottom) 1000–1020-m layers.
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The IWR field shown in the middle-right panel of

Fig. 5 is the ratio between the actual validity interval

width and 2 times the standard deviation, that is, the

effective N value (number of standard deviations) that

the classical approach should apply to avoid misesti-

mates of the validity interval width. As already men-

tioned, global estimates of this ratio provide an average

value of approximately 3. A systematic value larger than

3 would overestimate the validity interval width, re-

ducing the QC efficiency by accepting erroneous data.

Focusing again on the Southern Ocean east of the

Greenwich Meridian, a symmetric structure is observed

in the cross-front direction, that can be interpreted in

terms of shape departure from the Gaussian one (for

which IWR 5 3). At the center, values lower than 3 are

observed, indicating an excessive standard deviation

value relative to the tail height (sometimes referred as

‘‘heavy shoulders’’), characteristic of a flattened or even

bimodal distribution, that is a combination of processes

with similar variance but different means. On both

sides of the front, IWR values are larger than 3, re-

flecting the impact of the large NICS values described

above for IWR.

NICS and IWR similarity with S and K

In this section, the comparison between moments-

derived and minimum- and maximum-derived shape

parameters requires adjustment of kurtosis with a

skewness correction, see Eq. (3). To derive such a cor-

rection, a first criterion is based on Fig. 2 and aims to

align the principal axis of both (S 2, K ) distributions

(light and dark gray contour lines). A second criterion

aims tomatch at best the color scale ofmiddle and bottom-

right panels of Figs. 5 and 6. As a good trade-off between

such criteria, the following correction is proposed:

K
S
(S )5 1:15S 2 . (7)

For this qualitative comparison, such an ad hoc cor-

rection at first order seems reasonable, even if certainly

imperfect.

Figure 5, in the bottom panels, presents the spatial

distribution of skewness and kurtosis [adjusted for

skewness; see Eqs. (3) and (7)] in the surface layer.

Similar comparison at the 1000-m level is shown in

Fig. 6. The NICS and IWR fields are very similar to

skewness and modified kurtosis fields. This is an

FIG. 5. Variability amplitude as estimated from (top left) Smax 2 Smin and (top right) 6Sstd. (middle left)

Normalized interval center shift as defined in Eq. (6). (bottom left) Skewness. (middle right) Interval width ratio as

defined in Eq. (5). (bottom right) Kurtosis corrected from skewness. All plots refer to the 0–20-m layer.
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expected result as NICS and IWR have definitions

similar to robust quantile-based estimates of skewness

(see discussion in section 1). But such a similarity

between the minimum- andmaximum-derived and the

moments-derived estimates of asymmetry and peaked-

ness suggests that the estimated minimum and maximum

values globally reach a significant degree of robustness,

even if they can still be improved locally. The middle and

bottom panels of Figs. 5 and 6 illustrate the third- and

fourth-order variability in the distribution shape that the

present approach allows us to account for, which is an

improvement relative to the classical one. This is also

different from the approach by Gouretski (2018) who

proposes an ad hoc solution to account for third-order

statistics, while it does not address the contribution of the

fourth-order ones.

5) STATISTICAL ROBUSTNESS

Even after gathering the data from one cell together

with its neighbors (see section 2), spatial variations of

data density are still significant, see Fig. 3. In this section,

we focus on potential parameter errors associated with

insufficient sampling.

Grid cells with a total number of profiles n $ 500 are

selected. A Monte Carlo approach is then used to

examine the effects of insufficient sampling. For each

selected grid cell, the full distribution is randomly split in

n/p subdistributions of size p, ranging from 5 to 500.

Sample parameters for the mean, variance, skewness,

kurtosis, NICS and IWR are estimated for all sub-

distributions and normalized by the value for that cell

obtained with the full distribution. For each p value, a

distribution of normalized parameter values is then

obtained as the total average over all the selected cells.

Because S and NICS may take either positive or neg-

ative values, the Monte Carlo procedure and the nor-

malization are applied to the square of these quantities,

S 2 and NICS2, but results are expressed in terms of S
and NICS.

Results are presented in Fig. 7. First and as expected,

mean, standard deviation, skewness, and kurtosis have

increasing random errors with increasing norm associ-

ated with their definition (from L1 to L4). Second, the

spread of the relative error distributions systematically

decreases with increasing number of samples.

For each p value, a systematic bias of the normalized

distribution median is shown as black lines. No system-

atic mean bias is evident; variance is only biased by a few

percent in the most extreme case; S and K appear

biased below 200 samples by up to 20%–30%.

FIG. 6. As in Fig. 5, but for the 1000–1020-m layer.
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For sufficiently large sampling (the right part of each

panel corresponding to more than 300 samples), the

minimum andmaximum-derived parameters (NICS and

IWR) have less spread than the sample skewness and

kurtosis parameters. Minimum- and maximum-derived

estimates of asymmetry and peakedness thus appear

more robust than those estimated from high-order mo-

ment. With decreasing number of samples, this lower

error dispersion is counterbalanced by a much larger

bias for IWR. This is an intrinsic consequence of the

extreme value-based approach. Minimum and maxi-

mum values can provide a more accurate estimate of the

validity interval, but are directly related to the param-

eter distribution tails; their robustness depends on the

amount ofQCwork (see section 2) but, more essentially,

on the amount of variability sampled. Minimum and

maximum values are critical samples within the distri-

bution; in the Monte Carlo simulation, all parameter

estimates from subdistributions that do not include such

critical samples dramatically diverge from the true so-

lution, leading to thinner validity intervals, that is, lower

IWR estimates. Comparatively, the fourth-order mo-

ment includes information closer to the distribution

peak and does reach robustness faster; the correspond-

ing validity intervals are somehow less dependent on the

distribution tails. It is interesting to note that NICS does

not show a larger bias than the skewness; although NICS

is estimated directly from minimum and maximum

values, its definition [normalized by the maximum 2
minimum width rather than the std; see Eq. (6)] allows

us to derive a weakly biased asymmetry parameter from

minimum and maximum estimates with stronger bias.

6) MINIMUM AND MAXIMUM EQUIVALENT

PERCENTILE

To further statistically characterize the minimum and

maximum estimates and their robustness, we attempt to

evaluate minimum and maximum equivalent percen-

tiles; their consistency is evaluated through the expected

decrease (increase) of the minimum (maximum) equiv-

alent percentile when the empirical distribution is built

from an increasing number of independent samples.With

this aim, it is first necessary to select an analytical distri-

bution law that adequately describes our empirical dis-

tributions, especially focusing on the distribution tails,

which minimum and maximum values are associated

with. Clearly, such a distribution should well reproduce

the empirical skewness and kurtosis values closely linked

to the shape of the distribution tails. As such, we use the

(S 2, K ) space of the Pearson diagram to identify an

adequate family of distributions. Following, using the

cumulative formulation of the selected distribution, the

FIG. 7. Contours of the relative error distribution as a function of the number of samples. For all parameters, the contour levels are set

from 15% to 50% (by steps of 5%) of the absolute maximum of the bidimensional pdf. (top left) Mean and (bottom left) variance; (center

top) skewness and (center bottom) kurtosis; (right top) NICS and (right bottom) IWR. The black lines correspond to the median of the

distribution for given number of samples.
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minimum and maximum values are characterized in

terms of equivalent percentiles.

(i) Pearson diagram

We propose the use of the Pearson diagram tool

presented in section 1. In the (S 2, K ) space of Fig. 2,

the data distribution is presented in light gray contour

lines using the sample skewness and kurtosis adjusted

from the systematic biases identified in the previous

section. The dark-gray contour lines correspond to the

robust quantile-based estimates of S 2 and K , where

S 25NICS,K 5 IWR1K S(S ), andK S(S ) is taken

from Eq. (7). To account for the bias evidenced in

section 5, the sample S andK are empirically adjusted

for their low sampling bias using the median of the

normalized distribution shown in Fig. 7, middle panels.

Similarly, NICS and IWR are adjusted using the median

of the normalized distribution shown in Fig. 7, right

panels, prior to their interpretation in terms of S
and K .

The (S 2,K ) distribution is fairly well spread around

the curve corresponding to the Weibull law, especially

for the lowest S 2 values. The distribution of the

minimum- and maximum-derived parameters has a

significantly lower spread. Correspondingly, grid cells

with S 2 , 1 and K away from the Weibull law by less

than 0.05 are selected. In the following, the two sets of

(S ,K ) parameters are used to estimate minimum and

maximum equivalent percentiles.

(ii) Minimum and maximum equivalent percentile

Here we use the selected grid cells for which the

distribution should be reasonably approximated by a

Weibull law. For each cell and its corresponding em-

pirical distribution, Weibull parameters are adjusted to

match the salinity distributions, especially to mimic the

skewness and kurtosis values. From these adjusted

laws, the inverse Weibull cumulative distribution is

used, and minimum and maximum values are inter-

preted in terms of percentiles. Figure 8 shows the

percentile estimates associated with the salinity mini-

mum for cases with negative skewness in the surface

layer. The percentile values are obtained both using the

direct empirical (S ,K ) values and the minimum- and

maximum-derived ones.

For the largest number of samples, the equivalent

percentile does converge toward a value close to 0.2;

such a value is in reasonable agreement with the 99.7%

of data included inside a 6-std interval under the

Gaussian assumption (see section 3). With decreasing

number of samples, the minimum value has not fully

converged to such a value and the percentile rapidly

increases. The minimum estimate is less robust and

describes a location in the distribution tail progressively

closer to the interior. A number of 300 to 400 samples

can be considered as a threshold value to ensure a suf-

ficient robustness. This value is in good agreement with

the results obtained in section 5 for IWR.

Percentiles derived from minimum and maximum

estimates have lower spread than those obtained from

sample S and K , suggesting again a higher robustness

and quality. Indeed, minimum and maximum values are

individual samples with robustness primarily depending

on the performed QC work focusing specifically on the

extreme values of the dataset, see section 2.

These results conclude the characterization of the

minimum and maximum estimates themselves. In the

following, an illustration of a practical usage of such

estimates for QC purposes is presented, followed by a

more academic statistical assessment.

3. Illustration of minimum and maximum usage for
QC purposes

Raw noisy data from a CTD sensor mounted in the

bilge of the One Planet One Ocean (OPOO) sailing

boat that participated in the Barcelona World Race

(BWR)were kindly provided by J. Salat and J. Salvador,

from the Institute of Marine Sciences (ICM), Spanish

National Research Council (CSIC). OPOO covered a

round-the-world track starting on 31 December 2014 in

Barcelona, Spain. The data are now used to illustrate the

potential of the minimum and maximum estimates for

QC purposes.

FIG. 8. Evolution of the Smin-equivalent percentile as a function

of the number of samples, using the empirical Smin, S , and K
values (blue dots) or using the empirical Smin values and the esti-

mated S and K values as defined in Eqs. (5) and (6) (red dots).

800 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37



Figure 9 shows the trajectory of the boat and the en-

tire salinity time series, as well as an expanded time

period of particular interest here. Under high-hull-speed

conditions, the boat rises above the water and air enters

the sensor, resulting in negative conductivity and salinity

errors. Such errors need to be filtered out from the

time series.

Thus, in the middle and bottom panels of Fig. 9, the

observed surface salinity time series are shown together

with the local minimum and maximum validity interval,

as well as the one derived from the classical approach

estimated withN5 5 (i.e., the value used at the Coriolis

data center for delayed-time quality control). From

early January through late February, the minimum and

maximum interval is systematically thinner than its

classical equivalent, suggesting that the minimum and

maximum approach has, in general, a more restrictive

error detection capability; erroneous measurements

have a larger probability of detection, that is, the ap-

proach identifies a larger number of good detections.

Of course, such a larger relative capability would be

reduced by using a lower N value in the classical ap-

proach; but the price would be an increased number of

bad detections.

To further intercompare the two approaches, we

now focus on a couple of salinity anomalies occurring

with the boat crossing the ITCZ on 11 January and

24 March or sailing through a freshwater pool by the

southern tip of South America on 7 March. For the

7 March event, the low-salinity anomaly encountered

near Cape Horn similarly impacts the lower bound of

the validity interval in both approaches. Nevertheless,

for the upper bound, while the maximum value is not

sensitive to that fresher water, the classical upper

bound is symmetrically shifted up. This is because

the method assumes a symmetrical data distribution

while the mean value is not affected by the fresh

anomaly, which likely has a low occurrence in the

reference dataset. The consequence is that the ability

of detecting measurement errors associated to posi-

tive errors up to 1 psu is severely degraded locally. In

the second case, a similar analysis can be conducted,

except that the classical upper bound of the validity

interval is impacted less relatively, that is, shifted to-

ward higher values; the fresh anomaly is partly carried

by the standard deviation but also by the mean value;

in this case, near 58N, the probability of occurrence of

such a fresh event is higher as the ITCZ crosses the

area twice a year, during its northward and southward

migration respectively in May and November. As

intuited in section 1, the performance of the classical

approach depends on the occurrence of uncommon

events in the reference dataset, while the minimum

and maximum approach is independent of such oc-

currence as long as it is larger than zero.

4. Statistical assessment

In the two previous sections, some examples de-

scribed the added value of the minimum and maxi-

mum approach relative to the classical one. Here, we

provide a statistical assessment of this added value in

terms of number of good detections (GD) and bad

detections (BD).

A robust validation approach should use independent

datasets to derive the reference fields and to validate them

using Monte Carlo experiments. We derived a set of ref-

erence minimum and maximum fields from a randomly

selected fraction of the available dataset (typically 70%–

90%), anduse the remaining fraction (30%–10%) to assess

the procedure, repeating this random split a large number

of times to reach the necessary statistical confidence.

First, note that, as shown in earlier sections, the ro-

bustness of the reference minimum and maximum fields

is highly sensitive to the size of the dataset used to build

them, and the entire dataset presently available is still

insufficient to reach full statistical robustness. Thus, the

split of the available dataset into development and val-

idation subsets degrades the suboptimal version of the

minimum and maximum approach due to the degraded

reference fields, which is the price of a Monte Carlo val-

idation procedure. This degradation has a much weaker

effect on the classical approach as the first- and second-

order statistical moments converge much more rapidly,

see Fig. 7. As a consequence, the method accuracy as

obtained from the validation results should be considered

as a lower bound estimate of the actual accuracy.

Second, the number of members in the Monte Carlo

experiment is restricted by the high computational cost

of each of them, that includes 1) building the reference

minimum and maximum fields from the first data subset

and 2) running the qualification method for the second

subset. In the present study, we chose to compute 10

members for each of three different splitting-ratio

values (70–30, 80–20, and 90–10). A posteriori, the dis-

persion between all 10 members has been checked, en-

suring that the limited number of members should not

restrict the validation conclusions.

a. Good and bad detections

To validate the procedure, the Argo dataset as provided

in the global CopernicusMarine EnvironmentMonitoring

Service (CMEMS) In Situ dataset (http://marine.

copernicus.eu/services-portfolio/access-to-products/?

option5com_csw&view5details&product_id5INSITU_

GLO_TS_REP_OBSERVATIONS_013_001_b; credit
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FIG. 9. (top) Sailing ship route during the BWR. The background color corresponds to the surface Smin estimate.

(middle) Entire salinity time series during the cruise; blue or red lines indicate the lower or higher bound of the

validity interval, respectively, with the full lines corresponding to the minimum and maximum approach and the

dashed lines corresponding to the classical approach. Vertical black lines help to locate the beginning andmiddle of

each month; vertical red lines correspond to the events highlighted in the text. (bottom) Same as right half of the

middle panel but with a zoom onto the March–April period. The figure is provided through the courtesy of J. Salat

and J. Salvador of ICM, CSIC.
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to EU Copernicus Marine Service Information) is used

for validation. The delayed-time QC procedures in-

clude both automatic detection and human inspection,

leading to a high-quality set of flags. Assuming that the

quality of such flags is perfect, they are used, in this

section, to evaluate any automatic qualification pro-

cedure. The classical approach for different N values

and the minimum andmaximum procedure are run and

the corresponding flags obtained. These flags are cat-

egorized as either GD or BD on the basis of their

agreement with the CMEMS ones. Note that, keeping

the naming practice of good and bad detections im-

plicitly assumes that CMEMS flags are perfect and

can be taken as a ground truth. Given that visuali-

zation and confirmation of all these detections was

not manageable by the authors, this is a pragmatic

assumption. Supported by the consistency of the re-

sults, the authors believe that it is also a reasonable

assumption as a major part of such detections have

already been visualized by the CMEMS delayed-

time operator. The optimal detection method should

maximize GD and minimize BD. Note that, in order to

simplify the presentation and synthesis of the statistics

from more than 1 million profiles with typically 100

observations each, we choose to group the observa-

tions by profile, or piece of a profile. A ‘‘profile flag’’ is

activated whenever any of its corresponding individual

observation flags is activated. Such a definition leads to

some imperfection in the sense that an error in the

surface layer may be associated with a good detection

while the reference individual observation flag re-

sponsible of the profile flag activation is located in a

much deeper layer. To account for this, it is preferred

to compute flag statistics for different ocean layers,

limiting the potential impact of the problem. The four

selected layers are 0–200, 200–500, 500–1000 and

1000–2000m.

b. Results

The left and middle columns of Fig. 10 display

monthly GD and BD percent time series. The rows are

for different ocean layers, see figure caption. The right

column displays efficiency for the different approaches

in terms of normalized relative variations of good

(horizontally) and bad (vertically) detection statistics.

GD reference values are defined as the classical-approach

time series for N 5 4 filtered with an 11-points rectan-

gular window. The BD reference value is defined as the

temporal average of the classical-approach time series for

N 5 6. The presented statistics are first computed as the

difference to the above defined reference levels and,

second, normalized so that the classical-approach results

for N 5 6 and N 5 4 have respective coordinates (0, 0)

and (1, 1) in the diagram frame. The GD statistics are

independent of the method, except for the classical ap-

proach with N 5 5 or 6 for which the GD number may

be reduced by up to 20%, leading to a reduced overall

quality of the dataset under such an automatic QC ap-

proach. For reference, the percent of all profiles with real-

timeQC (at Argo program level) is displayed in the same

panel. In delayed-time QC, Argo observations may be

not only flagged but also corrected to reduce offsets or

biases. As such, a significant reduction of the number of

errors is expected at this step. Its steady increase since

2012 is fully consistent with the fact that delayed timeQC

is made available within a delay varying from several

months to a few years. For all approaches, the overall

agreement with the GD time series, especially in the last

years, suggests that, as expected, the overall quality of the

dataset degrades slowly from1%erroneous data to 2% in

the last years before the present with decreasing amount

of observations controlled by delayed time QC proce-

dures, confirming the overall robustness of our GD

statistics.

For the classical approach, it can be seen that the

choice between lower or higher N value is a trade-off

between 1) maximizing the number of detected erro-

neous data and 2) minimizing the number of false

alarms, which, in fully automatic mode, does discard

a significant amount of valid observations, or, when

combined with human control, does imply a poor effi-

ciency of the operator work. The validation results for

the minimum andmaximum approach show a significant

impact of the dataset splitting ratio, particularly for bad

detections. In the right panels of Fig. 10, the colored

circles indicate that the 90/10 splitting ratio provides the

best BD number reduction while the GD number is only

marginally reduced. This indicates that the amount of

data used in building the minimum and maximum ref-

erence fields is more important than the amount used in

the assessment procedure. As such, in the following, we

use only the 90/10 splitting-ratio value. The results that

should be obtained with minimum and maximum

reference fields built from the full dataset can be an-

ticipated from the right panels of Fig. 10 through ex-

trapolation of the results obtained for the 3 values of

the dataset splitting ratio.

The minimum and maximum approach allows us to

somehow uncouple GD and BD statistics: as shown in

Fig. 11, within the 200–500-m and the 500–1000-m

layers, the GD numbers are close to those from the

classical approach with N 5 4 while the BD ones cor-

respond better to N5 5; see the right column of Fig. 11.

The results are somehow degraded in the 0–200-m and

the 1000–2000-m layers. In the 0–200m, a lower reduc-

tion in BD is observed. Given that there are roughly the

MAY 2020 GOURR ION ET AL . 803



same number of observations in all layers, the signifi-

cantly higher variability in the shallow layers implies

a reduced statistical robustness of the minimum and

maximum estimates.

In the 1000–2000-m layer, the natural variability is

smaller; all validity intervals are narrower and more

errors can be detected. As a first consequence, all GD

numbers are much larger than in the upper layers (see

Fig. 10, lower-left panel). In the lower-right panel, we

further observe that the minimum and maximum in-

crease of GD numbers is weaker than in upper layers.

This is primarily due to the reduction of the ratio of

two numbers when they both increase by the same

amount. Second, at these depths where the distribu-

tions are usually more symmetrical, the QC statistics

do not take advantage of an ability to account for

asymmetrical distributions; the minimum and maxi-

mum benefit is reduced in comparison with upper

layers where asymmetrical distributions are more

likely to occur.

5. Conclusions

In the general context of automatic QC procedures

for temperature and salinity observations, and beyond

‘‘global range’’ or ‘‘basin range’’ tests, this paper revisits

the idea that validity intervals might be defined locally

from the historical knowledge of the local variability. A

classical approach estimates the validity interval from

the mean and standard deviation of the historical local

FIG. 10. (left) The left scale corresponds to the monthly percentage of good detections for a set of approaches and configurations: black

lines refer to the classical approach forN5 4, 4.5, 5, and 6 with increasing line thickness; color curves refer to the minimum andmaximum

approach based on different dataset splitting ratios: 70% (red), 80% (pink), and 90% (blue); results are presented as computed for

different ocean layers: (top) 0–200, (top middle) 200–500m, (bottommiddle) 500–1000m, and (bottom) 1000–2000m. For the right scale,

the gray curve shows the Argo overall percent of profiles with real-time quality control. (center) As in the left panels, but for bad

detections. (right) Efficiency diagram for the different approaches in terms of normalized relative variations of good (horizontally) and

bad (vertically) detection statistics for the above-defined ocean layers. Good detection reference values are defined as the classical-

approach time series for N 5 4 filtered with a 5-point rectangular window. Bad detection reference values are defined as the temporal

average of the classical-approach time series for N 5 6. The ellipse semiaxes are scaled with the corresponding standard deviations. The

presented statistics are first computed as the difference from the above-defined reference levels and second are normalized so that the

classical-approach results for N 5 6 and N 5 4 have respective coordinates (0, 0) and (1, 1) in the diagram frame.
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distribution. In the present study, we propose to directly

estimating the validity interval bounds as the local

minimum and maximum values from the historical

dataset, after dedicated manual QC work. This is a

refinement of the statistical description beyond second-

order statistics that allows accounting for spatial vari-

ations of the historical distribution shape, for example,

asymmetry and peak enhancement, see Figs. 5 and 6.

Gouretski (2018) proposed an ad hoc modification of

the classical approach based on robust skewness esti-

mates, which only accounts for third-order corrections

but does not address the case of fourth-order variations

of the distribution shape. The consistency and ro-

bustness of the minimum and maximum parameters is

assessed through different strategies. Using quantile-

based statistics, they are interpreted in terms of robust

skewness and kurtosis; the comparison with sample

skewness and kurtosis demonstrates the consistency

of the minimum and maximum parameters. Further,

Monte Carlo simulations are realized to characterize

the impact of an insufficient number of samples. It is

shown that minimum- and maximum-derived param-

eters are significantly less noisy; the interval width

requires more samples to reduce its bias than other

parameters, but, beyond 300–400 samples, all biases

are highly reduced. Residual biases will potentially

result in erroneous detections by the local range QC

test. This is quantified in the assessment section.

It is demonstrated that, for a similar number of good

detections, the new approach allows an important re-

duction of the number of bad detections. If used as an

alert-raising tool combined with humanQC, the number

of bad detections can be seen as unnecessary use of

human time so that its reduction leads to a significant

saving of human resources. The success is attributed to

the increased accuracy of the minimum and maximum

statistical estimates in accounting for previously ob-

served uncommon events when defining a validity in-

terval. On the one hand, such an increased accuracy

comes from the fact that a specific uncommon event

introduced in the reference dataset will never raise a

detection while, in the classical approach, it might be

detected depending on its occurrence in the reference

dataset and its weight in the estimates of the first- and

second-order statistical moments. On the other hand,

this increased sensitivity to rare events requires an ex-

tensive and specific manual QC step. It is also evident

that, being more selective, the approach may fail more

rapidly in areas where the variability is poorly sampled

in the reference dataset.

Nevertheless, if the method allows significant re-

duction in the number of erroneous detections to be

checked by the operator in delayed-mode QC, this is a

good result. The number of erroneous detections is still

too high for an implementation in a operational near-

real-time system. This is to be related with the spatial

distribution of observations, see Fig. 3, and the number

of grid cells that do not reach a threshold number of

samples (300–500).

It is clear that statistics will improve at updating the

reference dataset with the latest observations; this will

help to improve themethod performance, that is, reduce

the number of detections, progressively with time.

Inside an operational data production system (such as

the Coriolis facility), it will be pertinent that all the

observations with an alert raised by this automated QC

procedure but cancelled by an operator be included

regularly in the reference dataset.

Future work should aim to further improve the

method performance. It will require building some

model of the nonsampled variability in order to arti-

ficially widen the validity interval. Such extrapolation

of the empirical distribution might either be based on

an adequate analytical model of the distribution, or on

an ad hoc prediction from available moments and

quantiles.
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