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Two-dimensional electron gases (2DEGs) can form at the surface of oxides and semiconductors or in
carefully designed quantum wells and interfaces. Depending on the shape of the confining potential, 2DEGs may
experience a finite electric field, which gives rise to relativistic effects such as the Rashba spin-orbit coupling.
Although the amplitude of this electric field can be modulated by an external gate voltage, which in turn tunes
the 2DEG carrier density, sheet resistance and other related properties, this modulation is volatile. Here, we
report the design of a “ferroelectric” 2DEG whose transport properties can be electrostatically switched in a
nonvolatile way. We generate a 2DEG by depositing a thin Al layer onto a SrTiO3 single crystal in which 1% of
Sr is substituted by Ca to make it ferroelectric. Signatures of the ferroelectric phase transition at 25 K are visible
in the Raman response and in the temperature dependences of the carrier density and sheet resistance that shows
a hysteretic dependence on electric field as a consequence of ferroelectricity. We suggest that this behavior may
be extended to other oxide 2DEGs, leading to novel types of ferromagnet-free spintronic architectures.

DOI: 10.1103/PhysRevMaterials.4.041002

I. INTRODUCTION

Strontium titanate SrTiO3 (STO) is possibly the most
widely used perovskite oxide and one of the richest in terms
of functionalities. In its stoichiometric form its dielectric
constant—already very large at room temperature (ε ≈ 300)—
strongly increases upon cooling, reaching values higher than
20 000 [1]. This behavior, referred to as quantum paraelec-
tricity [2], is very rare in condensed matter and signals the
proximity to a ferroelectric state. Indeed, the introduction of a
slight structural disorder through the substitution of just 1%
of Sr by Ca [3], or by replacing 16O by 18O [4] stabilizes
a proper ferroelectric state with a Curie temperature of 25–
50 K. Furthermore, although bulk STO is a wide band-gap
semiconductor, minute n-type doping (by replacing Sr by La,
Ti by Nb, or by introducing oxygen vacancies) induces a
transition to a metallic state [5] with very high electron mo-
bility (>104 cm2/Vs) at low temperature [6,7]. At millikelvin
temperatures, n-type STO even becomes superconducting [8],
qualifying as the most dilute superconductor [9].

For the last 15 years, STO has also served as a platform
to generate oxide two-dimensional electron gases (2DEGs)
through the epitaxial growth of a perovskite such as LaAlO3

(LAO) [10], the deposition of thin reactive metal films (such

*These authors contributed equally to this work.
†manuel.bibes@cnrs-thales.fr

as Al) [11,12] or by fracturing in vacuum [13]. Although
the precise mechanisms remain debated [14], the formation
of this n-type 2DEG often involves oxygen vacancies and is
reminiscent of the ease by which bulk STO can be doped n-
type. Even though bulk STO is thus well established to possess
two instabilities [15]—from a wide band-gap dielectric to an
n-type metal or to a ferroelectric—only the former has been
exploited in the vast literature on STO 2DEGs. Introducing
ferroelectricity in STO 2DEGs would provide a means to
achieve a nonvolatile electric control of its electronic and spin-
orbitronic properties among other possible features. Here, we
take advantage of both instabilities of STO simultaneously to
design a “ferroelectric” 2DEG.

The interplay between ferroelectricity and transport in
oxide 2DEGs has already attracted some attention and het-
erostructures combining LAO/STO with ferroelectrics such
as Pb(ZrxTi1−x )O3 (PZT) have been reported [15–18]. A
large modulation of the 2DEG resistance and the local carrier
density were found [18] and interpreted as due to ferroelectric
field effect causing polarization-dependent band bending and
charge accumulation/depletion [16]. While these results are
notable for applications in oxide electronics, they concern
the use of a 2DEG as a channel in a field-effect transistor
with a ferroelectric gate oxide rather than the engineering of
a new 2DEG ground state. In parallel, recent work reported
metallic and superconducting behavior in slightly doped
STO thin films grown on substrates imposing a compressive
strain of about −1% [19], known to induce a ferroelectric
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FIG. 1. (a) Reflection high-energy electron diffraction (RHEED) pattern acquired on the pre-annealed Ca:STO substrate, revealing its high
crystal quality. (b) X-ray photoelectron spectroscopy (XPS) of the Ti 2p core levels of bare preannealed Ca:STO substrate, showing no presence
of Ti3+. (c) Atomic force microscopy image of an as-grown Al//Ca:STO sample confirms the surface cleanliness. (d) XPS Ti 2p spectra of a
Al//Ca:STO sample, revealing a significant presence of Ti3+ amounting to 32.8% of the total Ti3+ + Ti4+ area.

character [20,21]. These studies are motivated by the intrigu-
ing increase of the superconducting critical temperature [22]
believed to result from the interplay of superconductivity with
ferroelectricity [23]. However, they did not evidence that the
transport properties could be switched by ferroelectricity, and
to date there are no reports of 2DEGs based on ferroelectric
materials.

II. SAMPLE PREPARATION

The as-received (001)-oriented Sr0.99Ca0.01TiO3 (Ca:STO)
substrates (from SurfaceNet GmbH) were initially pre-
annealed for 1 hour at T = 800 ◦C and at an oxygen partial
pressure of P02 = 400 mbar in order to remove organic sur-
face contaminants and possible oxygen vacancies. The crys-
tallinity of Ca:STO substrates surface was then confirmed in
situ by reflection high-energy electron diffraction (RHEED),
see Fig. 1(a). Following this pre-annealing step, the Ti ox-
idation state was quantified by in situ X-ray photoelectron
spectroscopy (XPS) using a Mg Kα source (hν = 1253.6 eV),
showing a pure Ti4+ oxidation state, without the detectable
presence of Ti3+ [see Fig. 1(b)]. This is consistent with an
intrinsically insulating Ca:STO substrate. In the same vac-
uum cycle, we then deposited a 1.8-nm-thick Al film by dc
sputtering. XPS Ti 2p spectra after Al deposition shows the
clear presence of Ti3+ [see Fig. 1(d)] with the area of the

Ti3+ component with respect to the total area for Ti3+ and
Ti4+ amounting to 32.8% (as analyzed with the CASAXPS

software). The magnitude of this ratio is consistent with
the presence of a 2DEG at the Al//Ca:STO heterointerface
possessing a carrier density in the range of 1×1014 cm−2

at room temperature, similar to the Al//STO case [24,25].
Following the final film deposition, the Al//Ca:STO sam-
ple surface was probed with atomic force microscopy and
confirmed to be smooth with clearly detectable ∼4 Å lat-
tice terraces [see Fig. 1(c)]. As a final step, a metal film
of Ti(10 nm)/Au(50 nm) was deposited on the back side
of the Ca:STO substrate, to be used as a back-gate elec-
trode for the electrostatic tuning of the ferroelectric 2DEG
and as a bottom electrode for the polarization measure-
ments.

III. PHYSICAL PROPERTIES

To investigate the ferroelectric properties of Al//Ca:STO
samples, a triangular waveform was applied at a frequency
f = 100 Hz (using a Radiant Multiferroic system) across the
Ca:STO, between the 2DEG and the back electrode, and the
current I was measured in real time. Integrating the current
with time and normalizing by the sample area yields the po-
larization. As seen in Fig. 2(a), the sample shows clear current
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FIG. 2. (a) Measured current (top) and polarization (bottom) loops as a function of the electric field for the Al//Ca:STO sample at 2 K
are consistent with the existence of a ferroelectric state ( f = 100 Hz). (b) Temperature dependence of the remanent polarization PR after
the application of a maximum electric field of ±1.4 kV/cm, showing a critical transition temperature of ∼25 K. (c) Raman spectra of
Al//Ca:STO obtained for temperatures between 10 and 40 K, displaying a clear phonon mode present at a shift of 20 cm−1 at 10 K. (d)
The temperature dependence of the relative intensity of the mode at 20 cm−1 in the Raman spectra confirms a critical transition temperature
of ∼25 K.

peaks in the I(V) curves and corresponding polarization hys-
teresis loops at low temperature (T = 2 K) consistent with the
expected ferroelectric behavior of Ca substituted STO [3]. In
order to obtain the transition temperature for ferroelectricity,
we measured the temperature dependence of the remanent
polarization after applying an electric field of ±1.4 kV/cm
[see Fig. 2(b)]. As visible in Fig. 2(b), the ferroelectric
polarization disappears around a temperature TC = 25−30 K,
consistent with earlier reports [3].

To further substantiate the existence of a ferroelectric state
in our samples, we performed Raman scattering measure-
ments with a 532-nm laser line from a solid-state laser. The
laser spot size was about 100 µm and a small laser power
(<1 mW) was used to keep the laser heating as low as
possible. The spectra were recorded between 10 and 40 K
using a Jobin Yvon T64000 triple spectrometer equipped with
a liquid-nitrogen-cooled CCD detector. We have been able to
detect the Raman signal of Al//Ca:STO at energies as low as
10 cm−1. Figure 2(c) shows the Raman spectra at low energy
between 10 and 75 cm−1 as a function of temperature. Two
phonons modes can be observed at 20 and 55 cm−1. Consis-
tent with previous reports on ferroelectricity in Ca substituted
STO [22], the vibrational mode with a wavenumber of about

20 cm−1 in the Raman spectra corresponds to a ferroelectric
soft mode, which moves towards lower energies upon warm-
ing. The ferroelectric state is characterized by the activation
of this optical phonon mode in the Raman spectrum due to the
loss of inversion symmetry. From the relative peak intensity
[26], we extract once again a transition temperature of ∼25 K
[see Fig. 2(d)].

Low temperature electrical transport measurements were
performed on the Al//Ca:STO samples bonded by Al wires
in the van der Pauw configuration using a standard ac lock-
in technique (Iac = 200 nA, fac = 77.03 Hz) in a Quantum
Design Dynacool cryostat. These measurements were carried
out at a temperature of 2 K with magnetic fields between
−9 and 9 T for the Hall resistance study. Prior to any actual
measurements as a function of the back-gate voltage, the
samples were subjected to a so-called forming step [27] at 2 K
where the back-gate voltage was cycled several times (>2) be-
tween the gate voltage extremes of the particular gate-voltage
interval. This ensures that no irreversible changes different
from the switching of the ferroelectric state in Ca:STO occurs
upon application of the back-gate voltage during the actual
experiment. Note that this low-temperature forming step was
repeated following all occasions the sample was brought
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FIG. 3. (a) Temperature dependence of the sheet resistance Rs of
the Al//Ca:STO sample between 2–40 K (red curve, left y axis) as
well as the sheet resistance derivative with respect to temperature
(blue curve, right y axis). Both curves point towards a transition
temperature around 25 K. The inset shows the Rs(T) between 2–
300 K which is representative of usual 2DEG metallic behavior
(above the ferroelectric Curie temperature). (b) The Hall carrier
density, ns, extracted between 2 and 40 K confirms the presence
of two different electronic regimes with a transition temperature of
∼25 K. The solid lines are guides to the eye.

above 105 K, which corresponds to the ferroelastic transition
temperature of STO. Moreover, at each new cooldown, the
samples were always cooled with the back-gate electrostati-
cally grounded.

The transport measurements in the virgin, ungated state
confirmed the globally metallic behavior of the 2DEG with a
reduction of the sheet resistance Rs from 4000 to 650 �/sq
when cooling from 300 to 2 K, respectively [see inset of
Fig. 3(a)]. On closer inspection, the temperature dependence
of Rs reveals a resistance minimum around 20–40 K [Fig. 3(a)]
not present in usual STO-based 2DEGs [28]. Such a kink
in the Rs versus T was interpreted as a fingerprint of the
emergence of ferroelectricity in n-type bulk Ca:STO [22]
and n-type strained STO thin films [29]. The derivative of
the sheet resistance with respect to the temperature reveals
a transition temperature around 25 K. By extracting the Hall
carrier density as a function of temperature, this transition is
likewise found to separate the carrier density evolution into
two different regimes with correspondingly different slopes
as a function of temperature [see Fig. 3(b)].

A key aspect of STO-based 2DEGs is the strong elec-
tric field tunability with the voltage from, e.g., a back-gate

[30]. Remarkably, upon subjecting our samples to the electric
field from a back-gate at T = 2 K, we observe a very clear
modulation of the sheet resistance with a visible hysteresis
[see Fig. 4(b)] as the electric field is cycled between differ-
ent maximal values that mimics the hysteretic dependence
of polarization with electric field [Fig. 4(a)]. After apply-
ing E ±1.4 kV/cm, maximal values for the remanent sheet
resistance and remanent polarization are �Rs = 72 �/sq
and 2Pr = 0.85 μC/cm2, respectively. Hall measurements at
electrical remanence after applying ±1.4 kV/cm reveal a
relative carrier density modulation �ns = 5.68×1012 cm−2,
which is more than 50% of the value expected from the
field effect when considering the remanent polarization of
the Ca:STO (2Pr/e = 1.075×1013 cm−2). The corresponding
efficiency is among the highest reported in the literature
[31–33].

It is tempting to refer to our 2DEG as a pristine ferro-
electric 2DEG, as the 2DEG is formed within a ferroelectric
material, Ca:STO, and because its transport properties show
clear signatures of ferroelectricity (kink at TC in the R versus
T data, hysteresis in the sheet resistance, etc.). Yet, our data
cannot unambiguously prove that the switchable polar state
of stoichiometric Ca:STO survives in the 2DEG region where
oxygen vacancies are present. We note however that an actual
ferroelectric state has been suggested to coexist with metallic-
ity in related compounds such as BaTiO3-δ (from experiments
[34,35] and theory [36]) and in bulk Sr0.991Ca0.009TiO3-δ [37].
In particular in BaTiO3-δ , theory indicates that ferroelectric
displacements are sustained up to the critical concentration of
0.11 electron per unit cell [36]. Assuming a 2DEG thickness
of four unit cells [12] our Hall data correspond to a carrier
density of 0.04 electron per unit cell, below this critical value.
It is thus possible that our Ca:STO based 2DEG corresponds
to the first realization of a “ferroelectric” metal, as proposed
by Anderson and Blount in 1965 [38], and more recently
for other systems [39–43], that is a material that exhibits
cooperative polar displacements—which would produce a
polarization in an insulator—and is at the same time metallic.
Additional experiments using local probes of the polar dis-
placements in the 2DEG region are required to confirm this
possibility.

In summary, we have demonstrated the realization of a
2DEG based on ferroelectric Ca:STO, with gate-tunable trans-
port properties and different resistance states at remanence.
Our results bring a new degree of freedom to functionalize
further STO 2DEGs and control the spin-charge intercon-
version properties [12,44] and the superconducting response
[22,45] by ferroelectricity [46]. Future studies may aim at
calculating and characterizing the electronic structure of such
ferroelectric 2DEGs, explore the role of Ca substitution on
the 2DEG properties, and possibly seek for room-temperature
ferroelectricity, e.g., using strain [20,47].
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FIG. 4. (a) Polarization loops at 2 K measured in the ferroelectric state for different increasing maximum values of the back-gate voltage
Vg. The curves are shifted by 1.25 µC/cm² for clarity. (b) Electric field dependence of Rs for different maximum values of Vg at 2 K. The curves
are shifted by 150 �/sq for clarity.
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