
HAL Id: hal-02915643
https://cnrs.hal.science/hal-02915643v1

Submitted on 14 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Evaluation Against Side-Channel Analysis at
Compilation Time

Nicolas Bruneau, Charles Christen, Jean-Luc Danger, Adrien Facon, Sylvain
Guilley

To cite this version:
Nicolas Bruneau, Charles Christen, Jean-Luc Danger, Adrien Facon, Sylvain Guilley. Security Evalu-
ation Against Side-Channel Analysis at Compilation Time. Springer. Algebra, Codes and Cryptology
(A2C), pp.129-148, 2019, �10.1007/978-3-030-36237-9_8�. �hal-02915643�

https://cnrs.hal.science/hal-02915643v1
https://hal.archives-ouvertes.fr

Security evaluation against side-channel analysis
at compilation time

Nicolas Bruneau1,2,?, Charles Christen3, Jean-Luc Danger4,1,
Adrien Facon1,5, and Sylvain Guilley1,4,5

1 Secure-IC S.A.S, Cesson-Sévigné, 35510, France
2 STMicroelectronics, Rousset, 13790, France

3 Direction Générale de l’Armement, Bruz, 35170, France
4 Télécom-Paris, Institut Polytechnique de Paris, 91400 Saclay, France

5 Département d’informatique de l’ENS, CNRS, PSL University, 75005 Paris, France

Abstract. Masking countermeasure is implemented to thwart side-chan-
nel attacks. The maturity of high-order masking schemes has reached the
level where the concepts are sound and proven. For instance, Rivain and
Prouff proposed a full-fledged AES at CHES 2010. Some non-trivial fixes
regarding refresh functions were needed though. Now, industry is adopt-
ing such solutions, and for the sake of both quality and certification re-
quirements, masked cryptographic code shall be checked for correctness
using the same model as that of the the theoretical protection rationale
(for instance the probing leakage model).
Seminal work has been initiated by Barthe et al. at EUROCRYPT 2015
for automated verification at higher orders on concrete implementations.
In this paper, we build on this work to actually perform verification from
within a compiler, so as to enable timely feedback to the developer. Pre-
cisely, our methodology enables to provide the actual security order of
the code at the intermediate representation (IR) level, thereby identifying
possible flaws (owing either to source code errors or to compiler optimiza-
tions). Second, our methodology allows for an exploitability analysis of
the analysed IR code. In this respect, we formally handle all the sym-
bolic expressions in the static single assignment (SSA) representation to
build the optimal distinguisher function. This enables to evaluate the
most powerful attack, which is not only function of the masking order d,
but also on the number of leaking samples and of the expressions (e.g.,
linear vs non-linear leakages).
This scheme allows to evaluate the correctness of a masked cryptographic
code, and also its actual security in terms of number of traces in a given
deployment context.

Key words: Cryptographic code, compilation, intermediate representa-
tion (IR), static single assignment (SSA), side-channel analysis, masking
protection, compositional countermeasure, formal analysis, optimal side-
channel attacks, Taylor expansion of distinguishers.
? Work done while at Secure-IC S.A.S.

2 N. Bruneau, Ch. Christen, J.-L. Danger, A. Facon and S. Guilley

1 Introduction

Context. With the massive deployment of Internet of Things (IoT), many
devices are placed in-the-field which handle sensitive information. Typi-
cally, they must authenticate themselves, hence protect the integrity of
public keys, and they handle private information, hence must ensure the
confidentiality of secret encryption keys. The IoT devices are programmed
in software, and their cryptographic stack deserves special attention.

The industry has put forward methodologies to ensure the protection
of keys. A survey on this topic is freely available as a Technical Report from
the ETSI [21]. For instance, cryptographic keys derivation, storage, and
usage are confined in so called Trusted Execution Environments (TEEs).
It is customary to study the security of digital assets according to their
usage: data at rest, in transit, and in computation. The TEE takes care
of keys at rest; cryptographic mechanisms, such as key establishment and
key wrapping, allow to protect keys in transit; the hard problem is that
of protecting keys in computation.

Indeed, software cryptographic code is vulnerable to side-channel at-
tacks. They come in two flavors: first those which exploit conditional
control-flow and/or table lookups (such as substitution boxes, or sboxes
S), which fall into the class of so-called cache-timing attacks. Software
techniques exist to make control-flow and table lookups uniform. In such
situation, implementations are still vulnerable to a second kind of side-
channel, which consists in physical spying of manipulated values, thanks
to power or electromagnetic analysis.

State-of-the-art. Several approaches have been put forward. One of them
consists in the use of whitebox cryptography (WBC). The idea is that
even if an attacker has access to the code (including keys) in source code,
there is no way for her to extract the key. The technique is based on data
obfuscation in the code. WBC implementations aim an linearizing the con-
trol flow and hiding data into obscure (random-looking) tables. However,
WBC has little (practical) theoretical foundation, and without surprise,
several structural attacks have been demonstrated [10]. Other approaches
revolve around “signal-to-noise” minimization. One approach is to cancel
the signal leakage, through balancing. This suits leakage in the control-
flow: typically, algorithms such as AES have a data-independent control
flow, therefore this kind of leakage is easy to plug perfectly. Now, so-called
vertical leakage (that is, leakage of values, cf. ISO/IEC 20085-1 [23]) is
harder to cancel. Balancing approaches are possible [26], albeit result in
unpredictable security level and complex coding style. Another approach

Security evaluation against side-channel analysis at compilation time 3

is the “masking” countermeasure, which aims at introducing some noise
in the implementation. It consists in randomly sharing sensitive variables
so that a side-channel attacker collect many meaningless leakages, since
information is dissolved into several shares (conventionally, the number
of shares is denoted by d). Therefore, such protections consume a lot of
randomness (which must be uniform, independent, etc.). Today, many
masking protections are constructively designed to be dth-order secure.
The parameter d > 0 is a design security metric whereby each tuple of
strictly less than d shares is independent from the clear sensitive variables.

For masking schemes such as Ishai-Sahai-Wagner (CRYPTO 2003 [22])
or Rivain-Prouff (CHES 2010 [27]) the security proof is based on compos-
ability: it is possible to design widgets for basic operations (e.g., field
addition and multiplication) which form a universal set. Subsequently,
combining them allows to build arbitrary computations. Reuse of vari-
ables shall be dealt with cautiously. In practice, reused variables usually
benefit from refresh. This kind of masking is mature from a theoretical
standpoint, and therefore is diffusing in the industry.

The problem is therefore to attest of the actual security, not of the
principle of masking, but on the very implementation under consideration.
There is one field of research which consists in checking a complete imple-
mentation (Barthe et al., EUROCRYPT 2015 [2]—known as MaskVerif).
Since the combinatorics of verification is large, the proof employs heuris-
tics taylored for the masking scheme.

Now, in practice, the attacker must perform a dth-order attack. But
the attacker will maximize her advantage, and so she is not expected to
be satisfied by one combination of d shares. Here we face a paradox: the
larger the order d, the more possible combinations, hence it is relevant to
study whether in practice, the security level in terms of data complexity
(number of traces to recover the key) is still increasing with parameter d.

In this paper, we show how to compute optimal attacks, with tradeoffs
regarding data and computational complexities (as in Bruneau et al., J. of
Cryptology 2018 [16]). We aim at analyzing real-world implementations,
irrespective of the source code language they are written in. Moreover, we
want to consider optimized code. For this reason, we analyze the interme-
diate representation generated by a compiler, and generate the formula
for the multivariate high-order distinguisher after having simplified the
leaking terms.

Results show that monovariate high-order attacks are underestimating
the security level by orders of magnitude, especially for high noise levels.

4 N. Bruneau, Ch. Christen, J.-L. Danger, A. Facon and S. Guilley

Contributions. The contributions in this paper are as follows:

– Application of dth-order masking correctness verification on an imple-
mentation extracted from within a compiler (at the IR level, after all
optimization passes);

– Use of automated proof tools paradigm to generate optimal distin-
guishers for side-channel attacks;

– Trade-off regarding attack computation and attack efficiency, based
on a truncated Taylor expansion of the side-channel distinguisher;

– Cautionary note that increasing d1 does not increase exponentially the
number of traces to recover the key.

Outline. The rest of this paper is structured as follows. An introduction
on masking schemes and their need for formal verification has already be
given in the present Sec. 1. Next the state-of-the-art automation method
for the verification of a full-fledged implementations is recalled in Sec. 2.
This methodology and its coding is leveraged to build automatically op-
timal distinguishers to attack at best the implementation. This allows to
derive the most realistic security level (as in practice, the attacker will face
more harsh attacking conditions, such as a degraded leakage model). This
is the topic of Sec. 3, where we also highlight compromise between data
and computational efficiency. Eventually, conclusion and perspectives are
provided in Sec. 4.

2 Reminder about automated proof of masking schemes

2.1 Multi-variate and high-order side-channel attacks

State-of-the-art attacks against masked software consist in manual con-
struction of leakage models. For instance, evaluation is done in [1, §5.2] on
a first-order masking scheme, by using an absolute difference between two
samples of the leakage. In [7], a combination is used albeit with unchosen
coefficients, since those are coefficients from discrete Fourier or Hartley
transforms. In [13], the dimensionality is reduced by an additive combi-
nation of samples, weighted by a profile obtained in a characterization
phase.

It shall be noticed that software execution of software implementing
masking countermeasure might leak a variable multiple times. Typically,
1 In this paper, we use the same letter d for the number of shares necessary to recover
information on sensitive variables (designer’s perspective) and the smallest attack
order (evaluator’s perspective). Actually, those values match in practice, assuming
that the implementation is not flawed.

Security evaluation against side-channel analysis at compilation time 5

the variable can be popped from the stack, then processed, and finally
pushed back to the stack. It can also be copied at different places for
different usages. Additionally, masking schemes themselves might involve
multiple random variables. Typically, table recomputation countermea-
sure needs to address all entries of a lookup table, and process them with
the same mask. Therefore, many samples in time leak the mask, and it is
possible to combine them all in order to build the most efficient attack.

A methodology to build an attack of masked and shuffled table recom-
putation countermeasure is described in [16]. The method is empirical,
because the optimal distinguisher, described in [14], is computationally
too complex. The reason is that the optimal distinguisher shall be aver-
aged over all masks m (if the countermeasure is of order d, m consists
in a tuple of (d − 1) independent random variables). An approach is to
develop the expression of the optimal distinguisher using a Taylor expan-
sion, as described in [15]. This systematic approach allows for automation
of attacks, by enabling a trade-off between accuracy of the distinguisher
(Taylor expansion at high order) and computational complexity (Taylor
expansion at low order). Namely, the mathematical formula for optimal
attacks is explained below:

– Optimal attack consists in guess the key k̂ according to maximum
likelihood approach [14]:

k̂ = argmax
k

Q∑
q=1

log
∑
m

exp− 1

2σ2
(
xq − f(tq, k,m)

)2
, (1)

where:
• q is the traces index,
• tq are the known texts, e.g., plaintexts,
• m are the masks (whose distribution does not depend on q),
• f is the leakage model, e.g.,

f(tq, k,m) = wH(S(tq ⊕ k)⊕m) (2)

here assumed, but obtained by profiling in real attacks,
• xq are the leakages xq = f(tq, k

∗,m)+nq, k∗ being the correct key,
• σ2 is the (centered) noise variance (nq is a sample of this noise,

that is pN (nq) = 1√
2πσ2

exp− n2
q

2σ2).
– For attack simplification, the following Taylor expansion:

logE exp(tX) =
∞∑
n=1

κn
tn

n!
(3)

6 N. Bruneau, Ch. Christen, J.-L. Danger, A. Facon and S. Guilley

is leveraged

• for an expectation E over X, and
• where κn is the cumulant of order n of random variable X,

starting at order n = d and stopping strictly before ∞ for tractability
reasons2.

In this article, we combine all the relevant tuples which leak informa-
tion, up to a predetermined order chosen by the attacker. If this order is
less than the protection order, then (provided the masking is perfect [11]),
our algorithm finds no terms. This is consistent with the targeted security
order: no attack shall be feasible hence the distinguisher is constant for
all key hypotheses; the “argmax” in Eqn. 1 returns the full keyspace. Such
result attests of countermeasure “correctness”, meaning the formal verifi-
cation that the countermeasure is “correctly” implemented (i.e., without
flaws). But if we specify an order greater than that of the countermea-
sure, then our algorithm lists all the leaking terms, one shall consider to
achieve the optimal attack rounded at a given order, as explicited theoret-
ically in [15]. Besides, we assume that the code is constant-time (control
flow does not depend on the data), hence traces are well aligned and can
readily be used for performing a vertical high-order attack.

2.2 Analysis of code at Intermediate Representation

Applying countermeasures at the LLVM Intermediate Representation (IR)
level, as produced by clang/LLVM’s middle-end, has already been hinted
in [6,5]. But this approach has limitations, as shown in [20], because [5]
actually assumes as “masked data” any intermediate variable which even
depends in a non-uniform way of masking material.

Like in “Side-Channel Robustness Analysis of Masked Assembly Codes
using a Symbolic Approach” (PROOFS 2017, JCEN 2019 [8]), the control-
flow of the program to analyse must be statically known; in particular,
there must be no indirect jump and the number of loop iterations must
be known at compile time. Fortunately, cryptographic algorithms usually
fulfill this requirement, as well as their algorithms implementation. Indeed,
otherwise, there is the possibility of a cache-timing attack (see for instance
review in [17]).

2 At infinite order, the expansion of Eqn. (3) is not considered, rather the original
expression of Eqn. (1) is used.

Security evaluation against side-channel analysis at compilation time 7

2.3 Probing leakage model

In order to capture security correctness, the “probing leakage model”
(stemming from initial work by Blömer et al. [11]) has been put forward.
A design is dth-order secure if any tuple of strictly less than d intermedi-
ate variables carries no information on sensitive variables. Gilles Barthe
and coauthors have been automating the verification of such property,
recognized as that of “non-interference”. It uses simplification heuristics,
for instance to show that M ⊕ E, where M is a randomly distributed
mask and E an expression which does not depend on M , is simply dis-
tributed as another uniformly distributed random mask M ′. M ′ cannot
be distinguished from M , hence sensitive expression E is not exposed. It
is able to attest of the soundness of a masking scheme, or to find explicit
counter-examples. On top of these interesting results, we also provide the
design of the best possible attack (namely the optimal attack).

3 Contribution: automated attack construction

3.1 Framework concept

The analyses we conduct on the cryptographic code are sketched in Fig. 1.
The nominal compilation flow is represented in the leftmost column of the
figure (on the running example of LLVM). The rest of the figure represents
the security analysis. The column in the middle represents the symbolic
analyses, based on expressions for each SSA. The rightmost column repre-
sents the concrete analysis, whereby variables are assigned values, as per
a series of (say ≈ 100) attack simulations.

The compilation is conducted in a nominal way until intermediate rep-
resentation is reached. Here, we also let optimization passes be executed.
The outcome is a list of static single assignments (SSA). Altogether, these
expressions are the inputs of our analysis.

(a) They are turned into symbolic expressions, named terms. They play
the role of “intermediate variables” in side-channel papers such as [11].
(a)-(1) Algorithm of MaskVerif is applied. The size d of the tuples is

incremented (starting from d = 1) until we find a dependency into
at least one tuple of expressions.
∗ If this size is strictly inferior to the intended masking order,

then a flaw has been found. Recall that as the analysis is at op-
timized IR level, the flaw can be structural (i.e., already present
in the source code, as happened in the past for some counter-
measures such as [29,18]) or caused by an optimization pass

8 N. Bruneau, Ch. Christen, J.-L. Danger, A. Facon and S. Guilley

.IR

.ASM

Build dth-order
distinguisher,
truncated at
given order

Extract symbolic
expressions for each

SSA statement

of traces for
Extract number

success rate to
be ≥ 80%

refi
n
em

en
t
fl
ow

.C

.IR

CLANG

Optim-

Assembly
(2) Exploitability analysis

d = 1

Search for d-th
order flaws

Yes

No

(1) Vulnerability analysis

-izations

Generate traces
with prescribed

noise level (std: σ)

Repeat ≈ 100
key recovery

attacks

(b) Concrete realm(a) Symbolic realm

d
←

d
+
1

∃ flaw

Fig. 1: Big picture of the two pipelined analyses conducted in the opti-
mized intermediate representation code

Security evaluation against side-channel analysis at compilation time 9

which either removes some randomness or swaps operations
(resulting in countermeasure break, see [28]).
∗ Otherwise there is no flaw (result obtained by formal proof)

and the masking order is exactly verified on the optimized IR
representation. This however only indicates the absence of vul-
nerability from a design-for-security perspective. This means
that the design matches its security specification.

(a)-(2) The optimal distinguisher at order d (see generic formula in (1))
is derived. Its expression is rounded at a given order and simplified,
for evaluation efficiency.

(b) Concrete security shall be attested by actual exploitation of the leak-
ing terms. This complementary step is mandatory to have a concrete
idea about the attacker effort to extract the key. Differences might
show up owing to the multiplicity of leakages, the confusion in the
terms (linear terms induce leakages harder to exploit, compared to
sboxes), the variety of terms, etc. This is achieved based on simulated
traces, computed by a leakage model (typically the classical Hamming
weight model, cf. Eqn. (2)), and assuming a certain level of additive
noise (i.i.d. for each expression and normally distributed as N (0, σ2)).
The optimal distinguisher from step (a)-(2) is evaluated under q traces,
and the indicator of attack success (k̂ ?

= k∗) is computed. This process
is reproduced ≈ 100 times, and averaged indicator yield the success
rate. This curve is (globally–after smoothing) increasing. The number
of traces for which success rate is equal to 80% is returned.

3.2 Framework implementation

Analysis parameters. The parameters of our analysis are:

– the order d of the masking in the input C files; they are immune to side-
channel flaws if this order is equal to the one found in the vulnerability
analysis (1) of Fig. 1.

– the optimal attack distinguisher Taylor expansion order (≥ d if no
flaw). In practice, an expansion at minimum degree (sufficient to dis-
tinguish) performs good results in terms of attack distinguishing power
(meaning that the optimal attack extracts keys with similar number
of traces). Higher degrees can sometimes help or sometimes not—this
is difficult to estimate, and up to today, the exact degree where to cut
the distinguisher off is considered an open problem.

– the leakage function associated with each share (i.e., each expression
in the SSA extracted upon compilation), and

10 N. Bruneau, Ch. Christen, J.-L. Danger, A. Facon and S. Guilley

– the simulated measurement noise added to the leakage of each share
(since masking works only as a countermeasure in the presence of some
noise, hence evaluation must take place in this condition).

Source code to analyze. From a syntactic point of view, arbitrary
source code can be inputted, since only optimized IR is analyzed. The
countermeasures shall be applied at source-code level. Some constraints
can nonetheless be enforced, such as __attribute__((optnone)) in List-
ing 1.1 of Sec. A.1. The tool must nonetheless be informed about the name
of the top-most function to analyze and the mask names. In the exemplar
Listing 1.1, those are respectively “sbox” and “r” (short for random) at
line 111.

Analysis toolset. The tools used in the analysis are described here-after:

(a) symbolic expressions are generated by an LLVM plugin called SAW,
contributed by Galois Inc. on GitHub.
(a)-(1) The expressions happen to be huge: they are simplified using

SAGE. Then, the are parsed and loaded into Julia. A script into
Julia performs the Non-Interference analysis for each tuple of d
expressions, exactly as explained in MaskVerif [2].

(a)-(2) The optimal distinguisher is computed (and simplified to the
best extend, for instance by regrouping identical leakages).

(b) It is then applied on these traces. In practice, since the attack is
computationally intensive, it is first translated in C language which
is compiled with maximum amount of optimizations. Further, this C
code itself contains many precomputations before the attack proper is
launched.

3.3 Why check at the IR level?

The choice of the validation level (refer to vertical axis in Fig. 1) results
from a compromise:

– it shall be as low as possible, for the validation to be as close as possible
to the final product (notice that we do not expect to go as down as
the concrete evaluation, since this will be the task of a third-party
certification laboratory), while

– it shall be possible to conduct a formal analysis, so as to prove the
security order (or to formally detect flaws) and to devise the best
possible attack.

https://github.com/GaloisInc/saw-script
http://www.sagemath.org/
https://julialang.org/

Security evaluation against side-channel analysis at compilation time 11

From this tradeoff, we position the analysis after the optimization passes,
hence we analyze the IR code which is the closest to the actual assembly
(i.e., machine code) which will be executed. This means that we detect all
faults potentially caused by the compiler3, which could break the coun-
termeasure.

Moreover, from a practical point of view, the method consisting in out-
putting proof elements from the compiler allows to streamline the evalua-
tion: the user codes the countermeasure in the language of its own choice,
and then an automated verdict is provided4.

3.4 Application

Codes applying a masking strategy as that put forward in [11] can be an-
alyzed. A classical example is the Ishai-Sahai-Wagner computations [22],
extending protection of bits (elements of F2) to words (elements of F2l) [27].
A concrete code which can be analysed is listed in Appendix A.1.

In this article, we take as a running example the operations in a Galois
field of characteristic two. Those are suitable for the computation of block
ciphers, such as AES and even PRESENT [12]. AES fits naturally in F28

whereas PRESENT is nibble-oriented, hence can be represented in F24 .
In both AES and PRESENT, the only complex part regarding masking
is the sbox, because it is non-linear. The expression of the PRESENT
sbox (see table at page 453 of [12]) is obtained from Lagrange polynomial
interpolation. We use MAGMA [31] to compute the extrapolation in F16

represented as F2[x]/〈x4+x+1〉. The element of this field (F16,+, ·) are
denoted according to the convention below:

– [0, 1, 2, 3, 4, . . . , 15] . (decimal)
– [0x0, 0x1, 0x2, 0x3, 0x4, . . . , 0xf] . (hexadecimal)
– [0, 1, x, x+ 1, x2, . . . , x3 + x2 + x+ 1] (polynomial)

We get for the sbox of PRESENT the expression:

sbox(A) = 0xc+ 0x7 ·A2 + 0x7 ·A3 + 0xe ·A4 + 0xa ·A5 + 0xc ·A6

+ 0x4 ·A7 + 0x7 ·A8 + 0x9 ·A9 + 0x9 ·A10 + 0xe ·A11

+ 0xc ·A12 + 0xd ·A13 + 0xd ·A14,

3 The LLVM IR is lowered to machine instructions, and some optimizations can still be
performed on this representation. In particular, some memory accesses can be gath-
ered, some peephole optimizations may remove some useless computations, selection
of some instructions may disrupt the intended control flow, instruction scheduling
may reorder computations and register allocation can introduce flaws.

4 This is the way all Secure-IC pre-silicon tools, namely VirtualyzrR© and CatalyzrR©,
work.

12 N. Bruneau, Ch. Christen, J.-L. Danger, A. Facon and S. Guilley

which is efficiently computed using Horner’s method:

sbox(A) = 0xc+A2 · (0x7+A · (0xe+A · (0xa+A · (0xc+A · (\
0x4+A · (0x7+A · (0x9+A · (0x9+A · (0xe+A · (\
0xc+A · (0xd+A · (0xd+A)))))))))))).

This expression is implemented in C language in function sbox in the
Listing 1.1 of Appendix A.1. The attacked function is actually the com-
position of AddRoundKey and sBoxLayer, namely A 7→ sbox(A ⊕ k∗), as
done customarily in side-channel analysis.

Also, for the sake of tractability, we provide examples on masking of
order d = 1. Indeed, our framework (described in previous Sec. 3.1) is,
as of today, limited in the “concrete realm” of Fig. 1. The attack part is
slow, though it has been translated from Julia to C for more efficiency.
We leave the case d > 1 as a venue for further work, and as we shall see,
results for d = 1 are already very rich.

One shall beware of the way the multiplication is performed, indeed,
it is known that lookup-table based multiplications in characteristic two
Galois fields do leak information [19]. In our implementation, the multi-
plication is constant-time (see function mult at line 19 of Listing 1.1).

Using the tool, we prove the correctness of code in Listing 1.1 of
Appendix A.1. Notice that slight changes, such as asserting macro at
line 50, would have the tool detect a first-order flaw. On the same code,
we compare the traditional second-order (bi-variate) attack with our at-
tack (multi-variate analysis, denoted MVA, extracted from the compiler).
For these attacks, we use a Taylor expansion at order 2. The results for
a few selected noise levels (in terms of noise standard deviation σ) are
represented in Fig. 2. It clearly appears that the optimal attack, even
though rounded at order 2 (i.e., the first order at which there is a leak-
age, since the implementation is first-order secure), is significantly more
efficient than the customary 2O-CPA.

The multivariate attack is performing better and better relative to the
classical bi-variate attack as the noise level increases. This was already re-
marked in some papers, such as those analysing substitution table masking
with recomputation [30,16]5.

5 Battistello et al. [4] also notice that great multiplicity helps attacks, albeit in the
different context of low-noise implementations (e.g., software running on top of a
CPU). Anyway, such results highlight well that high dimensionality significantly
favors the attackers, and that this aspect is often overlooked when simply analysing
the security of a masking scheme only in terms of its degree (i.e., number of shares).

Security evaluation against side-channel analysis at compilation time 13

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2500 5000 7500 10000

Su
cc

es
s

ra
te

Number of traces

2O-CPA
MVA2

(a) σ = 3.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2500 5000 7500 10000

Su
cc

es
s

ra
te

Number of traces

2O-CPA
MVA2

(b) σ = 4.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5000 10000 15000 20000

Su
cc

es
s

ra
te

Number of traces

2O-CPA
MVA2

(c) σ = 9.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10000 20000 30000

Su
cc

es
s

ra
te

Number of traces

2O-CPA
MVA2

(d) σ = 10.

Fig. 2: Comparison of success rate for classical bi-variate attack and our
multi-variate attack

The speed of the attack can be summarized as the number of traces to
reach 80% of success rate. We represent the number of traces to reach 80%
of success rate for bivariate and multivariate attacks. It can be seen that
the number of traces is indeed increasing exponentially, although not at
the same rate. We represent in Fig. 3 the number of traces to recover the
key (with success probability of 80%) between the classical bi-variate at-
tack and our optimal distinguisher (termed “multivariate attack”). Again,
we see that the difference increases with the noise level (quantified by the
noise standard deviation σ). Moreover, we see here that this difference
increases faster than linearly with σ. Therefore, we really insist that the
security of a masking scheme cannot only be considered by considering
the number of shares, but also the dimensionality of the leakages.

We clearly see that our method allows to build really powerful attacks
(compared with naïve state-of-the-art attack for which dimensionality =
order). The combination of multiple leaking points makes the computa-
tion of the attack non-trivial, but the result is that, with equal amount

14 N. Bruneau, Ch. Christen, J.-L. Danger, A. Facon and S. Guilley

0

20000

40000

60000

80000

100000

120000

140000

160000

0 5 10 15 20 25 30 35 40 45 50 55 60

N
um

be
r

of
tr

ac
es

Variance of the noise (σ2)

2O-CPA
MVA2

Fig. 3: Comparison between the number of traces to recover the key (with
success probability of 80%) between the classical bi-variate attack and our
multivariate attack (MVA2, meaning that it is rounded at degree 2)

Security evaluation against side-channel analysis at compilation time 15

of traces, the multivariate attack (and actually not the best one, sim-
ply an approximation with a Taylor expansion) surpasses the schoolbook
attack by orders of magnitudes. However, we underline that the goal of
our study is not to design stronger attacks. Actually, we aim at providing
after compilation the clearest possible image of the real security-level of
the produced code. Therefore, the intent is to help the developer decide
whether his implementation is secure enough vis-à-vis a security objective.
In this respect, we had to devise a setup in which the strongest possible
concrete attack is deployed.

The method of Taylor expansion is akin the soft analytical side-channel
analysis. Actually, in the case of low-noise, such method is realistic, whereas
our method is not. The table 1 compares the state-of-art-art approaches in
terms of attack depending on the noise level σ (for a normalized leakage).

Table 1: Optimal attack methods in highly multivariate contexts

No noise Low noise High noise
Soft analytical [32] SAT- or Pseudo-Boolean-solvers [25] Taylor expansion [15]

The impact of the Taylor expansion order is negligible in our case-
study, as illustrated in Fig. 4, which compares MVA rounded at order
2nd and 3rd. The difference is very limited, and in practice, the MVA2

actually performs a little better than the MVA3. Therefore, in order to
save computation time, we recommend to apply the software verification
scheme (Fig. 1) only at minimum order. The exact number of terms (which
quantifies the complexity of the attack) is:

– MVA2: 595 terms,
– MVA3: 49011 terms.

In addition, the MVA3 attack is more complex to perform, since the terms
depend on σ, hence for the two values of noise in Fig. 4, two different
distinguisher values shall be computed.

3.5 Limitations

Our tool checks the IR hence is unaware of registers and memory alloca-
tion. In particular, low-order leakage might arise owing to resources reuse,
which, obviously, our tool cannot predict.

16 N. Bruneau, Ch. Christen, J.-L. Danger, A. Facon and S. Guilley

Besides, our method, like former methods [2,3], remains tailored for
perfect sharings [11], but not custom maskings, e.g., first order mask-
ing schemes where masks are reused or so-called low-entropy masking
schemes, e.g., masking schemes where the masks are not uniformly dis-
tributed [9,24]. For instance, the code segment in Appendix A.2 is per-
fectly masked at order one but cannot be analyzed by our method (which
uses same heuristics as [2]).

4 Conclusion and perspectives

In this article, we tackled the issue of analyzing the security level of a soft-
ware cryptographic code, during its compilation. For the analysis to be
complete, we leverage both a vulnerability analysis (already put forward
by Barthe et al. at EUROCRYPT 2015) and an exploitability analysis
(based on a simulation of the optimal attack, computed within the com-
piler and tailored for the inputted code).

The first phase (vulnerability analysis) allows to verify that there is no
flaw in the source code down to the optimized IR code. The second phase
(exploitability analysis) investigates in which respect the implementation
is robust in a given context (characterized by a noise level).

The two phases provide a clear view of the suitability of the compiled
code for its execution in an operational environment.

As a byproduct of this work, we show that it is possible to automate
crafted distinguishers which perform significantly better than simple the-
oretical attacks (e.g., d-valued d-th order CPA). The improvement re-
sults from the signal-to-noise increase by aggregating multiple high-order
univariate analyses. The resulting multivariate high-order attacks can be
extremely efficient. The reason is that there is an exponential way to com-
bine leakages, and that this exponential advantage is comparable to the
exponential complexity increase of the sharing order. We show concrete
examples where security metrics (number of shares d) do not trivially
reflect the practical security level in terms of attacks.

As a perspective, we intend to optimize the attacks (third column of
Fig. 1). Indeed, using parallelism (vectorization) and precomputations,
those could be drastically speeded-up. Moreover, we also intend to study
the vulnerability and exploitability of attacks not only at the IR level, but
also directly on assembly code. Eventually, it could be beneficial to extend
the methodology (today geared from Barthe et al. method) to masking
schemes which are not full-entropy or that reuse masks.

Security evaluation against side-channel analysis at compilation time 17

Acknowledgments

This work has been partly financed via TeamPlay, a project from Euro-
pean Union’s Horizon20202 research and innovation program, under grand
agreement N◦ 779882 (https://teamplay-h2020.eu/).

References

1. Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede. DPA,
Bitslicing and Masking at 1 GHz. In Tim Güneysu and Helena Handschuh, editors,
Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, volume 9293
of Lecture Notes in Computer Science, pages 599–619. Springer, 2015.

2. Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-Order Masking. In Elis-
abeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I,
volume 9056 of Lecture Notes in Computer Science, pages 457–485. Springer, 2015.

3. Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-
Xavier Standaert, and Pierre-Yves Strub. Parallel Implementations of Masking
Schemes and the Bounded Moment Leakage Model. In Advances in Cryptology -
EUROCRYPT 2017, Paris, France, April 30 - May 4, 2017, Proceedings, Part I,
pages 535–566, 2017.

4. Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun.
Horizontal Side-Channel Attacks and Countermeasures on the ISW Masking
Scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic
Hardware and Embedded Systems - CHES 2016 - 18th International Conference,
Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science, pages 23–39. Springer, 2016.

5. Ali Galip Bayrak, Francesco Regazzoni, David Novo, Philip Brisk, François-Xavier
Standaert, and Paolo Ienne. Automatic Application of Power Analysis Counter-
measures. IEEE Trans. Computers, 64(2):329–341, 2015.

6. Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. Sleuth:
Automated Verification of Software Power Analysis Countermeasures. In Guido
Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2013 - 15th International Workshop, Santa Barbara, CA,
USA, August 20-23, 2013. Proceedings, volume 8086 of Lecture Notes in Computer
Science, pages 293–310. Springer, 2013.

7. Pierre Belgarric, Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger, Nicolas De-
bande, Sylvain Guilley, Annelie Heuser, Zakaria Najm, and Olivier Rioul. Time-
Frequency Analysis for Second-Order Attacks. In Aurélien Francillon and Pankaj
Rohatgi, editors, CARDIS, volume 8419 of LNCS, pages 108–122. Springer, 2013.

8. Inès Ben El Ouahma, Quentin Meunier, Karine Heydemann, and Emmanuelle
Encrenaz. Side-Channel Robustness Analysis of Masked Assembly Codes using a
Symbolic Approach. Journal of Cryptographic Engineering, pages 1–12, March 16
2019. DOI: 10.1007/s13389-019-00205-7.

https://teamplay-h2020.eu/

18 N. Bruneau, Ch. Christen, J.-L. Danger, A. Facon and S. Guilley

9. Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. A low-
entropy first-degree secure provable masking scheme for resource-constrained de-
vices. In Proceedings of the Workshop on Embedded Systems Security, WESS 2013,
Montreal, Quebec, Canada, September 29 - October 4, 2013, pages 7:1–7:10. ACM,
2013.

10. Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a White
Box AES Implementation. In Selected Areas in Cryptography, pages 227–240, 2004.

11. Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably Secure Masking
of AES. In Helena Handschuh and M. Anwar Hasan, editors, Selected Areas in
Cryptography, volume 3357 of Lecture Notes in Computer Science, pages 69–83.
Springer, 2004.

12. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and Charlotte Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES, volume 4727 of LNCS,
pages 450–466. Springer, September 10-13 2007. Vienna, Austria.

13. Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley, Annelie Heuser, and Yannick
Teglia. Boosting Higher-Order Correlation Attacks by Dimensionality Reduction.
In Rajat Subhra Chakraborty, Vashek Matyas, and Patrick Schaumont, editors,
Security, Privacy, and Applied Cryptography Engineering - 4th International Con-
ference, SPACE 2014, Pune, India, October 18-22, 2014. Proceedings, volume 8804
of Lecture Notes in Computer Science, pages 183–200. Springer, 2014.

14. Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, and Olivier Rioul. Masks Will
Fall Off – Higher-Order Optimal Distinguishers. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology – ASIACRYPT 2014 - 20th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II, volume
8874 of Lecture Notes in Computer Science, pages 344–365. Springer, 2014.

15. Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Olivier Rioul, François-Xavier
Standaert, and Yannick Teglia. Taylor Expansion of Maximum Likelihood At-
tacks for Masked and Shuffled Implementations. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume 10031 of
Lecture Notes in Computer Science, pages 573–601, 2016.

16. Nicolas Bruneau, Sylvain Guilley, Zakaria Najm, and Yannick Teglia. Multivariate
High-Order Attacks of Shuffled Tables Recomputation. Journal of Cryptology,
31(2):351–393, Apr 2018.

17. Sébastien Carré, Adrien Facon, Sylvain Guilley, Sofiane Takarabt, Alexander
Schaub, and Youssef Souissi. Cache-timing attack detection and prevention - ap-
plication to crypto libs and PQC. In Ilia Polian and Marc Stöttinger, editors,
Constructive Side-Channel Analysis and Secure Design - 10th International Work-
shop, COSADE 2019, Darmstadt, Germany, April 3-5, 2019, Proceedings, volume
11421 of Lecture Notes in Computer Science, pages 13–21. Springer, 2019.

18. Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side Channel
Cryptanalysis of a Higher Order Masking Scheme. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of LNCS, pages 28–44. Springer, 2007.

19. Jean-Luc Danger, Youssef El Housni, Adrien Facon, Cheikh T. Gueye, Sylvain Guil-
ley, Sylvie Herbel, Ousmane Ndiaye, Edoardo Persichetti, and Alexander Schaub.
On the Performance and Security of Multiplication in GF (2N). Cryptography,
2(3):25, 2018.

Security evaluation against side-channel analysis at compilation time 19

20. Hassan Eldib, Chao Wang, and Patrick Schaumont. Formal verification of software
countermeasures against side-channel attacks. ACM Trans. Softw. Eng. Methodol.,
24(2):11:1–11:24, December 2014.

21. ETSI / TC CYBER. Security techniques for protecting software in a white box
model, October 2018. ETSI TR 103 642 V1.1.1.

22. Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware
against Probing Attacks. In CRYPTO, volume 2729 of Lecture Notes in Computer
Science, pages 463–481. Springer, August 17–21 2003. Santa Barbara, California,
USA.

23. ISO/IEC JTC 1/SC 27/WG 3. ISO/IEC CD 20085-1:2017 (E). Information tech-
nology - Security techniques — Test tool requirements and test tool calibration
methods for use in testing non-invasive attack mitigation techniques in crypto-
graphic modules — Part 1: Test tools and techniques, January 25 2017.

24. Maxime Nassar, Youssef Souissi, Sylvain Guilley, and Jean-Luc Danger. RSM: a
Small and Fast Countermeasure for AES, Secure against First- and Second-order
Zero-Offset SCAs. In DATE, pages 1173–1178. IEEE Computer Society, March
12-16 2012. Dresden, Germany. (TRACK A: “Application Design”, TOPIC A5:
“Secure Systems”).

25. Yossef Oren, Ofir Weisse, and Avishai Wool. A new framework for constraint-based
probabilistic template side channel attacks. In Lejla Batina and Matthew Rob-
shaw, editors, Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th
International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings,
volume 8731 of Lecture Notes in Computer Science, pages 17–34. Springer, 2014.

26. Pablo Rauzy, Sylvain Guilley, and Zakaria Najm. Formally proved security of
assembly code against power analysis - A case study on balanced logic. J. Cryp-
tographic Engineering, 6(3):201–216, 2016.

27. Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking of
AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume
6225 of LNCS, pages 413–427. Springer, 2010.

28. Debapriya Basu Roy, Shivam Bhasin, Sylvain Guilley, Jean-Luc Danger, and Deb-
deep Mukhopadhyay. From theory to practice of private circuit: A cautionary
note. In 33rd IEEE International Conference on Computer Design, ICCD 2015,
New York City, NY, USA, October 18-21, 2015, pages 296–303. IEEE Computer
Society, 2015.

29. Kai Schramm and Christof Paar. Higher Order Masking of the AES. In David
Pointcheval, editor, CT-RSA, volume 3860 of LNCS, pages 208–225. Springer,
2006.

30. Michael Tunstall, Carolyn Whitnall, and Elisabeth Oswald. Masking Tables –
An Underestimated Security Risk. In Shiho Moriai, editor, FSE, volume 8424 of
Lecture Notes in Computer Science, pages 425–444. Springer, 2013.

31. University of Sydney (Australia). Magma Computational Algebra System. http:
//magma.maths.usyd.edu.au/magma/, Accessed on 2014-08-22.

32. Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In Advances in Cryptology - ASIACRYPT 2014
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages 282–
296, 2014.

http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/

20 N. Bruneau, Ch. Christen, J.-L. Danger, A. Facon and S. Guilley

A Example of input codes for analysis

A.1 Codes which can be analyzed in our framework

Two examples of codes which can be analyzed are provided here-after in
Listing 1.1. The selection between the two codes is achieved by defining
macro SBOX_TYPE to either cube or present at line 117.

1 /*
2 * Regarding the refresh algorithm , there is no need at order 1, but beware of higher -order!
3 * https :// eprint.iacr.org /2015/359. pdf
4 */
5
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <stdint.h>
9

10 static unsigned int gnr = 0;
11
12 /* This function must be optimized , otherwise it will include a test! */
13 uint8_t multx(uint8_t x)
14 {
15 uint8_t y = (x & 0x08) ? ((0x0f & (x << 1)) ^ 0x03) : 0x0f & (x << 1);
16 return y;
17 }
18
19 uint8_t mult(uint8_t x, uint8_t y)
20 {
21 #if 0 // Not to use with SAW plugin of LLVM
22 uint8_t z = 0;
23 uint8_t b = 0x8;
24 for(int i=3; i>=0; i--)
25 {
26 z = multx(z);
27 z ^= x & (-!!(y&b)); // Constant -time multiplication
28 b >>= 1;
29 }
30 return z;
31 #else
32 return x*y; // To simplify the analysis on an abstracted code
33 #endif
34 }
35
36 uint8_t __attribute__ ((optnone)) rnd(uint8_t r[])
37 {
38 return r[gnr ++];
39 }
40
41 void refresh_masks(uint8_t x[2], uint8_t r[])
42 {
43 uint8_t new_r = rnd(r);
44 x[0] ^= new_r;
45 x[1] ^= new_r;
46 }
47
48 void __attribute__ ((optnone)) secmult(uint8_t x[2], uint8_t y[2], uint8_t z[2], uint8_t r[])
49 {
50 #if 0 // Security bug: the new_r self -demasks [To use for testing]
51 uint8_t new_r = rnd(r);
52 z[0] = (mult(x[0],y[0]) ^ new_r) ^ (mult(x[0],y[1]) ^ new_r) ^ mult(x[1],y[0]);
53 z[1] = mult(x[1],y[1]);
54 #else
55 uint8_t r01 = rnd(r);
56 uint8_t r10 = (r01 ^ mult(x[0],y[1]));
57 r10 ^= mult(x[1],y[0]);
58
59 z[0] = mult(x[0],y[0]);
60 z[0] ^= r01;
61 z[1] = mult(x[1],y[1]);
62 z[1] ^= r10;
63 #endif
64 /* Another option from \cite {2003 -11949} would be:
65 c_1 = r (1)

Security evaluation against side-channel analysis at compilation time 21

66 c_2 = (((a_1 b_1 + r) + a_1 b_2) + a_2 b_1) + a_2 b_2 . (2)
67 */
68 }
69 void secsquare(uint8_t x[2], uint8_t z[2], uint8_t r[])
70 {
71 z[0] = mult(x[0],x[0]);
72 z[1] = mult(x[1],x[1]);
73 }
74
75 const uint8_t a[15] = { 12, 0, 7, 7, 14, 10, 12, 4, 7, 9, 9, 14, 12, 13, 13 };
76
77 uint8_t l1(uint8_t x)
78 {
79 uint8_t x_2 = mult(x,x);
80 uint8_t x_4 = mult(x_2 ,x_2);
81 uint8_t x_8 = mult(x_4 ,x_4);
82 return mult(a[1],x) ^ mult(a[2],x_2) ^ mult(a[4],x_4) ^ mult(a[8],x_8);
83 }
84
85 uint8_t l3(uint8_t x)
86 {
87 uint8_t x_2 = mult(x,x);
88 uint8_t x_4 = mult(x_2 ,x_2);
89 uint8_t x_8 = mult(x_4 ,x_4);
90 return mult(a[3],x) ^ mult(a[6],x_2) ^ mult(a[12],x_4) ^ mult(a[9],x_8);
91 }
92
93 uint8_t l5(uint8_t x)
94 {
95 uint8_t x_2 = mult(x,x);
96 return mult(a[5],x) ^ mult(a[10],x_2);
97 }
98
99 uint8_t l7(uint8_t x)

100 {
101 uint8_t x_2 = mult(x,x);
102 uint8_t x_4 = mult(x_2 ,x_2);
103 uint8_t x_8 = mult(x_4 ,x_4);
104 return mult(a[7],x) ^ mult(a[14],x_2) ^ mult(a[13],x_4) ^ mult(a[11],x_8);
105 }
106 /*
107 * The function which be symbolically interpreted by SAW
108 * All the shares are named ’m’, and the masks ’r’
109 */
110 // DATA IN DATA OUT RANDOMS
111 void sbox(uint8_t m[2], uint8_t y[2], uint8_t r[])
112 {
113 uint8_t x_2 [2];
114 uint8_t x_3 [2];
115 uint8_t x_5 [2];
116 uint8_t x_7 [2];
117 #if 1 // DEBUG , SBOX_TYPE=cube
118 secsquare(m, x_2 , r);
119 refresh_masks(m,r);
120 secmult(m, x_2 , y, r);
121 #else // SBOX_TYPE=present
122
123 x_2 [0] = mult(m[0],m[0]);
124 x_2 [1] = mult(m[1],m[1]);
125 secmult(m, m, x_2 , r);
126 secsquare(m, x_2 , r);
127 refresh_masks(m,r);
128 refresh_masks(x_2 ,r);
129 secmult(m, x_2 , y, r);
130
131 x_3 [0] = mult(x_2[0],m[0]);
132 x_3 [1] = mult(x_2[1],m[1]);
133 y[0] = x_2 [0];
134 y[1] = x_2 [1];
135 secmult(m, x_2 , x_3 , r);
136 refresh_masks(m,r);
137 refresh_masks(x_2 ,r);
138 refresh_masks(x_3 ,r);
139
140 x_5 [0] = mult(x_3[0],x_2 [0]);
141 x_5 [1] = mult(x_3[1],x_2 [1]);
142 secmult(x_2 , x_3 , x_5 , r);

22 N. Bruneau, Ch. Christen, J.-L. Danger, A. Facon and S. Guilley

143 refresh_masks(x_2 ,r);
144 refresh_masks(x_3 ,r);
145
146 refresh_masks(x_5 ,r);
147 x_7 [0] = mult(x_5[0],x_2 [0]);
148 x_7 [1] = mult(x_5[1],x_2 [1]);
149
150 secmult(x_2 , x_5 , x_7 , r);
151 refresh_masks(x_2 ,r);
152 refresh_masks(x_5 ,r);
153 refresh_masks(x_7 ,r);
154 y[0] = a[0] ^ l1(m[0]) ^ l3(x_3 [0]) ^ l5(x_5 [0]) ^ l7(x_7 [0]);
155 y[1] = l1(m[1]) ^ l3(x_3 [1]) ^ l5(x_5 [1]) ^ l7(x_7 [1]);
156 #endif
157 }
158
159 int main()
160 {
161 uint8_t r[100];
162 for(int i=0; i <100; i++){
163 r[i] = rand ();
164 }
165
166 uint8_t x[2];
167 uint8_t y[2];
168
169 const uint8_t sbox_ref [16] = { 12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2 };
170 for(uint8_t i=0; i<16; ++i)
171 {
172 uint8_t mask = rand ();
173 x[0] = i^mask;
174 x[1] = mask;
175 sbox(x,y,r);
176 printf("%d␣-->␣%d␣(ref␣=␣%d)\n", x[0]^x[1], y[0]^y[1], sbox_ref[i]);
177 }
178 return 0;
179 }

Listing 1.1: C code representing polynomial computations

A.2 Code which cannot be analyzed

In this section, we present one example of code which cannot be ana-
lyzed (automatically) since simplifications as per Barthe [2] do not apply.
Indeed, the masks are not used as in ISW [22]:

– in ISW: masks are added (XORed) and subsequently subtracted (XORed),
whereas

– in Alg. 1.2: the masks are involved in computation as selection variable
in a choice.

The listing 1.2 presents both a straightforward multiplexor and a multi-
plexor protected at first-order.

1 /* Unprotected function , computing a selection (= multiplexor) */
2 uint8_t MUX(uint8_t a, uint8_t b, uint8_t c)
3 {
4 // return c?b:a; // At bit -level
5 return (c&b)|(~c&a); // At word -level
6 }
7
8 /* Function whose 1st -order security can be demonstrated */
9 uint8_t MUX_masked(uint8_t am , uint8_t bm , uint8_t cm, uint8_t r[] /* m, m2 */)

10 {
11 uint8_t m = r[0];

Security evaluation against side-channel analysis at compilation time 23

12 uint8_t m2 = r[1];
13 return (((am & ~m2) ^ (bm & m2)) & (~(cm ^ (m^m2)))) ^ \
14 (((am & m2) ^ (bm & ~m2)) & (cm ^ (m^m2)));
15 }

Listing 1.2: Function which conditionally returns one of the two argu-
ments, protected against side-channel attacks at order d = 1

B Multi-variate attack at degrees two and three

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2500 5000 7500 10000

Su
cc

es
s

ra
te

Number of traces

2O-CPA
MVA2

MVA3

(a) σ = 3.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 3500 7000 10500 14000

Su
cc

es
s

ra
te

Number of traces

2O-CPA
MVA2

MVA3

(b) σ = 4.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5000 10000 15000 20000

Su
cc

es
s

ra
te

Number of traces

2O-CPA
MVA2

MVA3

(c) σ = 6.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5000 10000 15000 20000

Su
cc

es
s

ra
te

Number of traces

2O-CPA
MVA2

MVA3

(d) σ = 9.

Fig. 4: Comparison of success rate for classical bi-variate attack and our
multi-variate attack at degrees two and three

	Security evaluation against side-channel analysis at compilation time

