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Abstract. With the publication of Spectre & Meltdown attacks, cache-
timing exploitation techniques have received a wealth of attention re-
cently. On the one hand, it is now well understood which some patterns
in the C source code create observable unbalances in terms of timing.
On the other hand, some practical cache-timing attacks (or Common
Vulnerabilities and Exposures) have also been reported. However the ex-
act relationship between vulnerabilities and exploitations is not enough
studied as of today.
In this article, we put forward a methodology to characterize the leak-
age induced by a “non-constant-time” construct in the source code. This
methodology allows us to recover known attacks and to warn about pos-
sible new ones, possibly devastating.

Keywords: Cache-timing attacks, leakage detection, leakage attribution,
discovery of new attacks.

1 Introduction

Writing secure cryptographic software is notoriously hard, since mistakes
can often be turned into an advantage by attackers to really extract the
secrets. For instance, corruption of computations is known to allow for
catastrophic failures, such as cryptographic algorithm breaks [17]. Con-
sider for instance:

– the Bellcore [4] attack on RSA with Chinese Remainder Theorem
(CRT-RSA),

– the differential fault analysis (DFA [3]) on AES (ISO/IEC 18033-3),
– verification skips in signature schemes (recall the case of the double

goto inadvertent copy-and-paste [16]).

Any bug in the implementation (e.g., possibility to perform a buffer over-
flow) which allows for replacing an intermediate value (as for Bellcore and
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DFA) does lead to a successful cryptanalysis. In the case of the verifica-
tion skip in the signature schemes, the bug is already in the source code
and allows the attacker to bypass the cryptography under some particular
conditions.

Therefore, it is essential to write correct (bug-free) cryptographic soft-
ware. Still this is not sufficient, since other attacks can still be applied.
Typically, side-channel attacks are also known as particularly threaten-
ing. Indeed, they exploit some non-functional albeit observable side-effects
caused by computations to profile the cryptographic code, and to come
back to the secret non-invasively. The reason for these attacks to be feared
is that, in most of the time, they cannot be detected.

One particular side-channel attack which received a great deal of at-
tention are the so-called cache-timing attacks. Indeed, the observation
is carried out directly by the machine which executes the victim code.
Therefore, the resolution is high and the noise is low. Furthermore, it is
not necessary for the attacker to possess the machine. The pre-condition
for the attack is simply to be able to use a cryptographic service, just as
the victim would.

By monitoring the time shared resources need to react, the attacker
learns whether or not the victim has been soliciting those said resources.
Shared resources are typically the multiple pipelines allowing for Hyper-
Threaded computations, the use of cache memories for data, code, address
translations (as in Memory Management Units or MMUs), the optimized
management at the Dynamic Random Access Memory (DRAM) side, etc.
Not all those resources are termed “caches”, but still the exploitation of
the fact they can be contended by the concurrent usage request of a victim
and an attacker have them leak observable information. This information
is often measured as a timing variation, except for those situations where
it is sufficient to directly measure the side-channel, e.g., in a hardware
performance counter. When attacks consist in measuring a timing, the
attacks are usually both passive and active, regarding non-functional re-
sources: typically, a shared resource is set in a given state (e.g., a line
of cache is flushed), and whether this state is modified by the attacker
(e.g., the concerned line of cache is loaded by the victim) reveals a con-
ditional behavior of the code. Sometimes, the attacks are refined in that
some hardware peculiarity (e.g., branch prediction, out-of-order execution,
etc.) enables indirectly the observable variability, correlated to some inter-
nal variable handled by the attacker. The operational use of cache-timing
attacks is illustrated for instance to bypass kernel-level protections [14], to
create covert-channels [21], to attack code in enclaves (CacheQuote [6]),
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etc. A big picture for so-called cache-timing vulnerabilities (at C code
level) is depicted in Fig. 1.
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Fig. 1. Illustration how conditional code in one secret can manifest as observable side-
channel leakage, and some renown exploitations

In this figure, attacks are related to the contended resources which
leak. The survey paper [13] also details the relationship between micro-
architecture and exploits. Nevertheless as of today, it is unclear how seri-
ously a timing bias can be effectively exploited. This is precisely the intent
of this paper.

The rest of this article is structured as follows. Known exploitation
methods are presented in Sec. 2, and they are attributed to a purported
hardware bias. Then comes our contribution in Sec. 3: we show there a
methodology to assess the severity of a cache-timing leakage. Finally, the
conclusion is given in Sec. 4. Some examples of codes are relegated to the
appendix A.

2 Cache-timing issues

Issues related to cache-timing dependency on sensitive variables can lead
to a variety of attacks, namely:
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– On RSA:
• Simple power analysis [19] (horizontal leakage)
• Extra-reduction analysis [9]
• BigMac Attack on windowed exponentiation [24]

– On ECDSA (attacks other than that directly transposable from RSA):
• LLL cryptanalysis due to observable short nonces [5,12]

– On AES:
• Timing attack [18]
• Higher-order timing attacks [7]
• Template attacks [23]

3 Cache-timing analysis methodology

3.1 State-of-the-art

Cryptographic libraries are thoroughly analyzed for vulnerabilities, and
despite a lot of efforts devoted to this topic, libraries need more check-
ing. Indeed, the application of protection can really affect strongly the
performances. For instance, the use of sliding-window algorithm for ex-
ponentiation is known to leak but is believed hard to exploit. Still, using
a perfectly regular exponentiation algorithms would collapse the perfor-
mances. Hence the question whether or not the countermeasure is practi-
cally needed. This has pushed attackers to try harder, and actually a not
so abstract attack on a key extraction has been put forward recently at
CHES 2017 [2].

The Post-quantum cryptographic (PQC) algorithms have been ana-
lyzed for leakages. The affected parts contributing to leakages have already
been classified systematically in [11, §V]:

– noise sampling operations, amongst them Gaussian noise is really sen-
sitive,

– insecure Galois Field operations, especially in fields of characteristic
two [8],

– variable time error correction algorithms,
– use of insecure large number libraries, such as GMP (GNU Multi-

Precision, https://gmplib.org/).

Let us now explore a systematic leakage discovery methodology.

3.2 Methodology presentation

The presented methodology combines on the one hand static and dynamic
analyses, and on the other hand source and assembly analyses.

https://gmplib.org/
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Step 1 : Static analysis. The first step is a static analysis on source
code. In this study, the tool is termed as Stanalyzr. Subsequently, the
code is represented as an abstract syntax tree (AST), and the sensitive
variables (secret keys, but also all parameters whose knowledge would
allow to recover the secret keys, such as random numbers / noise involved
in cryptographic protocols) are propagated in the tree. A vulnerability is
the coincidence of a sensitive variable s and of either a conditional control
flow operation (recall if(s){}, for(i=0;i<s;++i){}, while(s){}, and
switch(s){} constructs illustrated in Fig. 1) or a conditional table lookup
(recall y=T[s] and y=*(ptr+s), or vice-versa, constructs illustrated in
Fig. 1).

Let us illustrate in Fig. 2 the vulnerabilities found in RSA signature
of MbedTLS. The listings 1.2 and 1.3 in appendix A show some practical
leakages found automatically. The extra-reduction leakage illustrated in
listing 1.4 is that which is analyzed in [1], and which can be exploited by
cache-timing attacks even in advanced scenarios (e.g., regular exponen-
tiation algorithms [9]). As illustrated in Fig. 2, the list of vulnerabilities
can be regrouped according to their calling patterns. Indeed, for a ver-
satile routine, there can be many functions actually requesting it. This
is of great interest, since the more often a vulnerability is executed, the
more likely it will leak exploitable information. Actually, one has to keep
in mind that cache-timing attacks face a practical challenge, as:

– when applied against asymmetrical cryptography, which is typically
randomized, the attack must succeed in one single trace;

– when applied against symmetrical cryptography (refer for instance
to [23]), the key is unchanged for multiple operations, but the al-
gorithms are very fast (around thousand clock periods, where the at-
tackers aim at extracting hundreds of bits).

Step2 : Assembly code analysis. The second step consists in an-
alyzing the generated assembly code after compilation of the C source
code. The purpose if to check whether the vulnerability is still present.
In some cases, the compiler manages to remove (unintentionally though)
the problem upon assembly code generation. Table 1 illustrates typical
translation of C structures into assembly.

It can be seen in Tab. 1 that some conditional operations can be
translated in constant-time assembly instructions, such as cmov (condi-
tional move, atomic) or such as setcc (set conditional, atomic). Indeed,
these translations benefit the execution speed: as they do not break the
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Fig. 2. Vulnerabilities identified in MbedTLS source code for RSA signature (courtesy
of [22])

Table 1. Translation of cache-timing vulnerable C operations into assembly

C construct Pseudo-assembly con-
struct

Vulnerable?

if(s){} cmov s or setcc s no
if(s){},
for(i=0;i<s;++i){},
while(s){}, and
switch(s){}

test s,
jump address

yes

y=T[s] or y=*(ptr+s) load s yes
T[s]=y or *(ptr+s)=y store s yes
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control flow, they can be executed without risking a cache or a speculation
fault, thereby accelerating the execution. Furthermore, those translations
happen only (paradoxically enough) when the code is compiled with op-
timization options.

The access to tables are almost certainly not fixed, since the techniques
to make unconditional table accesses (bitslicing, extrapolation of table us-
ing Lagrange polynomial, lookup of all elements and subsequent addition
of values after Boolean mask by the address indicator, etc.) are way too
evolved. Additionally, the known tactics to protect table lookups feature
extremely high timing overhead, hence shall be added manually. The vul-
nerability due to pointer dereferencing (except for tables with very small,
e.g., two, number of entries) thus remains from C to assembly. For fur-
ther reference on vulnerabilities at assembly-level, we redirect the reader
to [20].

Step 3 : Statistical analysis. Finally, the code is executed dynami-
cally, and breakpoints are set on the assembly lines previously identified
as vulnerable. The information to be extracted is as follows:

– Count the number of occurrences while running the code — as men-
tioned, the more often the leak is executed, the more chance it is
exploitable;

– Check for execution patterns. If they are too fast (e.g., as bursts), it
might be hard to measure them individually.

The temporal distribution of vulnerabilities identified on mbedTLS
thanks to static analysis is represented in Fig. 3 (obtained with Intel PIN,
and presented in increasing lines of code), for the 800 first instructions
(out of 3,679,883 making up a complete RSA 2048-bit).

It can be noticed that many vulnerable lines of codes are actually
stepped several times. More precisely, some patterns are clearly visible,
which highlight loop operations within functions. Therefore, statistical
analysis greatly helps understand which line of code is particularly leaking.

Step 4 : Real-world exploitation. Ideally, this method is comple-
mented by a real world measurements (e.g., using FLUSH+FLUSH [15]
methodology, as that from the CatalyzrTM tool [10]), so as to assess in
which respect the leakages are exploitable. Actually, regarding lookup ta-
bles, some accesses are indistinguishable, since they occur in the same line
of cache. The final check allows to validate whether the risk is real.
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Fig. 3. Activation times (labelled in number of instructions) of vulnerabilities found
by static analysis, for RSA signature.

3.3 Methodology application

The latest version of MbedTLS library (version 2.14.0) at the time of
writing this paper is studied. It is written with security in mind. Indeed,
as a example, it features some functions allowing for conditional operations
to be carried in a way which cannot be exploited by cache-attacks. An illus-
tration is provided by function mbedtls_mpi_safe_cond_assign (where
mpi stands for multiprecision interger), located in library/bignum.c and
given for reference as Listing 1.1 in Appendix A.

4 Conclusion

This paper has introduced a practical methodology to analyze observ-
able cache-timing biases with respect to their possible exploitation. The
methodology consists in several steps, namely: vulnerability identification
in source code, vulnerability tracking in assembly code, statistics on the
dynamic occurrence of the vulnerability, and eventually, real measure-
ments using FLUSH+FLUSH methodology.

We have shown how known attacks are recovered in a software crypto-
graphic library, and we point towards numerous new (uncovered yet albeit
possibly devastating) ones.
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A Some excerpts from secure and vulnerable functions
from mbedTLS

/*
* Conditionally assign X = Y, without leaking information
* about whether the assignment was made or not.
* (Leaking information about the respective sizes of X and Y is ok however .)
*/

int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X, const mbedtls_mpi *Y, unsigned char assign )
{

int ret = 0;
size_t i;

/* make sure assign is 0 or 1 in a time -constant manner */
assign = (assign | (unsigned char)-assign) >> 7;

MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );

X->s = X->s * ( 1 - assign ) + Y->s * assign;

for( i = 0; i < Y->n; i++ )
X->p[i] = X->p[i] * ( 1 - assign ) + Y->p[i] * assign;

for( ; i < X->n; i++ )
X->p[i] *= ( 1 - assign );

cleanup:
return( ret );

}

Listing 1.1. Conditional assignment function, which does not reveal whether the as-
signment has been completed or not

/*
* Initialize one MPI
*/

void mbedtls_mpi_init( mbedtls_mpi *X )
{

if( X == NULL )
return;

X->s = 1;
X->n = 0;
X->p = NULL;

}

Listing 1.2. Example of vulnerable data-management code, as identified statically
(the leakage is in the if statement)
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/*
* Signed addition: X = A + B
*/

int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
{

int ret , s = A->s;

if( A->s * B->s < 0 )
{

if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
{

MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
X->s = s;

}
else
{

MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
X->s = -s;

}
}
else
{

MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
X->s = s;

}

cleanup:

return( ret );
}

Listing 1.3. Example of vulnerable arithmetic code, as identified statically (the leak-
ages are in the if statement)

/*
* Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
*/

static int mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm ,
const mbedtls_mpi *T )

{
size_t i, n, m;
mbedtls_mpi_uint u0, u1, *d;

if( T->n < N->n + 1 || T->p == NULL )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );

memset( T->p, 0, T->n * ciL );

d = T->p;
n = N->n;
m = ( B->n < n ) ? B->n : n;

for( i = 0; i < n; i++ )
{

/*
* T = (T + u0*B + u1*N) / 2^biL
*/

u0 = A->p[i];
u1 = ( d[0] + u0 * B->p[0] ) * mm;

mpi_mul_hlp( m, B->p, d, u0 );
mpi_mul_hlp( n, N->p, d, u1 );

*d++ = u0; d[n + 1] = 0;
}

memcpy( A->p, d, ( n + 1 ) * ciL );

if( mbedtls_mpi_cmp_abs( A, N ) >= 0 )
mpi_sub_hlp( n, N->p, A->p );

else
/* prevent timing attacks */
mpi_sub_hlp( n, A->p, T->p );

return( 0 );
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}

Listing 1.4. Example of vulnerable arithmetic code, as identified statically (the leakage
is in the mbedtls_mpi_cmp_abs statement—and holds, irrespective of the /* prevent
timing attacks */ (incorrect) indication)
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