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With the publication of Spectre & Meltdown attacks, cachetiming exploitation techniques have received a wealth of attention recently. On the one hand, it is now well understood which some patterns in the C source code create observable unbalances in terms of timing. On the other hand, some practical cache-timing attacks (or Common Vulnerabilities and Exposures) have also been reported. However the exact relationship between vulnerabilities and exploitations is not enough studied as of today. In this article, we put forward a methodology to characterize the leakage induced by a "non-constant-time" construct in the source code. This methodology allows us to recover known attacks and to warn about possible new ones, possibly devastating.

Introduction

Writing secure cryptographic software is notoriously hard, since mistakes can often be turned into an advantage by attackers to really extract the secrets. For instance, corruption of computations is known to allow for catastrophic failures, such as cryptographic algorithm breaks [START_REF]Fault Analysis in Cryptography[END_REF]. Consider for instance:

the Bellcore [START_REF] Boneh | On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract)[END_REF] attack on RSA with Chinese Remainder Theorem (CRT-RSA), the differential fault analysis (DFA [START_REF] Biham | Differential Fault Analysis of Secret Key Cryptosystems[END_REF]) on AES (ISO/IEC 18033-3), verification skips in signature schemes (recall the case of the double goto inadvertent copy-and-paste [16]).

Any bug in the implementation (e.g., possibility to perform a buffer overflow) which allows for replacing an intermediate value (as for Bellcore and DFA) does lead to a successful cryptanalysis. In the case of the verification skip in the signature schemes, the bug is already in the source code and allows the attacker to bypass the cryptography under some particular conditions. Therefore, it is essential to write correct (bug-free) cryptographic software. Still this is not sufficient, since other attacks can still be applied. Typically, side-channel attacks are also known as particularly threatening. Indeed, they exploit some non-functional albeit observable side-effects caused by computations to profile the cryptographic code, and to come back to the secret non-invasively. The reason for these attacks to be feared is that, in most of the time, they cannot be detected.

One particular side-channel attack which received a great deal of attention are the so-called cache-timing attacks. Indeed, the observation is carried out directly by the machine which executes the victim code. Therefore, the resolution is high and the noise is low. Furthermore, it is not necessary for the attacker to possess the machine. The pre-condition for the attack is simply to be able to use a cryptographic service, just as the victim would.

By monitoring the time shared resources need to react, the attacker learns whether or not the victim has been soliciting those said resources. Shared resources are typically the multiple pipelines allowing for Hyper-Threaded computations, the use of cache memories for data, code, address translations (as in Memory Management Units or MMUs), the optimized management at the Dynamic Random Access Memory (DRAM) side, etc. Not all those resources are termed "caches", but still the exploitation of the fact they can be contended by the concurrent usage request of a victim and an attacker have them leak observable information. This information is often measured as a timing variation, except for those situations where it is sufficient to directly measure the side-channel, e.g., in a hardware performance counter. When attacks consist in measuring a timing, the attacks are usually both passive and active, regarding non-functional resources: typically, a shared resource is set in a given state (e.g., a line of cache is flushed), and whether this state is modified by the attacker (e.g., the concerned line of cache is loaded by the victim) reveals a conditional behavior of the code. Sometimes, the attacks are refined in that some hardware peculiarity (e.g., branch prediction, out-of-order execution, etc.) enables indirectly the observable variability, correlated to some internal variable handled by the attacker. The operational use of cache-timing attacks is illustrated for instance to bypass kernel-level protections [START_REF] Gruss | Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR[END_REF], to create covert-channels [START_REF] Maurice | Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud[END_REF], to attack code in enclaves (CacheQuote [START_REF] Dall | CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks[END_REF]), etc. A big picture for so-called cache-timing vulnerabilities (at C code level) is depicted in Fig. 1. In this figure, attacks are related to the contended resources which leak. The survey paper [START_REF] Ge | A survey of microarchitectural timing attacks and countermeasures on contemporary hardware[END_REF] also details the relationship between microarchitecture and exploits. Nevertheless as of today, it is unclear how seriously a timing bias can be effectively exploited. This is precisely the intent of this paper.

The rest of this article is structured as follows. Known exploitation methods are presented in Sec. 2, and they are attributed to a purported hardware bias. Then comes our contribution in Sec. 3: we show there a methodology to assess the severity of a cache-timing leakage. Finally, the conclusion is given in Sec. [START_REF] Boneh | On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract)[END_REF]. Some examples of codes are relegated to the appendix A.

Cache-timing issues

Issues related to cache-timing dependency on sensitive variables can lead to a variety of attacks, namely:

-On RSA:

• Simple power analysis [START_REF] Paul | Differential power analysis[END_REF] (horizontal leakage)

• Extra-reduction analysis [START_REF] Dugardin | Correlated Extra-Reductions Defeat Blinded Regular Exponentiation[END_REF] • BigMac Attack on windowed exponentiation [START_REF] Walter | Sliding Windows Succumbs to Big Mac Attack[END_REF] -On ECDSA (attacks other than that directly transposable from RSA):

• LLL cryptanalysis due to observable short nonces [5,12] -On AES:

• Timing attack [START_REF] Paul | Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems[END_REF] • Higher-order timing attacks [START_REF] Danger | Highorder Timing Attacks[END_REF] • Template attacks [START_REF] Tromer | Efficient Cache Attacks on AES, and Countermeasures[END_REF] 3 Cache-timing analysis methodology

State-of-the-art

Cryptographic libraries are thoroughly analyzed for vulnerabilities, and despite a lot of efforts devoted to this topic, libraries need more checking. Indeed, the application of protection can really affect strongly the performances. For instance, the use of sliding-window algorithm for exponentiation is known to leak but is believed hard to exploit. Still, using a perfectly regular exponentiation algorithms would collapse the performances. Hence the question whether or not the countermeasure is practically needed. This has pushed attackers to try harder, and actually a not so abstract attack on a key extraction has been put forward recently at CHES 2017 [START_REF] Daniel | Sliding Right into Disaster: Left-to-Right Sliding Windows Leak[END_REF]. The Post-quantum cryptographic (PQC) algorithms have been analyzed for leakages. The affected parts contributing to leakages have already been classified systematically in [11, §V]:

noise sampling operations, amongst them Gaussian noise is really sensitive, insecure Galois Field operations, especially in fields of characteristic two [START_REF] Danger | On the Performance and Security of Multiplication in GF (2 N )[END_REF], variable time error correction algorithms, use of insecure large number libraries, such as GMP (GNU Multi-Precision, https://gmplib.org/).

Let us now explore a systematic leakage discovery methodology.

Methodology presentation

The presented methodology combines on the one hand static and dynamic analyses, and on the other hand source and assembly analyses.

Step 1 : Static analysis. The first step is a static analysis on source code. In this study, the tool is termed as Stanalyzr. Subsequently, the code is represented as an abstract syntax tree (AST), and the sensitive variables (secret keys, but also all parameters whose knowledge would allow to recover the secret keys, such as random numbers / noise involved in cryptographic protocols) are propagated in the tree. A vulnerability is the coincidence of a sensitive variable s and of either a conditional control flow operation (recall if(s){}, for(i=0;i<s;++i){}, while(s){}, and switch(s){} constructs illustrated in Fig. 1) or a conditional table lookup (recall y=T[s] and y=*(ptr+s), or vice-versa, constructs illustrated in Fig. 1).

Let us illustrate in Fig. 2 the vulnerabilities found in RSA signature of MbedTLS. The listings 1.2 and 1.3 in appendix A show some practical leakages found automatically. The extra-reduction leakage illustrated in listing 1.4 is that which is analyzed in [START_REF] Arnaud | Timing attack against protected RSA-CRT implementation used in polarssl[END_REF], and which can be exploited by cache-timing attacks even in advanced scenarios (e.g., regular exponentiation algorithms [START_REF] Dugardin | Correlated Extra-Reductions Defeat Blinded Regular Exponentiation[END_REF]). As illustrated in Fig. 2, the list of vulnerabilities can be regrouped according to their calling patterns. Indeed, for a versatile routine, there can be many functions actually requesting it. This is of great interest, since the more often a vulnerability is executed, the more likely it will leak exploitable information. Actually, one has to keep in mind that cache-timing attacks face a practical challenge, as:

when applied against asymmetrical cryptography, which is typically randomized, the attack must succeed in one single trace; when applied against symmetrical cryptography (refer for instance to [START_REF] Tromer | Efficient Cache Attacks on AES, and Countermeasures[END_REF]), the key is unchanged for multiple operations, but the algorithms are very fast (around thousand clock periods, where the attackers aim at extracting hundreds of bits).

Step2 : Assembly code analysis. The second step consists in analyzing the generated assembly code after compilation of the C source code. The purpose if to check whether the vulnerability is still present. In some cases, the compiler manages to remove (unintentionally though) the problem upon assembly code generation. Table 1 illustrates typical translation of C structures into assembly.

It can be seen in Tab. 1 that some conditional operations can be translated in constant-time assembly instructions, such as cmov (conditional move, atomic) or such as setcc (set conditional, atomic). Indeed, these translations benefit the execution speed: as they do not break the control flow, they can be executed without risking a cache or a speculation fault, thereby accelerating the execution. Furthermore, those translations happen only (paradoxically enough) when the code is compiled with optimization options.

The access to tables are almost certainly not fixed, since the techniques to make unconditional table accesses (bitslicing, extrapolation of table using Lagrange polynomial, lookup of all elements and subsequent addition of values after Boolean mask by the address indicator, etc.) are way too evolved. Additionally, the known tactics to protect table lookups feature extremely high timing overhead, hence shall be added manually. The vulnerability due to pointer dereferencing (except for tables with very small, e.g., two, number of entries) thus remains from C to assembly. For further reference on vulnerabilities at assembly-level, we redirect the reader to [START_REF] Maurice | What could possibly go wrong with <insert x86 instruction here>?[END_REF].

Step 3 : Statistical analysis. Finally, the code is executed dynamically, and breakpoints are set on the assembly lines previously identified as vulnerable. The information to be extracted is as follows:

-Count the number of occurrences while running the code -as mentioned, the more often the leak is executed, the more chance it is exploitable; -Check for execution patterns. If they are too fast (e.g., as bursts), it might be hard to measure them individually.

The temporal distribution of vulnerabilities identified on mbedTLS thanks to static analysis is represented in Fig. 3 (obtained with Intel PIN, and presented in increasing lines of code), for the 800 first instructions (out of 3,679,883 making up a complete RSA 2048-bit).

It can be noticed that many vulnerable lines of codes are actually stepped several times. More precisely, some patterns are clearly visible, which highlight loop operations within functions. Therefore, statistical analysis greatly helps understand which line of code is particularly leaking.

Step 4 : Real-world exploitation. Ideally, this method is complemented by a real world measurements (e.g., using FLUSH+FLUSH [START_REF] Gruss | Flush+Flush: A Fast and Stealthy Cache Attack[END_REF] methodology, as that from the Catalyzr TM tool [START_REF] Facon | Binary Data Analysis for Source Code Leakage Assessment[END_REF]), so as to assess in which respect the leakages are exploitable. Actually, regarding lookup tables, some accesses are indistinguishable, since they occur in the same line of cache. The final check allows to validate whether the risk is real. 

Methodology application

The latest version of MbedTLS library (version 2.14.0) at the time of writing this paper is studied. It is written with security in mind. Indeed, as a example, it features some functions allowing for conditional operations to be carried in a way which cannot be exploited by cache-attacks. An illustration is provided by function mbedtls_mpi_safe_cond_assign (where mpi stands for multiprecision interger), located in library/bignum.c and given for reference as Listing 1.1 in Appendix A.

Conclusion

This paper has introduced a practical methodology to analyze observable cache-timing biases with respect to their possible exploitation. The methodology consists in several steps, namely: vulnerability identification in source code, vulnerability tracking in assembly code, statistics on the dynamic occurrence of the vulnerability, and eventually, real measurements using FLUSH+FLUSH methodology.

We have shown how known attacks are recovered in a software cryptographic library, and we point towards numerous new (uncovered yet albeit possibly devastating) ones. project from European Union's Horizon2020 research and innovation programme, under grant agreement N • 779882.
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 1 Fig. 1. Illustration how conditional code in one secret can manifest as observable sidechannel leakage, and some renown exploitations

Fig. 2 .

 2 Fig. 2. Vulnerabilities identified in MbedTLS source code for RSA signature (courtesy of [22])

Fig. 3 .

 3 Fig. 3. Activation times (labelled in number of instructions) of vulnerabilities found by static analysis, for RSA signature.

Table 1 .

 1 Translation of cache-timing vulnerable C operations into assembly

	C construct	Pseudo-assembly	con-	Vulnerable?
		struct		
	if(s){}	cmov s or setcc s		no
	if(s){},	test s,		yes
	for(i=0;i<s;++i){},	jump address		
	while(s){}, and			
	switch(s){}			
	y=T[s] or y=*(ptr+s)	load s		yes
	T[s]=y or *(ptr+s)=y	store s		yes
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