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Abstract Side-channel analysis and fault injection at-
tacks are two typical threats to cryptographic imple-
mentations, especially in modern embedded devices.
Thus there is an insistent demand for dual side-channel
and fault injection protections. As we know, masking is
a kind of provable countermeasure against side-channel
attacks. Recently, inner product masking (IPM) was
proposed as a promising higher-order masking scheme
against side-channel analysis, but not for fault injec-
tion attacks. In this paper, we devise a new masking
scheme named IPM-FD. It is built on IPM, which en-
ables fault detection. This novel masking scheme has
three properties: the security orders in the word-level
probing model, bit-level probing model, and the num-
ber of detected faults. IPM-FD is proven secure both
in the word-level and in the bit-level probing models,
and allows for end-to-end fault detection against fault
injection attacks.
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Furthermore, we illustrate its security order by in-
terpreting IPM-FD as a coding problem then linking it
to one defining parameters of linear code, and show its
implementation cost by applying IPM-FD to AES-128.

Keywords Side-Channel analysis · Fault-Injection
attacks · Inner product masking · Fault detection

1 Introduction

With the advent of Internet of Things (IoT), more and
more cryptographic libraries are implemented in soft-
ware. Now, IoT objects are, most of the time, not made
of secure hardware. Therefore, it is important for the
software to protect itself in a sound manner. In this ar-
ticle, we assume that the implementation is free from
configuration and coding bugs. Still, in this case, attack-
ers can leverage two techniques to extract information:
side-channel and fault injection analyses. Indeed, it is
known that a single faulty encryption in AES can fully
disclose 128 bits of the secret key [1]. It can be noted
that some combined side-channel and fault analyses ex-
ist against protected implementations [7, 11].

On one hand, protections against Side-channel anal-
ysis aims at reducing the signal-to-noise ratio (see def-
inition in [24, § 4.3.2]) an attacker can get. One option
is to balance the leakage, a technique which is used
to linearize the control flow. For instance, cache-timing
attacks can be alleviated by removing conditional op-
codes whose condition is sensitive and sensitive pointer
dereferencing. Besides, we assume Meltdown and Zom-
bieLoad attack categories are irrelevant as the code
we are interested in is at the baremetal level. Still,
there is the possibility of sensitive value leakage, which
is properly addressed by randomization (masking [24,
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Chap. 9]). Indeed, sensitive values leak through a non-
injective and noisy channel, thence single trace attacks
are unpractical.

On the other hand, protections against fault in-
jection attacks boil down to detection of errors, us-
ing either spatial, temporal, or information redundancy.
Other techniques rely on invariant checking, such as
idempotence of encryption composed by decryption.

In this paper, we present a joint countermeasure to
both attacks, which is more efficient than two counter-
measures piled one on top of each other.

State-of-the-art. In scientific literature, early counter-
measures against both side-channel and fault injection
attacks have been designed in hardware. Several gate-
level logic styles have been introduced, in particular
dual-rail with precharge logic, aiming at balancing the
leakage. Namely, redundant encodings, where each bit
a is represented as a pair of bits (af , at), such that
af = ¬at = a during computation evaluation phase.
Owing to this redundancy, the total number of bits set
to 1 is unchanged (if in addition, the evaluation phase
is interleaved with a precharge phase, the Hamming dis-
tance between two states is also constant, irrespective
of the sensitive data manipulated). Besides, the redun-
dant encoding af = ¬at = a allows for computation
checks, as in evaluation phase, af = at (two configu-
rations, namely (0, 0) and (1, 1)) are forbidden. Start-
ing from Wave Dynamic Differential Logic (WDDL [24,
Chap. 7]), other improvements have been successively
introduced (MDLP, iMDPL [21], ParTI [33], etc.) Also,
some exotic styles have been proposed (asynchronous
logic [27], adiabatic logic [26], etc.). All this corpus re-
quires hardware support.

In this paper, we target software-level countermea-
sures. We build upon the higher-order side-channel
countermeasure known as IPM [2] to enrich it to de-
tect faults injected during the computation.

Contributions. We devise an end-to-end fault-detection
scheme which operates from within a provable high-
order multivariate masking scheme. In practice, we en-
hance IPM scheme to enable end-to-end side-channel
and fault injection detection, while keeping security
proofs in the probing security model. Furthermore, we
quantify the impact of both side-channel and fault de-
tection on a complete AES-128 to show the advantages
of our new scheme.

This work is an extension of the previous epony-
mous conference paper [8]. We highlight below the new
extensions incorporated in this paper:

– The generalization of IPM and IPM-FD to (O)DSM
is presented to emphasize the connections and dif-

ferences between two schemes. This generalization
allows us to optimize the former by using construc-
tions of the latter in a coding-theoretic approach.
For instance, some optimal codes in (O)DSM would
also be applicable in IPM and IPM-FD.

– We clarify the fault models by showing the essen-
tial different assumptions under these models, which
determine the fault detection capability of IPM-FD
and (O)DSM. We insist that our IPM-FD only con-
siders the last two fault models since we focus on
the end-to-end protections.

– By comparing the IPM-FD and BM-FD (Boolean
masking with fault detection), we demonstrate the
advantages of the former over the latter. Specifically,
IPM-FD needs less shares to achieve the same secu-
rity order at word-level. Furthermore, the bit-level
security order of IPM-FD can be much higher than
BM-FD given the same number of shares.

– We insist that the systematic construction of opti-
mal codes for IPM-FD and DSM at both word-level
and bit-level is still an open problem. In this pa-
per, we only provide the metrics and some results
with small number of shares by an exhaustive study.
Note that another exhaustive study for optimal lin-
ear codes for IPM is also available in a related spe-
cialized paper [10].

Outline. The rest of this paper is organized as follows.
Sec. 2 introduces two typical schemes as the state-of-
the-art of countermeasures. Our novel protection is pre-
sented in Sec. 3, with security analysis and optimal code
selection in Sec. 4. The practical performance evalua-
tion is presented in Sec. 5. Finally, Sec. 6 concludes the
paper and opens some perspectives.

2 State-of-the-art on side-channel & fault
protection

Side-channel protections considered in this work come
in two flavors:

– Inner Product Masking (IPM) [2] is a word-oriented
(e.g., byte-oriented) masking scheme, equipped with
universal operations (namely, addition and multipli-
cation). It is optimized to resist attacks at both the
word-level and bit-level probing model [30], which
is suitable for computing cryptographic algorithms
that are subject to high-order side-channel analysis.

– Direct Sum Masking (DSM) [5] is a masking scheme
which allows for concurrent side-channel and fault
injection protection. It expresses the masking as the
two encodings of the secret in a code C, and masks
in a code D, respectively. This allows us to recover
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the information by decoding from C and to check
the masks by decoding from D.

These two protections are presented, one after the
other, in this section.

2.1 Inner Product Masking

2.1.1 Notations

Computations are carried out in characteristic two fi-
nite fields: F2 for bits and K for larger fields. In practice
K can be F2l for some l, e.g., l = 8 for AES, and l = 4

for PRESENT. The elements from K are termed words,
and they are also referred to as bytes when l = 8 and
to nibbles when l = 4. We denote + the addition in
characteristic two field K, which is bitwise XOR. Re-
call that the subtraction is the same operation as the
addition in K. Elements of F2 are denoted as {0, 1}, and
elements of F2l (as words) are represented as polyno-
mials. In this paper, we use F24

∼= F2[α]/〈α4 + α + 1〉,
and F28

∼= F2[α]/〈α8 +α4 +α3 +α+1〉 (that of AES).
We recall that linear codes are spacevectors, char-

acterized by their base field K, their length n and their
dimension k. In addition, linear codes have parameters
traditionally denoted as [n, k, d], where d is the mini-
mum distance. The dual of a linear code D is the lin-
ear code D⊥ whose codewords are orthogonal to all
codewords of D. The dual distance d⊥ of a linear code
D happens to be equal to the minimum distance of
D⊥ [23].

Let n be the number of shares in IPM, and the co-
efficient vector in IPM is L = (L1, L2, . . . , Ln) where
L1 = 1 for performance reason [2, § 1.2].

Definition 1 (IPM data representation) A word
of secret information X ∈ K is represented in IPM as a
tuple of n field elements:

Z = (X +

n∑
i=2

LiMi,M2, . . . ,Mn) = XG+MH (1)

where M = (M2,M3, . . . ,Mn) is the mask materials,
G and H are generating matrices of linear codes C and
D, respectively, as showed below.

G =
(

1 | 0 0 . . . 0
)
∈ K1×n, (2)

H =


L2 | 1 0 . . . 0

L3 | 0 1 . . . 0
... | 0 0

. . . 0

Ln | 0 0 . . . 1

 ∈ K(n−1)×n. (3)

The secret information X can be demasked by in-
ner product between two vectors as: X = 〈L,Z〉 =

∑n
i=1 LiZi. Finally, we introduce some handy subset

notations. Let Z = (Z1, . . . , Zn) = (Zi)i∈{1,...,n} be a
vector. We have:

ZI = (Zi)i∈I for I ⊆ {1, . . . , n}.

For instance, Z{i}∪{k+1,...,n}, for 1 ≤ i ≤ k ≤ n, repre-
sents the (n− k + 1) vector (Zi, Zk+1, Zk+2, . . . , Zn).

2.1.2 Security order regarding side-channel analysis

The security of IPM is stated in the probing model [17]:
the security order is the maximum number of shares
which are independent to masked information. We clar-
ify word-level and bit-level security orders as follows:

– Word-level (l-bit) security order dw: since
many devices perform computation on word-level
data, byte-level operations are very common es-
pecially on embedded devices. In this paper, we
also present instances for 4-bit (nibble) variables
for adopting IPM to protect implementation of
lightweight cipher like PRESENT, Simon and
Speck, etc.

– Bit-level security order db: in practice, each bit
of sensitive variable can be investigated indepen-
dently or/and several bits can be evaluated jointly.
We consider here the number of bits that can be
probed by attackers in one time, which is consis-
tent with the bit-level probing model proposed by
Poussier et al. [30].

The main advantage of IPM is the higher bit-level
security order than Boolean masking, which is called
“Security Order Amplification” in [36]. It has been
proven in [30] that side-channel resistance is directly
connected to the dual distance d⊥D of the code D gen-
erated by H. Precisely, the security order t of IPM is
equal to t = d⊥D − 1 [30].

The dual distance of linear code D is equal to the
minimum distance of the dual code D⊥ [23]. It is easy
to see that the latter has dimension 1 and is generated
by a 1× n matrix:

H⊥ =
(
1 L2 L3 . . . Ln

)
. (4)

In order to investigate the bit-level security, the defini-
tion of expansion is introduced as follows.

Definition 2 (Code Expansion) By using sub-field
representation, the elements inK = F2l are decomposed
into F2, we have:

SubfieldRepresentation:
(1, L2, . . . , Ln)2l −→ (Il,L2, . . . ,Ln)2,

(5)

where Il is the l × l identity matrix in F2 and Li (2 ≤
i ≤ n) are l × l matrices.
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To derive the matrices, we can use that F2l is a
field extension of F2, and given an irreducible polyno-
mial P over F2 and denoting each element a ∈ F2l as∑l−1

i=0 aiα
i [ mod P (α) ], replace a by (a0, . . . , al−1).

Under the computer algebra system Magma [35], P is
DefiningPolynomial(F2l) and D′ is the representation
of D in subfield (SubfieldRepresentationCode(D)).
If D has parameters [n, k, d]2l , then D′ has parame-
ters [nl, kl, d′]2, where d′ ≥ d. IPM opportunistically
exploits the fact that this inequality can be strict, and
attempts to maximize the difference d′ − d.

At word level, we notice that the dual distance of
D is equal to n as long as ∀i, Li 6= 0. As a result, the
word-level security order of IPM is dw = n− 1 which is
in consistence with [2]. In addition, security order db at
the bit-level of IPM is equal to the dual distance of the
code expanded by D from F2l to F2. A typical example
of IPM codes matrices G = (1, 0) and H = (L2 = α8, 1)

in F28 is given in Fig. 1. The security order at word
(byte) level is dw = n− 1 = 1 and at bit level is db = 3

because the dual code of D = span(H) is generated by
(1, L2), which, after projection in F2, has parameters
[16, 8, 4]2.
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Fig. 1 Dimensions of (typical) IPM encodings, for n = 2, on
l = 8 bits at byte-level. (Matrices G and H are examples.)

Moreover, addition and multiplication are proven to
be t = (n − 1)-order secure at word-level in [3] using
t-SNI property [4], thus the word-level security order
is maintained by composition. Still, when a variable
is reused, caution must be taken where a refresh al-
gorithm is always adopted to avoid dependence. The
refresh operation allows us to decorrelate two copies
of a variable that need to be used at two places (to
avoid side-channel flaws as put forward in [14]). How-

ever, IPM cannot detect faults since no redundancy is
inserted to the coding.

2.2 Direct Sum Masking

Direct sum masking has been originally introduced as
Orthogonal Direct Sum Masking (ODSM [5]). The se-
cret X is represented as a bitvector in Fl

2. It is en-
coded using generating matrix G (of size l × nl in F2)
as a word in Fnl

2 . Some random masks M, drawn uni-
formly in F(n−1)l

2 are encoded with matrix H (of size
(n− 1)l × nl). After masking the secret with the mask
materials, one gets the protected information:

Z = XG+MH. (6)

The features of the DSM are the following:

– Elements are bits;
– Computation on masked variable Z occurs matri-

cially;
– Side-channel protection is ensured at order d⊥D − 1;
– Fault detection allows detecting dC − 1 bitflips.

Orthogonal Direct Sum Masking (ODSM) is a partic-
ular case of DSM for which GHT = 0k×(n−k), or said
differently, C and D are mutually dual codes. An il-
lustration of DSM and ODSM is provided in Fig. 2. In
this figure, without loss of generality, the matrices G

and H are written in systemic form. The conditions for
C = span(G) and D = span(H) to be complementary
are recalled in the following

Lemma 1 ( [28, Proposition 1]) Let 0 ≤ k ≤ n, and

G =
(
Ik P

)
∈ Fk×n

2 and H =
(
L In−k

)
∈ F(n−k)×n

2 .

Then, the following three statements are equivalent:

1.
(
G

H

)
∈ Fn×n

2 is invertible;

2. Ik +PLT ∈ Fk×k
2 is invertible;

3. In−k + LPT ∈ F(n−k)×(n−k)
2 is invertible.

A detailed comparison between DSM and IPM is pro-
posed in Tab. 1.

On the contrary to IPM, the matrices G and H do
not have specific form (recall IPM matrices are format-
ted as Eqn. 2 and Eqn. 3). However, there is no gen-
eral inverse operation of “SubfieldRepresentation” (re-
call Def. 2) for DSM. Therefore, IPM is a special case
of DSM, but some DSM encodings (Eqn. 6) cannot be
represented as IPM.

ODSM uses orthogonal codes such that recovering
M is straightforward knowing Z: it consists in an or-
thogonal projection from spacevector Fnl

2 onto D. Ac-
tually, the complete commutative diagram involved in
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Table 1 Comparison between (O)DSM and IPM (-FD) schemes.

Features (O)DSM [5] IPM [2] Comments

Objects Bits Words
IPM can always be seen as a DSM scheme by subfield
representation. Reverse compatibility only if bitvectors

matrix multiplication can be promoted in F2l

Operations Matrix product Adapted Ishai-Sahai
-Wagner (ISW) [17]

ISW has been studied extensively

Side-channel protection
d⊥D − 1 is the

protection order
Same, albeit with two

notions: word and bit levels
For real-world (power/electromagnetic) attacks,

bit-level security is relevant [15]

Fault injection protection
dC − 1 bitflips
are detected

IPM-FD: Repetition code
(This paper)

IPM-FD could be empowered by using a better or
even optimal code instead of repetition code
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Fig. 2 Dimensions of (typical) DSM and ODSM encodings (on
F2), for k = 8 bit and n = 16 bit. (Matrices G and H are
examples.)

DSM is depicted in Fig. 3. The operations are explicited
below:

– Information vector X is encoded as XG (using lin-
ear application EC), while decoding of XG into X

is ensured by the decoding application DC ;
– Similarly, masking random variables M are encoded

as MH (using linear application ED). Decoding of
MH into M is ensured by the decoding application
DD;

– Creating an encoded word Z consists of adding one
codeword XG from C to one codeword MH from
D. In reverse, projections of Z ∈ Fnl

2 to C (resp.
D) are obtained by linear projection operation ΠC

(resp. ΠD).

When C and D are orthogonal, then GHT = 0, the all-
zero l× (n− 1)l matrix. As a result, we have ΠC(Z) =

ZGT(GGT)−1G and ΠD(Z) = ZHT(HHT)−1H as
in [5].

This allows for the verification that an attacker who
injects a fault has not corrupted (useless in terms of

ΠD

~Z = ~XG+ ~MH
DC

EC
~X ~XG

+

ΠC

~M
ED

DD

~MH

Fig. 3 Commutative diagram of DSM masking scheme with en-
coding and decoding.

exploitation) the masks M. In practice, the attack (ad-
dition of a nonzero bitvector ε ∈ Fnl

2 \{0}) is undetected
if and only if ε ∈ C. Indeed, otherwise ε has a nonzero
component in spacevector D, and the fault injection is
detected. The fault detection capability can be quanti-
fied in two models:

1. Assumption 1: the difficulty of the attack is larger
if the number of flipped bits is larger. Thus, un-
detected faults ε ∈ C\{0} must have Hamming
weights ≥ dC , where dC is the minimum distance
of code C.

2. Assumption 2: the attacker can corrupt Z regard-
less of the value of ε, but cannot control the value
of ε. Said differently, ε is a random variable uni-
formly distributed in Fnl

2 \{0}. This fault is unde-
tected provided ε ∈ C\{0}. As C has dimension l,
the cardinality of C\{0} is 2l − 1. Therefore, the
probability that the fault is not detected equals
2l−1
2nl−1 ≈ 2−l(n−1). This number is independent from
the code C, but depends on code D.

Thus, the probability of undetected faults gets lower
as l and n increases. However, this approach has three
drawbacks:

– First of all, the masks used in ODSM remain un-
changed during each call of cipher, which allows
fault detection. But the “static” masks may pose
a vulnerability since masks should be refreshed to
avoid unintended dependencies between sensitive
variables.

– Secondly, it allows only to check errors on states Z,
but not during non-linear computations (which are
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tabulated, i.e., operations on Z consist in lookup ta-
ble accesses). From a hardware point of view, this
means that ODSM allows us to detect faults in
sequential logic (e.g., register banks, RAM, etc.),
but not in combinational logic (e.g., logic gates or
ROM).

– Thirdly, during verification, that is the projection
of Z + ε in spacevector D, the state Z is manipu-
lated, hence additional leakage is produced, which
must be taken into account in the security evalua-
tion of ODSM representation (Eqn. 6). This is the
reason we suggest detecting faults at the very end
(end-to-end fault detection), like after encryption or
decryption.

The first two points are structural weaknesses, and
will be fixed in Alg. 1, starting from Section 3. For the
third one, some codes suitable for DSM are constructed
by Carlet et al. in [6] by duplicating the masksM, while
this solution does not allow an end-to-end scheme.

3 Novel end-to-end fault detection scheme

3.1 Rationale

The core idea in our new scheme is to duplicate (two
or more times) the secret X, rather than duplicating
masks M as in [6], so that it can be checked at the end
(when it is no longer sensitive–e.g., a ciphertext is a
non-sensitive variable, so as the plaintext).

Our new scheme is a IPM-like masking scheme,
called IPM-FD. Since IPM is a promising high-order
masking scheme, we extend it with fault detection
capability so that it can resist both side-channel
analysis and fault injection attacks simultaneously.
Specifically, we represent the information as a vector
(X1, X2, . . . , Xk) ∈ Kk where K = F2l .

We propose the new encoding as follows. Let us de-
note:

Definition 3 (IPM-FD data representation) Let
Xi ∈ K be the k copies of secret information, then the
encoding is represented as a tuple of n elements in K:

Z = (X1, X2, . . . , Xk︸ ︷︷ ︸
secrets X

) G+ (Mk+1, . . . ,Mn︸ ︷︷ ︸
masks M

) H

= (Z1, Z2, . . . , Zn),

(7)

where

G = ( Ik|| 0) ∈ Kk×n,

H = ( L || In−k) ∈ K(n−k)×n,

here Ik is the k × k identity matrix in K, and L is a
matrix of size (n − k) × k, that is L has coefficients
(Li,j)k<i≤n,1≤j≤k.

This definition 3 is a generalization of Def. 1. In prac-
tice, we will call Eqn. 7 with redundancy to detect
faults in the information X, i.e., (X1, X2, . . . , Xk) =

(X,X, . . . ,X) as:

Z = (X,X, . . . ,X)G+ (Mk+1, . . . ,Mn)H. (8)

For the sake of convenience, the IPM-FD encoding
used in this paper is depicted in Fig. 4. It illustrates a
protection using n = 3 shares of l = 8 bits, with the
following security features:
– dw = 1 (1st-order secure at byte-level), because dual

distance of H in F28 is 2;
– db = 3 (3rd-order secure at bit-level), since the dual

distance of the optimal H over F2 is 4 — the sub-
field representation (by Def. 2) of the dual code H⊥

spawn by
(
1 L2 L3

)
has parameters [24, 8, 4]2 where

we take L2 = α8 and L3 = α17 as optimal parame-
ters (from an exhaustive search over all possible can-
didates of L2 and L3 over F28) in this case (shown
in Fig. 4).
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Fig. 4 Dimensions (typical) of IPM-FD encodings, for n = 3,
k = 2 and l = 8 bits. (Matrices G and H are examples.)

Computation can be carried out on such Z, and
when it is over (e.g., the complete AES is finished), the
implementation can check whether the k copies of the
information are the same. This allows us to detect up
to (k−1) errors (there is an error if the k copies are not
equal to each other). It is worth noting that this model
is stronger than the one in ODSM where only errors
ε with Hamming weight wH(ε) > dC are detected in
ODSM.

Repeating X k times may increase the signal cap-
tured by the attacker by a factor k, however it is ir-
relevant to security order. Indeed, there is more signal,
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but it is correlated, therefore it has no impact on the
amount of information. Notice that, as a future exten-
sion, one might consider an encoding of information X
which is more efficient in terms of rate than the sim-
ple k-times repetition code X 7→ (X, . . . ,X). However,
such representation in Eqn. 8 allows for an end-to-end
security protection against fault injection attacks, as
illustrated in Alg. 1.

For fault detection, either the algorithm 1 is started
from scratch, or other actions, such as event logging
for subsequent analysis (aiming at taking proactive ac-
tions to plug this leak), are triggered off. It is obvious
that detecting fault in each intermediate phase can be
carried out at any place in Alg. 1, especially during
step 5. However, such precaution is superfluous, as an
overall check is done at the end, that is at line 8. In
addition, intermediate checks would disclose when the
fault occurs (e.g., at which round), which delivers pre-
cious feedback to the attacker regarding the accuracy
and the reproducibility of the setups.

Algorithm 1: End-to-end protection of a cryp-
tographic algorithm (here AES-128) against
fault injection attacks using IPM-FD scheme
input : Plaintext X ∈ F16

28 , key K ∈ F16
28 , and number

of detected faults df = k − 1, number of shares
n = dw +1, bit-level security order db = d⊥D −1

output: Ciphertext, or ⊥ if a fault has been detected
1 The matrices G and H (corresponding to code C and D,

respectively) are determined with respect to the
requirements on side-channel and fault protection
dw, db and df

2 M←R F16×(n−k)
28

3 Z← (X, . . . ,X)G+MH // Recall Eqn. 8
4 . . .
5 Arithmetic operations for the (secure) computation,

using Lagrange interpolation polynomial. This includes
additions (Alg. 2) and multiplications (Alg. 4)

6 . . .
7 (X1, . . . , Xk)← ΠC(Z) // Recall ΠC(Z) in Fig. 3
8 if X1 = . . . = Xk then
9 return X1

10 else
11 return ⊥

Therefore, the design of IPM-FD scheme for a spe-
cific cryptographic algorithm can be simplified to se-
lect good parameters G and H, which corresponding
to choose good codes for IPM-FD. We first show how
to perform basic operations in the next subsection.

3.2 Computing with representation of IPM-FD

First of all, we present one instance of IPM-FD with k =

2 to clarify its encoding. We denoteX = (X1, X2) ∈ K2,
and M = (M3, . . . ,Mn) ∈ Kn−2. Thus, we have Eqn. 7
such that,

G =

(
1 0 | 0 0 . . . 0

0 1 | 0 0 . . . 0

)
,

H =


L3,1 L3,2 | 1 0 . . . 0

L4,1 L4,2 | 0 1 . . . 0
...

... | 0 0
. . . 0

Ln,1 Ln,2 | 0 0 . . . 1

 ,

or said differently, we have Z = (Z1, . . . , Zn) ∈ Kn

which is equal to:

Z1 = X1 + L3,1M3 + L4,1M4 + . . .+ Ln,1Mn

Z2 = X2 + L3,2M3 + L4,2M4 + . . .+ Ln,2Mn

Zi = Mi for 3 ≤ i ≤ n

Here, we can see that (Z1, Z3, . . . , Zn) ∈ Kn−1 and
(Z2, Z3, . . . , Zn) ∈ Kn−1 are two IPM sharings [2].
Therefore, we have k = 2 ways to demask:

〈L1,Z〉 = X1 = X, and 〈L2,Z〉 = X2 = X,

where as a convention, L1,1 = L2,2 = 1, L1,2 = L2,1 = 0

and:

L1 = (Li,1)1≤i≤n ∈ Kn, and L2 = (Li,2)1≤i≤n ∈ Kn.

It is known that universal computation can be
achieved by Lagrange interpolation, which only requires
addition and multiplication. Hereafter, we present three
basic algorithms, with the most general case (k words of
information and scalable with different k) used to build
a complete masked cryptographic implementation.

3.2.1 Secure addition of IPM-FD

With Eqn. 8, we denote encoding of X and X ′ by Z

and Z′ respectively, thus the addition is linear and can
be calculated straightforwardly as in Alg. 2.

3.2.2 Secure refresh algorithm for IPM-FD

As suggested in [31], we need to apply a refresh algo-
rithm after each squaring operation to keep indepen-
dence between masks (Alg. 4 with Z = Z′). The al-
gorithm for the refresh of IPM-FD is given in Alg. 3.
Notice that this algorithm can be computed in-place,
meaning that the output overwrites the input.



8 W. Cheng, C. Carlet, K. Goli, J.-L. Danger, S. Guilley

Algorithm 2: Secure addition in IPM-FD
input : Two sets of scalar tuples X = (X1, . . . , Xk)

and X′ = (X′1, . . . , X
′
k) shared as:

– Z = (Z1, . . . , Zn) = (X1 +
∑n

i=k+1 Li,1Mi, . . . , Xk +∑n
i=k+1 Li,kMi,Mk+1, . . . ,Mn) ∈ Kn,

– Z′ = (Z′1, . . . , Z
′
n) = (X′1 +

∑n
i=k+1 Li,1M

′
i , . . . , X

′
k +∑n

i=k+1 Li,kM
′
i ,M

′
k+1, . . . ,M

′
n) ∈ Kn.

output: A sharing R = (R1, . . . , Rn) ∈ Kn such that,
for all j (1 ≤ j ≤ k),
〈R{j}∪{k+1,...,n},L{j}∪{k+1,...,n},j〉 =
Xj +X′j

1 R = (Z1 + Z′1, . . . , Zn + Z′n)
2 return R

Algorithm 3: IPM-FD refresh algorithm
input : Let k < n. One IPM-FD sharing

Z = (X1, . . . , Xk) G+ (Mk+1, . . . ,Mn) H, as
defined in Eqn. 7

output: An equivalent IPM-FD sharing
Z′ = (X1, . . . , Xk) G+ (M ′k+1, . . . ,M

′
n) H,

where (Mk+1, . . . ,Mn) is independent from
(M ′k+1, . . . ,M

′
n).

1 Z′ ← Z // When computed in-place, Z′ is not
needed.

2 for i ∈ {k+ 1, . . . , n} do
3 ε←R K // Fresh random variable
4 Z′i ← Z′i + ε

5 for j ∈ {1, . . . , k} do
6 Z′j ← Z′j + Li,jε

7 return Z′ ∈ Kn.

3.2.3 Secure multiplication of IPM-FD

Secure multiplication can be achieved by selecting only
one amongst the k first coordinates, while keeping the
(n − k) masks, and multiplying (n − k + 1) shares by
using the original IPM multiplication. Therefore, mul-
tiplication of IPM-FD is implemented in Alg. 4.

Multiplication is repeated k times on shares in
Kn−k+1, and the resulting P[j] ∈ Kn−k+1 for j ∈
{1, . . . , k} are applied from line 4 to line 6 as in Alg. 4
to homogenize masks in (k− 1) sharings with the same
masks as P[1].

We refer to line 4 to line 6 of Alg. 4 as the ho-
mogenization algorithm used to merge the results P[j]

where 1 ≤ j ≤ k. Thus we have the following lemma,
which applies to non-redundant sharings such as that
of Eqn. 1.

Lemma 2 (Homogenization of two sharings) Let
Z = (Z1, . . . , Zn) and Z′ = (Z ′1, . . . , Z

′
n) be two shar-

ings, that 〈L,Z〉 = X and 〈L′,Z′〉 = X ′. There exists
an equivalent sharing Z′′ and an algorithm to transform

Algorithm 4: Secure multiplication of IPM-
FD with k pieces of information
input : Two sets of scalar tuples X = (X1, . . . , Xk)

and X′ = (X′1, . . . , X
′
k) shared as:

– Z = (Z1, . . . , Zn) = (X1 +
∑n

i=k+1 Li,1Mi, . . . , Xk +∑n
i=k+1 Li,kMi,Mk+1, . . . ,Mn) ∈ Kn,

– Z′ = (Z′1, . . . , Z
′
n) = (X′1 +

∑n
i=k+1 Li,1M

′
i , . . . , X

′
k +∑n

i=k+1 Li,kM
′
i ,M

′
k+1, . . . ,M

′
n) ∈ Kn.

output: A sharing P = (P1, . . . , Pn) ∈ Kn such that,
for all j (1 ≤ j ≤ k),
〈P{j}∪{k+1,...,n},L{j}∪{k+1,...,n},j〉 = Xj ·X′j

1 for j ∈ {1, . . . , k} do
2 P[j]← IPMult(Z{j}∪{k+1,...,n}, Z

′
{j}∪{k+1,...,n})

// IPMult is Alg. 5 of [2]
3 Let us write P[j] as (Pj , Nk+1,j , . . . , Nn,j), where

Pj = XjX
′
j +

∑n
i=k+1 Li,jNi,j ∈ K

4 for j ∈ {2, . . . , k} do // Masks homogenization
between P[1] and P[j]

5 for i ∈ {k+ 1, . . . , n} do
6 Pj ← Pj + Li,j(Ni,1 +Ni,j)

// (Pj , Nk+1,1, . . . , Nn,1) is a sharing of XjX
′
j

by (n− k) masks of P[1]

7 return P = (P1, . . . , Pk, Nk+1,1, . . . , Nn,1) ∈ Kn.

Z′ into Z′′ such that Z and Z′′ share all coordinates but
the first one.

Proof We apply a pivot technique to Z′′. Let ε ∈ K. We
notice that the new sharing Z′′ = Z′+(L′2ε, ε, 0, . . . , 0),
also represents the same unmasked value as Z′ does.
Indeed, 〈L′, Z ′〉 = X ′, and 〈L′, (L′2ε, ε, 0, . . . , 0)〉 =

L′2ε + L′2ε = 0. By choosing ε = Z′2 + Z2, we get for
Z′′:

Z′′ = (Z ′1 + L′2(Z
′
2 + Z2), Z2, Z

′
3, . . . , Z

′
n).

Therefore, Z′′ now has the same the second share (co-
ordinate at position 2) with Z. The complete homoge-
nization is thus the repetition of this process for all the
coordinates i ∈ {2, . . . , n}. Notice that this algorithm
does leak information neither on Z nor on Z′, since it
consists only of additions of masks to a sharing from an
independent sharing. It is akin to a refresh procedure
albeit where the new masks are actually a compensation
of Z′ masks by those of Z, whilst keeping the masking
invariant of Eqn. 1. Actually, it is a refresh algorithm
using the masks of the difference Z⊕ Z′. ut

By using Alg. 1, one can start with plaintext & key
representation as Eqn. 8 and carry addition / multipli-
cation (and refresh if needed) to implement any crypto-
graphic algorithms like AES, and end up with a cipher-
text still with the form as Eqn. 8. Hence verification
can be done only at the very end. Another advantage



Detecting Faults in Inner Product Masking Scheme 9

of IPM-FD is its scalability, by choosing different values
of k and n.

4 Security analysis of IPM-FD and optimal
codes selection

The security level of IPM-FD can be characterized by
three metrics, namely word-level security order dw, bit-
level security order db and number of detected faults df
(for instance, if the number of faulted words is smaller
than df + 1, then the fault will be detected). In this
section, we show the security order of IPM-FD and how
to choose optimal codes by interpreting IPM-FD as a
coding problem.

4.1 Security of fault detection

We assess the security of IPM-FD against fault injection
attacks in a coding theoretic approach. Assume a code
of parameters [n, k, d]q over Fq, there are three kinds of
attackers in the state-of-the-art:

– An attacker which can corrupt one to d−1 symbols
(elements of field Fq). We assume here that faulting
two symbols is somehow more difficult than faulting
one symbol, etc. It is all the more difficult to fault,
for the attacker, as more symbols must be corrupted
simultaneously.

– An attacker which can randomly change a codeword
to a different one, which may not be a valid code-
word. We assume that the attacker has no control
over the faulted value and if the faulted value is a
valid codeword then the fault can not be detected.

– An attacker which can choose the error ε that best
suits him. In this scenario, the attacker will choose
ε which maximizes her advantage, on replacing all
codewords z by z + ε. This model assumes a much
stronger attacker, but it does not always represent
a realistic use-case as the requirements (costs) are
quite high. This model has been promoted initially
by Mark Karpovsky et al. [18–20], who also pro-
posed robust codes and algebraic manipulation de-
tection (AMD) codes.

Accordingly, the probabilities to detect a fault in those
three cases are:

– 100% for the first case when the number of faulted
symbols < d. But this holds only if the verification
can be done on each and every codeword, which is
not the case for us (we check only at the very end).
Thus we cannot claim any security level when chain-
ing operations.

– 1 − 2k−n for the second case. This detection rate
is also valid end-to-end (i.e., with verification de-
layed on the ciphertext). Indeed, there are two cases:
either the fault replaces a codeword with a valid
codeword, and this will not be detected, neither
by checking right on the targeted codeword nor
later on. Same reasoning otherwise: if the fault re-
places a codeword by a non-codeword, then the non-
codeword will keep being a non-codeword after all
the operations (and we do not consider double faults
here). Therefore, detection (in code or not) can be
carried out at any point in time after the fault has
been injected.

– 1 − |C ∩ (C + ε)|/|C| for the third case. Same rea-
soning as for the second case – this metric will stay
unaltered throughout the computation.

In our IPM-FD setup, we support the last 2 models.
Since we use the repetition code in IPM-FD, the min-
imum distance of the linear code C is dC = k. Hence,
the security in sense of fault injection attack is now
assessed with respect to number of detected faults as:

df = k − 1. (9)

It is obvious that any faults can be detected if the k
copies of results are inconsistent.

4.2 Security order of IPM-FD on SCA resistance

The addition and refresh algorithms are secure since
there is no degradation on masks, we focus on multi-
plication algorithm Alg. 4 and we have the following
Theorem 1.

Theorem 1 The multiplication of IPM-FD in Alg. 4
is d⊥D − 1 order secure.

Proof The k times of IPMult multiplications at line 2
are secure at (n−k)-th order [2]. After their application,
the k shared variables P[j], 1 ≤ j ≤ k, are masked by
Ni,j (k + 1 ≤ i ≤ n, 1 ≤ j ≤ k) that are (n − k) × k
uniformly distributed and i.i.d. random variables.

At step 6, indexed by i (k+1 ≤ i ≤ n), the contents
of Pj is:

Pj = XjX
′
j +

(
i∑

i′=k+1

Li′,jNi′,1

)
+

(
n∑

i′=i+1

Li′,jNi′,j

)
.

(10)

It is easy to see that any combinations of intermedi-
ate variations with mixed variables masked by Ni,j and
Ni,j′ , for j 6= j′, requires more intermediate values to
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be probed than strategies which focus on a given Ni,j

(for a given j).
The key-dependent variables which are only in Pi,1

(since homogenization process consists in turning Ni,j

into Ni,1) are those at:

– line 2: X1X
′
1 +

∑n
i=k+1 Li,1Ni,1, and the (n − k)

masks Ni,1 (k + 1 ≤ i ≤ n);
– line 6: for i = n, Pj = XjX

′
j +

∑n
i=k+1 Li,jNi,1.

Finally, those shares are combined in an orderly manner
as P (line 7). Together, they have the shape:

P = (X1, . . . , Xk)G+NH,

where N = (Nk+1,1, . . . , Nn,1) ∈ Kn−k is a uniformly
distributed tuple of i.i.d random variables. Since d⊥D−1

columns of H are independent [22, Theorem 10], which
means if the attacker probes up to d ≤ (d⊥D − 1) vari-
ables, the secret Xj encoded as an element of Fn−k+1

2l

is perfectly masked. The security order of Alg. 4 is
(d⊥D − 1). ut

In summary, the security order at word-level dw
and bit-level db of IPM-FD corresponding to (d⊥D − 1)

at word-level and (d⊥′D − 1) bit-level (by Code Expan-
sion defined in Def. 2), respectively. In particular, the
maximum word-level security order dw is (n− k), since
d⊥D ≤ (n−k+1) from Singleton bound [34], with equal
if and only if d⊥D is maximized.

4.3 Choosing optimal codes for IPM-FD

Two security orders dw and db are connected to dual
distance of D at word-level and bit-level, by encoding
Eqn. 7 and Eqn. 8. Thus, we can search for minimal n
satisfying the given requirements on the three parame-
ters df , dw and db. Since the best db is very difficult to
obtain, we first search for codes given df and dw, then
find the best one with respect to optimal db. For the
first step, the Alg. 5 is adopted for selecting codes with
minimal n given df and dw. In this algorithm, BKLC
is short for “Best Known Linear Code”.

The second step is to choose the best code with
maximal bit-level security order db. We propose Alg. 6
to select optimal codes with maximized db. Notice that
this algorithm 6 is conceptual, as in line 3, it is not
possible in practice to enumerate all codes. This line
is to be understood according to either some algebraic
code construction (parametric design pattern, greedy
algorithm, etc.) or code random choice (using genetic
algorithms, random generating matrices, etc.).

1 BKLC is the short of the Best Known Linear Codes in
Magma [35].

Algorithm 5: Selecting codes given df and dw.
input : l for K = F2l , df for number of detected faults

and dw for word-level side-channel security
output: the minimal n satisfying the requirements

1 n← dw // n is at least the minimum distance of
the code generated by H⊥

2 while
MinimumDistance([BKLC(GF (2l), n, df +1)] < dw) 1

do
3 n← n+ 1

4 return n

Algorithm 6: Choosing optimal codes with
maximal db.
input : l for K = F2l , df for number of detected faults,

dw for word-level side-channel security and
number of shares n

output: the maximal db and optimal code D
1 db ← dw // Security order at bit-level is

greater than word-level
2 Dopt ← null

3 forall code D = [n, df + 1, dw + 1]2l do // Conceptual
4 D2 ← SubfieldRespresentation(D,GF (2))
5 if db < MinimumDistance(D2) then
6 db ← MinimumDistance(D2)
7 Dopt ← D

8 return db, Dopt

We present some examples for codes in F28 in Tab. 2
(for F24 in Tab. 5, resp) calculated by Magma for small k
and n. Interestingly, we compare the original IPM and
IPM-FD with n and n+ 1 shares respectively, since in
IPM-FD redundancy is needed for fault detection. For
IPM with n = 3, we have optimal parameters dw = 2

and db = 5, while for IPM-FD with n = 4, k = 2,
the optimal dw and db are dw = 2 and db = 4. Hence
there is a trade-off for fault detection, which sacrifices
the bit-level side-channel resistance. For instance, for
k = 2, we can detect one error.

We recall that the security order of IPM at bit-level
is given by the minimum distance of the code generated
byH⊥ = (1, L2, . . . , Ln) (projected fromK = F2l to the
binary ground field Fl

2). Now, adding fault detection ca-
pability, the security order of IPM-FD becomes that of
the minimum distance of the code generated by Eqn. 11.
However, the minimum distance of this code is less
than that generated by either: (1, L3,1, L4,1, . . . , Ln,1)

or (1, L3,2, L4,2, . . . , Ln,2).

H′⊥ =

(
1 0 L3,1 L4,1 . . . Ln,1

0 1 L3,2 L4,2 . . . Ln,2

)
. (11)

2 In Tab. 2, the maximal db for IPM codes with n = 4 shares
in F28 is only 10 (d⊥D = 11), not 11 as showed in [30]
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Table 2 Instances of codes with X ∈ K = F28 , db in IPM entries are consistent with results provided in [30].

Inputs Outputs of Alg. 5 and Alg. 6
#faults df dw n db Setting

IPM

0 0 1 0 H⊥ =
(
1
)

0 1 2 3 H⊥ =
(
1 α8

)
0 2 3 7 H⊥ =

(
1 α8 α26

)
0 3 4 102 H⊥ =

(
1 α8 α26 α17

)

IPM-FD

1 0 2 0 H⊥ =

(
1 0

0 1

)
1 1 3 3 H⊥ =

(
1 0 α8

0 1 α17

)
1 2 4 6 H⊥ =

(
1 0 α8 α20

0 1 α27 α7

)

4.4 Comparison between IPM-FD and Boolean
masking with fault detection

We recall that, in the state-of-the-art about masking
countermeasures, Boolean Masking (BM, [25, §4]) is
presented as a particularly convenient masking scheme,
since sharing and demasking only involves XOR oper-
ations. In contrast, IPM, in addition to field additions
(XORs), is furthermore encumbered with field multipli-
cation with constants (the Li ∈ K values). This makes
implementations more complex on programming (code
size) and less efficient to implement. In practice, BM
is thus a particular case of IPM, where all coefficients
Li = 1 ∈ K.

Still, one historical advantage of IPM over BM,
which initially justified for the scheme, is that, at a
given side-channel security order at word-level, IPM is
more efficient at bit-level (e.g., when the leakage model
is the Hamming weight or the Hamming distance).

Now, in this paper, we put forward a second ad-
vantage of IPM, in the context of fault detection (FD).
Tab. 3 compares IPM-FD with BM-FD in this respect.
It clearly appears that fault detection is not straight-
forward in BM-FD, whereas it is for IPM-FD. As an
example, when detecting one single fault (df = 1), and
targeting a second-order protection in terms of word-
level side-channel, IPM-FD manages to reach dw = 2

with only n = 4 shares, thanks to:

H⊥ =

(
1 0 α8 α20

0 1 α27 α7

)
∈ F2×4

28 .

While in Boolean masking scheme counterpart (i.e., in
BM-FD), it is not possible to reach a minimum distance
for H⊥ of value = 3 with a code length n = 4. Indeed,
in systematic form, it would look as:

H⊥ =

(
1 0 ? ?

0 1 ? ?

)
.

Now, as the minimum distance is 3, the weight of each
line must be 3. Therefore, all 2+ 2 question marks (“?”
symbol) must be nonzero, that is equal to 1 (in the case
of BM). Hence, the difference between the two lines is
equal to

(
1 1 0 0

)
, which has a weight = 2. Therefore a

contradiction. However, let us notice that the problem
can be solved by considering a length extended by one,
that is:

H⊥ =

(
1 0 ? ? ?

0 1 ? ? ?

)
,

where amongst the three question marks in one line,
at least two are nonzero (= 1). Knowing that the con-
straint is not only to have the number of ones ≥ 3 in
each line, but also in the sum of the two lines, we can
use:

H⊥ =

(
1 0 0 1 1

0 1 1 1 1

)
∈ F2×5

28 .

But its length is n = 5, i.e., larger by one unit compared
to IPM case, where constants can be chosen arbitrarily
in the whole F256 and not only in {0, 1} ⊂ F256.

Table 3 Comparison of dw, db between IPM-FD and BM-FD
(Boolean masking with fault detection) for X ∈ K = F28 , and
for dw ∈ {1, 2, 3}. Note that here we set df = 1 (meaning k = 2)
for a fair comparison.

dw
IPM-FD BM-FD

n db n db

0 2 0 2 0
1 3 3 3 1
2 4 6 5 2

Summarizing up, as shown in Tab. 3, the IPM-FD is
better than BM-FD in two aspects given the same df .
Firstly, IPM-FD needs less shares than BM-FD when
achieving the same word-level security order (denoted
in red bold font in Tab. 3). Secondly, the bit-level
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security order in IPM-FD is much higher than in BM-
FD given the same dw (denoted in black bold font in
Tab. 3). It is worthy noting that the advantages of IPM-
FD over BM-FD become much larger when the number
of shares increases. However, in order to find the good
or even optimal codes for IPM-FD, it is necessary to
turn to DSM scheme.

5 Practical implementation and performances

We implement IPM-FD scheme on AES-128 based on
(thanks to) open-source implementation of masked AES
by Coron et al. [12,13]. All the computations are made
with additions, multiplications and lookups in some
pre-computed tables. The random number generator
comes from the Sodium library [16]. Each sensitive vari-
able (16× (10+1) subkeys from the Key Schedule rou-
tine and 16 bytes in state array), is masked into n shares
using n−k random bytes. In particular, regarding non-
linear operations, the S-box of a masked value is com-
puted online instead of the 256-sized table, where its
polynomial expression obtained via Lagrange interpo-
lation:

x ∈ F28 7→ 63+ 8fx127 + b5x191 + 01x223 + f4x239

+ 25x247 + f9x251 + 09x253 + 05x254.

After demasking a shared variable, we check that
the data has no faults injected by comparing the k

copies and raising an alarm if any fault is detected.
Our implementation works for any n ≥ k. Specially,
for n < 5 and k < 3 we choose the Best Known Lin-
ear Code (BKLC) D obtained with Magma otherwise we
randomly generate a matrix for masking.

Our implementation of IPM-FD on AES (in C) is
publicly available [9]. Furthermore, the optimal linear
codes for IPM by an exhaustive study are available [10].

5.1 Performance evaluation

We make a comparison for the same security order at
word-level, between:

– No fault detection (classic IPM, k = 1) – this is our
reference

– Single fault detection by temporal redundancy (re-
peat twice the IPM computation)

– Single fault detection embedded into IPM (so-called
IPM-FD for k = 2)

Performance-wise, Tab. 4 shows that two fault de-
tection strategies (temporal repetition and IPM-FD)
are at essentially the same cost.

But if we consider the most time-consuming opera-
tion - the field multiplication: the number of field mul-
tiplications in IPM on n shares (Alg. 5 of [2]) is 3n2−n.
While the number of multiplications in IPM-FD on n

shares is:

– k(3(n− k + 1)2 − (n− k + 1)) regarding the k IPM
multiplications on n− k + 1 shares,

– (k−1)(n−k) regarding the (k−1) homogenizations.

Hence a total complexity of k(3(n− k+ 1)2 − (n− k+
1)) + (k − 1)(n− k), that is:
– 3n2 − n for IPM-FD with k = 1,
– 6n2 − 13n+ 6 for IPM-FD with k = 2.

Now, we have that 2 × (3n2 − n) > 6n2 − 13n + 6,
which are shown in Fig. 5. Therefore it is more inter-
esting, complexity-wise, to use IPM-FD for k = 2 than
repeating a computation twice.
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Number of shares n

0

100

200

300

400

500

600

Nu
m

be
r o

f f
ie

ld
 m

ul
tip

lic
at

io
ns

Two consecutive IPM: IPM-FD with k = 1
IPM-FD with k = 2

Fig. 5 Comparison of number of field multiplications in terms
of n, where k = 1 for IPM and k = 2 for IPM-FD, respectively.

Notice that temporal redundancy is prone to fault
injection attacks [29, 32], whereby an attacker would
reproduce exactly the same fault on the repeated exe-
cutions. Therefore, our IPM-FD is intrinsically stronger
against fault attacks, at the same cost in terms of exe-
cution speed.

6 Conclusion and perspectives

IPM shows an advantageous property - higher security
order at bit-level db than at word-level - as a promising
alternative to Boolean masking. In this paper, we pro-
pose a novel end-to-end fault detection scheme called
IPM-FD, which is a IPM-like scheme to detect faults
by redundancy on secrets rather than on masks. The
IPM-FD is also a unified scheme to resist side-channel
analysis and fault injection attack simultaneously. We

https://libsodium.gitbook.io/
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Table 4 Performance comparison of IPM-FD with and without fault detection. Speed is the runtime in milliseconds averaged over
1000 runs on a PC with 2.8 GHz 6-core processor, and random is the number of generated random bytes when masking and refreshing.

Security order IPM (baseline) Two consecutive
executions of IPM

IPM-FD k = 2

dw = 1
n = 2 (db = 3),
speed = 1.52,

random = 1936

n = 2 (db = 3),
speed = 3.04,

random = 3872

n = 3 (db = 3),
speed = 2.93,

random = 3856

dw = 2
n = 3 (db = 7),
speed = 2.25,

random = 5152

n = 3 (db = 7),
speed = 4.50,

random = 10304

n = 4 (db = 6),
speed = 4.31,

random = 10272

also present an example by applying IPM-FD to AES
and provide a comparison on performance with differ-
ent settings.

As a perspective, we notice that the performances
of both IPM and IPM-FD can be improved by choos-
ing small (or sparse) values for Li,j ∈ K scalars. This
strategy is similar to that already employed by Rijndael
inventors, for instance when designing the MixColumns
operation. This raises the question of finding codes with
sparse matrices of high dual distance.

Secondly, we show in Tab. 2, 5 and 6 for results
by an exhaustive study, which is very time-consuming
and even impossible to find the optimal one when the
number of shares n gets larger. Hence, a systematic
(e.g., algebraic) construction of better codes than mere
repetition codes is much more preferable and could be
leveraged. However, it is still an open problem to con-
struction optimal or suboptimal codes for IPM-FD. One
possible approach is to convert some constructions [6]
in DSM to IPM-FD which needs further study.

Besides, we notice that our fault detection paradigm
applies also to the case of Boolean masking, i.e., IPM
where all constants Li,j are equal to 1, which can also
enable enhancements of currently deployed software
code with respect to detection of perturbations.
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A Optimal codes for IPM-FD with k = 2

By using Magma [35], we present some instances for IPM-FD with
k = 2, in particular K = F24 in Tab. 5 and K = F2 in Tab. 6,
respectively. Interestingly, we notice that for K = F2 the best
minimum distance of H⊥ is equal to BKLC(GF(2), n, 2), where
n is the same as in the Tab. 6.

Table 5 Examples with K = F24 , db and dw are side-channel security orders at bit-level and word-level, respectively.

Inputs Outputs of Alg. 5 and Alg. 6
#faults df dw n db Setting

IPM

0 0 1 0 H⊥ =
(
1
)

0 1 2 2 H⊥ =
(
1 α5

)
0 2 3 5 H⊥ =

(
1 α5 α10

)
0 3 4 7 H⊥ =

(
1 α5 α9 α13

)
0 4 5 9 H⊥ =

(
1 α5 α9 α12 α1

)
0 5 6 11 BKLC(GF (2), 4 ∗ 6, 4) ' [24, 4, 12]

IPM-FD

1 0 2 0 H⊥ =

(
1 0

0 1

)
1 1 3 2 H⊥ =

(
1 0 α5

0 1 α10

)
1 2 4 4 H⊥ =

(
1 0 α5 α11

0 1 α11 α4

)

Table 6 Examples with K = F2, dw and db are security orders at word-level and bit-level, respectively. In this case, the same codes
can also be used in BM-FD while BM-FD is defined over K = F2l .

Inputs Outputs of Alg. 5 and Alg. 6
#faults df dw n db Setting

IPM

0 0 1 0 H⊥ =
(
1
)

0 1 2 1 H⊥ =
(
1 1
)

0 2 3 2 H⊥ =
(
1 1 1

)
0 3 4 3 H⊥ =

(
1 1 1 1

)
0 4 5 4 H⊥ =

(
1 1 1 1 1

)
0 5 6 5 H⊥ =

(
1 1 1 1 1 1

)
0 6 7 6 H⊥ =

(
1 1 1 1 1 1 1

)
0 7 8 7 H⊥ =

(
1 1 1 1 1 1 1 1

)
0 8 9 8 H⊥ =

(
1 1 1 1 1 1 1 1 1

)
0 9 10 9 H⊥ =

(
1 1 1 1 1 1 1 1 1 1

)

IPM-FD
(BM-FD)

1 0 2 0 H⊥ =

(
1 0
0 1

)
1 1 3 1 H⊥ =

(
1 0 1
0 1 1

)
1 2 5 2 H⊥ =

(
1 0 1 1 0
0 1 1 1 1

)
1 3 6 3 H⊥ =

(
1 0 1 1 0 1
0 1 1 1 1 0

)
1 4 8 4 H⊥ =

(
1 0 1 1 0 1 0 1
0 1 1 1 1 0 1 0

)
1 5 9 5 H⊥ =

(
1 0 1 1 0 1 0 1 1
0 1 1 1 1 0 1 0 1

)
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