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Intrinsic Resiliency of S-boxes Against
Side-Channel Attacks – Best And Worst Scenarios

Claude Carlet, Éloi de Chérisey, Sylvain Guilley, Selçuk Kavut, and Deng Tang

Abstract—Constructing S-boxes that are inherently resistant
against side-channel attacks is an important problem in cryp-
tography. By using an optimal distinguisher under an additive
Gaussian noise assumption, we clarify how a defender (resp., an
attacker) can make side-channel attacks as difficult (resp., easy)
as possible, in relation with the auto-correlation spectrum of
Boolean functions. We then construct balanced Boolean functions
that are optimal for each of these two scenarios. Generalizing the
objectives for an S-box, we analyze the auto-correlation spectra
of some well-known S-box constructions in dimensions at most
8 and compare their intrinsic resiliency against side-channel
attacks. Finally, we perform several simulations of side-channel
attacks against the aforementioned constructions, which confirm
our theoretical approach.

Index Terms—Substitution boxes (S-boxes), Cryptography,
Side-channel analysis, Constructions.

I. INTRODUCTION

S -BOXES are prominent targets for side-channel attacks,
because they allow, from an attacker standpoint, to distin-

guish clearly between correct and incorrect hypotheses on key
guesses. It has already been underlined in early papers [22],
[47], [7], [23] that a notion of correlation for S-box coordinate
functions relates to the side-channel efficiency.

Recently, the article [12] revisited from a mathematical
point of view the link between S-box properties and side-
channel attacks. However, the scope of this analysis is limited,
since it targets a particular attack (namely the differential
power analysis [28]) and a particular kind of attacked device
(namely a hardware implementation with precharge logic
which leaks in the Hamming weight model).

In this article, we generalize the analysis by leveraging
on the optimal side-channel attack. The optimal side-channel
attack consists in the maximum likelihood distinguisher, con-
sidering that the leakage model is known by the attacker. In
particular, there is no issue of possible misinterpretation of the
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output with this distinguisher, as opposed to particular attacks,
such as differential power analysis, where either the largest or
the smallest bias (positive or negative peak) betrays the correct
key. Therefore, in this paper, the criterion does not need to
resort to absolute values (as is the case in [12]). Moreover,
we aim to be independent of specific leakage models, hence
we consider the simple mono-bit leakage model. As noticed in
the seminal paper about side-channel attacks [28], the mono-
bit leakage model allows for a direct connection between the
target algorithmic properties of the S-box and the side-channel
attack.

a) Contributions: In this paper, we show that, in the
case of mono-bit side-channel attacks, the attack outcome
is determined by the auto-correlation of the targeted S-box
coordinates. This criterion is not usually considered when
analyzing S-boxes. Therefore, we study both best and worst
cases of S-boxes which optimize also the auto-correlation
parameter. General constructions are studied, which are pri-
marily optimizing the auto-correlation, considering the set of
the other classical robustness metrics as a second improvement
factor. As an interesting byproduct, the value of autocorrelation
for Dobbertin’s iterative construction is provided. Besides,
some particular constructions, leveraging rotation-symmetric
S-boxes, also reveal new S-boxes.

b) Outline: The rest of the paper is structured as follows.
Section II provides the necessary mathematical tools useful
for the subsequent analyses. The next section III explains
how side-channel attacks relate to the auto-correlation function
of the S-box coordinates. S-boxes taking into consideration
the optimization of this new parameter are constructed in
Sec. IV. Specific rotation-symmetric S-boxes are analyzed
under the same prism in Sec. V (and some truth tables are
listed in Appendix A. Practical evaluation using simulated
side-channel is carried out in Sec. VI. The same section
also lists open-issues not resolved in this paper. Eventually,
Sec. VII concludes the paper.

II. PRELIMINARIES

A. Mathematical Definition of S-boxes

We denote by F2 = {0, 1} the finite field with two
elements; Fn2 is the n-dimensional vectorspace over F2. The
(canonical) inner product over Fn2 is the F2-bilinear operation:
(a, b) 7→ a · b =

⊕n
i=1 aibi. A linear hyperplane is a vector

subspace whose dimension is one less than that of its ambient
space. In Fn2 , the linear hyperplanes are the sets of equation
a · x = 0 where a 6= 0. An n × m S-box (or equivalently,
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an (n,m)-function) F : Fn2 → Fm2 can be considered as the
parallelization of m Boolean functions sharing the same input:

fi : Fn2 → F2, where 1 ≤ i ≤ m,
so that F (x) = (f1(x), f2(x), . . . , fm(x)) for all x ∈ Fn2 . The
functions (fi)1≤i≤m are called the coordinate functions of F ,
and their linear combinations c ·F =

⊕m
i=1 cifi with non-all-

zero coefficient vectors c = (c1, c2, . . . , cm) ∈ Fm2
∗ are called

the component functions of F .
For any x = (x1, x2, . . . , xn) ∈ Fn2 , we define a cyclic

permutation ρ on x by ρ(x) = (x2, x3, . . . , xn−1, x1). Then
an n ×m S-box F is said to be rotation symmetric (RSSB)
if F (ρ(x)) = ρ(F (x)) for all x = (x1, x2, . . . , xn) ∈ Fn2 . For
instance, any power function F (x) = xd over F2n gives a
rotation symmetric (n, n)-function when F2n is decomposed
over a normal basis.

We denote the set of all n-variable Boolean functions by
Bn. Any Boolean function f(x1, x2, . . . , xn) ∈ Bn can be
expressed uniquely in the form of a multivariate polynomial
over F2, called its algebraic normal form (ANF):

⊕
u∈Fn2

au

(
n∏
i=1

xuii

)
,

where the coefficients au belong to F2. The summation
variable u is a dummy variable running over the universe Fn2 .
The maximum Hamming weight of u with non-zero au is
called the algebraic degree of f , which is denoted by deg(f).

In some cases we shall identify F2n with the field F2n (after
this field being an n-dimensional vector space over F2)

B. Cryptographic Properties of S-boxes

We now briefly review the basic definitions regarding the
cryptographic properties of Boolean functions and extend them
to S-boxes by using component functions.

Cryptographic functions must have high algebraic degree to
achieve good confusion properties (the notion of confusion has
been originally introduced by Shannon [51], as well as that of
diffusion). The affine functions are those Boolean functions
with algebraic degree at most 1. An affine function having
constant term equal to zero is called a linear function.

The Walsh-Hadamard transform of an n-variable Boolean
function f is the even integer-valued function Wf defined as

Wf : Fn2 → [−2n, 2n] ; ω 7→Wf (ω) =
∑
x∈Fn2

(−1)ω·x⊕f(x).

We call f balanced if its Hamming weight is equal to 2n−1,
which is cryptographically desirable to avoid the statistical
imbalance in the output of f . Notice that f is balanced if and
only if Wf (0n) = 0 (we use 0n to denote the all-zero vector
of length n).

For n even, bent functions are those Boolean functions
achieving optimal Hamming distance 2n−1 − 2

n
2−1 to the

vector space of affine Boolean functions. Equivalently, they
have their Walsh spectrum taking only the two values ±2

n
2 . It

is known that any bent function has algebraic degree at most
n
2 , see e.g. [8]. Semi-bent functions have, by definition, their

Walsh spectrum taking the three values 0 and ±2
n
2 +1. For

n odd, semi-bent functions (or near-bent1since there are two
names for the same notion) have their Walsh spectrum taking
the three values 0 and ±2

n+1
2 . The notions of bent and semi-

bent functions extend to any S-boxes: such function F is bent
(resp. semi-bent) if all its component functions c · F , c 6= 0,
are also bent (resp. semi-bent).

The nonlinearity of f is defined as the minimum Hamming
distance between f and n-variable affine functions. It can
be expressed in terms of the Walsh-Hadamard transform as
follows:

NLf = 2n−1 − 1

2
max
ω∈Fn2

|Wf (ω)|. (1)

Boolean functions with high nonlinearity are required in a
cryptosystem to resist linear cryptanalysis and to achieve good
confusion properties.
• For even n, Boolean functions attaining the maximum

nonlinearity of 2n−1− 2
n
2−1 are precisely the bent func-

tions [16], [32], [38]. Bent functions are not balanced,
however they can be used to construct balanced functions
with high nonlinearity.

• For odd n, the nonlinearity value 2n−1− 2
n−1
2 , which is

attainable for any odd n, is known as the bent concate-
nation bound (the concatenation of two (n− 1)-variable
bent functions achieves this nonlinearity).

The auto-correlation function of f is given by:

rf (d) =
∑
x∈Fn2

(−1)f(x)⊕f(x⊕d) =
∑
x∈Fn2

(−1)Ddf(x),

where d ∈ Fn2 . It is clear that, for any n-variable Boolean
function f , we have rf (0) =

∑
x∈Fn2

(−1)0 = 2n. One can
see that, for balanced Boolean functions, the sum of all the
auto-correlation values is null. Indeed, we have (according to
the so-called Wiener-Khintchine theorem):∑

d∈Fn2

rf (d)(−1)ω·d = W 2
f (ω)

for every ω (and we have the result by taking ω = 0n).
There are two important cryptographic criteria called global
avalanche characteristics (GAC) [57] related to the autocor-
relation spectrum, which are used to quantify the level of
diffusion ensured by a function. The maximum absolute value
in the autocorrelation spectrum (except at the origin—this
value is uninteresting because it does not depend on f ) is
referred to as the absolute indicator, denoted by

∆f = max
d∈Fn2 ∗

|rf (d)|,

where Fn2
∗ = Fn2 \ {0} and the other one is known as the

sum-of-squares indicator, given by

σf =
∑
d∈Fn2

r2f (d).

1We shall call “near-bent” the semi-bent functions in odd dimension, and
keep the term “semi-bent” for when the parity of n will not be specified.
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For the purpose of this paper, we define the non-absolute
indicator as

Γf = max
d∈Fn2 ∗

rf (d),

which is used as a measure of side-channel resiliency (as we
shall see in Section III-A). The higher the value of Γf , the
better resistance against side-channel attacks.

Let us now consider the case of S-boxes. The nonlinearity
and absolute indicator of an S-box are determined by the
component function(s) having the worst measure. In other
words, the nonlinearity (resp., the absolute indicator) equals
the lowest (resp., the highest) nonlinearity (resp., absolute
indicator) of all the component functions of the S-box. A
nonlinearity is considered as good if it is not too far from the
optimum, which is 2n−1−2

n−1
2 for (n, n)-functions, according

to the Sidelnikov-Chabaud-Vaudenay bound (see e.g. [9]). The
algebraic degree of an S-box is defined as the maximum
algebraic degree of the coordinate functions and it is also the
maximum algebraic degree of the component functions.

An n ×m S-box F is called differentially δ-uniform [45]
if the equation F (x)⊕ F (x⊕ γ) = β has at most δ solutions
for all γ ∈ Fn2

∗ and β ∈ Fm2 . Accordingly, δ is called the
differential uniformity of F . The values of δ are always even
since if x is a solution of equation F (x) ⊕ F (x ⊕ γ) = β
then x ⊕ γ is also a solution. This implies that the smallest
possible value of δ for an (n,m)-functions is 2; the functions
achieving this value are called almost perfect nonlinear (APN).
A cryptographically desirable S-box is required to have low
differential uniformity (δ = 2 is optimal, δ = 4 is good),
which makes the probability of occurrence of a particular pair
of input and output differences (γ, β) low, and hence provides
resistance against differential cryptanalysis.

Given two (n,m)-functions G and H , we say that they are
affine equivalent if G(x) = A1(H(A2(x))), where A1 is an
affine permutation on Fm2 and A2 is an affine permutation on
Fn2 . It is known that the nonlinearity, algebraic degree, and
differential uniformity are invariant under affine equivalence.

III. SIDE-CHANNEL PROBLEM STATEMENT

A. Monobit Case

Let t, k ∈ Fn2 respectively be a plaintext and a key used in a
cryptographic algorithm, such as a block cipher, which starts
by a key addition (xor operation) followed by a confusion
function (an S-box F ). In this section, the attacker targets
one bit of the S-box, that is the output of f : Fn2 → F2,
applied to t ⊕ k. So here, f is a balanced Boolean function
(e.g., a coordinate function of the S-box). In realistic scenarios,
the measurements are noisy; hence, not only one but several
of them need to be captured by the attacker, so as to make
a statistical attack. We resort to vectorial notation, where
measurements ~x = (x1, . . . , xQ) consist of a collection of Q
queries. Let us denote the correct key by k∗. It is unknown and
shall be guessed by exhaustive search over all keys k ∈ Fn2 .
The observable leakage is thus ~x = ~y(k∗)+~n, where the model
is ~y(k) = f(~t⊕k), that is ~y(k) = (f(t1⊕k), . . . , f(tQ⊕k)).
In case the measurements feature additive Gaussian noise,
~n ∼ N (~0,Σ) is a Gaussian noise, with Σ = σ2IdQ×Q, where

k̂ = argmax
k

p(~x|~y(k)) k̂

NoiseElectromagnetic

~y(k) = Fi(~t⊕ k)

~x

Attacker
(optimal distinguisher)

~t = (t1, . . . , tQ): public plaintext

side-channel ~ndevice
Cryptographic

y(k∗)
xor

k∗ F
n 1

i

n

Fig. 1. Attack setup on the leakage function y = f(t ⊕ k∗),
where t is one known plaintext, k∗ is the secret key, F is the
substitution box and i is the leaking coordinate of F (hence
f = Fi)

IdQ×Q is the Q × Q identity matrix. Each value xq (where
1 ≤ q ≤ Q) is also called a trace, and the observable leakage
~x is altogether referred to as the traces acquisition campaign.

The adversary optimizes its probability of success to recover
the correct key thanks to the optimal distinguisher [24]. It
consists in guessing the correct key k∗ with the maximum
likelihood rule

k̂ = argmax
k

p(~x|~y(k)). (2)

The setup we consider is depicted in Fig. 1, where “vectorial
values” are represented as fat arrows, whereas “single bits”
are represented as thin wires. In this figure, the attack target
is the S-box coordinate i (where 1 ≤ i ≤ n). We have that
p(~x|~y(k)) is equal to:

1

(2π|Σ|)D2
exp

[
−1

2
(~x− ~y(k))>Σ−1(~x− ~y(k))

]
(3)

= constant × exp

[
− 1

2σ2

Q∑
q=1

(xq − y(tq, k))2

]
,

hence the attacker aims at minimizing

1

Q

Q∑
q=1

(xq − y(tq, k))2, (4)

which, by the law of large numbers when Q → +∞, tends
to:

E(X − Y (T, k))2 = E(Y (T, k∗) +N − Y (T, k))2

= E(f(T ⊕ k∗)− f(T ⊕ k))2 + σ2.

Notice that in (3), the notation z> stands for transposition of
column z (hence z> is a row), and that Σ−1 stands for the
inverse of Σ, namely Σ−1 = 1

σ2 IdQ×Q.
So, assuming that the plaintexts T are uniformly distributed

over Fn2 (which is a fair assumption in cryptography), the
attack is equivalent to minimizing over all k the value:∑

t∈Fn2

(f(t⊕ k∗)− f(t⊕ k))2. (5)

This quantity is classical in cryptography, namely:∑
t

(f(t⊕ k∗)− f(t⊕ k))2 = 2n+2κ(k, k∗), (6)
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where κ(k, k∗) bears the name of confusion coefficient [19].
Now, we know that difference square (f(t⊕ k∗)− f(t⊕ k))2

equals (
1

2

(
1− (−1)f(t⊕k

∗)
)
− 1

2

(
1− (−1)f(t⊕k)

))2

=
1

4

(
(−1)f(t⊕k) − (−1)f(t⊕k

∗)
)2

=
1

2

(
1− (−1)f(t⊕k

∗)⊕f(t⊕k)
)
.

Hence, minimizing (5) amounts to maximizing∑
t

(−1)f(t⊕k
∗)⊕f(t⊕k). (7)

This value which depends only on d = k∗ ⊕ k is maximized
when d = 0. For the sake of clarity, the value in Eqn. (7) is
also referred to as the autocorrelation of f at input difference
d and is denoted as rf (d).

To increase the success of the attack, one aims at having
the nearest rival2 (k 6= k∗) be as far as possible from the
correct guess. Hence the goal is to make as small as possible
the maximum value within {∑t(−1)f(t)⊕f(t⊕d), d 6= 0}.
Notice that this objective holds for comparisons between
S-boxes of the same input bitwidth (called n). Otherwise,
when S-boxes f and f ′ have different numbers of input bits
(n 6= n′), the comparison would hold on maxd6=0 2n − rf (d)
vs maxd′ 6=0 2n

′ − rf ′(d′), or alternatively maxd6=0
1
2n rf (d) vs

maxd′ 6=0
1

2n′
rf ′(d

′). We do not consider comparison between
S-boxes of different sizes in the sequel.

Also notice that when rf (d) = 2n for a nonzero d, then the
possible keys are the correct key k∗ or the challenger k∗ ⊕ d.
For example, the least significant bit f of the PRESENT [3]
S-box F features such a tie because one has

∀z ∈ F4
2, f(z) = f(z ⊕ 0x9),

where 0x9 (in hexadecimal) represents (1001)2 in binary
notation. Hence, it is possible to distinguish by side-channel
analysis only between pairs of key candidates k∗ and k∗⊕0x9.

B. Multi-bit S-boxes

1) Attacks on coordinate functions: We now consider that
the S-box is vectorial (m > 1). we need that the S-box be
balanced (i.e. with uniformly distributed output). As explained
in e.g. [9], one simply requires that the S-box number of output
bits be bounded above by its number of input bits. A special
case is that the S-box is a permutation of Fn2 .

The situation of S-boxes regarding side-channel analysis is
depicted in Fig. 2 for 2 coordinates (out of m = n). This
figure represents the auto-correlation rf (d) as a function of
the difference d = k ⊕ k∗ ∈ Fn2 between candidate key k
and actual secret key k∗. The origin value is 0n and other
values on the abscissa axis represent the vectorspace Fn2 . The
left-hand side graph represents the situation of a coordinate
f where the nearest rival dmax (relative to the correct key
k∗) features an auto-correlation value close to 2n = rf (0).

2The nearest rival, in the context of side-channel distinguishers, is a term
coined by Whitnall and Oswald, e.g., in [55].

distance to
nearest
rival distance to

nearest
rival

2n

0

2n

0
d

rf (d)

d m
in

d

rf (d)

d m
in

dm
a
x

dm
a
x

Γf

Γf

better for the attackerbetter for the defender

Fig. 2. Illustration of two side-channel situations, optimal for
the defender (in blue) and for the attacker (in red)

This configuration favors the defender, as the attacker has
hard time distinguishing between d = 0 and d = dmax
(recall that in real side-channel, some noise blurs the values
of the auto-correlations). At the opposite, the right-hand side
graph highlights the situation of another coordinate for which
maximum auto-correlation over incorrect key differences is
inferior to the former case. The attacker can distinguish more
clearly between the correct and the nearest rival key.

The relevant metrics are then deduced from the following
analysis:

• From the attacker point of view, the attacker chooses the
coordinate which is the most favorable for his key guess
in the presence of noise. Hence, the attacker would like
(if it was possible for him to devise an S-box) to select
a coordinate i, 1 ≤ i ≤ n, which increases the “distance
to the nearest rival”, i.e., his objective is to minimize
min1≤i≤n maxd6=0 rFi(d) = min1≤i≤n ΓFi .

• From the defender (or designer) point of view, the goal
is to avoid any weak coordinate in the S-box, because
it is clear that it is the one which would be targeted
by the most powerful attacker. Hence the objective is to
maximize min1≤i≤n ΓFi .

Remark 1. [Signedness of rf (d)] The important parameter
is maxd 6=0 rf (d) and not maxd6=0 |rf (d)|. Indeed, the crite-
rion for the side-channel attacker to succeed hardly (resp.
easily) is that the auto-correlation of the nearest rival is
close to (resp. far from) 2n. For example, in the conceptual
figure 2, the largest value of rf (for d 6= 0) occurs at
d = dmax = argmaxd6=0 rf (d) whilst its smallest value occurs
at d = dmin = argmind 6=0 rf (d). It can be seen that in the
left case, maxd 6=0 |rf (d)| is same as rf (dmax). However, in
the right case, maxd6=0 |rf (d)| is same as |rf (dmin)|.

Therefore, rf shall be considered without absolute values.
For the sake of illustration, in the DES block cipher (NIST
FIPS PUB 46-3, which features n = 6 and m = 4), the
extreme values for rf (d), d 6= 0 in S-box 2 (denoted as F ) are
given in Table I. It is easy to see that values of maxd 6=0 rf (d)
would all be incorrect by considering |rf | instead of rf (for
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TABLE I. Extremal values of rf (d), d 6= 0, where f is any
component function of the DES second S-box F : F6

2 → F4
2

f = F1 f = F2 f = F3 f = F4

maxd6=0 rf (d) 32 24 40 32

argmaxd 6=0 rf (d) 13 11 32 19

mind6=0 rf (d) −40 −32 −56 −40

argmind6=0 rf (d) 5 7 31 53

f ∈ {F1, F2, F3, F4}). Indeed, for this S-box, we have that

|min
d6=0

rf (d)| > max
d6=0

rf (d).

Therefore, in the remainder of the paper, we never study |rf |
but stick to rf (signed).

2) Attacks on component functions: In the previous sec-
tion III-B1, we argued that, often, attackers base their guess
on single bits. However, these bits can be extended from
coordinate to component functions of the S-box3. We recall
that a component function is a linear combination (with
coefficients in F2) of all the coordinate functions. Let c ∈ Fm2 .
A component function of an S-box F : Fn2 → Fm2 is
f : Fn2 → F2, t 7→ f(t) = c · F (t), where “ · ” is the
canonical scalar product in Fm2 . Indeed, modern block ciphers
consist in the iterative alternation of a confusion layer (e.g.,
made up of S-boxes) and a diffusion layer (e.g., a linear
mapping). For example, in substitution-permutation networks
(such as the AES), the S-box is fed into a linear bijection
(e.g., MixColumns in the case of AES) computing linear
combination of bits. All of those bits leak their values through
a side-channel, hence it is safe to imagine that an attacker
will combine bits (in F2) to find the most favorable linear
combination, as might show up in the diffusion layer (such
as MixColumns). Notice that MixColumns is made up of
xor gates (additions in F2), which are known to be very
glitchy. Now glitches do contribute significantly to the overall
leakage of the cryptographic function (see attack [35], [31],
defense [20], [42], [43], and analysis [2] papers).

Hence, we pursue in the sequel of this article the following
goals:
• From the attacker point of view: minimize

minc6=0 maxd 6=0 rc·F (d).
• From the defender (or designer) point of view: maximize

minc6=0 maxd 6=0 rc·F (d).

C. Positioning of our Work with respect to the State-of-the-Art

The theoretical study of side-channel analysis allows to
grasp the impact of several factors on the outcome of attacks.
Historically, Whitnall and Oswald [56] suggested the distance
to nearest rival for distinguishers, which they studied in
different scenarios (noise, model discrepancy with respect
to actual side-channel, etc.). However, their criterion has
consistency issues, because it is not invariant by the scaling of

3Recall that paper [12] handles multi-bit differential power analysis, but
simply assuming that the leakage is impacted by the coordinates alone, and
not the component functions of the S-box.

the distinguisher. Therefore, it fails to be fair when comparing
distinguishers of different kinds. Such flaws relative to the
unfairness of the attack outcome predictability were reported
for instance in [49]. An analysis based on success probability
(the focus of which is not on the distinguisher value but on
the attack outcome) is proposed in [21]. The analysis reveals
that the relevant parameter, called success exponent, is a
normalized quantity of the asymptotical distinguisher. In [14],
it is analyzed that only two factors impact the success expo-
nent, namely the confusion coefficient and the noise variance.
The confusion coefficient gathers cryptographic properties
(typically, of the S-box) and the leakage model (non-injective
function, such as the Hamming weight or the UWSB).

In our paper, we consider a mono-bit leakage model, so
that we focus only on the impact of the S-box. Therefore, we
assume that the attacker targets one bit of the S-box output, and
selects it so as to maximize his advantage (that is: improve the
distance of the autocorrelation regarding the correct key guess
to its nearest rival). The motivation to select a bit at the output
of the S-box arises from the goal of best distinguishing the
correct key from others, which (as already mentioned) is also
captured by the notion of confusion coefficient κ (recall (6)). It
is now well known that the confusion coefficient is favorable
to the attacker at the output of S-boxes [22], [47], [7], [23],
[46], [10], [12].

However, it is unclear how to use output bits to devise
an attack. Historically, Kocher introduced side-channel distin-
guishers targeting one bit [28], in attacks now referred to as
“difference of means”: one bit of the S-box output is selected,
side-channel traces are partitioned in two groups according
to this bit, and the difference of means in each partition
constitutes the distinguisher. Later it has been noticed that
usual devices leak all the bits at once, because processors
or application specific circuits manipulate words (e.g., bytes
when n = 8). Since the actual leakage function is hard to
characterize, the assumption is often made that the leakage is
the sum (in Z) of the bits. This yields the so-called Hamming
weight leakage model, as analyzed typically in [4]. Still, in
practice, all the bits in a register do not have the same leaking
characteristics. For instance, the LSB (least significant bit)
can receive or not an input carry when performing arithmetic
computations. For this reason, a refined Unevenly Weighted
Sum of Bits (UWSB) model has been introduced [54], [58],
[24]. It can be noticed that for imperfect masking schemes
(see e.g., low-entropy masking schemes such as Rotating
Substitution-box Masking, also known as RSM [41]), the
effect of masking can be to have a leakage model which is a
UWSB (see equation (4) of [39]). In the first article about the
confusion coefficient [19], the performance of a distinguisher
was based on the computation of true/false positive/negative
matrix (also known as a confusion matrix), based on a binary
outcome of the prediction. Later on, the confusion coefficient
has been extended to real-valued leakage models [21], such
as the UWSB model. The coefficients in this combination
(in R, now; indeed, they model as accurately as possible the
physical leakage arising from analog logic implementing the
cryptographic computation under analysis) are unknown, and
possibly of opposite signs. Therefore it is still considered
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a safe practice to attack on a bit-by-bit basis: the (n − 1)
remaining bits are considered unknown, and thus de facto
integrated amongst the noise sources.

Constructively combining all the n bits requires profiling. In
side-channel analysis, this method is referred to as stochastic
attacks [52]. However, building a model requires many training
traces. Depending on the operational constraints, this training
set might not be available, since the attacker needs an open
copy of the device he can manipulate freely to generate traces
of his choice. Besides, owing to miniaturization of silicon
technologies, the dispersion increases, making two instances
of the same device fairly different. This is studied in papers
about template attacks (profiling on one device and attacking
on another) [18], [40]. Because of those limitations and the
complexity of the learning stage (and of resulting estimation
errors, creating so-called epistemic noise), many practical
attacks remain based on mono-bit models.

IV. CONSTRUCTION OF OPTIMAL BOOLEAN FUNCTIONS

Recall that the non-absolute indicator Γf has been defined
in Subsection II-B. In this section, we first show that Γf < 0
is impossible for n > 1 and that the values of the Walsh
transform of a balanced Boolean function f such that Γf = 0
(i.e. which is optimal in terms of the objective of an attacker)
all belong to a set that we determine. We deduce that there
is no 4-variable or 6-variable balanced Boolean function with
Γf = 0. We also deduce that the minimum possible nonlin-
earity of f with an odd number n of variables and such that
Γf = 0 is 2n−1−2

n−1
2 . We compute the possible nonlinearities

of those functions satisfying Γf = 0 for even n ≤ 16.
This shows that the nonlinearity requirement while allowing
Γf = 0 is less demanding while increasing n. Secondly, we
construct balanced Boolean functions with Γf = 0 (resp.
Γf = 2n) for the case of odd (resp. even) number of variables.
Further, we present a construction, obtained by modifying the
class of Maiorana-McFarland (M-M) bent functions [16], [32]
and employing the balanced Boolean functions generated by
Dobbertin’s iterative construction [17], whose auto-correlation
spectrum is completely characterized (hence, it can be utilized
by search algorithms to construct optimal Boolean functions
for best and worst scenarios).

A. Impossibility of having Γf < 0 for n > 1

We start by recalling the following lemma, which is subse-
quently used to prove that no Boolean function f exists with
a number of variables greater than 1 and such that Γf < 0.

Lemma 1 [13]. Let f ∈ Bn, where n > 1. Then

rf (d) ≡ 0 [mod 4] for any d ∈ Fn2 .

Moreover, if f is balanced, then rf (d) is a multiple of 8.

Theorem 1. There is no Boolean function f ∈ Bn (where
n > 1) with Γf < 0.

Proof. We have already recalled the Wiener-Khintchine theo-
rem, whose statement is that the Fourier transform of rf (d)
coincides with the squared Walsh transform of f , i.e.,

W 2
f (a) =

∑
d∈Fn2

rf (d)(−1)a·d for all a ∈ Fn2 .

Hence, substituting a = 0n into this equation, we have∑
d∈Fn2

rf (d) ≥ 0. Suppose there exists f with Γf < 0. From
Lemma 1, it is then clear that∑

d∈Fn2

rf (d) = 2n +
∑
d∈Fn2 ∗

rf (d) ≤ 2n − 4(2n − 1) < 0,

which is a contradiction.

B. Relating Γf with Nonlinearity

We now study the possible values of the Walsh transform
of a balanced function such that Γf = 0.

Theorem 2. Let n > 3 and f be a balanced n-variable
Boolean function such that Γf = 0 (i.e. having only non-
positive auto-correlation values, except for the one at all-zero
point). Then all the values of the Walsh transform of f belong
to the set

Sn = {ω ∈ 4Z; ∃k ∈ {0, 1, . . . , 2n−4}; ω2 = 2n ± 16k}.
Proof. Since f is balanced, we have∑

d∈Fn2

rf (d) = 0, (8)

where rf (d) is the auto-correlation function of f .
Let D = {d ∈ Fn2

∗ | rf (d) 6= 0} and M be the multi-set of
all the elements of D, each of which with multiplicity |rf (d)|8 .
Then, as rf (d) ≤ 0 for every d ∈ Fn2

∗, the left-hand side of
the above sum can be rewritten as follows:

2n +
∑
d∈D

rf (d) = 2n − 8|M | = 0,

and so, |M | = 2n−3.
On the other hand, by Fourier transform on the auto-correlation
function, we have:

W 2
f (a) =

∑
d∈Fn2

rf (d)(−1)a·d = 2n − 8
∑
d∈M

(−1)a·d.

Since |M | is even, we have
∑
d∈M (−1)a·d ≡ 0 [mod 2] and

the proof is complete.

As a consequence, we have:

Corollary 1. For n = 4 and n = 6, there is no n-variable
balanced Boolean function f with Γf = 0.

Proof. We find that S4 = {0,±4} and S6 = {0,±4,±8}.
So, the minimum nonlinearity can be 24−1 − 4

2 = 6 and
26−1 − 8

2 = 28 for n = 4 and 6, respectively. However,
these are the nonlinearities of the bent functions for both cases,
which cannot be attained by balanced functions.

For both n = 4 and 6, it is easy to find by a computer
search that the minimum achievable value of Γf for a balanced
n-variable Boolean function f is equal to 8. For n = 4,
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an exhaustive search yields that there exist 12000 balanced
functions with Γf=8. For n = 6, we have performed a heuristic
search and found that there exist balanced functions with
Γf = 8. Note that by Theorem 1 and Corollary 1, we have
that Γf > 0 for 4- and 6-variable balanced functions. Then, as
a consequence of Lemma 1, it is clear that Γf can be at least
8 for these functions, which is achieved by our search results.
But our heuristic search could not find an 8-variable balanced
function with Γf = 8. Note that in that case, there exist in the
literature a few examples of balanced Boolean functions with
absolute indicator ∆f = 16. An example is given in [26] as
follows in hexadecimal:

18CA9ED8BC4EC1AFE2F4C023FA63E789 \
49455BC59DB873BE79409BAE4B289029 (9)

and we know then that the minimum of Γf can be at most 16
for n = 8. It is difficult to have more precise information but
a little more insight can be obtained through the study of the
nonlinearity. In Theorem 2, the maximum value of ω equals
4 · b2n−3

2 c. This implies that any balanced Boolean function
f ∈ Bn with Γf = 0 has nonlinearity at least 2n−1−2·b2n−3

2 c.
In Table II, for n even between 8 and 16, we have displayed
this value 2n−1 − 2 · b2n−3

2 c and the value that Dobbertin
obtained in [17] as the nonlinearity of a balanced function
that he constructed with his iterative construction4 (this latter
value was conjectured by him as the best possible nonlinearity
of any balanced function). Notice that the existence question
for 8-variables balanced Boolean functions with nonlinearity
118 is still open. (A negative answer to this question, that is,
a positive answer to Dobbertin’s conjecture for n = 8, would
also rule out the possibility of having balanced functions of 8
variables with Γf = 0: such functions would not exist).

TABLE II. Comparison of the minimum possible nonlineari-
ties required to have Γf = 0 with the maximum nonlinearities
conjectured by Dobbertin [17] for n-variable balanced func-
tions.

n 2n−1 − 2 · b2n−3
2 c Dobbertin’s conjecture [17]

8 118 116
10 490 492
12 2004 2010
14 8102 8120
16 32588 32628

For n odd, we shall see that functions with Γf = 0 exist.
The maximum value of ω in Theorem 2 equals

√
2n + 2n (i.e.,

2
n+1
2 ) and we have then:

Corollary 2. For odd n > 3, the nonlinearity of any n-
variable balanced Boolean function f such that Γf = 0 is
bounded below by 2n−1 − 2

n−1
2 (i.e. by the value of the bent

concatenation bound).

The bent concatenation bound is here a lower bound. Thanks
to Construction 1, we shall be able to design, for every odd
n > 3, functions having Γf = 0 and nonlinearity equal to

4See Subsection IV-D1.

2n−1 − 2
n−1
2 . We present these functions in Subsection IV-C

below, which is devoted to constructions of functions for the
attacker. There may also exist functions with strictly better
nonlinearity, but we could not find any. We leave this as an
open problem.

C. Constructions of Boolean and vectorial functions for the
attacker

1) Boolean functions: Recall that the lower is Γf , the better
it is for the attacker.
For small values of n: we have seen that for n = 4 and
n = 6, there is no n-variable balanced Boolean function f
with Γf = 0. By performing an exhaustive search for Boolean
functions in 3 and 5 variables, it can be found that the number
of balanced functions with Γf = 0 (i.e. which are optimal
in terms of the objective of an attacker) is 56 and 27776,
respectively. We have computationally checked for each case
that the functions are in fact affine equivalent (and represent
then one function, only, up to equivalence).
Constructions for odd n: Let us recall the class of Maiorana-
McFarland (M-M) functions (introduced originally for design-
ing bent functions, see [16], [32], and later extended to other
kinds of functions in [6]), and which is defined as:

f(x, y) = x · φ(y)⊕ g(y)

where x ∈ Fs2, y ∈ Fk2 , φ is any mapping from Fs2 to Fk2 , and
g is an arbitrary Boolean function with k variables (taking
s = k and φ as an arbitrary permutation on Fk2 results in the
rather large class of bent functions discovered independently
by Maiorana and McFarland [16], [32]).

Construction 1. Let n ≥ 3 be odd. For every mapping

φ : F
n−1
2

2 7→ F
n+1
2

2

injective whose image set is the complement of a linear
hyperplane, and every n−1

2 -variable Boolean function g, we
define the n-variable Boolean function f (in the M-M class)
as f(x, y) = x · φ(y)⊕ g(y), where x ∈ F

n+1
2

2 , y ∈ F
n−1
2

2 .

Proposition 1. Let f be any function obtained by construction
1. Assume that E = {0n+1

2
, ω}⊥ is the linear hyperplane

equal to the complement of the image set of φ. Then f is
balanced, near-bent and is such that:

rf (d) =


2n, if d = 0n
−2n, if d = (ω,0n−1

2
)

0, if d = Fn2
∗ \ (ω,0n−1

2
)
.

Hence, Γf = 0.

Proof. We have rf (0n) = 2n as for any n-variable function.
From the definition of the Walsh-Hadamard transform, we
have for every u ∈ F

n+1
2

2 and every v ∈ F
n−1
2

2 :

Wf (u, v) = 2
n+1
2

∑
y∈φ−1(u)

(−1)g(y)⊕v·y ∈ {0,±2
n+1
2 }. (10)



8

Hence f is near-bent. Since φ−1(0n+1
2

) is empty, we have
Wf (0n+1

2
,0n−1

2
) = 0 and f is balanced.

For every u ∈ F
n+1
2

2 and v ∈ F
n−1
2

2 , we have

f(x, y)⊕ f(x⊕ u, y ⊕ v) =

x · (φ(y)⊕ φ(y ⊕ v))⊕ u · φ(y ⊕ v)⊕ g(y)⊕ g(y ⊕ v).

If v 6= 0, we have then that f(x, y)⊕f(x⊕u, y⊕v) is balanced
since φ being injective, we have φ(y)⊕φ(y⊕v) 6= 0 for every
y, and hence rf (u, v) = 0.
If v = 0, we have then:

f(x, y)⊕ f(x⊕ u, y) = u · φ(y) and

rf (u,0) = 2
n+1
2

∑
y∈F

n−1
2

2

(−1)u·φ(y).

The value set of φ(y) being the complement of the linear
hyperplane {0n+1

2
, ω}⊥, we have

∑
y∈F

n−1
2

2

(−1)u·φ(y) = 0 if

u 6= ω and
∑
y∈F

n−1
2

2

(−1)u·φ(y) = −2
n−1
2 if u = ω, since we

have∑
z∈E

(−1)u·φ(y) = 2
n−1
2 and

∑
z∈F

n+1
2

2

(−1)u·z = −2
n−1
2 .

This completes the proof.

There are 2
n+1
2 − 1 distinct linear hyperplanes in F

n+1
2

2 .
For each of them there are 2

n−1
2 ! distinct mappings φ. The

number of functions g is 22
n−1
2 . Let us prove that the different

choices of a hyperplane, a mapping φ and a function g provide
distinct functions; this will show that the number of functions
generated by Construction 1 is (2

n+1
2 − 1)(2

n−1
2 !)22

n−1
2 .

Suppose that

f(x, y) = x · φ(y)⊕ g(y) and
f ′(x, y) = x · φ′(y)⊕ g′(y)

are the same function, that is, that we have

x · (φ(y)⊕ φ′(y)) = g(y)⊕ g′(y)

for every x, y. Suppose first that g(y) 6= g′(y) for some
y ∈ F

n−1
2

2 , then x · (φ(y)⊕ φ′(y)) = 1 for all x ∈ F
n+1
2

2

and this is impossible. We deduce that g(y) = g′(y) for all
y ∈ F

n−1
2

2 , and x · (φ(y)⊕ φ′(y)) = 0 for all x ∈ F
n+1
2

2 , that
is, φ(y) = φ′(y). Hence, φ = φ′ and g = g′. This completes
the proof.
We have computed that for n = 7, Construction 1 generates
154828800 functions among which 2580480 are of degree 2
and 152248320 are of degree 3.
For any function f generated by Construction 1, we have
deg(f) = max{deg(φ) + 1, deg(g)} ≤ n+1

2 , ∆f = 2n (since
there exists d such that rf (d) = −2n), and a nonlinearity
NLf = 2n−1 − 2

n−1
2 (see e.g. [8]).

Remark 2. The attacker does not have the choice of the
parity of n. So the case n even should be also considered.
The same Maiorana-McFarland construction can be used to
build functions in even numbers of variables, but it does not
seem to allow reaching null, nor even small, value for Γf .

1. For example, let φ : F
n−2
2

2 7→ F
n+2
2

2 be injective and
have for image set a coset of a linear n−2

2 -dimensional

subspace of F
n+2
2

2 , different from this linear subspace (i.e.
not containing 0), and let g be an n−2

2 -variable Boolean
function; we can define again the n-variable Boolean function
f(x, y) = x · φ(y) ⊕ g(y), where x ∈ F

n+2
2

2 , y ∈ F
n−2
2

2 .
The same calculations show that f is balanced and semi-
bent, that f(x, y) ⊕ f(x ⊕ u, y ⊕ v) is balanced for v 6= 0,
and that rf (u,0) = 2

n+2
2

∑
y∈F

n−2
2

2

(−1)u·φ(y); but we have

now rf (u,0) 6= 0 for three values of u 6= 0: two giving
rf (u,0) = −2n and one giving rf (u,0) = 2n. We have then
Γf = 2n and this choice of f is then optimal for the defender.
We leave open the determination whether optimal solutions
for the attacker (i.e. such that Γf = 0) can be constructed for
n even.
2. It is possible to reach values of Γf significantly smaller
than 2n with the Maiorana-McFarland construction, but these
values cannot be considered as small: relaxing the condition
that the image set of φ is a coset of a linear n−2

2 -dimensional

subspace of F
n+2
2

2 , the value of Γf being equal to 2
n+2
2 times

the maximal value of
∑
z∈S(−1)u·z = 1̂S(u) = − 1

2W1S (u)
for u 6= 0, where S is the image set of φ and can be any set of
size 2

n−2
2 not containing 0 and 1S is its indicator function, we

can take for 1S a Boolean function over F
n+2
2

2 of best known
nonlinearity among functions of weight 2

n−2
2 .

3. In fact a better option is not to use the Maiorana-McFarland
construction, but rather to modify a bent function in 2

n
2−1

positions (that is, to add to a bent function a Boolean function
g of Hamming weight 2

n
2−1) so as to make it balanced (see

Subsection IV-D1 for a proper way called Dobbertin’s iterative
construction to do so while keeping good nonlinearity). Since
rf⊕g(d) ≤ rf (d) + 2wH(g), this gives Γf⊕g ≤ 2

n
2 .

Construction 2. For any (n−1)-variable bent function g, the
concatenation f = g||(g⊕1) is a function with rf (0n−1, 1) =
−2n and rf (d) = 0 for all d ∈ Fn2

∗ \ (0n−1, 1).

Proposition 2. Any function resulting from Construction 2 is
balanced near-bent. It satisfies Γf = 0.

Proof. It is clear that f is balanced and that Wf (ω) ∈
{0,±2

n+1
2 }. This proves the first part. For every f =

g||h and every nonzero a ∈ Fn−12 , we have rf (a, 0) =∑
x∈Fn−1

2
(−1)Dag(x) +

∑
x∈Fn−1

2
(−1)Dah(x) = 0 and

rf (a, 1) = 2
∑
x∈Fn−1

2
(−1)g(x)⊕h(x⊕a) and here we deduce

rf (a, 1) = 0 if a 6= 0n−1 and rf (0n−1, 1) = −2n. This
proves the second part.

Note that deg(f) = deg(g) (if deg(g) ≥ 1). We shall see
that Construction 2 is cryptographically relevant for the design
of S-boxes as well.

We still have that f is balanced near-bent and rf takes only
one nonzero value equal to −2n if we concatenate a shift
g(x ⊕ u) and g(x) ⊕ 1. It should be noted that if g is an
M-M bent function then f = g||(g ⊕ 1) can be obtained by
Construction 1 but not, in general, if we concatenate a shift
g(x⊕u) and g⊕ 1. And there are many constructions of bent
functions outside the M-M class.
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Note that, for two (n − 1)-variable bent functions g, h, the
only possibility for the function f = g||h to have the property
rf (d) ≤ 0 for any d ∈ Fn2

∗ is h(x) = g(x⊕ u)⊕ 1 for some
u. Indeed, we have already seen that

rf (a, 0) =
∑

x∈Fn−1
2

(−1)Dag(x) +
∑

x∈Fn−1
2

(−1)Dah(x) = 0

and we have

rf (a, 1) = 2
∑

x∈Fn−1
2

(−1)g(x)⊕h(x⊕a)

= 2−2(n−1)
∑

x,u,v∈Fn−1
2

Wg(u)Wh(v)(−1)u·x⊕v·(x⊕a)

= 2−(n−1)
∑

u∈Fn−1
2

Wg(u)Wh(u)(−1)u·a

=
∑

u∈Fn−1
2

(−1)g̃(u)⊕h̃(u)⊕u·a,

where g̃ and h̃ are respectively the dual bent functions of g
and h, and it is well-known that a function (here g̃ ⊕ h̃)
can not have all its nonzero Walsh transform values of the
same sign, except if it is affine, see e.g. [11]; this completes
the observation since g̃ ⊕ h̃ is affine if and only if h(x) =
g(x⊕ u)⊕ ε for some u ∈ Fn−12 and ε ∈ F2, and ε = 0 does
not provide the correct sign.

2) Vectorial functions: The condition seen at Subsection
III-B1 being on each coordinate function, any general con-
struction of Boolean functions gives a general construction of
vectorial functions satisfying the condition. The condition of
Subsection III-B2 is more demanding.

Construction 3. Let n = 2k + 1 be an odd integer no less
than 5. We construct an (n, k)-function F whose coordinate
functions fi’s (1 ≤ i ≤ k) are defined as follows:

fi(x, y) = x · φi(y)⊕ gi(y)

where
(1) x ∈ Fk+1

2 and y ∈ Fk2 ,
(2) φi’s are mappings from Fk2 to Fk+1

2 such that for any
(l1, l2, · · · , lk) ∈ Fk∗2 the linear combination

l1φ1 ⊕ l2φ2 ⊕ · · · ⊕ lkφk
is an injective mapping from Fk2 to Fk+1∗

2 ,
(3) gi’s are arbitrary Boolean functions on Fk2 .

The following result is a consequence of the proof of
Proposition 1:

Proposition 3. Let n = 2k + 1 ≥ 5 be an odd integer and F
be an (n, k)-function generated by Construction 3. Then any
component function f of F is a balanced near-bent function
with Γf = 0.

An (n,m)-function is called bent vectorial if and only if all
of its component functions are bent. It is well-known that the
bent vectorial functions exist only for even n and m ≤ n/2.
Bent vectorial functions are characterized by the fact that all
their derivatives DaF (x) = F (x)+F (x+a), with a ∈ (Fn2 )∗,

are balanced (i.e. take each value of Fm2 the same number of
times 2n−m) and are then also called perfect nonlinear (PN).
By Construction 2, we present the following construction.

Construction 4. Let n = 2k + 1 be an odd integer no less
than 5 and G = (g1, g2, · · · , gk) be an (n, k)-bent vectorial
function. We construct an (n, k)-function F whose coordinate
functions fi’s (1 ≤ i ≤ k) are defined as follows:

fi = gi||gi ⊕ 1.

It follows from Proposition 2 that:

Proposition 4. Let n = 2k + 1 ≥ 5 be an odd integer and F
be an (n, k)-function generated by Construction 4. Then any
component function f of F is a balanced near-bent function
with Γf = 0.

Remark 3. It is known that, for any n-variable Boolean
function, we have

∑
u∈Fn2

Wf
2(u) = 22n and 2nσf =∑

a∈Fn2
W 4
f (a). This implies that, for any n odd and any n-

variable near-bent function f , we have σf = 22n+1, which im-
plies that 22n =

∑
d∈Fn2 ∗

r2f (d). Consider the case ∆f = 2n.
Then, there exists a value d′ ∈ Fn2

∗ such that |rf (d′)| = 2n

and rf (d) = 0 for every d ∈ Fn2
∗ \ {d′}. Notice that if f

is balanced, then, since
∑
d∈Fn2

rf (d) = rf (d′) + rf (0) = 0,
we have rf (d′) = −2n. Hence, Γf = 0. Note that rf (d) ∈
{0,±2n} for any quadratic Boolean function f ∈ Bn. So
the non-absolute indicator of any balanced quadratic near-
bent function is equal to 0. It should be noted that, for
odd n, there exist (n, n)-functions such that any of their
component functions f is balanced near-bent function with
Γf = 0. For example, one can mention the quadratic functions
F (x) = x2

i+1 over F2n , where 1 ≤ i ≤ (n−1)/2 is co-prime
with n. Such power function is called a Gold functions. From
a mathematically (theoretical) point of view, balanced near-
bent function f ∈ Bn with Γf = 0 have optimal non-absolute
indicator. But we should point out that in the field of Boolean
functions and S-boxes for cryptographic use, several design
criteria co-exist, related to known attacks on the cryptosystems
in which they are involved. Constructions have been found
to ensure the best possible tradeoffs between the parameters
that quantify the levels at which the functions satisfy these
criteria. However, when a new criterion appears, because of
the invention of a new attack, tradeoffs need to be redefined.
One noticeable recent historical example is, in the domain
of single-output Boolean functions, upon the introduction of
the algebraic attacks: the new constraint of having a good
algebraic immunity has been added to the global tradeoff,
and the requirement on the values of the previously existing
parameters has been slightly lowered. In the framework of this
paper, we consider mitigation of side-attacks in addition to tra-
ditional cryptanalytic attacks. The attacks are very unbalanced
in terms of risk, as side-channels are much more powerful and
practical than classical cryptanalyses: they can recover the
key within a few thousands of traces, whereas cryptanalyses
require more than 280 pairs of plaintext/ciphertext to succeed.
Hence, the tradeoff is clearly in favor of side-channel attacks
mitigation. Therefore, we include in our exploration S-box
constructions which may be suboptimal according to those
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standards considered when only classical attacks are taken
into account. This does not make block cipher designs less
strong concretely, nor presents regression with respect to the
state-of-the-art. We simply place ourselves in the situation
of embedded cryptography which is subject to side-channel
attacks on their implementations

D. Constructions of Boolean and vectorial functions for the
defender

1) Boolean functions: In the following, we construct
Boolean functions that are optimum from a defender’s point of
view, that is, such that Γf is large. We have seen with Remark
2 a first example with an even number of variables, using
the Maiorana-McFarland construction. For obtaining another
example with an even number of variables as well, we need
to recall Dillon’s direct sum of functions [16].

Lemma 2. Let three positive integers n, r and e be such
that n = r + e. Let f(x1, . . . , xn) = g(x1, . . . , xr) +
h(xr+1, . . . , xn), where g ∈ Br and h ∈ Be. For any β ∈ Fn2 ,
we have:

1) Wf (β) = Wg(β
′) ·Wh(β′′),

2) rf (β) = rg(β
′) · rh(β′′),

where β = (β′, β′′) ∈ Fr2 × Fe2 with β′ = (β1, . . . , βr) and
β′′ = (βr+1, . . . , βk).

Construction 5. Let n ≥ 6 be an even number such that
n = r + e for odd numbers r, e ≥ 3. Let g ∈ Br and h ∈
Be be Boolean functions constructed by Construction 1 (resp.
Construction 2). We consider the function f(x1, . . . , xn) =
g(x1, . . . , xr) + h(xr+1, . . . , xn).

Proposition 5. The function f defined in Construction 5
satisfies Γf = 2n.

Proof. This result directly follows from Lemma 2, since we
have seen that rg takes value −2r at some (nonzero) input and
rh takes value −2e at some (nonzero) input.

The construction 5 is suitable for cryptographic applications,
as:

Proposition 6. The function f defined in Construction 5 has
nonlinearity NLf = 2n−1−2

n
2 , is balanced and has algebraic

degree deg(f) ≤ max
{
r−1
2 , e−12

}
, where this latter bound is

tight in both cases.

Proof. This nonlinearity directly follows from Lemma 2 and
Relation (1). Besides, f is balanced and we have deg(f) ≤
max

{
r−1
2 , e−12

}
because in Construction 1, φ is injective and

has image a hyperplane, then it can have algebraic degree at
most r−1

2 (resp. e−1
2 ), and in Construction 2, the function is

an affine extension of a bent function in r − 1 (resp e − 1)
variables, which can have algebraic degree at most r−12 (resp.
e−1
2 ).

In Proposition 6, all three values hold also if we let
n = r + 1, and if instead of taking h from a construction,
we take a well-chosen single variable Boolean function. The
following example illustrates this situation.

Example 1. Let h(0) = 0 and h(1) = 1. Let the truth table
of g be the following:

00FFA956CC33659AF00F59A63CC3956A .

Then the truth table of f is obtained as follows:

5555AAAA99966669A5A55A5A69669699 \
AA5555AA669699695AA5A55A96666999 (11)

for which NLf = 112, Γf = 256, and deg(f) = 3.

Remark 4. Suppose there exists a balanced Boolean function
g on even number r of variables for which Γg = 0. Let h
be a bent function with e variables and n = r + e. Then
Γf = 0 for the function f(x1, . . . , xn) = g(x1, . . . , xr) +
h(xr+1, . . . , xn).

Hence, if one can find any balanced Boolean function g
on even number of variables r with Γg = 0, then we can
construct a balanced Boolean function f on even number n
of variables with n > r such that Γf = 0. However, it seems
that such balanced Boolean function g are difficult to find
and their existence is an open question after several computer
investigations. We have completed an exhaustive search for
the class of 8-variable rotation-symmetric Boolean functions
(RSBFs) for which the search space is 236 (the number of
balanced ones is ≈ 230.2) and found that the minimum value
of Γf is 16. We also performed several heuristic searches in
the whole space of 8-variable Boolean functions, which did
not yield a better result.

Now let us recall Dobbertin’s iterative construction based
on normal bent functions for constructing balanced Boolean
function with very high nonlinearity, which will be employed
in our next construction.

Dobbertin’s iterative construction [17]: Let n be an even
integer no less than 4. Write n = 2tm such that t ≥ 1
and m is an odd integer. Then a balanced Boolean function
f(x, y) ∈ Bn over Fn2 is defined by

f(x, y) =

{
f0(x, y), if x 6= 0n

2

g1(y), if x = 0n
2

, (12)

where f0(x, y) is an arbitrary n-variable bent function with
f0(0n

2
, y) = cst and g1 is generated by an iterative procedure

as

gi(x, y) =

{
fi(x, y), if x 6= 0 n

2i+1

gi+1(y), if x = 0 n

2i+1
,

i = 1, 2, · · · (13)

where x, y ∈ F
n

2i+1

2 and in each step fi is an arbitrary n
2i -

variable bent function with fi(0 n

2i
, y) = cst. The iterative

process will continue until i = t− 1 with gt = s ∈ Bm being
a balanced m-variable Boolean function with the best known
nonlinearity and s(0) = 0.

Theorem 3 [17]. Let f be a balanced Boolean function given
by (12). Then

NLf ≥ 2n−1 − 2
n
2 +NLg1 .

The following theorem can be easily checked.
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Theorem 4. Let f be a balanced Boolean function given by
(12). Then

deg(f) =
n

2
+ deg(g1).

Corollary 3. Let n be a power of 2 and f be a balanced
Boolean function given by (12). Then

deg(f) = n− 1.

By using the class of M-M bent functions and employing the
balanced Boolean functions generated by Dobbertin’s iterative
construction, we propose the following construction.

Construction 6. For n = 2k, we define a balanced Boolean
function f(x, y) ∈ Bn over Fn2 as follows:

f(x, y) =

{
φ(x) · y, if x 6= 0k
g(y), if x = 0k

, (14)

where x, y ∈ Fk2 , φ is a permutation on Fk2 such that φ(0k) =
0, and g is a balanced Boolean function on Fk2 generated by
(12) and (13).

Theorem 5. Let f be an n = 2k-variable Boolean function
generated by Construction 6, then for any (a, b) ∈ Fk2 × Fk2
we have

rf (a, b) =


2n if a = b = 0k
−2n + rg(b), if a = 0k, b ∈ Fk2
2(−1)φ(a)·bWg(φ(a)), if a ∈ Fk∗2 , b ∈ Fk2

.

Proof. It follows from the definition of autocorrelation func-
tion that

rf (a, b) =
∑

(x,y)∈Fk2×Fk2

(−1)f(x,y)⊕f(x⊕a,y⊕b) (15)

for any (a, b) ∈ Fk2 × Fk2 . Clearly, we have rf (0k, 0k) = 2n.
We now consider the values of rf (a, b) for all (a, b) ∈ Fk2 ×
Fk2 \ {(0k, 0k)}. Basically, our discussion is built on the facts
that

∑
x∈Fk∗2

(−1)c·x equals −1 if c ∈ Fk∗2 and equals 2k − 1
if c = 0k. We consider the following two cases:

[Case 1.] (a, b) ∈ {0k} × Fk∗2 . It can be easily seen that
in this case Eq. (15) becomes

rf (a, b) =
∑

(x,y)∈{0k}×Fk2

(−1)f(0k,y)⊕f(0k,y⊕b) +

∑
(x,y)∈Fk∗2 ×Fk2

(−1)f(x,y)⊕f(x,y⊕b)

=
∑
y∈Fk2

(−1)g(y)⊕g(y⊕b) +

∑
(x,y)∈Fk∗2 ×Fk2

(−1)φ(x)·y⊕φ(x)·(y⊕b)

= rg(b) +
∑

(x,y)∈Fk∗2 ×Fk2

(−1)φ(x)·b

= rg(b) + 2k
∑
x∈Fk∗2

(−1)φ(x)·b

= −2k + rg(b).

[Case 2.] (a, b) ∈ Fk∗2 × Fk2 . In this case, the value of
rf (a, b) of Eq. (15) becomes∑

x∈{0k,a}
y∈Fk2

(−1)f(x,y)⊕f(x⊕a,y⊕b) +

∑
x∈Fk2\{0k,a}

y∈Fk2

(−1)f(x,y)⊕f(x⊕a,y⊕b)

=
∑
y∈Fk2

(
(−1)f(0k,y)⊕f(a,y⊕b) + (−1)f(a,y)⊕f(0k,y⊕b)

)
+

∑
x∈Fk2\{0k,a}

y∈Fk2

(−1)f(x,y)⊕f(x⊕a,y⊕b)

= 2
∑
y∈Fk2

(−1)g(y)⊕φ(a)·(y⊕b) +

∑
x∈Fk2\{0k,a}

y∈Fk2

(−1)φ(x)·y⊕φ(x⊕a)·(y⊕b)

= 2(−1)φ(a)·bWg(φ(a)) +∑
x∈Fk2\{0k,a}

(−1)φ(x⊕a)·b
∑
y∈Fk2

(−1)z·y

= 2(−1)φ(a)·bWg(φ(a)),

where z = φ(a) ⊕ φ(x ⊕ a) is nonzero for any a ∈ Fk∗2
and x ∈ Fk2 \ {0k, a}.

2) Vectorial functions: Here again, any general construction
of Boolean functions satisfying the condition seen at Subsec-
tion III-B1 gives a general construction of vectorial functions
satisfying the same condition. The condition of Subsection
III-B2 is more demanding.

For n = 2k, we present a construction of (n, k)-functions
obtained by modifying (n, k)-bent vectorial functions.

Construction 7. Let n = 2k be an even integer no less than 4
and G = (g1, g2, · · · , gk) be an (n, k)-bent vectorial function
such that gi(0k, y) = cst for all 1 ≤ i ≤ k, where y ∈ Fk2 .
Let G′ = (g′1, g

′
2, · · · , g′k) be a balanced (k, k)-function with

nonlinearity no less than 2k−1−2bk/2c. We construct an (n, k)-
function F whose coordinate functions fi’s (1 ≤ i ≤ k) are
defined as follows:

fi(x, y) =

{
gi(x, y), if x 6= 0k
g′i(y), if x = 0k

,

where x, y ∈ Fk2 .

It can be easily checked that every (n, k)-function generated
by Construction 7 is balanced. Further, according to the proof
of Theorem 5 we have the following result.

Proposition 7. Let n = 2k ≥ 4 be an even integer and F be
an (n, k)-function generated by Construction 7 with gi’s in M-
M class. Then any component function f of F has nonlinearity
no less than 2n−1 − 2k−1 − 2bk/2c and Γf ≤ 2d(k+1)/2e+1.

Proof. For every c = (c1, c2, . . . , ck) ∈ Fk2
∗, we define

f =
⊕k

i=1 cifi, g =
⊕k

i=1 cigi, and g′ =
⊕k

i=1 cig
′
i. where
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fi’s, g’s and g′i’s are defined in Construction 7. On the one
hand, it follows from [17] that any component function f has
nonlinearity 2n−1 − 2k−1 − 1

2 maxa∈Fk2 |Wg′(a)| which is no
less than 2n−1−2k−1−2bk/2c, since G′ = (g′1, g

′
2, · · · , g′k) is a

balanced (k, k)-function with nonlinearity no less than 2k−1−
2bk/2c which implies that maxa∈Fk2 |Wg′(a)| ≤ 2d(k+1)/2e. On
the other hand, similar to the proof of Theorem 5 we can
immediately get that rf (a, b) = −2n+rg′(b) if a = 0k, b ∈ Fk2
and rf (a, b) ∈ {±2Wg′(a)} if a ∈ Fk∗2 , b ∈ Fk2 . This gives
Γf ≤ 2d(k+1)/2e+1. This completes the proof.

V. SOME SPECIFIC S-BOX CONSTRUCTIONS

A. In dimension 6

We consider the rotation-symmetric S-boxes [50] (RSSBs)
that are bijective from F6

2 → F6
2. In [25], using a sieving

strategy, the search space of all bijective RSSBs in dimension
6 is reduced from 247.9 to 240. The sieving strategy in [25]
is mainly based on the facts that some of the component
functions of an RSSB are the generalized k-rotation symmetric
Boolean functions [27], where k = 1, 2, and 3, and there
are some affine equivalence relations among these functions
yielding that the nonlinearity of an RSSB can be found by
computing the nonlinearities of only 13 (instead of 63) compo-
nent functions. Thanks to this, all possible candidates for some
of the 13 component functions (with nonlinearity greater than
or equal to 24) are obtained. After that, using those component
functions, all the 240 RSSBs containing them are generated
and the RSSBs with nonlinearity 24 are found efficiently
(as it is enough to find the nonlinearities of the remaining
component functions to find the nonlinearity of an RSSB). It is
found in [25] that there are 23102464×12 (≈ 228) RSSBs with
nonlinearity 24 (known maximal nonlinearity) and, among
them, the number of those with differential uniformity 4 (there
is only one example [5] with differential uniformity 2 in the
literature) is 2332288× 12 (≈ 224.7).

We have checked that among them there are only four (up
to the affine equivalence) that are optimum in terms of the
defender’s objective (i.e., minc∈F6

2
∗ Γc·F = 64 for each S-

box F ). However, these S-boxes (given in Appendix A) are
quadratic.

Let Qk : F26 → F26 denote the polynomial representation
S-box # k, where k = 1, 2, 3, and 4. Using a normal
basis, the representations are obtained as follows by Lagrange
interpolation:

Q1(α) = α24+α40+α44+α48+α52+α55+α56+α61+α63

Q2(α) = α44 + α47 + α52 + α54 + α55 + α59 + α62

Q3(α) = α30+α31+α40+α48+α55+α56+α59+α61+α63

Q4(α) = α28 + α30 + α32 + α47 + α60 + α61 + α63

Considering the APN S-box in dimension 6 [5], we find
that it is very weak from defender’s point of view. Among
the 63 component functions, 28 of them have non-absolute
indicator value 8 (which is the minimum possible) and the
rest non-absolute indicator value 16. Notice that among these
component functions, the minimum algebraic degree is 3 and
the maximum algebraic degree is 4.

B. In dimension 8

Some well-known constructions generating permutations in
dimension 8 with differential uniformity 4 and nonlinearity
2n−1 − 2

n
2 are given in III, where trk1 (α) for α ∈ F2k is the

trace function from F2k to F2 defined by trk1 (α) =
∑k−1
i=0 α

2i .
In Table IV, the value of mini Γfi is computed along with the
other cryptographic properties. It is seen from Table IV that
the worst value is 32 among these constructions. Specifically,
for the inverse function we find that Γfi(d) = 32 for each
coordinate function fi. We have performed some heuristics
in the class of RSSBs, in order to find the bijective S-boxes
having maxi Γfi < 32. Note that RSSBs are affine equivalent
to the S-boxes obtained from the (sum of ) power maps and
most of the known constructions correspond to some power
maps, e.g. the inverse function. The search yielded bijective
RSSBs for which maxi Γfi(d) = 24 < 32, hence worse
than the constructions in Table III in terms of the defender’s
objective.

Remark 5. It is shown that the nonlinearity of an RSSB
is bounded above by the nonlinearity of f , where f is the
coordinate function defining the RSSB, see [36] for more
details. It can be easily checked that this property is also true
for Γf . This could maybe ease the search of RSSB with good
Γf in higher dimensions. We leave this as a topic for future
research.

VI. DISCUSSION

A. Practical Evaluation

The strength of a side-channel attack can be measured by its
probability of success [53, §3.1]. It is defined as the probability
of the event k̂ = k∗, where:
• k∗ is the actual secret key, and
• k̂ is the key guessed (recall (2)) by the optimal side-

channel distinguisher, which consists in maximizing the
probability of the observations knowing the assumed
model for the given keys (recall (4)).

This probability can be estimated as a success rate by repeating
several independent attacks. In addition, the standard deviation
of the success probability can also be estimated, as that of a
Bernoulli distribution [33].
We compare in this section the result of the optimal distin-
guisher (which, by definition, maximizes the success proba-
bility) for various S-boxes, namely:
• The worst (from an attacker standpoint) Boolean function

(5555-6999) displayed in Eqn. (11).
• The optimal (from an attacker standpoint) Boolean func-

tion (18CA-9029) displayed in Eqn. (9).
• The LSB of x 7→ x101 in F256, seen as F2[X]/〈X8+X4+
X3+X+1〉 (S-box also used as an example in [23, §4.3]);
this S-box has average properties regarding side-channel
attacks, hence should be regarded as a representative
average case.

• The LSB of the AES [44] S-box (nicknamed
SubBytes), which is x 7→ 63 + 8fx127 + b5x191 +
01x223+f4x239+25x247+f9x251+09x253+05x254.
This S-box is renown as very relevant from a
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TABLE III. Differentially-4 uniform permutations with the best known nonlinearity 2n−1 − 2
n
2 .

Function Condition Reference
α2n−2 n even [45](

F (α)⊕ f(α)2
i
)∣∣∣
H

H={α ∈ F2n+1 | trn+1
1 (α) = 0},

[29]

F (α)=α
1

2i+1 + trn+1
m/3(α+ α22s), s ≡ i mod 3,

gcd(i, n+ 1)=1, n ≡ 2 mod 6(
βα

2i

2i+1 + β2iα
1

2i+1

)∣∣∣∣
Hβ β ∈ F∗2n+1 , Hβ={βα2i + β2iα | α ∈ F2n+1},(

βα
2i

2i+1 + β2iα
1

2i+1 + α

)∣∣∣∣
Hβ

gcd(i, n+ 1)=1, n ≥ 4 and even

TABLE IV. Cryptographic properties of the S-boxes in dimension 8 generated from the constructions in Table III.

Function∗ Absolute Degree mini Γfi NonlinearityIndicator
α254 32 7 32 112(

F (α)⊕ f(α)2
i
)∣∣∣
H

72, 80 5 48 112[(
F (α)⊕ f(α)2

i
)∣∣∣
H

]−1
256 5 48 112(

βα
2i

2i+1 + β2iα
1

2i+1

)∣∣∣∣
Hβ

72, 80 5 32, 40, 48, 56 112[(
βα

2i

2i+1 + β2iα
1

2i+1

)∣∣∣∣
Hβ

]−1

256 3 32 112

(
βα

2i

2i+1 + β2iα
1

2i+1 + α

)∣∣∣∣
Hβ

72, 80 5 40, 48, 56 112[(
βα

2i

2i+1 + β2iα
1

2i+1 + α

)∣∣∣∣
Hβ

]−1

72, 80 5 40, 48, 56 112

∗ [F (α)]−1 denotes the compositional inverse of F (α), H={α ∈ F29 | tr9(α) = 0}, and
Hβ={βα2i + β2iα | α ∈ F29}, where β ∈ F∗29 and i = 1, 2, 4, 5, 7, 8.

cryptographic point of view, hence it should be
considered as a representative for the best case.

• The 2nd-LSB of SAFER [37] Exponentiating S-box,
namely x 7→ 45x mod 257 (except that the output is taken
to be 0 if the modular result is 256, which occurs for input
x = 128). It has Γf = 256.

The properties of these S-boxes are gathered in Table V.
The superiority of the function (9) over the LSB (and also

other bits—not shown) of AES can be seen in Fig. 3. In this
figure, the success rate has been computed based on 1 million
acquisition campaigns. Each campaign is independent and has
been carried our on 20 side-channel measurements (or 20
traces).

Without surprise, all curves start, for no side-channel trace
(Q = 0), at success probability 2−n = 1/256. The success
probability is then increasing with the number of traces Q > 0.
We observe that:
• The attack on the optimal Boolean function (18CA-9029)

is even more favorable to an attacker than that of the LSB
of AES S-box;

• The attack on the worst Boolean function (5555-6999)
results in the smallest success rate (for a given number
of traces Q), and furthermore feature ties, hence the

asymptotic success rate of 1/2 when Q → +∞. The
same behavior is observed for f equal to SAFER expo-
nentiating S-box 2nd-LSB, which also has Γf = 256.

Notice that the curves in Fig. 3 are equipped with error bars.
Those are intentionally narrow, owing to the large number of
attacks to validate the success rate with great accuracy.

Notice that the attack success rate for Boolean function
(18CA-9029) is unambiguously greater (though not a lot) than
that corresponding to the attack on the AES SubBytes LSB.
The greater success rate for the new S-box is illustrated in the
inset at top left corner of Fig. 3, where it is clear that the error
bars at ±σ do not interpenetrate, hence the new 8×8 S-box is
strictly more favorable to the attacker than that of AES. This
analysis reveals that the AES S-Box is not the worst with
respect to side-channel analysis. However, it is not that far
from being the worst, thus we recommend that designers resort
to protection schemes, such as leakage balancing (hiding) or
S-box randomization (masking) [34, Chap. 7 & 9].

Same conclusions hold in the presence of measurement
noise, as shown in Fig. 4. Information-theoretical analysis [15,
Theorem 1, Eqn. (4) & (5)] allows to derive two bounds
on the minimum number of traces for succeeding a key
extraction irrespective of the attack method. These bounds are
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TABLE V. Properties of studied S-boxes (differential uniformity compares between resp. cases 1, 2, 5 and cases 3, 4)

S-box F name Construction Balanced? Nonlinearity Diff. uniformity Alg. degree Γf (our paper)
5555-6999 Eqn. (11), from construc-

tion 5
Yes 112 256 3 256

18CA-9029 Eqn. (9), copied
from [26]

Yes 116 136 7 16

x 7→ x101 in fi-
nite field F256

A power S-box, as pro-
posed in [23, §4.3]

Yes 80 30 4 All 255 component functions f
have Γf = 112

AES SubBytes Linear transformation in
F8
2 of x 7→ x−1 ∈ F256

Yes 112 4 7 All 255 component functions f
have Γf = 32

SAFER
exponentiating
S-Box (2nd LSB)

∀x ∈
{0, . . . , 255}\{128},
x 7→ 45x mod 257, and
128 7→ 0

Yes 82 128 7 48, 56, 64, 72, 80 88, 96, 104,
112, 120 128, 136, 144, 152, 160
168, 176, 184, 192, 200 208, 216,
224, 232, 240 248, 256

σ = 0 (no measurement noise)

Fig. 3. Success rate of attack without noise for various S-
boxes, and inset magnification on a portion where the new
S-box is successfully attacked faster than AES S-box.

superimposed on the graph (for σ = 1, since the bound does
not work for σ = 0). The bounds are clearly close to the
actual success rates on attacks instantiated on S-boxes (and
all the closer as Γf is small), which confirms that S-boxes
are relevant and critical architectural blocks as targets to side-
channel attacks within block ciphers.

B. Critical Analysis

Let us mention some remaining open problems.
First, the existence of balanced 8 × 8 S-boxes with Γ = 8

is an open problem.
Second, we have suggested some constructions of S-boxes

which, in addition to the customarily criteria, need to optimize
the component’s auto-correlation. Our constructions 1-4 all
yield semi-bent functions, which feature linear structures, that
should be avoided in block ciphers. This is the case also for
Construction 5: since it is based on the direct sum, it generates
decomposable functions, which also have linear structures
and are vulnerable to divide-and-conquer attacks. There is
therefore room for further better tradeoffs.

σ = 1 (with noise, SNR = V ar(Y )/V ar(N) = 1
4σ2 = 0.25)

Fig. 4. Success rate of attack with noise for various S-boxes
and attack bounds, with similar inset magnification as in Fig. 3.

Third, our examples range over some well-known construc-
tion methods, but there is no guarantee that our analysis is
covering all S-boxes. Therefore, new designs can be imagined.

Fourth, Remark 3 provides balanced Boolean functions
f with Γf = 0, but they are of low algebraic degree. A
more general question would be that of finding the maximum
achievable degree of an n-variable balanced Boolean function
with Γf = 0.

Eventually, S-boxes are usually protected against side-
channel attacks by their random masking. Provable compu-
tation of masked S-boxes resort to the interpolation of their
truth table by a Lagrange polynomial. In order to minimize the
computational overhead, S-boxes which can be interpolated by
small polynomials are preferred. The complexity is quantified
by the number of multiplications [1] when evaluating the
polynomial. Therefore, another challenge is to find suitable
S-boxes which in addition also meet this criterion.

VII. CONCLUSION

It is well-known that S-boxes are appealing targets for
side-channel attacks on cryptographic algorithms. Indeed, they
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allow to distinguish clearly between the correct key and erro-
neous key guesses. Considering the most powerful attacker,
we derive that exploited property of the S-box is the (signed)
auto-correlation of its components. We therefore consider
the question to know which S-box is the easiest (harder)
to attack with side-channel analysis. Interestingly, we show
that some S-boxes exist which maximize (resp. minimize)
the side-channel attack efficiency. Leveraging known S-box
constructions, we put forward S-boxes with optimal values
in terms of components auto-correlation. Namely, we provide
concrete instantiations for 6- and 8-bit S-Boxes. Our S-boxes
have two applications: first, they are interesting per se as
objects which shall be considered in the context of facing both
cryptanalysis and side-channel attacks. Second, they allow
to validate in which respect some security bounds on side-
channel attacks are close to the “easiest attackable” S-boxes
(in termes of side-channel analysis).
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APPENDIX

A. Truth Table for the four Found RSSB S-boxes F6
2 → F6

2

S-box # 1:
0, 3, 6, 29, 12, 8, 58, 38, 24, 27, 16, 11, 53, 49, 13, 17, 48,
2, 54, 28, 32, 21, 22, 59, 43, 25, 35, 9, 26, 47, 34, 15, 33, 46,
4, 19, 45, 37, 56, 40, 1, 14, 42, 61, 44, 36, 55, 39, 23, 41, 50,
20, 7, 62, 18, 51, 52, 10, 31, 57, 5, 60, 30, 63
S-box # 2:
0, 10, 20, 48, 40, 26, 33, 61, 17, 27, 52, 16, 3, 49, 59, 39, 34,
38, 54, 28, 41, 21, 32, 50, 6, 2, 35, 9, 55, 11, 15, 29, 5, 24,
13, 62, 45, 8, 56, 51, 19, 14, 42, 25, 1, 36, 37, 46, 12, 31, 4,
57, 7, 44, 18, 23, 47, 60, 22, 43, 30, 53, 58, 63
S-box # 3:
0, 10, 20, 29, 40, 26, 58, 11, 17, 27, 52, 61, 53, 7, 22, 39, 34,
38, 54, 49, 41, 21, 59, 4, 43, 47, 14, 9, 44, 16, 15, 48, 5, 46,
13, 37, 45, 62, 35, 51, 19, 56, 42, 2, 55, 36, 8, 24, 23, 50, 31,
57, 28, 1, 18, 12, 25, 60, 32, 6, 30, 3, 33, 63
S-box # 4:
0, 10, 20, 58, 40, 31, 53, 38, 17, 27, 62, 16, 43, 28, 13, 30,
34, 55, 54, 7, 61, 21, 32, 44, 23, 2, 56, 9, 26, 50, 60, 48, 5,
29, 47, 19, 45, 8, 14, 15, 59, 35, 42, 22, 1, 36, 25, 24, 46, 41,
4, 39, 49, 11, 18, 12, 52, 51, 37, 6, 57, 3, 33, 63


