
HAL Id: hal-02916059
https://hal.science/hal-02916059

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Minimum-area ellipse bounding an isovist: towards a 2D
GIS-based efficient implementation

Thomas Leduc, Michel Leduc

To cite this version:
Thomas Leduc, Michel Leduc. Minimum-area ellipse bounding an isovist: towards a 2D GIS-based
efficient implementation. International Journal of Geographical Information Science, 2020, pp.1-24.
�10.1080/13658816.2020.1800017�. �hal-02916059�

https://hal.science/hal-02916059
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Minimum-area ellipse bounding an isovist: towards a 2D GIS-based

efficient implementation

Thomas Leduca and Michel Leducb
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ABSTRACT
In geographic information science and technology, various methods and studies ex-
ist to characterize the linearity, rectangularity, convexity, circularity or compactness,
sinuosity or tortuosity of a given spatial shape. Although there is much work on el-
lipticity in image processing, we do not address, in geomatics, the issue of matching
to a reference elliptical shape. Regarding this issue, this article is a contribution
to the qualification of urban open spaces. It provides an operating algorithm for
determining a minimum-area bounding ellipse for any given polygonal shape. It also
proposes an implementation of this algorithm in the context of a Geographic Infor-
mation System and a Jupyter Notebook. As an application, it focuses on two real
urban configurations on fields of about 300 isovists. The results from the application
of this approach in two urban areas in France show that the ellipse is a better min-
imum bounding geometry than are circle or rectangles, at least for the half-dozen
descriptors studied. The improvement relatively to the minimum bounding rectangle
is particularly significant in terms of correlation concerning the orientation (+20%)
and drift (+10%).

KEYWORDS
Minimum-area bounding ellipse; isovist; elliptic hull; caliper; diameter.

1. Introduction

1.1. Shape in GI Science

As Boyce and Clark (1964) note in a seminal article, “Although shape has been pri-
marily used in geography as a descriptive device [e.g. the ‘boot’ shape of Italy], it has
also been of value as an analytical tool”. According to Galton (2017), the appeal for
the morphology is justified “because the shape of a geographical entity can have far-
reaching effects on significant characteristics of that entity”. He illustrates the point
by referring to settlement patterns, trading relations, road network layout, etc.

“To characterize the shapes of geographical entities in ways that usefully capture
such implications” (Galton 2017), three main categories of methods have been devel-
oped in the literature such as a) shape descriptors, b) some commonly used shape
surrogates, and c) measures of similarity between shapes. In the first category, the
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objective is, for example, to measure the linearity (Stojmenović et al. 2008), rect-
angularity (Rosin 1999, Zhang and Atkinson 2016), convexity (Rahtu et al. 2006),
circularity or compactness (Lee and Sallee 1970, Maceachren 1985, Angel et al. 2010,
Li et al. 2013), sinuosity or tortuosity (Adolphe 2001, Grisan et al. 2008) of a given
shape. In the second category, regarding shape surrogates, one can mention several
minimum bounding geometries, such as the convex hull, the circle, the envelope, and
the oriented rectangles. Concerning the latter, (Zhang and Atkinson 2016) introduces
several variants, such as the minimal width bounding box or the moment bounding
box. According to (Galton 2017), the same category also includes skeletons (Leborgne
et al. 2015, Sarradin et al. 2007) and quadtrees (Samet and Webber 1985). Finally, in
the third category, regarding geometric shape matching or similarity measurements,
various techniques exist such as those derived from signal processing (Ai et al. 2013),
or measurements such as Hausdorff distance (Sarradin et al. 2007).

Our paper is in line with research on two-dimensional geographic shapes and more
precisely on the morphological analysis of urban open spaces. It benefits from a set of
works relating to the analysis of urban layout in an immersed perspective, to visual-
based studies, to field-oriented approaches, etc. Its purpose is, at every point of the
open space in the city, to qualify the two-dimensional shape of the immediately sur-
rounding space, or interstitial space that interweaves between buildings to form the
city’s connective network. As Marshall (2005) points out, streetscape forms “a contigu-
ous network or continuum by which everything is linked to everything else” and this
“plenum of the urban space” (Couclelis 1992), is an alternative way to consider the
study of urban form. It contrasts with the standard atomic approach, which focuses
on the study of perfectly identified urban feature configurations (the buildings) with
clear and stable boundaries.

The isovist (Benedikt 1979), as the set of points of the horizontal plane associated
with an observer – or a panoptic visual sensor – immersed in the city, is a solution,
within the framework of the ontology plenum, for determining the immediate environ-
ment associated with the position. It makes it possible to describe the local geometric
properties of the surrounding space from a single point of generation (the point of
view) by associating it with a single polygonal shape that can itself be qualified.

Unfortunately, the isovist, which is a valuable tool to determine “‘how far’ and ‘how
much’ one can see” (Batty 2001), does not explicitly provide a dominant orientation of
the space or a measure of its flattening or ellipticity. And, to this end, standard solution
based on the minimum-area bounding rectangle does not appear to be appropriate. Its
sensitivity to the configuration of the surroundings is highlighted in Figure 1, where
the orientation of such a rectangle seems unsuitable. In contrast, the main axis of
the ellipse of the minimum area enclosing the isovist determines a smoother overall
direction, closer to the direction of the isovist diameter.

Figure 1. Comparisons of three dominant directions (main axis of the minimum-area bounding ellipse – black

dashed segment, the minimum-area bounding rectangle – blue dashed polygon, and the isovist diameter – red
dashed segment) for a given spatial configuration in Paris 9th borough, France. The isovist corresponding to

the viewpoint (black point labelled 384) is represented by a yellow polygon.

This being said, the more precise purpose of this work is to address the issue of
ellipticity and the matching of a polygonal shape to a reference elliptical shape. We
will thus pursue the purpose developed by Lasserre (2015): “‘Approximating’ data
by relatively simple geometrical objects is a fundamental problem with many impor-
tant applications and the ellipsoid of minimum volume is the most well-known of
the associated computational techniques.” In order to be consistent with the name
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“minimum-area bounding rectangle” (resp. minimum-perimeter bounding rectangle),
usually abbreviated by the acronym MABR (resp. MPBR), we adopt the naming con-
vention “minimum-area bounding ellipse” and the corresponding acronym MABE, to
describe the ellipse of the minimum area enclosing a given geometric shape. From
(Toussaint 1983)’s work, we could also name it the smallest-area enclosing ellipse.

Yet, as Žunić et al. (2017) point out, “a lot of work has been dedicated to solve the
appearing, ellipticity1 associated, problems”, in particular in “astronomy, astrophysics,
nano-particles analysis, and traffic analysis”. So, in terms of image processing, “an
infinite family of ellipticity measures” (Žunić et al. 2017) has been recently designed.

1.2. About ellipse and ellipticity

Standard geographic information systems or database extender (including ArcGIS
Desktop Advanced (ESRI 2014), Grass (GRASS Development Team 2017), QGIS
(QGIS 2020), SAGA (Conrad et al. 2015), and PostGIS (PostGIS 2020)) offer a set
of minimum bounding geometry tools capable of extracting, for a given polygonal
shape, its convex hull, its oriented minimum bounding rectangle, its minimum bound-
ing circle, and even sometimes its concave hull. Matching to a shape surrogate such
as the ellipse or identification of an elliptical minimum bounding geometry is missing
in vector processing.

As exhibited in Figure 2, it seems that the ellipse has a stability that justifies
tackling the elliptic hull issue in the context of vector processing. Indeed, the given
hexagon under study emphasizes that the bounding rectangle with the minimum area
('7.1 area units, '11.3 length units) is not necessarily the bounding rectangle with
the minimum perimeter ('7.9 area units, '11.2 length units) on the one hand, and
that the orientations of these two rectangles differ substantially ('50°) on the other
hand.

Figure 2. Considering the plotted hexagon, its bounding ellipse with the minimum area (solid red contour)

passes through the four points P1, P2, P3, and P5, whereas the bounding ellipse with the minimum perimeter
(dashed red contour) passes through the four points P1, P3, P5, and P6. We also represent here the bounding

rectangle with the minimum area (solid blue contour) and the bounding rectangle with the minimum perimeter

(dashed blue contour).

In contrast, this figure shows that the bounding ellipse with the minimum area ('7.0
area units, '10.0 length units) is also the “best bidder” compared to these bounding
rectangles, whether to minimize the area or minimize the perimeter. Finally, it shows
that, in this particular case, the bounding ellipse with the minimum perimeter ('7.2
area units, '9.8 length units), although different from the minimum-area bounding
ellipse, nevertheless remains quite close (there is less than 0.3° of angular deviation
between their respective major axes). In this illustration, we have deliberately left the
minimum bounding circle aside since it does not allow, by essence, to identify a major
orientation.

This raises the question of whether comparison to a reference elliptical shape is an
interesting option for characterizing a shape. Aware that there is no single numerical
shape descriptor allowing such a characterization, we propose to focus on a set of six
measures inspired in particular by (Galton 2017). Area and perimeter are standard
and rotation invariant measures, as are the diameter2, the stretching – which is defined

1We adopt Žunić et al. (2017)’s definition: “Notice that by the shape ellipticity we mean the similarity of a
given shape to the planar region bounded by an ellipse”.
2Let’s call chord length the distance in a straight line between two points of the shape contour. The diameter
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as the ratio of the minimum Feret diameter3 to the maximum Feret diameter – and
the drift4. These last three descriptors, like the shape orientation5, which is the sixth
descriptor we have chosen, are scale invariant. To measure the convexity, circularity,
rectangularity or ellipticity of the shape we proceed by correlating the descriptors of
the surrogate shapes. The question raised here is whether the ellipse could be, in a
“continuum” from the convex hull to the minimum bounding circle, a good compromise
in terms of shape surrogate.

Because there is no implementation we can use6, this article will first present a
method for determining the MABE and its algorithmic implementation details in the
context of a geographic information system (namely, QGIS). It will then present an
application of this algorithm to the analysis of isovist fields in two real urban cases.

2. Materials and method

2.1. General principle

According to Gruber (2011), for any compact set in the plane, there exists a unique
ellipse of the minimum area containing this set. It is called the Löwner-John ellipsoid
of the compact set, or more simply its minimum-area bounding ellipse.

Let us first observe that five vertices of a convex polygon determine at most one
ellipse passing through them. The coefficients of its Cartesian equation are easily de-
termined by solving a five-dimensional linear equation (see Subsection 2.10). However,
the ellipse thus obtained is not necessarily of the minimum area (see Figure 3). Some-
times three of the five aforementioned vertices are sufficient to identify the MABE.

Figure 3. Let be a set of points of the Cartesian plane given by the following WKT geometry: MULTIPOINT

((-1, -1), (1, -1), (2, 0), (-2, 1), (-2, 0)). The MABE (solid red line) passing through the three points P1, P3,

and P4 has an area of about 8.46. In contrast, the MABE (dashed black line) passing through the four points
P1, P2, P3, and P4 has an area of about 8.49. Finally, the MABE (dashed blue line) passing through the five

points has an area of about 11.22.

Rublev and Petunin (1998) show that if an ellipse passes through less than three
vertices of a convex polygon and contains all the others, then it cannot be of the
minimum area because it may be reduced by compression.

So, there are just three cases to examine: either the MABEs passing through 3 ver-
tices, or the MABEs passing through 4 vertices, or the MABEs passing through 5 ver-
tices.

The example in Figure 4 shows that there is a MABE passing through four of the six
vertices and three MABEs passing through five of the six vertices. The best solution
(minimum area) is generated by one of the 5-combinations.

All ellipsoids being convex, if a set of given points in the Cartesian plane is inside

is defined as the greatest chord regardless of the selected pair of contour points.
3The Feret diameter, also known as caliper diameter, is defined as the distance between two parallel tangents

of the shape contour. It depends on the chosen direction (Toussaint 1983).
4The shapes under study in this paper all derive from the isovist and as such are generated from a viewpoint. By

extending the concept defined by (Conroy 2001), we call “drift” the Euclidean distance between the generating
viewpoint and the centroid of the corresponding shape.
5For any non-circular polygon shape, orientation is defined as the measure of the azimuth of its diameter in

the range of 0 to 180°.
6Indeed, the QgsEllipse class as defined in QGIS 3.0 core library is a container for elliptical geometries defined

by a centre point, a semi-major axis, a semi-minor axis and an azimuth. This class does not in any way provide

a solution for determining a minimum-area bounding ellipse.
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Figure 4. Let be a set of points of the Cartesian plane given by the following WKT geometry: MULTIPOINT
((0 -1.5), (1 -1), (1 1), (0 1.1), (-1 1), (-1 -1)). The MABE (solid red line) passing through the five points P1,

P2, P3, P5, and P6 has an area of about 6.3. In contrast, the MABE (dashed black line) passing through the

four points P1, P3, P4, and P5 has an area of about 10.6. Finally, the MABEs (dashed magenta – resp. blue
– line) passing through the five points P1, P2, P3, P4, and P5 (resp. P1, P3, P4, P5, and P6) has an area of

about 13.5.

an ellipse, then its convex hull is also included in that ellipse. Moreover, if the set is
finite, then the vertices of this convex hull are some of the given points.

The general principle of our method, inspired by the approach developed by Rublev
and Petunin (1998), can therefore be summarized as follows. The Steiner ellipse of
three non-collinear points (Weisstein 2019) is the MABE containing these three points.
This ellipse passes through these three points and has their isobarycentre as its centre.
Therefore, if the Steiner ellipse of three vertices contains all the others, it is the MABE
containing all the given points. If it is not so, we must examine the two other cases.

2.2. Pre- and post-processing

Isovists are, by nature, star-shaped and therefore 1-simply connected. As such, their
contours frequently present numerous concavities or collinearities of points that can
potentially overload or complicate their processing. To reduce the complexity and limit
the number of points to be dealt with, the solution lies in convexity. The first step
therefore consists, from the input contour, in calculating its convex hull. To this end,
we use the native convexHull() method of the QgsGeometry class of the QGIS Python
API. We can note that, in the specific case of isovists, the number of vertices of the
convex envelope is generally much lower than that of the contour of the given isovist
(see Table 1 in Section 3.1 for a more detailed illustration). Finally, when the isovist is
bounded by an artificial horizon, prior pruning of contour vertices may be necessary.

In addition, the data we usually handle are geographical entities based on geographic
coordinate reference systems. In these spatial reference systems, and more particularly
in metric Cartesian systems such as the EPSG:2154 we use, the coordinates have high
magnitudes and large numbers of significant digits.

To avoid possible problems related to computer arithmetic (especially when solving
linear systems), the solution implemented is twofold. The first step aims to translate
all the points of the convex envelope into a local coordinate system whose origin is an
angle-weighted barycentre that will be detailed later. The second step – necessary when
the shape diameter to be processed is at least hectometric – consists of a homothetic
contraction aimed at uniformly reducing the shape7.

The purpose of post-processing is, by reverse dilation and translation, to move and
transform the centre of the ellipse, the two semi-axis lengths and the azimuth of its
major axis in the input coordinate system and give them the required magnitude.

2.3. Main workflow

The purpose of our processing is to determine an ellipse from its centre, its semi-axis
lengths, and the azimuth of its major axis. These parameters characterize the ellipse
and allow to plot it easily. To assess these coefficients, we use the general principle
set out in Subsection 2.1, which aims, from the set of vertices of the convex hull, to

7The underlying idea is to solve linear systems as well-conditioned as possible.
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determine its unique MABE as the minimum-area ellipses passing through 3 or 4 and
5 vertices.

As shown in the workflow in Figure 5, regardless of the value of k and the k-
combination of vertices, the objective is first to identify the centre of the ellipse in order
to remove the linear coefficients from Equation A2 (see Appendix A8) and transform
it into Equation A5. The next challenge consists in identifying the three quadratic
coefficients a, b, and c of Equation A5 and the corresponding area. It should be noted
that, for efficiency reasons, the minimum-area condition is checked before the enclosing
condition. For the same reasons, semi-axis lengths and azimuth of the major axis are
calculated only once, at the very end of the process, when the solution – the bounding
ellipse of minimum area – has been identified.

Figure 5. Workflow (for instance, the abbreviation “Sec. 2.10” refers to the Section 2.10 of this article).

It is important to note that the initial centring on the entire convex hull is by no
means universal. Moving into a coordinate system centred at the isobarycentre of the
k vertices allows writing Equation A2. This naturally requires the reverse translation
at the end of the entire process.

The workflow presented in Figure 5 summarizes the general principle we have im-
plemented in Python in the context of QGIS. With the exception of the Pentagon case,
the underlying principle is that any surface is modified proportionally9 by applying
an affine isomorphism.

2.4. Shared processing: determination of the azimuth and semi-axes
values

In this section, we assume that the ellipse is centred at the origin of the coordinate
system. In such a coordinate system, the general formula of an ellipse is that of Equa-
tion A5. As mentioned in Appendix A, if a, b, and c are known parameters, we can
assess the azimuth of the ellipse axes from Equation A9. Then, this azimuth having
been determined, we can calculate the two semi-axis lengths using Equations A10
and A11.

2.5. Shared processing: test of vertices inclusion in a shifted ellipse

Any point with (x, y) as coordinates is enclosed in the ellipse defined by Equation A5
if and only if ax2 + bxy + cy2 ≤ 1. The “enclosing” test in the corresponding ellipse
is based on the values of the coordinates of the centre and that of the three quadratic
variables a, b, and c of Equation A5.

2.6. Shared processing: initial sorting and shifting procedures

The sorting procedure we have implemented aims to list vertices according to their in-
creasing inner angle values. The heuristic we have implemented assumes that the min-
imum inner angle vertices are, in probability, the structuring vertices of the minimum-
area ellipse.

8In Appendix A, we have grouped together the few general equations related to ellipses that we use in this

paper. All equations with labels beginning with the letter A refer to this appendix.
9The proportionality factor being equal to the absolute value of its determinant.
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In the same procedure, we are looking for a centroid. That is to say, a central point
representative of all the points given. To prevent a possible shift of the centre due to
an over-representation of points concentrated in very close locations, our barycentre
calculation is weighted by the value of the angle at each vertex.

2.7. The triangle case

The case of a 3-combination of vertices or triangle case first requires identifying the
centre of the corresponding Steiner (circum)ellipse. This centre is calculated as the
isobarycentre of the three vertices of the triangle. Let us define P1 = (x1, y1), P2 =
(x2, y2), and P3 the points resulting from the translation which aims to move their
isobarycentre at the origin of the Cartesian coordinate system.

To determine the quadratic coefficients, we have developed a purely geometric
method (to bypass the resolution of a 3x3 linear system and therefore avoid possible
computer arithmetic instabilities) that we will reuse further with the parallelograms.
It consists first of all by applying an appropriate linear operator M, to transform
the given triangle (P1, P2, P3), into the equilateral triangle of vertices P ′1 = (1, 0),

P ′2 =
(
−1
2 ,
√

3
2

)
, and P ′3 =

(
−1
2 ,
−
√

3
2

)
. This equilateral triangle has trivially the unit

disc for MABE. Any point P ′ of this disk is, by linear transformation of operator M,
transformed into a point P = (x, y) and then, is written as follows:

P ′ =M× P =

(
m11 m12

m21 m22

)
×
(
x
y

)
(1)

Providing the definition of the operator M:

M =

(
m11 m12

m21 m22

)
=

(
1 −1

2

0
√

3
2

)
×
(
x1 x2

y1 y2

)−1

If P ′ satisfies the unit disc equation then P satisfies the following equation:

(m11x+m12y)2 + (m21x+m22y)2 = 1 (2)

By developing and term-to-term matching to Equation A5, we then obtain the follow-
ing formulas for the three quadratic coefficients:

a = m2
11 +m2

21 b = 2 (m11m12 +m21m22) c = m2
12 +m2

22 (3)

Therefore, from the three quadratic parameters of Equation A5, we can analytically
determine the semi-axis lengths, see Equations A10 and A11, and the azimuth of the
ellipse axes, see Equation A9.

2.8. Non-parallelogram quadrangular case

Let P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3), and P4 = (x4, y4) be the quadruplet
of vertices resulting from the translation which aims to move their isobarycentre at
the origin of the Cartesian coordinate system. Let M13 and M24 be the following two
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matrices from the coordinates of these vertices:

M13 =

(
x1 x3

y1 y3

)
M24 =

(
x2 x4

y2 y4

)
If det(M13) = det(M24) = 0 then the given quadrangle is a parallelogram. This
particular case is handled in Section 2.9. Since we consider here that the quadrangle
studied is not a parallelogram, at least one of these two determinants is non-zero. Let
us consider that det(M13) 6= 0 (otherwise the following reasoning is to be applied to
M24). Matrix M13 is thus invertible.

In the manner of the triangle case, we can define an appropriate linear operator
M aiming at transforming respectively the points P1 and P3 into P ′1 = (1, 0) and
P ′3 = (0, 1). This operator is written as follows:

M =

(
x1 x3

y1 y3

)−1

The images P ′2 and P ′4 of P2 and P4 verify P ′2 + P ′4 = −(P ′1 + P ′2) = −(1, 1). These
two vertices are therefore symmetrical relatively to (−0.5,−0.5). The convexity of the
image quadrangle implies that they are each in one of the two grey sectors of Figure 6.
Let us denote (u,v) the coordinates of the one in the northeast sector. The other is
then −(1 + u, 1 + v). If the ellipse of Equation A2 passes through P ′1, P ′2, P ′3, and P ′4
then the following system of equations is verified:

a2 + d2 = 1

a2u
2 + b2uv + c2v

2 + d2u+ e2v = 1

c2 + e2 = 1

a2(1 + u)2 + b2(1 + u)(1 + v) + c2(1 + v)2 − d2(1 + u)− e2(1 + v) = 1

Appendix B explains how to obtain the minimum-area ellipse passing through these
four vertices.

Figure 6. In order for the four vertices P ′
1, P ′

2, P ′
3, and P ′

4 to form a convex quadrangle described in the

counter clockwise direction (P ′
1 and P ′

3 being fixed), P ′
2 must be located in the northeast grey sector resulting

from the intersection of the three given half-planes.

The coefficients a2, b2, c2, d2, and e2 having been determined, we still have to
calculate the coordinates of the centre of the ellipse (see Formulas A3 and A4) as well
as the quadratic coefficients of the centred ellipse (see Formulas A7).

As an additional remark, to prevent possible numerical instability problems when
searching for the roots of Equation B6, it may be necessary to perform permutations
of the image vertices described in counter clockwise order.

2.9. Specific quadrangular case: the parallelogram case

As already mentioned, the parallelogram case has symmetries and particularities that
justify a specific treatment. Let P1 = (x1, y1), P2 = (x2, y2), P3, and P4 be the vertices
of the studied parallelogram, resulting from the translation which aims to move their
isobarycentre at the origin of the Cartesian coordinate system. Let M be the matrix
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of the linear application that transforms the point P1 into the point P ′1 = (1, 0), the
point P2 into the point P ′2 = (0, 1), and consequently the point P3 into the point
P ′3 = (−1, 0), and the point P4 into the point P ′4 = (0,−1). One can notice that the
MABE of the points P ′i resulting from this linear transformation is trivially the unit
circle.

From this observation and the reasoning implemented in Equations 1 and 2, we
quickly find the analytical formulations of the three quadratic coefficients (see Equa-
tions 3). It should be noted here that the operator M is simpler to write than in the
case of the triangle (as it is a question of multiplying by the identity matrix):

M =

(
m11 m12

m21 m22

)
=

(
x1 x2

y1 y2

)−1

2.10. The pentagon case

In the pentagon case, we have as input data five vertices of the convex hull. Provided
that the origin of the Cartesian plane is not a point on the contour of the ellipse (which
is guaranteed by the second translation specific to this k-combination of vertices), each
coordinate of these five vertices satisfies the implicit Equation A2. From five vertices
of the ellipse, we can then construct and solve10 a linear system with five equations to
determine the values of the five variables a2, b2, c2, d2, and e2. The values of these five
variables having been determined, we then return to the purely quadratic Equation A5.

As mentioned in Appendix A, if a2, b2, c2, d2, and e2 are known parameters, we can
derive the coordinates of the centre of the ellipse and the quadratic parameters a, b,
and c from Equations A3, A4, and A7. This is the processing we implemented.

3. Experimental validation

3.1. Case study: sites location

To illustrate the relevance of matching a given shape (and, in this case, an isovist as
part of the open space) to the minimum-area bounding ellipse, we chose two French
cities with various spatial configurations.

Regarding Le Havre city centre (see Figure 7a), we chose an urban area of 2 km2

with 6,435 building footprints. This area has two distinct morphologies. It includes,
in the south, a sub-area entirely rebuilt by Auguste Perret after the Second World
War. In a totally planned layout, it is composed of a regular grid of relatively high-
rise buildings separated by large open spaces, right-angled streets, and quadrangular
plazas of various sizes. On the other hand, the sub-area to the Northeast (Danton
borough) has a more traditional morphology. In this area, the built density is higher
and the street layout is more organic, with contrasting street widths, unconventional
intersections, and unaligned facades.

Figure 7. a) Map of Le Havre city centre; b) Map of Paris 9th borough.

The second case is Paris 9th borough (see Figure 7b). This area, of about 2.2 km2

with 3,923 building footprints, has a complex and sometimes-ambiguous layout. In-
deed, Haussmann’s urban renewal in the late 19th century has intensively influenced

10Using the routine solve of the numpy.linalg package.
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its spatial configuration by superimposing broad rectilinear boulevards with narrow
and more organic streets.

To analyse these two examples, we use the standard topographic data sets provided
by the IGN BD Topo® database (March 2017 edition). This is a 3D metric and
vectorial description (structured in objects) of the elements of the territory and its
infrastructures, usable on scales ranging from 1:5000 to 1:50,000, compliant with the
European INSPIRE directive.

Using a technique known as open space skeletonization (which was implemented,
in particular, in (Rodler and Leduc 2019)), we positioned a set of about 300 virtual
sensors on each of these two urban layouts. These sensors immersed in the city corre-
spond to as many viewpoints. In each of them an isovist is generated, which presents a
more or less great complexity of contour according to the urban environment. Table 1
presents a statistical study of the number of contour points of each of the 291 (resp.
300) isovists, and the number of vertices of their respective convex hulls, for Le Havre
city centre (resp. Paris 9th borough).

Table 1. Descriptive statistics of the number of contour points for the 291 (resp. 300) isovists and the number

of vertices of their respective convex hulls, without the prior pruning of contour vertices mentioned in 2.2.

Site Feature Min. Median Mean Max. Std. dev.
Le Havre Isovist 10 146 190 812 165

Conv. hull 4 12 20 95 18
Paris 9th Isovist 11 83 94 256 48

Conv. hull 4 9 10 24 4

3.2. Descriptive analysis

The boxplots in Figure 8 present a summary of the distribution of the six shape
descriptors selected, after normalization of their measures, for various shape surrogates
constructed from the 591 isovists under study. We have deliberately chosen not to
represent the distribution of areas, perimeters and drift of the isovists – descriptors easy
to calculate – in these diagrams, considering that the minimum boundary geometries
are all derived from the convex hull, but also for readability reasons. Although, at
first glance, the set of measures share broadly identical orders of magnitude, there are
some disparities that we would like to highlight.

Figure 8. Boxplots of the six normalized descriptors for various shape surrogates derived from the set of 591

isovists examined in Le Havre city centre and Paris 9th.

The first point concerns area measurement. By observing the minimum, the 1st
quartile, the median, the 3rd quartile and the maximum, we see that the minimum
bounding circle is obviously less correlated to the convex hull than the rectangles and
the ellipse. This lower correlation is confirmed (less obviously) with the perimeter and
drift boxplots. As far as the drift is concerned, the minimum and median values show
that the distance from the centre of the ellipse to the viewpoint is a slightly better
estimator of the distance from the centroid of the convex hull to the viewpoint than
are the rectangles.

In terms of stretching, the ratio of the two axis lengths of the MABE is a better
estimator than the stretching of the rectangles. The median and 3rd quartile of the
major axis of the ellipse correlates better with the diameter of the bounding circle
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than do the longest sides of the bounding rectangles. Finally, in terms of orientation,
it seems that the ellipse is even better (in the sense that it correlates better with the
direction indicated by the diameter of the isovist) than the rectangles.

3.3. An urban fabric dependent statistical relationship

This better correlation (more or less obvious depending on the considered descriptor) of
the MABE is confirmed by the scatterplots and the associated correlation coefficients
in Figures 9 and 10. In all cases, the MABE is the surrogate shape that best correlates
with the so-called reference shape (i.e., depending on the selected measure, the convex
hull for the area, the perimeter and the drift; the caliper for the stretching; the MBC
for the length; the diameter for the orientation). This trend is significant for orientation
(21.3% in Le Havre city centre and 18.6% in Paris 9th) or drift (>10.7%), of the order
of one percent for length, and marginal for perimeter, stretching or area. Finally, it
should be noted that the correlation gain is systematically stronger in Le Havre than
in Paris for the three measures in Figure 10, whereas this trend is reversed in the case
of Paris, where the ellipse correlates slightly better with the convex hull of the isovist.

Figure 9. Correlation matrices for area, perimeter and drift descriptors in Le Havre city centre (left) and in

Paris 9th (right).

Figure 10. Correlation matrices for stretching, length and orientation descriptors in Le Havre city centre

(left) and in Paris 9th (right).

3.4. Zoom on the orientation and drift descriptors

As already noted, orientation ('20%) and drift ('10%) are the two descriptors for
which, in terms of minimum bounding geometry, the ellipse stands out clearly from
the rectangles for correlation to the reference shape. The purpose of Figures 11 and 12
is to highlight the fact that this better correlation is not only marked but also fairly
localized.

Figure 11. Comparisons of the deviation of the orientation of the rectangle to the orientation of the diameter

for a) Le Havre city centre and c) Paris 9th with the deviation of the orientation of the ellipse to the orientation

of the diameter for b) Le Havre city centre and d) Paris 9th.

Figure 11 shows a distribution of the deviations between the orientation of the
diameter and the orientation of the MABR for Le Havre city centre (a) and Paris 9th

(c) on the one hand and a distribution of the deviations between the orientation of
the diameter and the orientation of the ellipse for Le Havre city centre (b) and Paris
9th (d) on the other hand. It is clear from these maps that the strongest orientation
deviations are uniformly distributed over the two studied areas. In Paris 9th, deviations
of more than 30° (i.e. 20% of the cases) are almost all located at street intersections
or on squares or plazas. This clear trend is confirmed in Le Havre city centre (more
than a third of the cases have an orientation deviation of more than 30°) where the
space is much more open in the southern part of the city.

Figure 12 shows a distribution of the deviations between the drift of the convex hull
and the drift of the MABR for Le Havre city centre (a) and Paris 9th (c) on the one
hand and a distribution of the deviations between the drift of the convex hull and the
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Figure 12. Comparisons of the deviation of the drift of the rectangle to the drift of the convex envelope for
a) Le Havre city centre and c) Paris 9th with the deviation of the drift of the ellipse to the drift of the convex

envelope for b) Le Havre city centre and d) Paris 9th.

drift of the ellipse for Le Havre city centre (b) and Paris 9th (d) on the other hand.
We note that the distance from the centroid of the rectangle to the corresponding
viewpoint is significant at T- or Y-intersections in the case of Paris.

3.5. Focus on a few viewpoints

Figure 13 maps four urban configurations in which deviations from reference, both
orientation and drift, are particularly strong.

Figure 13. Zoom on some spatial configurations with strong deviations of direction in a) Le Havre city centre

or b) Paris 9th and strong deviations of drift in c) Le Havre city centre or d) Paris 9th.

4. Discussion

4.1. Towards a better understanding of the city layout

Ellipticity is a shape characteristic that is intermediate between compactness (which is
a measure of the complexity of the interface between the study area and its surround-
ings) and rectangularity (which is correlated to the notion of flattening). Therefore,
the properties of the ellipse and its major axis make it possible to determine in par-
ticular an orientation and drift for the convex hull of the open space surrounding
any point of view of the urban space. These orientation and drift, which draw major
trends in the spatial configuration of open urban space, can also be studied in rela-
tion to considerations of exposure to direct solar beams or to wind (speed and kinetic
energy).

4.2. A highly simplifying indicator

It must be noted that, by focusing on the main orientation of the MABE, we are achiev-
ing a drastic dimension reduction (from a polygonal shape to a single floating-point
value). This indicator is all the more simplistic because it is based, for its determina-
tion, not on the shape itself but on its convex envelope. Two distinct isovists with the
same convex hull will thus produce identical MABE. This indicator is therefore not a
tool for measuring the concavities or convexity defect of the studied isovist. However,
one can notice that the MABR and the MBC face the same limits.

4.3. About complexity

Compared to the complexity of the algorithm for calculating the MABR (which is
known to be a linear-time algorithm), the complexity of our algorithm for determining
the MABE is of a complexity at worst in O(n5), where n is the number of vertices of
the convex hull. Indeed, if none of the 3-combinations of vertices allows to identify an
ellipse enclosing the given shape (complexity at worst in O(n3)), then it is necessary
to review all the ellipses resulting from the 4- and 5-combinations of vertices.

12



As shown in Table 2, in 97 cases (33.3%) in Le Havre city centre, we have a com-
plexity at worst in O(n3). The remaining 66.6% have a complexity in O(n5). Similarly,
in 96 cases (32%) in Paris 9th, we have a complexity at worst in O(n3). The remaining
68% have a complexity in O(n5).

Table 2. Number of MABE generated by 3, 4, or 5 vertices for the isovist fields in Le Havre city centre (resp.
Paris 9th), France.

Site Tri. Quadri. Penta.
Le Havre 97 142 52
Paris 9th 96 172 32

The number of vertices of the convex hull is decisive for the determination of the
MABE and its complexity. This number and its dispersion (see Table 1) are clearly
smaller in Paris 9th than in Le Havre city centre. A more precise study of the Le
Havre case shows that, in terms of the MABE calculation, the complexity of the
Danton borough (Northeast) is close to that of Paris 9th, while that of the Auguste
Perret borough (South) is much higher due to artificial horizon generated by long
perspectives.

5. Conclusion

This article is a contribution to the qualification of urban open spaces. It provides an
operating algorithm for determining a minimum-area bounding ellipse for any given
polygonal shape. More precisely, using the theorem of existence and uniqueness of
Löwner-John’s ellipsoid, we develop a method based on three, four, and five relevant
combinations of vertices of the convex hull of the given isovist field. The application to
two real urban configurations shows that the ellipse is a minimum bounding geometry
that performs better than the circle or rectangle, at least for the half-dozen studied
descriptors. This improvement, substantial as far as orientation or drift is concerned,
has however a drawback in terms of computing time since the implementation we
propose has an algorithmic complexity at worst in O(n5).

In the context of a systematic morphological analysis of cities, the question is raised
as to whether this combined approach would make it possible to massively produce
city typologies through open spaces’ classification (in particular with regard to the
issue of the universality of the Zipf’s law raised by Jiang et al. (2015)). We may also
wonder whether the method of automatic vehicle extraction from point cloud based
on three descriptors, namely surface area, rectangularity and elongation, developed
by (Zhang et al. 2014), could also be extended to the detection of other features by
taking advantage of the contributions of our work on ellipticity.

6. Data and codes availability statement

The data and codes that support the findings of this study are available with a DOI
at http://doi.org/10.6084/m9.figshare.c.4964291. In particular, we provide a
Jupyter notebook that explains step by step how to use the Python plugin (released
under the GPL v3 license) that implements the method presented in this article.
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Stojmenović, M., Nayak, A., and Zunic, J., 2008. Measuring linearity of planar point sets.
Pattern Recognition, 41 (8), 2503–2511. Available from: https://linkinghub.elsevier.
com/retrieve/pii/S0031320308000381.

Toussaint, G., 1983. Solving Geometric Problems with the Rotating Calipers. In: IEEE MELE-
CON’83, no. May, Athens, Greece. 1–8. Available from: https://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.155.5671.

Weisstein, E.W., 2019. Steiner Circumellipse. From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/SteinerCircumellipse.html. Last visited on May 7, 2019.

Zhang, C. and Atkinson, P.M., 2016. Novel shape indices for vector landscape pattern analysis.
International Journal of Geographical Information Science, 30 (12), 2442–2461. Available
from: https://www.tandfonline.com/doi/full/10.1080/13658816.2016.1179313.

Zhang, J., et al., 2014. Automatic Vehicle Extraction from Airborne LiDAR Data Using an
Object-Based Point Cloud Analysis Method. Remote Sensing, 6 (9), 8405–8423. Available
from: http://www.mdpi.com/2072-4292/6/9/8405.

Žunić, J., Kakarala, R., and Ali Aktas, M., 2017. Notes on shape based tools for treating
the objects ellipticity issues. Pattern Recognition, 69, 141–149. Available from: https://
linkinghub.elsevier.com/retrieve/pii/S0031320317301607.

Appendix A. Some general equations related to ellipses

In analytical geometry, if (x, y) are the coordinates of a point M in the Cartesian
plane, the ellipse described using M is defined by the general equation of a conic as:

a1x
2 + b1xy + c1y

2 + d1x+ e1y + f1 = 0 (A1)
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provided b21 − 4a1c1 < 0. If the origin of the Cartesian plane is not a point on the
contour of the ellipse, Equation A1 can be simplified as follows:

a2x
2 + b2xy + c2y

2︸ ︷︷ ︸ + d2x+ e2y︸ ︷︷ ︸ = 1

Quadratic part Linear part
(A2)

By a vector translation (x0, y0), with:
x0 =

2c2d2 − b2e2

b22 − 4a2c2

y0 =
2a2e2 − b2d2

b22 − 4a2c2

(A3)

(A4)

the Equation A2 is simplified as follows (ellipse centered at the origin):

ax2 + bxy + cy2 = 1 (A5)

Its area is then:

area =
2π√

4ac− b2
(A6)

Minimizing the area of the ellipse is equivalent to maximizing the square of the de-
nominator of the Equation A6. Let us define:

D = 1− (a2x
2
0 + b2x0y0 + c2y

2
0 + d2x0 + e2y0)

the three parameters of Equation A5 become:

a =
a2

D
b =

b2
D

c =
c2

D
(A7)

and the square of the area as a function of the non-centered coefficients a2, b2, c2, d2,
and e2 of the Equation A2 becomes:

area2 =
4π2D2

4a2c2 − b22
(A8)

Moreover, by a proper rotation of θ angle, where:

θ =
1

2
arctan

(
b

a− c

)
(A9)

Equation A5 is simplified as follows: αx2 + βy2 = 1. The axes of the ellipse then
overlap the axes of the Cartesian coordinate system. We can deduce the semi-axis
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lengths using the following formulas:
1√
α

= semiXAxis =
1√

a cos(θ)2 + b sin(θ) cos(θ) + c sin(θ)2

1√
β

= semiYAxis =
1√

c cos(θ)2 − b sin(θ) cos(θ) + a sin(θ)2

(A10)

(A11)

Appendix B. Some specific equations related to the general quadrangular
case

The ellipses passing through the four points (1, 0), (u, v), (0, 1), and (−1− u,−1− v)
form a one-parameter bundle. We choose e2 as parameter which we denote t. The equa-
tions at the end of Subsection 2.8 allow us to write the following system of polynomial
linear equations:

a2 + d2 = 1

a2u
2 + b2uv + c2v

2 + d2u = 1− tv
c2+ = 1− t

a2(1 + u)2 + b2(1 + u)(1 + v) + c2(1 + v)2 − d2(1 + u) = 1 + t(1 + v)

Let us denote respectively:

µ = u(u+ 1)(1 + 3v − u) η = v(v + 1)(1 + 3u− v) χ =
2

η

The previous system provides the coefficients a2, b2, c2, d2, and e2 as the following 1st
degree polynomials:

a2 =
1

µ

(
ηt+ ((v − 1)(1 + v)2 − uv) + (1 + 2v)u2

)
b2 = χ

(
(v − u)(2uv + u+ v − 1)t+ (1− u)((1 + u)2 − uv)− (1 + 2u)v2

)
c2 = 1− t

d2 = 1− 1

µ

(
ηt+ ((v − 1)(1 + v)2 − uv) + (1 + 2v)u2

)
e2 = t

(B1)

(B2)

(B3)

(B4)

(B5)

An area being positive, minimizing an area is equivalent to minimizing its square. The
function to be minimized is therefore the following rational fraction:

4π2D2

4a2c2 − b22

Let ∆ and Γ be the two following polynomials:{
∆ = 4a2c2 − b22
Γ = ∆2 ×D
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They are respectively of degrees at most 2 and 5. And the rational fraction to minimize
becomes:

4π2Γ2

∆5

Its derivative is the following rational fraction:

4π2Γ

∆6

(
2Γ′∆− 5Γ∆′

)
(B6)

To minimize the area of the ellipse, it is necessary to find the roots of the derivative of
the rational fraction of Formula B6, i.e. find the roots of the numerator (2Γ′∆− 5Γ∆′)
which is a polynomial of degree at most 5 (the nullity of its coefficient of degree 6 is
trivial). Out of the five possible corresponding roots, the solution t0 is the real one
for which ∆ is positive on the one hand and which minimizes the Γ2/∆5 ratio on the
other hand.

The value t0 having been identified, we obtain by Equations B1-B5 the values of
the coefficients a2, b2, c2, d2, and e2.
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