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Optimizing Inner Product Masking Scheme
by A Coding Theory Approach

Wei Cheng, Student Member, IEEE, Sylvain Guilley, Member, IEEE, Claude Carlet,
Sihem Mesnager, Member, IEEE, Jean-Luc Danger, Member, IEEE

Abstract—Masking is one of the most popular countermeasures
to protect cryptographic implementations against side-channel
analysis since it is provably secure and can be deployed at
the algorithm level. To strengthen the original Boolean masking
scheme, several works have suggested using schemes with high
algebraic complexity. The Inner Product Masking (IPM) is one
of those. In this paper, we propose a unified framework to
quantitatively assess the side-channel security of the IPM in a
coding-theoretic approach. Specifically, starting from the expres-
sion of IPM in a coded form, we use two defining parameters
of the code to characterize its side-channel resistance. In order
to validate the framework, we then connect it to two leakage
metrics (namely signal-to-noise ratio and mutual information,
from an information-theoretic aspect) and one typical attack
metric (success rate, from a practical aspect) to build a firm
foundation for our framework.

As an application, our results provide ultimate explanations
on the observations made by Balasch et al. at EUROCRYPT’15
and at ASIACRYPT’17, Wang et al. at CARDIS’16 and Poussier
et al. at CARDIS’17 regarding the parameter effects in IPM, like
higher security order in bounded moment model. Furthermore,
we show how to systematically choose optimal codes (in the
sense of a concrete security level) to optimize IPM by using
this framework. Eventually, we present a simple but effective
algorithm for choosing optimal codes for IPM, which is of special
interest for designers when selecting optimal parameters for IPM.

Index Terms—Side-Channel Analysis, Countermeasure, Inner
Product Masking, Coding Theory, Optimal Linear Code.

I. INTRODUCTION

CRYPTOGRAPHIC algorithms are nowadays prevalent in
establishing secure connectivity in our digital society.

Such computations handle sensitive keys, which must be pro-
tected against adversarial theft. Keys are very exposed during
computations that handle them. In particular, side-channel
analyses consist in illegitimate records of emanations during
cryptographic operations which use the key. Such threats affect
many (if not all) applications involving security: authentication
of users (e.g., for banking), authentication of devices (e.g., in
an automotive context), information protection (e.g., in data
exchange over Internet), etc. In concrete scenarios, adversaries
resort to sophisticated oscilloscopes to record compromising
emanations evading unintentionally from the target system.
Such attacks are referred to as side-channel attacks and are
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clearly getting a widespread concern on any embedded sys-
tem. Normative evaluation of chips, within the framework of
Common Criteria [15] or NIST FIPS 140 (versions 140-2 [37]
and 140-3 [33]) schemes, indeed attest of the serious need for
sound side-channel countermeasures.

Masking is one of the most investigated countermeasures
against side-channel analysis, allowing all cryptographic op-
erations to be performed on the masked data. Essentially,
masking is a sound way to improve the side-channel security
of cryptographic implementations, since given high enough
noise, the attack complexity increases exponentially with the
number of shares [30], while the implementation cost increases
only quadratically (or only cubically in higher-order glitches
free implementations [19]). For instance, the Boolean masking
scheme is the simplest one which enables high performance
when implemented on real circuits. The first provably secure
higher-order masking scheme has been introduced by Ishai
et al. [20] for the protection of single bits in F2. Then, this
scheme has been extended to the protection of words (e.g.
bytes in F28 ) with higher-order security by Rivain et al. [34].
Interestingly, it has been noticed later that this masking scheme
can be further improved by mixing bits in each share (of
` = 8 bits). In brief, the main idea is to elevate the bit-
level algebraic complexity of the masking scheme. Thus in
this respect, Inner Product Masking (IPM) scheme has been
proposed as an alternative, in which inner product is adopted
as a mixing operation.

The IPM scheme has been first introduced by Balasch et al.
at ASIACRYPT’12 [3] as an alternative to masking schemes
like Boolean or multiplicative masking and has been further
improved by Balasch et al. at EUROCRYPT’15 [1] and at
ASIACRYPT’17 [2]. In IPM, the random masks are not used
plain, but a mixing between the bits is carried out by the
multiplication with a public vector L = (1, L2, . . . , Ln) and
then involved into the cryptographic computation (Z = X +
L2Y2 + · · ·+LnYn, where X is the sensitive data and Yi are
the n− 1 masks). Interestingly, by different settings of vector
L and mask materials, Balasch et al. [3] pointed out that IPM
is the generalization of four typical kinds of masking schemes,
namely the Boolean one, the multiplicative one [17], the affine
one [16] and the polynomial one [18], [32].

A. Related Works
The concrete security order of a masking scheme depends

not only on the number of shares but also on the encodings
involving the sensitive variables and mask materials into cryp-
tographic operations. With the same number of shares, Balasch
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et al. [3] observed that the IPM leaks consistently less than
Boolean masking, and further demonstrated this observation
in [1], [2]. In fact, this observable feature originates from the
encoding of IPM, in which the random masks are multiplied
by the coordinates of the public parameter L ∈ Fn2` . Therefore
several bits in each share are mixed together, which increases
the algebraic complexity of the encoding. By contrast, in
Boolean masking the masks are directly involved by bit-
wise XOR operation. This is the primary advantage of IPM.
Furthermore, another interesting effect in [2, Fig. 3] is that the
different choices of the L vector in IPM significantly affect
its concrete bit-level security. For instance, with n = 2 shares
made up of ` = 8 bits (byte-oriented), the security order in
bounded moment model [4] can be tbound = 3, while the
security order in (word-level) probing model is only tw = 1.

In fact, this parameter effect in IPM has been studied firstly
by Wang et al. [39], named as "Security Order Amplification".
Wang et al. propose the parameter Omin, the lowest key-
dependent statistical moment, as a metric to measure the
amplified security order. This metric Omin is directly related
to the bit-level security order tb in bit-level probing model
proposed by Poussier et al. [28] since Omin = tb + 1. More
importantly, Poussier et al. firstly introduce the coding form
of IPM as: Z = XG+ YH where X, Y, Z are the sensitive
variable, random mask(s) and masked variable, G and H are
the generator matrices of two codes C and D, respectively.
Then they prove that the bit-level security of IPM is related to
one of the defining parameters of the code D (namely its dual
distance d⊥D). This result gives an explanation of the security
order amplification discussed in [39].

The other line of research on the encoding and parameter
effect of masking schemes is about the Leakage Squeezing
(LS) which stems from Carlet et al. [12]. Particularly, Carlet
et al. show that IPM is an instance of LS. They statistically
studied the security order of LS scheme by linking the correla-
tion immunity [10] of the indicator of the code (that equals the
dual distance d⊥D minus 1), the mutual information (MI) and
the success rate (SR) of side-channel attacks together. More
precisely, in logarithmic form, mutual information log(MI) is a
linear function of the logarithmic noise variance log(σ2), and
the slope (security order) of this linear function equals the dual
distance of D. To summarize, the bit-level security order tb of
IPM is d⊥D−1, where d⊥D is the dual distance of the code D in
the coding form. Related works are summarized in Tab. I (note
that SNR is short for attack signal-to-noise ratio [24, § 4.3.2,
page 73]).

Actually, the security order of IPM depends on the code
D involved in the scheme, which can be easily demonstrated
by information-theoretic metric. As shown in Fig. 1(a), the
security order (the slope) of IPM depends on the dual distance
of the chosen code D, namely d⊥D. Specifically, the slope in
the log-log plot representation of MI as a function of noise
variance σ2 is −d⊥D. However, it can be observed that for
different choices of the code D with the same dual distance,
the MIs are distinctly different as shown in Fig. 1(b). The
smaller the number of nonzero codewords of minimal weight
(Bd⊥D ), the smaller the MI consistently over the full range of
noise variance σ2. Similar situations happen with success rates

Table I
SUMMARY OF SIDE-CHANNEL SECURITY ANALYSIS ON IPM.

Security
Orders

Code
Parameters Metrics Comments

Balasch et al.
[1] tw – MI

MI varies for
different L vectors

Wang et al.
[39] tb d⊥D MI

Omin (= d⊥D) was used
(the lowest key-dependent

statistical moment)
Poussier et al.

[28] tw, tb d⊥D MI

Balasch et al.
[2] tw , tb – MI

tbound (= tb + 1) is in
bounded moment model

Carlet et al.
[12] tw, tb d⊥D MI, SR

SR of the optimal attack
[8]

This Paper tw, tb d⊥D, B
d⊥
D

SNR, MI, SR
A unified framework to

analyze all IPM codes by
closed-form expression

Here tw, tb are word- and bit-level security orders, where tw = n−1.
Bit-level security order tb equals to d⊥D−1 as in [28], [12] and in this paper.

of optimal attacks [8] as shown in Fig. 6, indicating that only
parameter of D equal to the dual distance d⊥D is not enough
to characterize the side-channel resistance of IPM. Therefore,
a natural question is: What is/are other defining parameter(s)
of D that influence the concrete side-channel security level of
IPM? Since the different choices of the code D have critical
impacts on the concrete security order of IPM, then another
question that comes with it is: how to choose optimal codes
in the sense of side-channel resistance for IPM?
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Figure 1. Systematic investigation of linear codes of IPM over F24 grouped
by d⊥D and Bd⊥D

, and one BKLC code (Best Known Linear Code1).

1Note that the only criteria is the highest minimum Hamming distance [38].
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In this paper, we focus on two kinds of security order,
namely word-level and bit-level security orders denoted as tw
and tb, respectively. Specifically,
• Word-level (`-bit) security order tw. Many devices per-

form computation on word-level data. Especially byte-level
(in K = F28 ) operations are very common in embedded
devices. We first investigate the word-level security order
under probing model. In this paper, we also present instances
for 4-bit (nibble) variables for adapting IPM to protect the
implementation of the lightweight ciphers like PRESENT,
GIFT, GOST, Rectangle, Twine, Skinny, Midori, etc.

• Bit-level security order tb. In practice, each bit of sensitive
variable can be investigated independently or/and several
bits can be evaluated jointly, which is the setting of the
bounded moment model [4]. For the bit-level security model,
we propose a simple but effective way to optimize IPM.
Intuitively, the security order at word-level cannot exceed

the one at bit-level, namely tw ≤ tb. The reason is that bit-level
probes can choose arbitrary bits in several shares, whereas at
word-level, bits in words are given.

B. Our Contributions
In this paper, we focus on quantitatively characterizing the

concrete security level of IPM, and presenting a systematic ap-
proach on choosing optimal codes for IPM. Our contributions
are as follows.

First of all, we propose a unified framework, by which the
concrete security level of IPM can be evaluated straightfor-
wardly in a quantitative approach. Specifically, this framework
consists in two defining parameters of the code D: its dual
distance d⊥D as introduced in [28], [12], and the number of
nonzero codewords in D⊥ (dual code of D) with minimum
Hamming weight, namely Bd⊥D . In particular, Bd⊥D is intro-
duced for the first time as a security indicator in this paper.
Next, we study two leakage detection metrics (SNR and MI)
and a leakage exploitation metric (SR). We show that these
three metrics are consistent under our framework. Specifically,
SNR, MI and SR decrease when d⊥D increases and/or Bd⊥D
decreases. Finally, we utilize the proposed framework to
systematically optimize IPM in the sense of maximizing its
side-channel resistance. In fact, our framework works well as
an all-in-one approach to choose optimal codes for IPM and
we present the best codes in four cases for IPM in Tab II.

We underline that all mathematical derivations presented in
this paper have been checked formally with Magma [38]. Full
tables of optimal codes for IPM are available on Github [14].

Outline: Sec. II presents backgrounds and preliminaries,
followed by the security analysis of the IPM via SNR and MI
in Sec. III and Sec. IV, respectively. The unified framework
is introduced in Sec V. Then in Sec. VI and Sec. VII, the
experimental results and discussions are presented, and finally
the conclusions are given in Sec. VIII.

II. BACKGROUND AND PRELIMINARIES

A. Preliminaries
Let n, k, d ∈ N∗ be positive integers such that k ≤ n.

The set of n-bit vectors is denoted by Fn2 , which is an n-
dimensional vector space over the finite field F2. An [n, k, d]q

-(linear) code C over Fq is a k-dimensional subspace of Fnq
with minimal (Hamming) distance d. The Hamming distance
dH between two vectors (codewords) of equal length is the
number of positions at which the corresponding symbols are
different. The minimum distance of a code C is defined as
dC = minc,c′∈C dH(c, c′). In particular, if C is a linear code, dC
equals to the minimum weight of its nonzero codewords. The
inner product (also known as scalar product) on F`2 is defined
as x · y =

∑`
i=1 xiyi, which lies in F2. If C is an [n, k]-linear

code over F2, its (Euclidean) dual or orthogonal code C⊥ is the
set of vectors which are orthogonal to all codewords of C, that
is: C⊥ := {u|u · c = 0, ∀c ∈ C}. Let α be a primitive element
of F2` (α is a zero of a primitive polynomial g(x) over F2

of degree ` ). Then we have F2` := {0, 1, α, α2, . . . , α2`−2}.
The bit- and word-oriented variables are over K = F2 and
K = F2` , respectively (i.e., q = 2 or q = 2`). We denote by
X ∈ F2` (resp. [X]2 ∈ F`2) the sensitive variable at `-bit word-
level (resp. bit-level) and by Y = (Y2, Y3, . . . , Yn) ∈ Kn−1
the n− 1 random masks. The sensitive variable X is encoded
into n shares as Z = (Z1, Z2, . . . , Zn) ∈ Kn. Thus we
shall consider two linear codes: [n, k, dw]2` and [n`, k`, db]2
with minimal distances dw and db at word- and bit-level,
respectively. Indeed, if z is a codeword of the former code,
then the corresponding codeword [z]2 of the latter code is
obtained by replacing each term in z by its coordinates with
respect to some fixed basis (e1, . . . , e`) of F2` over F2. Let
(b1, . . . , bk) be a basis of the former code, then a basis of the
latter code is ([eibj ]2)i=1,...,`; j=1,...,k. See more with Def. 5.
Correspondingly, two kinds of security order tw and tb are at
word- and bit-level, respectively.

We denote by 1Z(·) the indicator function of set Z (of
cardinality |Z|), defined by 1Z(z) = 1 if z ∈ Z , other-
wise 1Z(z) = 0. For a random variable X , the cumulant
kd(X) at order d are defined as the coefficients of the series
logE(etX) =

∑+∞
d=1 kd

td

d! . They can be expressed as a func-
tion of the moments µd(X) = E(Xd) at orders d and beneath.
For instance, k3(X) = µ3(X), k4(X) = µ4(X) − 3µ2

2(X),
k5(X) = µ5(X) − 10µ3(X)µ2(X), etc. In addition, wH(·)
is the Hamming weight function (the Hamming weight of a
vector is the number of its nonzero coordinates), E(·) and
V ar(·) are expectation and variance, respectively. Note that
all indices in this paper start from 1 instead of 0.

At last, two information measures we use in this paper are
entropy and mutual information denoted as H(Z) and I(Z;X),
respectively. They are defined as follows:

H(Z) = −
∑
z∈Z

P(z) log2 P(z),

I(Z;X) =
∑
z∈Z

∑
x∈X

P(z, x) log2
P(z, x)
P(z)P(x)

,
(1)

where P(z), P(x) are the probability distributions of Z and X
(whose supports are Z and X ). Typically, they are denoted as
PZ(z), PX(x) and we omit the subscript when their meaning
is clear from the context. In addition, P(z, x) is the probability
distribution of the joint distribution of Z and X . Note that the
sum in Equ. 1 must be replaced by an integral if Z and/or X
are continuous variables.
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B. Basic Properties of Linear Codes

We recall in this section several known definitions and
results on linear codes and unrestricted codes (i.e., general
subsets of Kn), which hold respectively when the basefield is
K = F2 or K = F2` . Given a linear code C with parameters
[n, k, dC ], its weight enumerator is defined as follows.

Definition 1 (Weight Enumerator). The weight enumerator of
a linear code specifies the number of codewords C of each
possible Hamming weight in C. Specifically, we have

WC(X,Y ) =
∑n

i=0BiX
n−iY i (2)

where Bi = |{c ∈ C|wH(c) = i}|.
Lemma 1. Basic properties of Bi ∈ N:
• B0 = 1, B1 = · · · = BdC−1 = 0, BdC > 0,
• Bn = 1 if and only if the code C has a codeword with

all ones (e.g., [1, . . . , 1]).

The polynomial given in Equ. 2 can be presented as
[(i, Bi), s.t. Bi 6= 0]. For example, the Best Known Linear
Code (BKLC) of parameters [8, 4, 4]2 has a weight enumerator:
W[8,4,4](X,Y ) = X8 + 14X4Y 4 + Y 8 thus B0 = 1,
B4 = 14, and B8 = 1, which can be also presented as:
[(0, 1), (4, 14), (8, 1)]. Intuitively, a code with a small number
of nonzero codewords of minimum weight (namely, small
value of BdC ) would be better regarding side-channel protec-
tion. We will demonstrate this intuition in the next section.

For a k-dimensional linear code C over K is a subspace
over Kn, it is generated by the generator matrix. Rows of
the matrix form a basis of C. Note that two linear codes are
said to be equivalent if one can be obtained from the other
by a series of operations of the following two types: 1) an
arbitrary permutation of the coordinate positions, and 2) in
any coordinate position, multiplication by any nonzero scalar.
It is interesting to notice that equivalent linear codes have the
same weight enumerator.

Definition 2 (Dual Distance). The dual distance d⊥C of a linear
code C is the minimum Hamming weight wH(u) of nonzero
u ∈ Kn, such that

∑
c∈C(−1)c·u 6= 0.

Lemma 2. For arbitrary linear code C and u ∈ Kn, we have∑
c∈C(−1)c·u = |C|1C⊥(u).

Proof. We give this well-known proof for the paper to be
self-contained. For u ∈ C⊥, it is straightforward to see that∑
c∈C(−1)c·u = |C|.
Suppose that u 6∈ C⊥, thus ∃v ∈ C such that u · v = 1. We

denote C = C′ ∪ (C′ + v) and dim(C′) = dim(C) − 1. Then∑
c∈C(−1)c·u =

∑
c′∈C′(−1)c

′·u +
∑
c′∈C′(−1)(c

′+v)·u =∑
c′∈C′(−1)c

′·u −∑c′∈C′(−1)c
′·u = 0.

Corollary 1. For a linear code C, we have d⊥C = dC⊥ .

Definition 3 (Supplementary Codes). Two codes C and D are
supplementary in direct sum (denoted by C ⊕ D = Kn) if
C + D = Kn, and C ∩ D = {0}, that is: ∀z ∈ Kn,∃!(c, d) ∈
C × D, such that z = c+ d.

Lemma 3. Let C, D be two codes such that C ⊕ D = Kn,
then C⊥ ⊕D⊥ = Kn.

Proof. Since dim(C⊥) = n − dim(C), dim(D⊥) = n −
dim(D), we have dim(C⊥ +D⊥) = dim(C⊥) + dim(D⊥)−
dim(C⊥ ∩ D⊥) = n − dim(C⊥ ∩ D⊥). From definition,
we have ∀u ∈ Kn,∃!(u1, u2) such that u = u1 + u2.
Suppose that C⊥ ∩ D⊥ 6= {0}, then ∃z ∈ K\{0} such that
z · u = z · u1 + z · u2 = 0, resulting that z ∈ (Kn)⊥ = {0},
and then a contradiction which concludes the proof.

There is a direct link between word- and bit-level repre-
sentation. According to [25, Theorem 5.1.18], there exists a
self-dual basis of Fq` over Fq if and only if either q is even or
both q and ` are odd. We call this a sub-field representation.

Definition 4 (Sub-field representation). Let x ∈ F2` . Then the
sub-field representation of x is [x]2 ∈ F`2.

In order to investigate the bit-level security, the code expan-
sion is introduced as follows.

Definition 5 (Code Expansion). By using sub-field represen-
tation, the elements in F2` are decomposed over F2. Consider
a generating matrix of a linear code of size 1 × n in F2` . It
becomes a generating matrix of size `× n` in F2.

CodeExpansion : (1, L2, . . . , Ln)2` 7→ (I`,L2, . . . ,Ln)2.
(3)

More generally, any linear code of parameters [n, k]2` con-
tains (2`)k = 2k` codewords, hence is turned into a [n`, k`]2
linear code on F2 by sub-field representation. The latter code
is called the expansion code of the former.

An example of sub-field representation and code expansion
is illustrated in Fig. 2. With code expansion, a code with
parameters [n, k, d] (here k = 1) defined over K = F2` is
called an [n, k, dw]2` code for the sake of clarity, and the
expanded one is called an [n`, k`, db]2 code with the subscript
2 which reminds that the code is defined over K = F2.

...

1	bit

X:					bits Y:	(n-1)	words	=	(n-1)			bits

Z:	n	words	=	n			bits

			bits	=	1	word

Figure 2. Illustration of variables at bit- and word-level in masking (here
` = 4), where Z has n shares (words) and Y has n− 1 shares of masks.

Lemma 4. If two codes are in direct sum in F2` , then their
expanded codes are also in direct sum in F2.

Remark 1. Not all of codes of parameters [n`, k`, db]2 are the
sub-field representation of one code of parameters [n, k, dw]2` .

C. Basic Properties of Pseudo-Boolean Functions

We start with some basic properties of pseudo-Boolean
function P : Kn` 7→ R, where K = F2 (throughout this
Sec. II-C). Such P can be uniquely expressed in a monomial
basis [13] called Numerical Normal Form (NNF) [26]:

P (Z) =
∑

I∈{0,1}n`

αIZ
I , (4)
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where ZI =
∏
i∈{1,...,n`} s.t. Ii=1 Zi, and αI ∈ R. For in-

stance, Z(000···0)2 = 1, Z(100···0)2 = Z1 and Z(110···0)2 =
Z1Z2. In fact, P is a nice abstraction of practical attacks.
For example, in differential power analysis [21] against the
most/least significant bit of the sensitive variable, then P
equals Z(100···0)2 or Z(000···1)2 . Moreover, in correlation
power analysis [5] when the Hamming weight model is
adopted, P equals wH(Z) = Z(100···0)2 + Z(010···0)2 + · · · +
Z(000···1)2 . Thanks to the existence and the uniqueness of
NNF, we can define the numerical degree of P as follows.

Definition 6 (Numerical Degree [26], [13]). The numerical
degree of a pseudo-Boolean function P denoted by d◦P
equals: d◦P := d = max{wH(I)|αI 6= 0}.

We shall use the same symbol d to denote the numerical
degree of a pseudo-Boolean function and the minimum (Ham-
ming) distances of a linear code. This should not provide
confusion thanks to the context. The definition of Fourier
transform and other necessaries are presented hereafter for
completeness of the paper.

Definition 7 (Fourier Transform). The Fourier transform of
a pseudo-Boolean function P : Kn` 7→ R is denoted by P̂ :
Kn` 7→ R, and is defined as: P̂ (z) =

∑
y∈Kn` P (y)(−1)y·z .

Definition 8 (Convolution). The convolution of two pseudo-
Boolean functions f and g is defined as: (f ⊗ g)(z) =∑
y∈Kn` f(y)g(y + z).

We recall below two well-known properties of Fourier
transform as well as a property on the convolution. We omit
the proofs for the sake of brevity and refer to [10] for details.

Proposition 1 (Involution Property). ̂̂P (z) = |Kn`|P (z) =
2n`P (z), ∀z ∈ Kn`.

Proposition 2 (Inverse Fourier Transform). P (z) =
2−n`

∑
y∈Kn` P̂ (y)(−1)y·z , ∀z ∈ Kn`.

Proposition 3. f̂ ⊗ g(z) = f̂(z) · ĝ(z), ∀z ∈ Kn`.

D. IPM in Coding Form

Let an information word X ∈ K = F2` and n − 1 masks
Yi ∈ K, the Boolean masking scheme [28] protects X as:

Z =

(
X +

n∑
i=2

Yi, Y2, Y3, . . . , Yn

)
= XG+ YH, (5)

where G, H are generator matrices of two linear codes
C and D as follows, respectively. Moreover, C and D are
supplementary codes such that C ⊕ D = Kn.

G =
(

1 0 0 · · · 0
)
∈ K1×n

H =


1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1

 ∈ K(n−1)×n.
(6)

IPM is an encoding to improve the algebraic complexity by
mixing bits in each share together. In IPM, linear functions are
applied to mask materials yi to construct only the first share.

We define a family of bijective linear functions fi : K 7→ K
defined by fi(yi) = Liyi where L = (L1, . . . , Ln) ∈ Kn,
L1 = 1 and Li ∈ K\{0} for i ∈ {2, 3, . . . , n}. Then the IPM
scheme [1] with n shares is expressed as:

Z = (X +

n∑
i=2

fi(Yi), Y2, Y3, . . . , Yn) = XG+ YH. (7)

Remark 2 (Word-level security order). In the first share Z1

of Z, X is masked only by mask Y1, where Y1 is a uniformly
distributed mask equal to Y1

def
=
∑n
i=2 fi(Yi). But still, the

masking scheme is more than second-order secure since the
attacker cannot directly measure a leakage arising from Y1.
Instead, to get information from Y1, the attacker should mea-
sure the leakage from shares (Z2, . . . , Zn) = (Y2, . . . , Yn),
hence a n-order attack.

Two generator matrices G and H of the above linear codes
are as follows. Note that this encoding2 was first introduced
in [28] and we borrow it here.

G =
(

1 0 0 · · · 0
)
∈ K1×n

H =


L2 1 0 · · · 0
L3 0 1 · · · 0
...

...
...

. . .
...

Ln 0 0 · · · 1

 ∈ K(n−1)×n.
(8)

IPM is a generalization of Boolean masking (by choosing
Li = 1, 1 ≤ i ≤ n). Both schemes ensure the property that
X cannot be deduced from d < n shares provided Yi are
uniformly distributed (see Prop. 4 for a detailed formulation).

III. QUANTIFYING LEAKAGES OF IPM VIA SNR

In this section, we focus on quantitatively assessing the
leakages of IPM by SNR. Let P : Kn` 7→ R where K = F2

with numerical degree d◦P be the leakages collected (and
manipulated) by the attacker. In practice, d◦P reflects the
strength of the attacker, because it is the number of masked
bits which shall be combined together to unveil a dependency
on the key. Two typical situations are:
- The devices leak bits individually, as in the probing model

[20]. Therefore, the degree d of the leakage function is the
number of probed bits.

- The devices leak bits as words in parallel through a leakage
function φ. The attackers subsequently apply their strategy
(a composition function) ψ on top of φ. For instance, φ is
the Hamming weight and ψ consists of raising the result at
some power d, resulting in P = ψ ◦ φ = wH(·)d.

A. Leakage Model & Attack Strategy

In practice, the security of a cryptographic implementation
not only depends on its leakages during execution but also
highly relates to the capability of an adversary to exploit these
leakages. For instance, for a t-th order secure masking scheme,
an adversary can launch a successful d-th order attack against
it when d is greater than t.

2Note that Equ. 5 in [28] contains a mistake, namely G should be
(I`, 0, . . . , 0), and not (1, . . . , 1, 0, . . . , 0).
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As the first step, we clarify the leakage model of a device
and the attack strategy of an adversary in practical scenarios.
An illustration is provided in Fig. 3. Taking noisy leakage

X Z = XG+ Y H
algorithm

cryptographic
(IPM)
masking

Y : added masks
physical
leakage

φ(Z)
N addition
channel noise

d++

L = φ(Z) +N
ψ = Ld Yes

k̂: attack

No P = ψ ◦ φ
attacker’s
policy

(d = 1)

SNR>0

T, k∗

Figure 3. Overview of the attacker’s strategy in the higher-order (moments)
side-channel attacks to extract the secret key k∗, using side-channel leakages
and the plain/cipher-text T .

model with additive Gaussian noise into consideration, we
specify the leakages of a real device in two cases:
• In a serial implementation, all shares are manipulated at

different times (clock cycles). We denote the leakages from
the device as Li = φ(zi)+Ni, where zi ∈ K = F2` is the ith
share and Ni ∼ N (0, σ2) for i ∈ {1, . . . , n} are associated
noises. From the attacker’s point of view, the best strategy
is to combine these leakages together to launch higher-order
attacks. As is known, the centered product combination is
the most efficient combination function [31] 3. Thus,

Lser =
d∏
i=1

Li =
d∏
i=1

(φ(zi) +Ni) =
d∏

i=1

φ(zi)︸ ︷︷ ︸
P (z): z∈Kn

+ζ+

d∏
i=1

Ni,

where the adversary combines leakages of d shares over all
n shares. ζ denotes intermediate terms with numerical de-
gree d◦ζ < d that does not depend on the sensitive variables
thus have no positive impact on attacks. Assume that Ni for
i ∈ {1, 2, . . . , n} are i.i.d, then V ar(

∏d
i=1Ni) = σ2d.

• In a fully parallel implementation, all shares are manipulated
at the same time (the same clock cycle). Thus we have L =
φ(z)+N =

∑n
i=1 φ(zi)+N by assuming the device leaks

in linear leakage model, where z ∈ Kn and zi ∈ K = F2` .
In this case, the best strategy is to use the least d-th order
of statistical moments to launch the attack. Therefore,

Lpar = Ld =
(

n∑
i=1

φ(zi) +N

)d
=

d∏
i=1

φ(zi)︸ ︷︷ ︸
P (z): z∈Kn

+ζ ′ +Nd,

where ζ ′ denotes intermediate terms with numerical degree
d◦ζ ′ < d. For Gaussian noise N ∼ N (0, σ2), by higher-
order moments for Gaussian variables [27, § 5.4], we have:

V ar(Nd) = E
(
N2d

)
− E

(
Nd
)2

=

{
σ2d(2d− 1)!! if d is odd,
σ2d
(
(2d− 1)!!− (d− 1)!!

)
if d is even.

Hence, the variance of noise by raising to power d is
proportional to σ2d, namely:

V ar(Nd) ∝ σ2d. (9)
3It is worth noting that Pearson correlation coefficient is invariant under

affine transformation, although authors used the centered product in [31] to
launch the correlation power analysis (CPA).

In summary, we formalize the leakage function (with the
attacker’s strategy) by a pseudo-Boolean function P : Kn 7→
R such that P (z) =

∏d
i=1 φ(zi), which can be decomposed

into P (Z) =
∑
I∈Fn`

2
αIZ

I as in Equ. 4. In both cases, we
have V ar(Nd) ∝ σ2d. Thanks to this model, we are able
to explain the link between leakages at word-level and at bit-
level. We also give an explanation on the physical defaults like
physical couplings in a quantitative way. For instance, in AES
implemented on a 32-bit embedded device (e.g. ARM Cortex
4), leakages of four bytes of intermediates may interfere with
each other because of couplings, thus could leak the sensitive
data from the joint distribution of leakages. This kind of joint
distributions corresponds to the assignment of different values
for αI of P (Z) as in Equ. 4.

B. Definition of SNR

The SNR [24] is a critical security metric in the field of
side-channel analysis, which is the ratio between the signal
variance and the noise variance. Let L = P (Z) + N denote
the leakage which is irrespective to serial or parallel imple-
mentations. N denotes the independent noise with variance
V ar(N) = σ2

total ∝ σ2d as shown in Equ. 9. We have
V ar(E(P (Z) + N |X)) = V ar(E(P (Z)|X)), then the SNR
of leakages is defined as:

SNR =
V ar(E(L|X))

V ar(N)
=
V ar(E(P (Z)|X))

σ2
total

. (10)

In side-channel analysis, if SNR is null, attacks are merely
impossible. Otherwise, attacks are possible and are all the
more powerful as the SNR is larger.

C. Quantifying Leakages of IPM by SNR

Recall the coding form of IPM, whereby the sensitive
variable X is encoded into Z by:

Z = XG+ YH ∈ Kn = Fn2` .

Let us consider this equation in F2 basefield, and thus let X =

F`2, Y = F(n−1)`
2 and Z = Fn`2 . We clarify the computations

as follows (where D is expanded as per Def. 5):
• E(P (Z)|X = x) for a given x ∈ X is: E(P (xG+YH)) =∑

y∈Y P(Y = y)P (xG+yH) = 1
|Y|
∑
y∈Y P (xG+yH) =

1
|D|
∑
d∈D P (xG+ d),

• For any variable X , we have that V ar(E(P (Z)|X)) =
E(E(P (Z)|X)2)− (E(E(P (Z)|X))2.
Hence, we have the following two lemmas to compute terms

E(E(P (Z)|X)2) and E(E(P (Z)|X)) for IPM.

Lemma 5. E(E(P (Z)|X)) = 1
2n` P̂ (0).

Lemma 6. E(E(P (Z)|X)2) = 1
22n`

∑
x∈D⊥

(
P̂ (x)

)2
.

The proofs of Lemma 5 and 6 are in Appendix A. Therefore
for the SNR of IPM scheme we have the following theorem.

Theorem 1. Let a device be protected by the IPM scheme
as Z = XG + YH. Assume the leakages of the device can
be represented in the form: L = P (Z)+N and an adversary
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may launch a d-th order attack by using higher-order moments
(e.g., in parallel scenarios) or multivariate combinations (e.g.,
in serial scenarios). Hence the SNR of the exploitable leakages
is:

SNR =
2−2n`

σ2
total

∑
x∈D⊥\{0}

(
P̂ (x)

)2
,

where σ2
total ∝ σ2d.

Proof. On the basis of Lemma 5 & 6, we have that

SNR =
V ar(E(L|X))

V ar(N)

=
E(E(P (Z)|X)2)− E(E(P (Z)|X))2

V ar(N)

=
2−2n`

σ2
total

 ∑
x∈D⊥

P̂ 2(x)− P̂ 2(0)


=

2−2n`

σ2
total

∑
x∈D⊥\{0}

P̂ 2(x).

(11)

Remarkably, this quantity does not depend on the properties
of the code C, except for the fact it is supplementary to D
in Kn (recall Lemma 4). The only factor for the SNR of
IPM that makes all the differences is the choice of D. The
special interest of Theorem 1 is that it allows quantifying
the leakages of any IPM and its variants (e.g. [39]). In a
nutshell, Theorem 1 works under any form of P . Indeed, as
shown in Fig. 3, the function P is composed of the leakage
function φ from a device and the attack strategy ψ from an
adversary, where φ and ψ can be any functions. In particular,
a real device may produce nonlinear leakages rather than the
simple Hamming weight one, where Theorem 1 can be applied
straightforwardly.

D. Link between SNR and Security Order t

In fact, it is easy to build the connection between SNR
and the side-channel security order of an implementation by
checking whether SNR equals 0. From Theorem 1, we deduce
the security order t of IPM from SNR as follows.

Theorem 2. If d◦P < d⊥D, the attack exploiting leakage
function P fails (i.e., SNR = 0), thus the security order of
IPM scheme in the bounded moment model is t = d⊥D − 1.

Proof. We know from [7, Lemma 1] (in fact, this is a direct
consequence of results of [13]) that, given a pseudo-Boolean
function P , one has P̂ (z) = 0 for all z ∈ Kn such that
wH(z) > d◦P . Let z ∈ D⊥\{0}; then wH(z) ≥ d⊥D.
Assuming that the numerical degree of P is strictly less
than d⊥D, we then have wH(z) ≥ d⊥D > d◦P , which
means that P̂ (z) equals 0, resulting in the fact that SNR =

1
22n`σ2

total

∑
x∈D⊥\{0} P̂ (x)

2 = 0. Hence, the security order t
in bounded moment model equals d⊥D − 1.

Let us assume that the attacker builds its attack by tweaking
P . For example, if the device leaks the sensitive variable

Z through a noisy leakage function φ, the attacker can
choose to use P = φ or P = φ2, . . ., or P = φd (see
illustration in Fig. 3), or actually any composition P = ψ ◦φ.
Therefore the security order is the minimum value of d◦P
such that SNR 6= 0. Although the Theorem 2 is essentially
the same as [28, Proposition 1], we obtain this theorem in a
different way. More importantly, by combining with Theorem
1, the quantitative leakages can be assessed straightforwardly.
In practice, we can directly compare, for a given leakage
model, two countermeasures: if SNR1 < SNR2, then the first
countermeasure is more secure than the second one.

With Theorem 2, we directly link the dual distance d⊥D of
codes D in IPM to the security order in bounded moment
model. Furthermore, the quantitative expression in Theorem 1
allows designers to assess easily the security order of an IPM
scheme by using properties of the code D. Since IPM is the
generalization of Boolean masking, Theorem 1 & 2 are also
applicable to the Boolean masking and other variants [39].

E. Connecting SNR with Code Parameters

As common leakage models, Hamming weight and affine
models have been validated in practice [28] for side-channel
analysis. We set φ(z) = wH(z), then use P (z) = wH(z)d as a
leakage model. Clearly, the numerical degree of P is d◦P = d.
Moreover, one can write:

P (z) = wH(z)d =
∑

J1+···+Jn`=d

(
d

J1, . . . , Jn`

) n∏̀
i=1

zJii

=
∑

J∈Nn`, s.t.
∑n`

i=1 Ji=d
wH(J)<d

(
d

J

)
zJ + d!

∑
I∈{0,1}n`

wH(I)=d

zI ,
(12)

where N = {0, 1, . . .} is the set of integers. The multino-
mial coefficient

(
d

J1,...,Jn`

)
is defined as d!

J1!···Jn`!
(recall that

J = (J1, . . . , Jn`) ∈ Nn` with
∑n`
i=1 Ji = d). This coefficient

equals to d! as long as for all i (1 ≤ i ≤ n`), Ji = 0 or 1.
Now, the terms in P (z) are categorized into two cases:
• zJ where J ∈ Nn`, wH(J) < d, which consists in products

of < d bits of z, as zJ =
∏
i∈{1,...,n`} s.t. Ji>0 zi,

• zI where I ∈ {0, 1}n`, wH(I) = d which consists in
products of d bits of z, as zI =

∏
i∈{1,...,n`} s.t. Ii=1 zi.

Indeed, let i ∈ {1, . . . , n`}, then zJii = 1 if Ji = 0, and
zJii = zi if Ji > 0. The first terms zJ have numerical
degree d◦(zJ) < d, hence can be discarded in the analysis
(they contribute nothing to the SNR). Remaining terms of
numerical degree d are:

∑
I∈{0,1}n`, wH(I)=d z

I . Hence we
have following theorem for quantifying the leakages of IPM.

Theorem 3. Let a device leak in Hamming weight model,
which is protected with IPM at bit-level security order t =
d⊥D − 1. A higher-order attack is possible only if the attacker
uses a leakage function P with d◦P = d > t. Moreover, the
SNR can be quantified by:

SNR =

 0 if d◦P ≤ t
B

d⊥D
σ2
total

(
d⊥D!

2d
⊥
D

)2
if d◦P = t+ 1 = d⊥D .

(13)
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Proof. Let ϕI(z) = zI where I ∈ {0, 1}n`. Thus

zI =
∏
i∈I

zi =
∏
i∈I

(1− (−1)zi)
2

=
1

2d

∏
i∈I

(1− (−1)zi). (14)

By Theorem 2, all monomials with numerical degree d◦ < d
have SNR = 0, hence we only focus on monomials with d◦ =
d. We have ϕI(z) = φI(z)+

(−1)d
2d

(−1)
∑

i∈I zi where φI(z) is
linear combination of monomials with numerical degree d◦ <
d in ϕI(z). The Fourier transform of ϕI(z) is

ϕ̂I(y) = φ̂I(y) +
(−1)d
2d

∑
z

(−1)z·I(−1)z·y

= φ̂I(y) +
(−1)d
2d

∑
z

(−1)z·(I+y)

= φ̂I(y) + (−1)d2n`−d1{I}(y).

(15)

We have φ̂I(y) = 0 for y with wH(y) ≥ d⊥D = t + 1 > d
(recall the proof of Theorem 2).

Thus by combining Equ. 15 with Equ. 11, we have the
following equation for V ar(E(P (Z)|X)):

V ar(E(P (Z)|X)) =
∑

y∈D⊥\{0}

P̂ 2(y)

22n`

= 2−2n`
∑

y∈D⊥\{0}

 ∑
I|wH(I)=d

(−1)d2n`−d
(
d

I

)
1{I}(y)

2

= 2−2d
∑

y∈D⊥, wH(y)=d

 ∑
I|wH(I)=d

(
d

I

)
1{I}(y)

2

= 2−2d
∑

y∈D⊥, wH(y)=d

(d!)
2

= Bd

(
d!

2d

)2

.

(16)

Finally, using Theorem 2, it appears that the only pos-
sible solution of d is d = d⊥D such that SNR 6= 0, thus

V ar(E(P (Z)|X)) = Bd⊥D

(
d⊥D!

2d
⊥
D

)2
, then

SNR =
V ar(E(P (Z)|X))

V ar(N)
=

Bd⊥D
σ2
total

(
d⊥D!

2d
⊥
D

)2

. (17)

In a nutshell, Theorem 3 provides a quantitative way for
assessing the side-channel security level of an implementation
under Hamming weight leakages. More importantly, the SNR
is linked to two parameters of the code used in IPM, which
brings great convenience on simplifying the assessment. In
practice, the designer can easily select a better or even optimal
code for IPM which amplifies the side-channel resistance of
the implementation protected by IPM.

In fact, the quantitative result in Theorem 3 can be extended
to all linear (affine) leakages [22] which can be expressed as:

P : z ∈ Fn`2 7→ P (z) = β0 + 〈β, z〉 ∈ R, (18)

where β0 ∈ R is an unimportant additive constant that
can be considered null (which is dropped in the sequel),

β = (β1, · · · , βn`) ∈ Rn` (note that βi is normalized by

β′i =
√
n`
‖β‖2

βi, where ‖β‖2 =
√∑n`

i=1 β
2
i is the L2-norm of β)

are coordinate-wise weights, and 〈x, y〉 =∑n`
i=1 xi · yi ∈ R is

the canonical scalar product. This leakage model is also known
as UWSB model (“unevenly weighted sum of the bits”) as in
[40]. The validity of this leakage model can be tested easily
by stochastic profiling [35] on practical samples. Therefore,
we denote the leakage function as:

P (z) =
( n∑̀
i=1

βizi

)d
=

∑
J1+J2+···
+Jn`=d

(
d

J1, . . . , Jn`

) n∏̀
i=1

(
βizi

)Ji
=

∑
J∈Nn`, wH(I)<d
J1+···+Jn`=d

(
d

J

)(
βz
)J

+ d!
∑

I∈{0,1}n`

wH(I)=d

(
βz
)I
.

(19)

Thus, we deduce the following corollary for SNR under
UWSB leakage model as follows:

Corollary 2. Let a device leak in UWSB model, which is
protected with IPM at bit-level security t = d⊥D− 1. A higher-
order attack is possible only if the attacker uses a leakage
function P with numerical degree d◦P = d > t. Moreover,
the SNR is:

SNR = λ · 1

σ2
total

(
d!

2d

)2

=

 0 if d◦P ≤ t
λ · 1

σ2
total

(
d⊥D!

2d
⊥
D

)2
if d◦P = t+ 1 = d⊥D

,

(20)

where λ =
∑

y∈D⊥

wH(y)=d

( ∏
1≤i≤n`
s.t. yi=1

βi

)2
, and λ = 0 if d < d⊥D.

For instance, as the Hamming weight model is a special
case of UWSB model with βi = 1 for i ∈ {1, 2, . . . , n`}, we
obtain λ = Bd⊥D , which is exactly the Theorem 3.

In summary, by Corollary 2, the SNR of IPM scheme under
affine leakage model depends only on the two parameters
of D and the leakage model β. In practice, β is fixed for
a given device and mainly depends on the device itself that
an adversary has no control on. Hence the special interest
is that designers can choose optimal codes D for IPM with
maximized side-channel resistance by simply selecting optimal
d⊥D and Bd⊥D .

IV. QUANTIFYING LEAKAGES BY THE
INFORMATION-THEORETIC METRIC

We investigate the security order of IPM at both word- and
bit-level, and show the essential reason of the "Security Order
Amplification" which has been observed and described in [39],
[28], [2]. We here go further by using an information-theoretic
metric, the standard notion of mutual information (MI), to
quantify the leakages of IPM.

A. Security Orders at Word-level tw and Bit-level tb
The first important property of IPM is its higher security

order at bit-level than at word-level, namely tb ≥ tw. Here we
start from a very well-known property of the generator matrix.
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Proposition 4. The maximal number of linearly independent
columns of the generator matrix H of the code D is d⊥D − 1.

It is a well-known theorem in error-correcting codes [23,
Theorem 10]. Hence, if the attacker probes up to d < d⊥D
(inclusive) wires, the sensitive variable X is encoded as
a codeword in Fn2` and is perfectly masked. Therefore no
information on X can be recovered.

Lemma 7. The IPM is secure at the maximized order tw in
the terms of probing model if and only if the code generated
by the 1×n matrix H⊥ = (L1 = 1, L2, L3, . . . , Ln) is a code
with parameters [n, 1, dw]2` , where dw = tw + 1.

Proof. Note that H⊥ = (1, L2, L3, . . . , Ln) is the generator
matrix of the dual code of D generated by matrix H in Equ. 8.
The masking scheme is secure at order tw under probing model
means that any tuple of Z’s coordinates of size ≤ tw leaks
no information on X . Now, Z = f(X) + YH, i.e., similar
to additive masking, which is secure at order tw meaning that
any tw tuple of YH is uniformly distributed ("Vernam code").
By definition, this means that d⊥D > tw.

Since for IPM, d⊥D = dD⊥ where the later is the minimum
distance of the dual code D⊥. By the definition of the dual
distance, we have d⊥D = tw + 1.

Obviously, we have d⊥D = n if and only if Li 6= 0 for
i ∈ {1, 2, . . . , n}. Therefore, the security order of IPM scheme
is tw = d⊥D − 1 = (n − 1) over K = F2` . This has been
formally proved in [1], [2] and pointed out in [28]. We put it
here in Lemma 7 for completeness of this paper and we can
directly obtain the word-level security order tw by Theorem 2.
In brief, IPM is optimal in term of word-level security and has
the same security order as Boolean masking (where Li = 1).

A.1 Bit-Level Security Order tb
By code expansion as Def. 5, we can expand the code D

from K = F2` to K = F2, which turns a code [n, 1, dw]2` to
[n`, `, db]2. At first, we show the connection between the two
security orders tw and tb as follows.

Lemma 8. In IPM, the word-level security order is not greater
than bit-level security order, namely tw ≤ tb.

In fact, this is essentially the "Security Order Amplification"
as explained in [28]. Here we give another proof as follows.

Proof. With code expansion, the generator matrix H⊥ =
(1, L2, · · · , Ln) is expanded to [H⊥]2 = (I`,L2, · · · ,Ln), as
per Def. 5. Since Li 6= 0, we have at least one 1 in each row
of Li. Otherwise, if one row of Li is all zeros, we have:

Li =

 0 0 · · · 0
− − − −
− − − −
− − − −

 ∈ F`×`2

then Li is not invertible which indicates that Li does not exist.

Remark 3. It is worth mentioning that since the Boolean
masking is a special case of IPM with Li = 1 for i ∈
{1, . . . , n}, we always have tw = n− 1, tb = n− 1. While
for IPM, tb can be greater than n − 1 if there exists at least

one i ∈ {1, . . . , n} such that Li 6∈ {0, 1}, where the algebraic
complexity of IPM is greater than Boolean masking.

To optimize IPM scheme, we aim at choosing tb as large
as possible compared to tw, thereby increasing the security
order as much as possible. For instance, with n = 2 shares of
` = 4 bits, we have F16 = {0, 1, α, . . . , α14}, where F16 :=
F2[α]/〈α4+α+1〉. There are 15 candidates for L2 ∈ F16\{0}.
All codes have the same word-level security since tw = 1
(dw = 2). While for bit level security, we have tb = 1 (db = 2)
for 7 candidates and tb = 2 (db = 3) for 8 candidates (refer
to Tab. IV for all codes), respectively. Therefore, in this case,
the optimal tb for IPM is 2.

B. Linking Mutual Information with Code Parameters

The other primary means to evaluate the security of a
cryptographic implementation is to utilize the information-
theoretic analysis. In this sense, mutual information is a
well-known metric in the field of side-channel analysis [36].
Therefore we use it to assess the leakages of IPM as follows.

Theorem 4. For a device leaking under the Hamming weight
model that is protected by IPM scheme with Z = XG +
YH, the mutual information I(L;X) between the leakage L =
P (Z)+N and the sensitive variable X is approximately equal

to the first nonzero term: I(L;X) ≈
d⊥D!B

d⊥D

2 ln 2·22d⊥D
· 1

σ2d⊥D
when

the leakage function P of a higher-order attack has numerical
degree d◦P = d⊥D. Specifically,

I(L;X) =


0, if d◦P < d⊥D

d⊥D!B
d⊥D

2 ln 2·22d⊥D
× 1

σ2d⊥D
+O

(
1

σ2(d⊥D+1)

)
,

if d◦P = d⊥D, when σ → +∞
(21)

where σ is the standard deviation of noise.

Proof. It is obvious that there is no leakage when d◦P = d <
d⊥D. We assess the leakages in an information-theoretic sense
as the mutual information between P (Z) and X , defined by
I(P (Z);X) = H(P (Z))− H(P (Z)|X), where:
- the entropy is H(P (Z)) = −∑z P(P (z)) log2 P(P (z)),

- the conditional entropy H(P (Z)|X) is:

H(P (Z)|X) =−
∑
x∈F`

2

PX(x)
∑
z

P(P (z)|x) log2 P(P (z)|x).

In the presence of noise N , the mutual information between
the noisy leakage L = P (Z) + N and the sensitive variable
X can be developed using a Taylor’s expansion4 [11]:

I(L;X)=

+∞∑
d=0

1

2 d! ln 2

∑
x∈F`

2

PX(x)
(kd(P (Z)|x)− kd(P (Z)))2

(V ar(P (Z)) + σ2)
d

=
1

ln 2

+∞∑
d=0

1

2 d!

V ar(kd(P (Z)|X))

(V ar(P (Z)) + σ2)
d
, (22)

where kd is the d-th order cumulant [9].

4The normalization by ln 2 allows the mutual information expressed in bits
instead of nats.
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As for a d-CI (Correlation Immune) function [10] that is
not (d + 1)-CI, all moments of order i ≤ d are centered, so
are the cumulants. Hence the first nonzero cumulant kd⊥D (X)
is equal to µd⊥D (X). It results that in Equ. 22, the term
V ar(kd(P (Z)|X)) is null for all d < d⊥D, and it is equal
to V ar(µd⊥D (P (Z)|X)) = V ar(E(P (Z)d

⊥
D |X)) for d = d⊥D.

Thus, assuming the device is leaking in Hamming weight
model, the mutual information can be developed at the first
order in 1/σ2d⊥D by Equ. 22:

I(L;X) =
d⊥D!Bd⊥D

2 ln 2 · 22d⊥D
× 1

σ2d⊥D
+O

(
1

σ2(d⊥D+1)

)
, (23)

when σ → +∞. This proves Theorem 4.

Particularly from Theorem 3 and 4, it is noteworthy that
reducing Bd⊥D allows both to reduce the SNR and the MI,
which demonstrates our intuition for the impact of Bd⊥D on the
concrete security level of IPM. In summary, two parameters
that determine the leakages of IPM are depicted in Fig. IV-B:
- the slope in the log-log representation of the MI versus

the noise standard deviation is all the more steep as d⊥D is
higher,

- the vertical offset is adjusted by Bd⊥D : the smaller Bd⊥D is,
the smaller the MI.

Reduce Bd⊥D

Increase d⊥D

Noise variance: σ2

M
I:
I(
L;

X
)

Figure 4. Two concomitant objectives to reduce the mutual information.

When the noise variance σ2 tends to infinity, I(L;X) is
converging to the dominating term in the expansion given
in Equ. 23. Hence, there is an affine law in the log-log
representation, in which the slope equals to the negative order
of the first nonzero moment of random variable L|X .

C. Numerical Evaluation of MI

By information-theoretic analysis, we connected the mutual
information with two defining parameters of D, namely d⊥D
and Bd⊥D . In order to further demonstrate Theorem 4, we
numerically compute the MI for n = 2 shares and ` = 4
bits. The value of I(L;X) is shown in Fig. 5, where L takes
the "Hamming weight + Gaussian noise" as leakages (which
is the same as in Sec. VI).

Obviously, d⊥D and Bd⊥D clearly indicate the concrete se-
curity level of IPM as measured by MI. Furthermore, our
estimation of MI by Equ. 23 is in accordance with the
numerical calculations. From Fig. 5, the codes for practical
applications can be chosen according to the noise level of real
devices (situations). For instance, if the noise level is σ2 > 2,
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=14
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Figure 5. Numerical calculation and approximation of I(L;X) between
leakages and the sensitive variable X ∈ F24 in IPM. The BKLC code [8,
4, 4] cannot be used in IPM. We put it here to show the code with d⊥D = 4.

the d⊥D is more dominant on choosing optimal codes, while
if σ2 < 2−1, Bd⊥D is more important; for noise level σ2 in
[2−1, 2], more efforts are needed in choosing a good code.

V. A UNIFIED LEAKAGE ASSESSMENT FRAMEWORK FOR
IPM AND ITS APPLICATIONS

We introduce a unified framework, consisting in the two
parameters d⊥D and Bd⊥D of code D, to quantify the linear
(e.g., Hamming weight) and affine leakages of IPM. By
Theorem 3 and Corollary 2, we propose the unified framework
for assessing the leakages of IPM as follows:

Framework 1 (Unified Leakage Assessment Framework for
IPM). The leakages of IPM with a linear code D can be
quantified by the assessment framework consisting of two
defining parameters of D, namely its dual distance d⊥D and the
coefficient Bd⊥D in its weight enumerator (recall Theorem 3).

In summary, when the leakage model is Hamming weight
or affine model, the side-channel resistance of IPM scheme
is straightforwardly related to two defining parameters of
the selected code D, namely d⊥D and Bd⊥D , which are core
ingredients of our unified framework. From the attacker’s
perspective, the only way to compromise a countermeasure
is to perform attacks with order no less than d⊥D. From the
other side of the coin, designers can use this framework in
practice, namely to enhance the side-channel security of IPM
by choosing appropriate d⊥D and Bd⊥D . Hereafter, we show how
to use this framework to select the optimal codes for IPM.

A. Selecting Optimal Codes for IPM
Recall that the generator matrix of dual code D⊥ is H⊥ =

(L1 = 1, L2, L3, . . . , Ln). From above, two ingredients of our
unified framework are d⊥D and Bd⊥D of the code D. Since our
framework straightforwardly indicates the concrete security
order of IPM, we propose an algorithm to choose optimal
code for IPM as Alg. 1.

Summing up, our framework is generic and applicable to
IPM under Hamming weight and affine leakages. From the
perspective of designers, it would be advantageous to choose
the optimal codes with proper d⊥D and Bd⊥D by using Alg. 1
instead of finding them via long and tedious design then
evaluation cycles. Some optimal codes are shown in Tab. II.
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Algorithm 1 Conceptional Selection of Optimal Code for IPM
Input: All codes of D⊥ generated by H⊥

Output: Code(s) with Optimized d⊥D and Bd⊥D
1: D ← all codes D with D⊥: [n, 1, n]2` over F2` ;
2: . Optimize dw in word-level, dw = n if Li 6= 0
3: D2 ← {[D]2| D ∈ D} over F2` with [D⊥]2 : [n`, `, db]2;
4: db ← max{d⊥D| D ∈ D2}; . Optimize in bit-level (db)
5: D ′ = {D| d⊥D = db, D ∈ D}; . Only keep codes with

maximized d⊥D
6: Bmin ← min{Bd⊥D | D ∈ D ′};
7: D ′′ = {D| Bd⊥D = Bmin, D ∈ D ′}; . Only keep codes

with minimized Bd⊥D
8: return D ′′;

VI. PRACTICAL VALIDATION OF THE UNIFIED
FRAMEWORK BY ATTACKS

For the sake of fair comparison, we focus on the optimal
attack [8], namely the attack which maximizes the probability
of success rate in recovering the secret key to assess the side-
channel resistance of IPM with different codes. The side-
channel traces are generated by using "Hamming weight +
Gaussian noise" model [6]. The success rate [36] is the metric
for evaluating attacks against IPM with different codes D.

A. Experimental Setting and the Optimal Attack

Let Tq be the known inputs or outputs of the cryptographic
implementation (i.e. plaintexts or ciphertexts) corresponding to
block cipher queries with q ∈ {1, . . . , Q}, let k∗ be the secret
key (k′ is the guessed key during attacking) and let Ni for
i ∈ {1, . . . , n} be independent Gaussian noises. Therefore,
the sensitive variable x is: x = Tq + k∗. For each attack,
the side-channel leakage of each share is generated as: Li =
wH(Zi) + Ni where Zi ∈ F2` and ` = 4, 8. Hence we have
overall leakages for all shares:

L =
(
L1, L2, L3, . . . , Ln

)
=
(
wH(x+ y2L2 + · · ·+ ynLn) +N1, wH(y2) +N2,

wH(y3) +N3, . . . , wH(yn) +Nn

)
.

In the setting of the optimal attack, a multivariate attack
measures each share independently. While in monovariate
case, leakages of all shares are treated as one and thus are
summed up as:

L = L1 + L2 + L3 + · · ·+ Ln
= [wH(x+ y2L2 + · · ·+ ynLn) +N1] + [wH(y2) +N2]

+ [wH(y3) +N3] + · · ·+ [wH(yn) +Nn].

In this paper, we present the three attacks targeting differ-
ent settings of IPM. Specifically, the monovariate attack is
launched for all three cases as well as the n-variate attacks
against the IPM with n shares. The three attacks are presented
as follows.

- The monovariate (1D) attack measures the sum of leakages
for each trace q (1 ≤ q ≤ Q), hence the optimal attack
guesses the correct key k∗ as:

k̂∗ = argmax
k′∈F

2`

Q∑
q=1

log
∑

y2∈F2`

exp − 1

4σ2
· \

{(
Lq − wH(Tq + k′ + y2L2)− wH(y2)

)2}
.

(24)

- The bivariate (2D) attack measures each of two shares L1
q

and L2
q independently, then the correct key k∗ is guessed

as:

k̂∗ = argmax
k′∈F

2`

Q∑
q=1

log
∑

y2∈F2`

exp − 1

2σ2
· \

{(
L1

q − wH(Tq + k′ + y2L2)
)2

+
(
L2

q − wH(y2)
)2 }

.

(25)

- The trivariate (3D) attack measures each of three shares L1
q,

L2
q and L3

q independently, then the optimal attack guesses
the correct key k∗ as:

k̂∗ = argmax
k′∈F

2`

Q∑
q=1

log
∑

y2, y3∈F2`

exp − 1

2σ2
· \

{(
L1
q − wH(Tq + k′ + y2L2 ⊕ y3L3)

)2 \
+
(
L2
q − wH(y2)

)2
+
(
L3
q − wH(y3)

)2 }
.

(26)

It is worth noting that our attack experiments are launched
by using Python, which brings great convenience of data
processing. We also use Magma [38] to formally verify our
findings of the linear codes for IPM. For the sake of brevity, we
show only the representative codes in the paper. The Magma
scripts and full tables of the optimal codes from an exhaustive
study are available on Github [14]. Hereafter, we present the
SR of optimal attack in three instances of IPM.

B. Case 1: n = 2 shares and ` = 4 bits.

In this case, the encoding of IPM is z = (x + y2L2, y2),
where x, y2, L2 ∈ F24 . Four candidates of L2 ∈ {αi ∈ F2`}
for i ∈ {0, 1, 2, 3} are evaluated in Fig. 6 along with one BKLC
(Best Known Linear Code) code which plotted is in black. It
is clear that L2 = α0 = 1 is the easiest one to attack, where
the IPM is degraded to a Boolean masking scheme. However,
BKLC code is better than IPM codes (we refer the code in
IPM as “IPM code”) in the sense of side-channel resistance.

Here we have tw = n − 1 = 1, while tb = 1 or tb = 2
depending on the selected codes. Clearly codes with smaller
Bd⊥D have better side-channel resistance. Note that the C84 :=
BKLC(GF (2), 8, 4) is the BKLC code [8, 4, 4] over F2, whose
experimental result validates that the code C84 with greater
db = 4 is much better than codes from IPM against both
monovariate and bivariate attacks.

C. Case 2: n = 2 shares and ` = 8 bits

In this case, the encoding of IPM is z = (x + y2L2, y2),
where x, y2, L2 ∈ F28 . Five candidates of L2 ∈ {αi} for
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Figure 6. Attacking result for IPM with n = 2 shares and ` = 4 bits, noise level: σ = 1.50.
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Figure 7. Attacking result for IPM with n = 2 shares and ` = 8 bits, noise level: σ = 1.50.

i ∈ {0, 1, 2, 7, 8} are evaluated in Fig. 7. Again, the Boolean
version with L2 = α0 = 1 is the easiest one to attack.

Firstly, for L2 ∈ {αi} where i ∈ {0, 1, 2, 7}, d⊥D equals to 2
and for L2 = α8, d⊥D equals to 4. Obviously, codes with greater
d⊥D have a better side-channel resistance. Secondly, with the
same d⊥D, four codes by choosing L2 ∈ {αi | i ∈ {0, 1, 2, 7}}
have Bd⊥D ∈ {8, 7, 6, 1}, respectively. Fig. 7 confirms that the
smaller Bd⊥D is, the smaller success rate is, which indicates a
better side-channel resistance from the IPM code. In a word,
attacks are all the more difficult as Bd⊥D is small given the
dual distance d⊥D.

D. Case 3: n = 3 shares and ` = 4 bits

In addition, we experiment on 3-share IPM, which should
be 2nd-order secure at word-level. Here the encoding of IPM
is z = (x+ y2L2 + y3L3, y2, y3), where x, y2, y3, L2, L3 ∈
F24 . Six candidates of IPM with (L2, L3) ∈ {(αi, αi)} where
i ∈ {0, 1, 2, 3, 5} and with (L2 = α5, L3 = α10) are evaluated
in Fig. 8. We validate our framework by investigating d⊥D
and Bd⊥D of IPM codes. Firstly, for codes with (L2, L3) ∈
{(αi, αi)} where i ∈ {0, 1, 2, 3}, they have d⊥D = 3, the code
with (L2 = L3 = α5) has d⊥D = 4 and the last one with
(L2 = α5, L3 = α10) has d⊥D = 6, respectively. Secondly, with
the same d⊥D, four codes by choosing (L2, L3) ∈ {(αi, αi)}
from i ∈ {0, 1, 2, 3} have Bd⊥D ∈ {4, 3, 2, 1}, respectively. The
distinct success rates of different codes demonstrate well the
effectiveness of our framework. Again given d⊥D, the smallest
Bd⊥D is the best.

E. Summing-up Results
For n = 2 and n = 3 shares for 4 & 8-bit variables, the

best IPM codes and BKLC codes are tabulated in Tab. II.
Let SRipm = 0.8 denotes the number of traces to obtain SR

= 80% for IPM by mono- or bi\tri-variate attacks marked by
1D and 2D\3D, respectively, the same for Boolean masking and
BKLC code. Let d⊥ipm− d⊥bool be the difference between the
optimal d⊥D in IPM and d⊥D in Boolean masking. Note again
that not all BKLC codes can be used in IPM as explained in
Remark 1. From Tab. II, we show the significant advantage
of IPM over Boolean masking, and we also see that BKLC
codes can have better dual distance d⊥D than the best codes
which are sub-field representation of IPM codes of parameters
[n, k, dw]2` . Indeed, codes of parameters [n`, k`, db]2 are a su-
perset of codes which are the sub-field representation of codes
of parameters [n, k, dw]2` . This fact implies that information
leakage with IPM codes is larger than information leakage
with BKLC codes, which can be clearly seen from Fig. 5 when
σ2 > 1. Anyhow, by using our framework, the optimal IPM
codes can be selected. Actually, the optimality of the selected
code (by Alg. 1) can be verified easily when the number of
shares is small (e.g., n ≤ 5), since the number of IPM codes
is very limited. For instance, if n = 2 and ` = 8, there are
only 2`−1 = 255 codes for IPM (including equivalent codes).

VII. DISCUSSIONS

A. The Completeness of Our Unified Framework
In this paper, we quantify the side-channel security of IPM

using two complementary metrics, namely the SNR and the MI,
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Figure 8. Attacking result for IPM with n = 3 shares and ` = 4 bits, noise level: σ = 1.50.

Table II
THE OPTIMAL CODES FOR IPM IN SEVERAL SCENARIOS WITH BKLCS AND BOOLEAN ONE IN COMPARISON (REFER TO [14] FOR LIST OF ALL CODES).

F2` IPM Codes BKLC Codes d⊥ipm−d⊥bool d
⊥
ipm−d⊥bklc SRbool=0.8 SRipm=0.8 SRbklc=0.8 Comments

n
=

2

` = 4
H⊥=(1, α5):

d⊥D = 3, Bd⊥D
= 3

[8, 4, 4]: (unique)
d⊥D = 4, Bd⊥D

= 14
1 -1

800 (1D)

340 (2D)

4,000 (1D)

1,320 (2D)

8,400 (1D)

2,500 (2D)
[39], [12]

` = 8
H⊥=(1, α8):

d⊥D = 4, Bd⊥D
= 3

[16, 8, 5]: (unique)
d⊥D = 5, Bd⊥D

= 24
2 -1

1,900 (1D)

870 (2D)

>80,000 (1D)

>20,000 (2D)

>100,000 (1D)

>40,000 (2D)

[28]. We introduce one
nonlinear code (16,256,6)

n
=

3

` = 4
H⊥=(1, α5, α10):
d⊥D = 6, Bd⊥D

= 12

[12, 4, 6]:
d⊥D = 6, Bd⊥D

= 12
3 0

4,600 (1D)

310 (3D)

>45,000 (1D)

3,050 (3D)

>45,000 (1D)

3,050 (3D)

New, the best IPM code is
equivalent to BKLC code

` = 8
H⊥=(1, α18, α183):
d⊥D = 8, Bd⊥D

= 7

[24, 8, 8]:
d⊥D = 8, Bd⊥D

= 130
5 0 – – –

[28], the best IPM codes is
better than BKLC one [14]

since they depict different aspects of the side-channel leakage.
Specifically,

• the SNR measures the amount of leakage at a given moment
(mean, variance, etc.) in the bounded leakage model;

• the MI measures the total leakage distribution, namely
depending on all orders of moments of the leakage.

Both metrics are correlated with the attack metric SR, which
is the pragmatic evaluation of the exploitability of the leakage.
This means that the smaller the SNR or the MI, the smaller the
SR for a given number of traces used to attack. Moreover, the
two complementary metrics are utilized to thoroughly validate
our unified framework.

Our framework shows that security can be assessed only in
terms of dual distance d⊥D and parameter Bd⊥D of code D:

• regarding SNR, whatever the value of σ — refer to Theo-
rem 3 for the Hamming weight leakages and Corollary 2
for the affine leakages; moreover, for general leakages, e.g.,
nonlinear leakages, refer to Theorem 1;

• regarding MI, when σ is large and the leakage model is
Hamming weight — refer to Theorem 4.

Furthermore, equivalent codes feature the same SNR and MI
when the leakage model is Hamming weight, since permuting
coordinates does not change the Hamming weight. So, we have
that the MI of two equivalent codes is the same whatever the
value of σ when the leakage model is Hamming weight. But
the converse does not hold, as shown in Tab. III.

It is interesting to notice that for n = 2 and ` = 4, all codes
(1, L2)2` represented in F2 with the same weight enumerator

are equivalent5 as shown in Tab. IV. Note that the codes in
the same rows are equivalent, so they have the same MI.

Table III
EXAMPLE OF NON-EQUIVALENT IPM CODES WITH n = 3, ` = 4 THAT

HAVE THE SAME WEIGHT ENUMERATOR BUT DIFFERENT MI (NOISELESS).

L2 L3 Weight Enumerators I(Z;X)

α1

α2

α5

α5

[ (0, 1), (4, 2), (5, 3), (6, 2), (7, 4),
(8, 3), (9, 1) ]

0.016494

α1

α8

α7

α9

[ (0, 1), (4, 2), (5, 3), (6, 2), (7, 4),
(8, 3), (9, 1) ]

0.016377

B. Using the Nonlinear Nordstrom-Robinson Code
We present one example for using nonlinear codes in encod-

ing, which is known as Nordstrom-Robinson code denoted as
DNR. It has greater minimum distance than all linear code with
parameters n = 2, ` = 8. DNR has parameters (16, 256, 6)2,
where its length is 16, the number of codewords is 256
(which is not a vector space of dimension 8 over F16

2 ), and
its minimum distance equals to 6. The minimum distance is
now defined as dDNR = minu,u′∈DNR dH(u, u′). We use the
distance enumerator DD for a nonlinear code D, since weight
enumerator WD is useless for nonlinear codes.

DD(X,Y ) =
∑
u,u′∈DX

n−dH(u,u′)Y dH(u,u′).

When the code D is linear, we have DD = 2` ·WD, where:

WD(X,Y ) =
∑
u∈DX

n−wH(u)Y wH(u).

5From viewpoint of coding theory as described in Sec. II-B.
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Table IV
THE WEIGHT ENUMERATORS OF IPM CODES WITH m = 2, ` = 4 AND MI IN A NOISELESS CASE.

L2 d⊥D Bd⊥D
Weight Enumerators I(Z;X)

α0 (Boolean masking) 2 4 [ (0, 1), (2, 4), (4, 6), (6, 4), (8, 1) ] 1.151963

α1, α14 2 3 [ (0, 1), (2, 3), (3, 2), (4, 3), (5, 4), (6, 1), (7, 2) ] 0.380288

α2, α13 2 2 [ (0, 1), (2, 2), (3, 3), (4, 3), (5, 4), (6, 2), (7, 1) ] 0.287149

α3, α12 2 1 [ (0, 1), (2, 1), (3, 4), (4, 3), (5, 4), (6, 3) ] 0.199569

α4, α6, α7, α8, α9, α11 3 4 [ (0, 1), (3, 4), (4, 5), (5, 4), (6, 2) ] 0.181675

α5, α10 3 3 [ (0, 1), (3, 3), (4, 7), (5, 4), (7, 1) ] 0.246318

For the Nordstrom-Robinson nonlinear code, we have:

DDNR(X,Y ) = 256X16 + 28672X10Y 6

+ 7680X8Y 8 + 28672X6Y 10 + 256Y 16.

Since the dual distance of Nordstrom-Robinson d⊥DNR
is

greater than all IPM codes with n = 2 shares and ` = 8
bits, it is usually better than all IPM codes as shown in
Fig. 7. Thus our framework is also applicable for this nonlinear
code. However, using nonlinear codes for masking is still an
open question because of the difficulties of constructing basic
cryptographic operations (e.g., addition, multiplication, etc.).

VIII. CONCLUSIONS

In this paper, we followed a quantitative approach to
characterize the side-channel resistance of IPM scheme. In
particular, we proposed a unified framework and linked it
to two theoretical metrics (SNR and mutual information),
and also an attack metric (success rate). The framework is
based on two parameters of the code D, namely the dual
distance d⊥D and the coefficient Bd⊥D in its weight enumeration
polynomial. We showed that the concrete security level of IPM
can be fully depicted by our framework. By our framework,
we provided a quantitative explanation for "Security Order
Amplification", which has been observed in previous works
including CARDIS’16, CARDIS’17 and ASIACRYPT’17. At
last, we proposed an effective method to select the optimal
codes for IPM and validated by experiments.

Although we validated our framework by simulated leak-
ages with realistic noise parameters, it is still not clearly
verified on real devices. As a perspective, we will consider
the practical validations of our findings. Moreover, we show
in Tab. II and IV optimal codes obtained by an exhaustive
study, which is very time-consuming. Such method to find
the optimal codes becomes computationally impossible when
the number of shares n gets larger (e.g., n > 5). Hence, a
systematic (e.g., algebraic) construction of better codes than
mere random codes is much preferable and could be leveraged.
However, it is still an open problem to construct optimal or
suboptimal codes for IPM or LS with a larger number of
shares.
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APPENDIX A
PROOFS OF LEMMA 5 & 6

A. Proof of Lemma 5

Proof.

E(E(P (Z)|X)) =
1

|X |
∑
x∈X

(
1

|Y|
∑
d∈D

P (xG+ d)

)

=
1

|C|
∑
c∈C

(
1

|D|
∑
d∈D

P (c+ d)

)

=
1

|C| · |D|
∑

c,d∈C×D

P (c+ d)

=
1

|Z|
∑
z∈Z

P (z)

=
1

2n`
P̂ (0).

(27)

B. Proof of Lemma 6
Proof. By definition,

E(E(P (Z)|X)2) =
1

|C|
∑
c∈C

(
1

|D|
∑
d∈D

P (c+ d)

)2

. (28)

We have:∑
c∈C

(∑
d∈D

P (c+ d)

)2

= 2−2n`
∑

c∈C, d,d′∈D
x,y∈Fn`

2

P̂ (x)P̂ (y)(−1)x·(c+d)+y·(c+d′).

(29)

According to the inverse Fourier transform (by using Propo-
sition 2), P (a) = 2−n`

∑
x∈Fn`

2
P̂ (x)(−1)x·a, then

P (a) = 2−2n`
∑

c∈C,d,d′∈D
x,y∈Fn`

2

P̂ (x)P̂ (y)(−1)(x+y)·c+x·d+y·d′

(30)

= 2−n`|D|
∑

x,y∈D⊥; x+y∈C⊥
P̂ (x)P̂ (y), (31)

where C, D are linear supplementary codes and |C||D| = 2n`.
Since C is linear,

∑
c∈C(−1)(x+y)·c is null when x + y does

not belong to C⊥ and equals the size of C if it does, and the
same with D.

Since C ⊕ D = Fn`2 , we have x, y ∈ D⊥ and x + y ∈ C⊥
which implies x + y ∈ C⊥ ∩ D⊥ = {0}. Hence the sum is
only taken for x = y [10]. Finally, Equ. 31 is developed as

2−n`|D|
∑

x,y∈D⊥,

x+y∈C⊥

P̂ (x)P̂ (y) = 2−n`|D|
∑
x∈D⊥

(
P̂ (x)

)2
. (32)

In summary, the term E(E(P (Z)|X)2) equals to:

E(E(P (Z)|X)2) =
1

|C|
∑
c∈C

(
1

|D|
∑
d∈D

P (c+ d)

)2

=
1

|C|
1

|D|2 2
−n`|D|

∑
x∈D⊥

P̂ (x)2

= 2−2n`
∑
x∈D⊥

P̂ (x)2. (33)
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