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Abstract  

We present here a quantitative study of dislocation cross-slip, an essential thermally 

activated process in deformation of metals, in discrete dislocation dynamics (DDD) 

simulations. We implemented a stress-dependent line-tension model in DDD 

simulations, with minimal information from molecular dynamics (MD) simulations. 

This model allows reproducing in DDD simulations the probabilistic cross-slip rate 

calculated in MD simulations for Cu in a large range of stresses and temperatures. This 

model opens new horizons in modelling cross-slip related mechanisms such as 

deformation softening, dislocation-precipitate interaction and dislocation patterning in 

realistic strain rates.  

 

Keywords: Cross-slip, Discrete Dislocation Dynamics, Line tension model, Escaig stresses, 

Schmid stresses. 
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Mechanical properties of metals are mostly controlled by the evolution of their 

microstructure, mainly of the dislocation microstructure, a line defects network in the 

lattice structure. One of the main dislocation mechanisms is cross-slip, which is a 

thermally activated mechanisms by which screw dislocations can change their glide 

plane.  For this reason, cross-slip is an essential mechanism in many mechanical 

processes, such as the decrease of the slope in stress-strain response correlated to a 

massive activity of dislocation cross-slip, known as Stage III Dynamic recovery of 

plasticity [1,2].  In addition cross-slip promotes annihilation of screw dislocations and 

internal stress relaxation, which contributes to the evolution of the dislocation density 

and has a vital role in patterning or cell formation  [3–5] and even creep at intermediate 

and high temperatures  [6,7]. Cross-slip modeling in face-centered cubic (FCC) metals 

is of particular interest since dislocations are dissociated and, in most cases, dislocations 

constrict during cross-slip, a process that requires overcoming a free-energy barrier. 

Atomistic simulations are commonly employed to quantify the free-energy activation 

parameters for cross-slip. The a-thermal energy barrier for cross-slip is mainly 

calculated using the nudged elastic band (NEB) technique, which is a minimum energy 

path method to find the energy barrier between two microstates. Rasmussen et al.  [8] 

used NEB simulations to calculate the activation energy for spontaneous annihilation 

of screw dislocations in a dipole structure, showing a good agreement with the Friedel-

Escaig mechanism. Rao et al. [9] used the same technique to obtain the activation 

energy for Cu and Ni.  Recently, Kang et al.  [10] used the modified string method, 

another minimum energy path technique, to calculate the free energy barrier of a single 

screw dislocation in Ni under different stress conditions. In these simulations, the 

dependence of the free-energy barrier on several stress components was calculated.   

In addition to the free-energy barrier, dynamic atomistic simulations are required to 

quantify the cross-slip rates. When high-enough stress is applied, the free-energy barrier 

becomes small enough to reproduce cross-slip in molecular dynamics (MD) 

simulations, which allows investigating cross-slip thermodynamics. Rao et al. and 

Vegge et al. used Molecular Dynamics (MD) simulations  [11–14] to calculate the 

annihilation rate of an unstressed screw dislocation dipole. In these cases, small 

dislocation dipoles were considered, so that the interaction stress is high enough to 

trigger cross-slip. Cross-slip with larger dipoles in Cu were performed by Mordehai et 
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al. with applied external stresses to decrease the activation barrier  [15]. Recently, Oren 

et al.  [16] performed similar dipole annihilation simulations with longer dislocations 

of 200 b (~50 nm) length.  In these simulations, that include several millions of atoms 

in each, a few hundred of simulations were performed in order to find from the 

probabilistic behavior of the results the dependence of the free-energy barrier for cross-

slip on one stress component.  

While atomistic simulations have proven themselves in capturing quantitatively the 

details for cross-slip, they are computationally expensive and even the largest atomistic 

simulations to date  [17], are limited to a small fraction of 1m3, very high strain rates 

and focus on body-center cubic metals, in which the energy barrier for cross-slip is 

negligible. Therefore, it is desirable to employ the discrete dislocation dynamics (DDD) 

simulations which can be educated to reproduce at the mesoscopic scale some important 

properties simulated at the atomic scale and do the link between the atomic- and the 

continuum-level.  

Cross-slip has been described in DDD simulation as a probabilistic mechanism   [18], 

where probability of a screw dislocation segment of length L  to cross-slip within a 

time step t  is 

𝑃 = 𝛼
𝐿

𝐿0
𝑒−

𝐻(𝝈)

𝑘𝑇 𝛿𝑡.    (1)  

𝝈 is the stress tensor, 𝛼 is a scaling rate factor (has units of frequency), 0L  is a reference 

length and kT has its usual meaning. Different DDD codes consider different forms for 

the free-energy barrier 𝐻(𝝈).  Most codes consider only the Schmid stresses (glide 

stresses) on the slip plane 𝜎𝑠ℎ.𝑝 for an immobile dislocation, assuming that the 

activation energy is obtained from mainly from constricting the partial dislocations and 

it decreases linearly with this stress component: 𝐻(𝝈) = 𝑉𝑠ℎ(𝜎𝑠ℎ.𝑝 − 𝜏𝐼𝐼𝐼) where 𝜏𝐼𝐼𝐼 is 

the resolved shear stress at the onset of Stage III of plasticity and 𝑉𝑠ℎ is the 

corresponding activation volume. For a mobile dislocation, Brown equation is used, 

considering only Schmid stresses on the cross-slip plane 𝜎𝑠ℎ.𝑐𝑠 with a similar 

formulation  [18]. The parameters of this model, including the value of 𝛼, were fitted 

to match experimental results of stage III of plasticity, rather than relying on 

information from the atomic scale. However, Hussein et al.  [5] pointed out recently 

that Escaig stresses (non-glide stresses that controls the dissociation width) play a major 
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role. They proposed a linear dependence of the free-energy barrier on both Escaig 

stresses in the primary (𝜎𝑒𝑠𝑐.𝑝) and cross-slip (𝜎𝑒𝑠𝑐.𝑐𝑠) planes: 𝐻(𝝈) = 𝐸𝑎 −

𝑉𝑒𝑠𝑐(𝜎𝑒𝑠𝑐.𝑝 − 𝜎𝑒𝑠𝑐.𝑐𝑠). 𝐸𝑎 is the stress-free activation energy and 𝑉𝑒𝑠𝑐 is the activation 

volume that corresponds to both Escaig stresses. Both 𝐸𝑎 and 𝑉𝑒𝑠𝑐 were argued to be 

extracted from MD simulations. Despite, this expression is inconsistent with NEB 

simulations, that shows different activation volumes for Escaig stresses in the different 

planes  [10]. Also, such a linear expression fails to capture the divergence of the 

activation volume when 𝜎𝑒𝑠𝑐.𝑝 < 𝜎𝑒𝑠𝑐.𝑐𝑠. Finally, the model disregards the contribution 

of Schmid stress. All in all, neither model was shown to reproduce quantitively cross-

slip rates in MD simulations in DDD simulations.  

Recently, we proposed an expression for the stress dependent activation free energy 

barrier  [19,20]. In this model, which is a line-tension model, we employed a harmonic 

approximation (HA) for the interaction energy between the partial dislocations and 

obtained a closed from expression for the activation energy for cross-slip of an 

unjogged dislocation via the Friedel-Escaig mechanism. The expression for the 

activation energy overcomes the drawbacks of previous models; it includes 

contributions of all stress components together, it generates a non-linear dependency as 

in the atomistic simulations, it diverges for  𝜎𝑒𝑠𝑐.𝑝 < 𝜎𝑒𝑠𝑐.𝑐𝑠 for  𝜎𝑠ℎ,𝑐𝑠 = 0 etc. In what 

follows, we show here that when implemented in DDD simulations, with calibration of 

two parameters using MD simulation results, the model yields comparable results with 

MD simulations in a large range of temperatures and stresses.  Such an implementation 

will allow simulating atomistic-based cross-slip behavior in more realistic strain rates, 

which are beyond the range commonly employed in MD simulations.  

The free-energy barrier implemented in the DDD simulation relies on the line tension 

model  [20].  Given that the stress field 𝝈 in the vicinity of a screw dislocation segment 

is known, three resolved stress components can be calculated: both Escaig stresses  

𝜎𝑒𝑠𝑐,𝑝, 𝜎𝑒𝑠𝑐,𝑐𝑠 and Schmid stress in the slip plane 𝜎𝑠ℎ,𝑐𝑠   (see Supplementary Information 

for details). Some DDD simulations include partial dislocations (e.g. [21]), which 

naturally captures these stress components. Still, in the vast majority of DDD 

simulations, dislocations are considered to be non-dissociated. While we detail in the 

Supplementary Information how the stress components are calculated for non-

dissociated dislocations, we recall that dislocations are dissociated in FCC metals and 

the cross-slip model should account for the dissociated structure, even if not specifically 
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described in the DDD simulation. The equilibrium dissociation width on both primary 

and cross-slip planes are affected by Escaig stresses  dσ = d0𝛽(𝜎𝑒𝑠𝑐) where d0 is the 

stress-free dissociation width and 𝛽(𝜎𝑒𝑠𝑐) = (1 +
√3𝑏

6𝛾
𝜎𝑒𝑠𝑐)

−1

 (correspond both the 

primary and cross-slip planes, with the corresponding stress component). b is the 

Burgers vector of the whole dislocation and 𝛾 is the intrinsic stacking fault energy. In 

the Friedel-Escaig mechanism, the dislocation constricts at one point and then 

redissociates in the cross-slip plane. At the peak of the energy barrier, the length of 

dislocation that redissociated into the cross-slip plane 𝑙𝑐 satisfies the equation  

1.55

(𝑐𝑜𝑠ℎ(𝑙𝑐))2  −
3𝛿

𝛽𝑐𝑠
(𝑙𝑐)2 = 2E∗,  

where  E∗ = ln (
dσ,cs

dσ,p
) is the off-set in the interaction energies between the primary and 

cross-slip planes, 𝛿 =
1

6
(

𝑏𝜎𝑠ℎ,𝑐𝑠

𝛾
)

2

. Given than the value of 𝑙𝑐 is found, the activation 

energy is  

𝐻(𝝈) = 𝐸0 {
𝛽𝑝

2
+ (

𝛽𝑐𝑠

2
) [𝑡𝑎𝑛ℎ(𝑙𝑐 ) −  

2αLs

1.55
𝑙𝑐E∗ −

(αLs)3

1.55

𝛿

𝛽𝑐𝑠
𝑙𝑐 3]}         (2)  

where, E0 is the unstressed activation energy for cross-slip, considered here as a fitting 

parameter and αLs = 0.6. 

The energy barrier was applied in the DDD code MicroMegas. A probabilistic Monte-

Carlo cross-slip mechanism, of the form of Eq.(2), was implemented with the energy 

form given in Eq. 0. Additionally, the value of 𝐿0 is taken as 𝑏 since cross-slip can 

commence at any 𝐿/𝑏 sites along the dislocation segment. As a result, 𝛼 becomes the 

attempt rate for cross-slip at one of the sites along the dislocation line.  

The values of 𝐸0 and 𝛼 for Cu were fitted based on Molecular Dynamic (MD) 

simulation results. Oren et al.  [16] published a detailed series of MD simulations from 

which the annihilation rate of unjogged screw dislocations in a dipole structure was 

calculated. The distance between the two primary slip planes of the dislocations in the 

dipole, denoted here as dipole size, is 20b. A series of MD simulations at different 

temperatures 𝑇 and external shear stresses 𝜎𝑒𝑥𝑡 were performed and the reaction rate 

for the annihilation of a screw dipole with cross-slip as a function of temperature and 

stress 𝑘(𝑇, 𝜎𝑒𝑥𝑡) was calculated from the reaction time distribution. While most of the 
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rates were calculated for an effective dislocation length of 200𝑏, the dependence of the 

rate on the dislocation length was also calculated.  

In the present study, similar configurations were investigated with DDD simulations. 

A simulation volume of size of 361 x 722 x 361nm and periodic boundary conditions 

in cubic directions was considered. The simulation box is fully periodic. As illustrated 

in Fig. 1 and similarly to the configuration used in the MD simulations, two screw 

dislocations in a dipole configuration are initially set in the simulation volume, with a 

dipole size of 20b and a dislocation length of 200b. Since the dipole in the MD was 

aligned parallel to the transverse slip plane, e.g. a stable configuration for nearby 

dissociated dislocations, the same initial configuration was used in the DDD 

simulations. It should be noted here that this configuration is in isotropic elasticity 

unstable for constricted dislocations, for this reason the dislocations were forced in 

DDD simulations not to glide in their primary slip plane. 

As in the MD simulations, an external shear stress 𝜎𝑒𝑥𝑡 that yields an Escaig stress in 

the primary and cross-slip planes is applied. However, the dissociated partial 

dislocations simulated with MD simulations are sources of internal stresses that are not 

reflected in the DDD simulations when considering non-dissociated dislocations. As 

discussed in  [22], such contributions coming from the dissociation are significant for 

close dislocations and lead to variations of the Escaig and Schmid stresses of the order 

of a few hundreds of MPa. Based on calculations using isotropic elasticity theory and 

accounting for the dissociation width observed in MD, in dipole size considered here 

the Escaig stress lost when considering non-dissociated dislocations is around 

𝜎𝑒𝑠𝑐,𝑝~430 MPa in the primary slip plane and 𝜎𝑒𝑠𝑐,𝑐𝑠~334 MPa in the cross-slip plane. 

The contribution of the internal Schmid stress was found to be small in  [22] and it is 

neglected here. Therefore, in the DDD calculations, a stress shift of 430 MPa is taken 

into account for the applied shear stress in order to compensate the absent dissociation 

effects, i.e., when a stress of 1.53 GPa is applied in the DDD, it corresponds 

approximately to an external shear stress of 1.1 GPa in the MD calculations. 
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Fig. 1: MicroMegas Simulation Setup of a dislocation dipole with a dipole size of 20b (distance 

between the primary slip planes) and dislocations of length 200b. 

For each set of parameters, the simulations were repeated 𝑁0 = 40 times, in order to 

explore the stochastic cross-slip mechanism. To demonstrate the probabilistic behavior 

of the simulations, we plot in Fig. 2 the fraction of simulations 𝑁/𝑁0 without cross-slip 

until time t, for an external stress of 1.1 GPa and a temperature of 525K for different 

dislocation lengths (simulation box was adapted to the specific dislocation length to 

enable full periodicity of each simulation dipole set). Uncalibrated values of 𝛼 = 8.8 ∙

1013 1/𝑠  and 𝐸0 = 1.55 𝑒𝑉 were considered and the simulations are repeated for 

different dislocation lengths. This probabilistic behavior is very similar to one found in 

the MD simulations. Firstly, the fraction of DDD simulations in which cross-slip did 

not occur is decreasing exponentially with time. Oren et al. proposed that the fraction 

𝑁/𝑁0 is related to the cross-slip rate 𝑘 via first order reaction kinetics 

𝑁/𝑁0 = 𝑒−𝑘𝑡   (3)  

Using this relation, the cross-slip rate was derived from each plot. In the inset of Fig. 2, 

we demonstrate the increase of the cross-slip rate as a function of the length of the 

dislocation. The values of k increase rather linearly with the length, as expected.  

[001] 

[010] 

[100] 
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Fig. 2: The evolution of the fraction of simulations without a cross-slip event at 𝜎𝑒𝑥𝑡 = 1.1𝐺𝑃𝑎 and 

𝑇 = 525𝐾.  The increase of the cross-slip rate as a function of the length of the dislocation is plotted in 

the inset. 

 

In what follows, we fixed the dislocations length to 200b, as in the MD simulations. In 

order to calibrate the DDD simulations, we adjusted both 𝐸0 and 𝑣0 to match with the 

cross-slip rates found in MD simulations. The cross-slip is satisfying an Arrhenius law 

of the form  

𝑘(𝑇, 𝜎𝑒𝑥𝑡) = 𝑣0𝑒−𝐸𝑎𝑐𝑡(𝜎𝑒𝑥𝑡)/𝐾𝐵𝑇  (4)  

where 𝑣0 is an attempt rate, that depends linearly on the dislocation length as shown in 

Fig. 2. For given values of 𝐸0 and 𝛼, the cross-slip rate as function of external stress 

and temperature is calculated. Based on Eq. (4), the slope of the relation ln(𝑘) −

(𝑘𝐵𝑇)−1 corresponds to the activation energy and not to the attempt rate. For this 

reason, 𝐸0 was calibrated using the slope of the plot of ln(k) as a function of (𝑘𝐵𝑇)−1 

and 𝛼 was later adjusted to fit one of the values. The value of E0 was chosen so that the 

slope of the relation ln(𝑘) − (𝑘𝐵𝑇)−1 for an external stress of 1.1 GPa is comparable 

with the MD simulation results (𝐸𝑎𝑐𝑡 = 0.37 𝑒𝑉) and 𝛼 was fitted independently to the 

value of k for a stress of 1.1 GPa and a temperature of 425K (𝑘 = 2.9 ∙ 109 1/𝑠). The 
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calibration process yielded values of 𝛼 = 2 ∙ 1012 1/𝑠  and 𝐸0 = 1.55 𝑒𝑉. We note that 

the value of 𝛼 is an order of magnitude smaller than Debye frequency (~1013 1/𝑠), 

which agrees with processes that involves group of atoms (like dislocation 

nucleation  [23]). 

 

 

Fig. 3: Variation of ln (𝑘) as a function of the external stress and temperature with 𝐸0 = 1.55𝑒𝑉 and 

𝛼 = 2 ∙ 1012 𝑠−1  1/s. 𝑘 is in units of 1/𝑠. The slope of MD simulation results of Oren et al  [16] at 1.1 

GPa was used calibrate 𝐸0, and the value of k in 425K was used to calibrate 𝛼. 

  

Using the fitted value, we performed DDD simulations at various stress levels and 

temperatures. Then we calculated the cross-slip rate (for each stress and temperature, 

the procedure described in Fig. 2 was repeated, with 40 simulations). As can be seen 

from Fig. 3, the value of the cross-slip rate is increasing with temperature and higher 

stresses also increase the rate. More profoundly, this DDD simulations are shown to be 

in an excellent agreement with the MD simulation results at a large range of stresses 

and temperatures. At the highest stress, the cross-slip rate in the DDD was found to be 
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smaller by an order of magnitude. To explain this, the activation energies were 

calculated from the line tension model (Eq. (2)) and were compared with the values 

obtained from the MD simulations. The comparison is shown in Fig. 4. One can see 

that the values are comparable but at the largest external stress the DDD captures a 

higher energy barrier for cross-slip, and at lower stress the DDD underestimates the 

energy barrier (although, within the error bar of the MD simulation results).  

Several modifications can improve the accuracy of the DDD simulations. For instance, 

the material parameters considered in the simulations are temperature-independent, 

while the elastic constants are temperature dependent. In particular, 𝐶44 in Cu differs 

by about 10% in the range of temperatures examined here  [24]. This affects both the 

elastic interaction between the partial dislocations and the internal Escaig stresses. 

While the contribution of the temperature to each material property may be complex, 

its total contribution on the equilibrium dissociation width was also examined in the 

MD simulations or Oren et al.  [16], and it was found that without an external Escaig 

stress the dissociation width increases with temperature by about 10% in a range of 500 

K. Considering a larger dissociation width will require more work to cross-slip, i.e., 

such a correction will bring the activation energy in DDD closer to the MD simulation 

results at the lower stresses. Additionally, at an external Escaig stress of 1.5 GPa, the 

dissociation width decreases with temperature by about 10% in the same temperature 

range, which may lower the activation energy at higher stresses. Thus, considering 

temperature-dependent material properties may bring the DDD results in Fig. 4 closer 

to the MD simulation results. Additionally, the cross-slip model implemented here 

considers a homogenous line tension, while an orientation-dependent line-tension 

expression may even improve the comparison with the energy barrier calculated in 

atomistic simulations  [25] . Nevertheless, given the simplicity of the line tension model 

presented here, one can obtain comparable results between MD and DDD simulations, 

which allow pushing the limits of simulating cross-slip in realistic strain rates. 
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Fig. 4: Oren et al.  [16] results in comparison with the DDD results for the activation energy at different 

external shear stresses. The value at 1.1 GPa is the calibrated one. 

 

In summary, we implemented a stress-dependent line tension model in DDD 

simulations and showed that with minimal information from MD simulations, it can 

capture accurately the probabilistic behavior of cross-slip in a large range of stresses 

and temperatures. This model, which is easy to implement, allows overcoming the 

cumbersome atomistic simulations required to study cross-slip and promote the ability 

to perform simulations in larger systems and smaller strain rates than the one accessible 

by atomistic simulations. While the model is based on the line tension model for 

unjogged dislocations, extensions for jogged dislocations or cross-slip near surface is 

possible. Those will result in different values for 𝐸0 and 𝛼, as it is known that jogs and 

surface reduce the energy barrier for cross-slip. The incorporation of all stress 

components in the cross-slip model will allow examining more realistic cases in which 

cross-slip is essential to study mechanical properties of metals and microstructure 

evolution, such as dislocation-precipitate interaction  [26], dislocation patterning  [27] 

high strain-rate deformation  [28] etc.  
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