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THE ST-BOND POLYTOPE ON SERIES-PARALLEL GRAPHS

Roland Grappe and Mathieu Lacroix*

Abstract. The st-bond polytope of a graph is the convex hull of the incidence vectors of its st-bonds,
where an st-bond is a minimal st-cut. In this paper, we provide a linear description of the st-bond
polytope on series-parallel graphs. We also show that the st-bond polytope is the intersection of the
st-cut dominant and the bond polytope.
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1. Introduction

In combinatorial optimization, st-bonds are well-known objects since they are precisely the st-cuts involved
in the famous max-flow min-cut theorem [11]. However, they are not well described from a polyhedral point
of view. In this paper, we make a contribution in this regard by providing a linear description of the st-bond
polytope on series-parallel graphs. These graphs are precisely those with no K4-minor [8].

In an undirected graph G = (V,E), a cut is the set of edges between a subset of vertices and its complement.
A cut containing only itself and the emptyset as cuts is called a bond. Nonempty bonds are the cuts whose
removal yields exactly two connected components.

Although cuts and bonds are similar, they behave quite differently. From a complexity point of view, opti-
mizing over bonds is harder than optimizing over cuts. The maximum cut problem – which asks for a cut of
maximum weight in an edge-weighted graph – is NP-hard in general [13] but becomes polynomial for graphs
with no K5-minor [15], and hence for planar graphs [16]. In comparison, finding a bond of maximum weight in a
planar graph is already NP-hard but becomes polynomial for the subclass of graphs with no K4-minor. Indeed,
bonds are planar duals of circuits, and finding a circuit of maximum weight is NP-hard for planar graphs [14]
and polynomial for graphs with no K4-minor [5].

The polyhedral aspects of these problems reflect these complexity results. The cut polytope and the bond
polytope of a graph are the convex hulls of the incidence vectors of its cuts and its bonds, respectively. The cut
polytope has been described for graphs with no K5-minor in [3] whereas a description of the bond polytope is
only known for graphs with no K4-minor [5].

Given two distinct vertices s and t, an st-cut and an st-bond are respectively a cut and a bond whose removal
disconnects s and t. It follows that st-bonds are inclusionwise minimal st-cuts. The st-cut polytope and the
st-bond polytope are the convex hull of the incidence vectors of st-cuts and st-bonds, respectively.
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The behaviour of st-cuts and st-bonds is different from a complexity point of view. For instance, consider
the class of planar graphs where s and t belong to a same face, hereafter called st-planar graphs. In these
graphs, finding an st-bond of maximum weight is NP-hard whereas an st-cut of maximum weight can be found
in polynomial time. Indeed, a nonempty bond is an st-bond for some pair of vertices s and t on a same face.
Hence, finding an st-bond of maximum weight is at least as hard as finding a bond of maximum weight in a
planar graph. Computing an st-cut of maximum weight is polynomial-time solvable because adding an edge st
with a sufficiently large weight reduces the problem to a maximum cut problem in a graph with no K5-minor.

From a polyhedral point of view, remark that when the graph contains the edge st, the st-cut (resp. st-bond)
polytope is a face of the cut (resp. bond) polytope. Hence, a polyhedral description for the st-cut (resp. st-bond)
polytope is known for graphs with no K5-minor (resp. K4-minor) but containing the edge st. In this paper, we
extend this polyhedral characterization by describing the st-bond polytope for graphs with no K4-minor for
any pair of vertices s and t.

By definition, the st-bond polytope is contained in the st-cut polytope. Nevertheless, these two polyhedra
have the same dominant. This so-called st-cut dominant has been thoroughly studied in [18].

In general, the intersection of two integer polyhedra is not integer. Even adding a simple constraint to a well-
structured polyhedron may destroy its integrality – see e.g. [6]. Few families of polyhedra are known to remain
integer after intersection. For instance, box-TDI polyhedra keep their integrality after being intersected with
any integer box [17]. The intersection of two polymatroids [9] or of two lexicographical polytopes [4] is integer.
Calvillo characterizes the graphs whose stable set polytope remains integer after being intersected with specific
hyperplanes [6]. For st-planar graphs, the intersection of the cut polytope [3] and the st-cut dominant [18] is
integer: it is nothing but the st-cut polytope. For series-parallel graphs, we prove that the st-bond polytope is
the intersection of the bond polytope and the st-cut dominant.

The contributions of this paper concern st-bonds in series-parallel graphs. We prove that finding an st-bond
of maximum weight in a series-parallel graph can be performed in polynomial time. Moreover, we provide a
polyhedral description of the st-bond polytope for such graphs. The approach is as follows. We describe the
st-bond polytope on the subclass of 2-connected outerplanar graphs. We also provide a sufficient condition for
a series-parallel graph to be outerplanar. We exploit this result to extend this polyhedral description of the
st-bond polytope to series-parallel graphs. A consequence of our result is that intersecting the bond polytope
and the st-cut dominant of a series-parallel graph does not destroy integrality: it precisely gives the st-bond
polytope.

The outline of the paper is as follows. In Section 2, we first give the main definitions and notation used
in this paper. We then show that a simple series-parallel graph with two vertices of degree at most two is
outerplanar. We use it to show that finding an st-bond of maximum weight in series-parallel graphs can be
done in polynomial time. In Section 3, we describe the st-bond polytope for 2-connected outerplanar graphs.
In Section 4, we extend this description to series-parallel graphs. As a consequence, we prove that, for these
graphs, the st-bond polytope is the intersection of the bond polytope and the st-cut dominant.

2. Bonds and ST-bonds in series-parallel graphs

Throughout the paper, G = (V,E) will denote a loopless connected undirected graph and s and t two distinct
vertices of G. Given a vertex v of G, the graph G\ v is obtained from G by removing the vertex v and its incident
edges. Let uv be an edge of G. The graph G/uv is the graph obtained from G by contracting uv, that is, by
identifying u and v into a new vertex which becomes adjacent to all the former neighbors of u and v. We define
G \ uv = (V,E \ {uv}). Let F be a subset of E. A set of vertices is covered by F if each of its vertices is incident
to at least one edge of F . Given a subgraph H of G, the set F |H denotes the set of edges of F which belong to
H. Given two sets A and B, the symmetric difference A∆B is A∆B = (A ∪B) \ (A ∩B).

A subset of edges is called a cycle if it induces a graph in which every vertex has even degree. A circuit is a
cycle inducing a connected graph in which every vertex has degree two. An st-circuit is a circuit covering both
s and t. A uv-path P is a set of edges inducing a connected subgraph in which u and v have degree one and
the other vertices have degree two. The vertices u and v are called end vertices of P whereas the other vertices
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covered by P are called internal vertices. A path is a uv-path for some distinct vertices u and v. Let P be an
uv-path and W a set of vertices covered by P . Running P from u to v induces a (total) order on W which
corresponds to the order in which the vertices of W are traversed by P starting from u. This order is called the
order of W induced by P starting from u.

A subset F of E is a cut if it is the set of edges having exactly one extremity in X, for some X ⊆ V ; it is
denoted by F = δ(X). If s ∈ X and t ∈ V \X, the cut δ(X) is an st-cut and separates s and t. A nonempty
bond is a cut containing no other nonempty cut. Equivalently, a nonempty bond is a cut whose removal gives
exactly two connected components. An st-bond is an st-cut which is a bond. A bridge is an edge whose removal
disconnects the graph. Equivalently, a bridge is a bond composed of a single edge.

A vertex whose removal yields several connected components is a cut vertex. If s and t belong to different
connected components after the removal of a cut vertex v, then v is an st-cut vertex. When no vertex removal
disconnects a connected graph with at least two vertices, the latter is said 2-connected. The 2-connected com-
ponents of a graph are the inclusionwise maximal 2-connected subgraphs of the graph. A 2-connected graph
composed of a single edge is called trivial. Note that the trivial 2-connected components of a graph G = (V,E)
are the graphs induced by the bridges of E.

2.1. Series-parallel and outerplanar graphs

A nontrivial 2-connected graph is series-parallel if it can be built, starting from the circuit of length two, by
repeatedly applying the following operations:

• parallel addition: add a parallel edge to an existing edge,
• subdivision: replace an edge uv by the path {uw,wv} where w is a new vertex.

A graph is series-parallel if all its nontrivial 2-connected components are.
Series-parallel graphs are also known to be those admitting the following kind of decomposition. An open

nested ear decomposition [10] of a graph G = (V,E) is a partition E of E into a sequence E0, . . . , Ek such that
E0, also denoted by CE , is a circuit of G and the ears Ei, for i = 1, . . . , k, are paths with the following properties:

• the end vertices of Ei are both covered by Ej for some j < i,
• no internal vertex of Ei is covered by Ej for all j < i,
• if two ears Ei and Ei′ have both their end vertices in the same member Ej of E , then there exit a path
Pi in Ej between the end vertices of Ei and a path Pi′ in Ej between the end vertices of Ei′ such that Pi
and Pi′ are either disjoint or contained one in another.

A nontrivial 2-connected graph is series-parallel if and only if it admits an open nested ear decomposition [10].
An important subclass of series-parallel graphs are outerplanar graphs. They are the graphs admitting a

planar drawing such that all the vertices lie on the unbounded face of the drawing, called the external face. An
outerplanar graph is always supposed to be drawn in this way and the same terminology is used for the graph
and the drawing. The chords are the edges which do not belong to the external face. In a simple outerplanar
graph, the external face and the chords are uniquely defined. The faces other than the external one are called
inner faces.

Lemma 2.2 provides a sufficient condition for a series-parallel graph to be outerplanar. We first give the
following lemma since it is used in the proof of Lemma 2.2. In both proofs, we implicitly use that deleting a
parallel edge or contracting an edge incident to a vertex of degree two in a graph preserves both 2-connectivity
and series-parallelness.

Lemma 2.1. A nontrivial simple 2-connected series-parallel graph has at least two vertices of degree two.

Proof. Let G = (V,E) be a counter example with a minimum number of vertices, that is, G is a nontrivial
simple 2-connected series-parallel graph with at most one vertex of degree two. By construction of nontrivial
2-connected series-parallel graphs, G, being simple, has exactly one vertex of degree two, say v. Let xv and
vy be its incident edges. Contracting xv preserves the degrees in V \ {v} and maintains 2-connectivity and
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series-parallelness. Hence, by the minimality of G, the graph G′ = G/xv is not simple, and thus xy ∈ E. Thus,
G \ v is a simple 2-connected series-parallel graph with less vertices than G. By the minimality assumption,
G \ v has at least two vertices of degree two. All the vertices except x and y have the same degree in G and
G \ v, so they all are of degree greater than two. Therefore, the degrees of x and y equal two in G \ v and hence
three in G. But then (G \ v)/xy is a counter example – a contradiction to the minimality of G.

Lemma 2.2. A simple series-parallel graph having exactly two vertices of degree at most two is outerplanar.

Proof. Let κG denote the number of vertices of degree at most two of a graph G.
We first prove the assertion for nontrivial 2-connected graphs. Let G = (V,E) be a counter example with

a minimum number of vertices, that is, G is a nontrivial simple 2-connected series-parallel graph with κG = 2
but is not outerplanar. Then, G differs from the circuit of length two. Since G is 2-connected, it has exactly
two vertices of degree two. Let v be a vertex of degree two of G and xv and vy its incident edges. The graph
G′ = G/xv is nontrivial, 2-connected and series-parallel. As κG′ = 1, Lemma 2.1 implies that G′ is not simple,
and hence xy ∈ E. Hence, G′′ = G \ v is a simple 2-connected series-parallel graph. By Lemma 2.1, G′′ has at
least two vertices of degree two. Thus, by construction, at least one among x and y has degree two in G′′. If
G′′ was outerplanar, then it would admit a planar drawing in which all its vertices, and hence also the edge xy,
lie on the external face. But then G would be outerplanar – a contradiction. Hence, G′′ is not outerplanar and,
by the minimality assumption, G′′ has at least three vertices of degree two. Since G has exactly two vertices of
degree two, G′′ has three vertices of degree two including x and y. Then, G′′/xy is a counter example having
fewer vertices than G – a contradiction. Thus, the assertion is proved for nontrivial 2-connected graphs. Note
that the assertion also holds for trivial 2-connected graphs.

We now prove the result for simple series-parallel graphs. Given G1 = (V1, E1) and G2 = (V2, E2), identifying
a vertex v1 ∈ V1 and a vertex v2 ∈ V2 yields a graph G satisfying κG ≥ κG1

+ κG2
− 2. Let G be a simple

series-parallel graph with κG = 2 and G1, . . . , Gk be its 2-connected components. By Lemma 2.1 and since
κG ≥

∑k
i=1 κGi − 2(k − 1), we deduce κGi = 2 for i = 1, . . . , k. Therefore, as proved above, each 2-connected

component of G is outerplanar, hence so is G.

2.2. Bonds and st-bonds

A well-known characterization of cuts is that they are the sets of edges intersecting every circuit an even
number of times. Bonds being cuts, each bond intersects every circuit an even number of times. For series-parallel
graphs, this property can be refined as follows.

Observation 2.3 (Chakrabarti et al. [7]). In a series-parallel graph, a bond and a circuit intersect in zero or
two edges.

If the graph is also 2-connected, this property becomes a characterization of bonds.

Lemma 2.4 (Borne et al. [5]). In a 2-connected series-parallel graph, a set of edges is a bond if and only if it
intersects every circuit in zero or two edges.

LetW be the set of st-cut vertices ofG together with s and t. Then, every st-path ofG coversW . Moreover, the
order of W induced by running any st-path from s to t is the same. This order will be denoted by v1, v2, . . . , v|W |
throughout. Note that s = v1 and t = v|W |. Let k = |W | − 1 and ` be the number of 2-connected components
of G. Let H1 = (V1, E1), . . . ,H` = (V`, E`) be the 2-connected components of G numbered in such a way that,
for i = 1, . . . , k, Hi = (Vi, Ei) contains vi and vi+1. Each bond separating two vertices of W being an st-bond,
we obtain the following observation.

Observation 2.5. The set of st-bonds of G is the union of the sets of vivi+1-bonds of Hi over i = 1, . . . , |W |−1.

By Observation 2.5, in order to solve the maximum st-bond problem, it is enough to solve the problem in each
2-connected component. In series-parallel graphs, this remark, combined with Lemma 2.2, gives the following
complexity result.
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Corollary 2.6. Finding an st-bond of maximum weight in a series-parallel graph can be done in polynomial
time.

Proof. Let G = (V,E) be a series-parallel graph with edge weights w ∈ RE . By Observation 2.5, we may suppose
that G is 2-connected. We may suppose that G is nontrivial as otherwise it contains a unique bond. The following
graph operations may be applied on G without changing the weight of a maximum st-bond. If e and f are two
parallel edges, they can be replaced by a single edge with weight we +wf . If e and f are in series, that is, there
exists a vertex v of degree two incident to e and f , then the edge among e and f with the minimum weight
may be contracted whenever v differs from s and t. By definition of series-parallelness, applying these two types
of operations as long as possible yields a simple 2-connected series-parallel graph G′ in which no vertex is of
degree two except possibly s and t. Hence, by Lemmas 2.1 and 2.2, G′ is outerplanar. From the definition of
outerplanar graphs, the number of st-bonds in G′ is quadratic in the number of its vertices. Thus, finding an
st-bond of maximum weight in G′ can be done in polynomial time by enumeration. Moreover, by construction,
one can retrieve from such an st-bond one of G having the same weight.

3. The ST-bond polytope on 2-connected outerplanar graphs

In this section, we give a linear description of the st-bond polytope in 2-connected outerplanar graphs. Let
G = (V,E) be such a graph. If G is trivial, then it only has s and t as vertices and its only edge is st. The
st-bond polytope of G is then {xst = 1}. We now suppose, for the rest of this section, that G is nontrivial. We
denote by Pst and Qst the two st-paths of the external face Fext, that is, Fext = Pst ∪Qst. We denote by Bst(G)
the convex hull of the incident vectors of the st-bonds of G.

We denote by P (G) the polytope defined by the set of x ∈ RE satisfying the following inequalities:

xe ≥ 0, for all e ∈ E, (3.1)

xe ≤ x(F \ e), for all chords e and faces F containing e, (3.2)

x(P ) ≥ 1, for all st-paths P , (3.3)

x(P ) = 1, for all st-paths P contained in a circuit. (3.4)

We now prove in the next three lemmas that P (G) is a linear description of Bst(G). More precisely, we
show the validity of inequalities (3.1)–(3.4) for Bst(G) in Lemma 3.1. We then show that every integer vector
satisfying these inequalities is the incident vector of an st-bond in Lemma 3.2. Finally, we end the proof by
showing that P (G) is an integer polytope in Lemma 3.4.

Lemma 3.1. Bst(G) ⊆ P (G).

Proof. We show that the incidence vectors of st-bonds satisfy (3.1)–(3.4). A bond being a cut and a face being
a circuit, a bond cannot intersect a face in exactly one edge by Observation 2.3. This ensures the validity of
(3.2). The validity of (3.3) stems from the fact that removing the edges of an st-bond separates s and t. If an
st-path is contained in a circuit, then this circuit is the union of two disjoint st-paths. By (3.3), any st-bond
intersects this circuit at least twice. Thus, by Observation 2.3, inequalities (3.4) are valid.

Lemma 3.2. P (G) ∩ ZE ⊆ Bst(G).

Proof. Let x̄ be a point of P (G) ∩ ZE . We need to show that it is the incident vector of an st-bond.
If the intersection of a circuit C and an inner face F is a chord of G, then, by (3.2), we have that x̄(C) =

x̄(C \ e) + x̄e ≤ x̄(C \ e) + x̄(F \ e) = x̄(C ′) with C ′ = C∆F . By repeating this argument, and since x̄(Fext) = 2
due to (3.4) associated with Pst and Qst, we obtain that

x̄(C) ≤ 2, for each circuit C. (3.5)
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Inequalities (3.2) can be generalized to any circuit and any edge of this circuit as shown in the following
claim.

Claim 3.3. x̄e ≤ x̄(C \ e) for all circuits C and for all edges e ∈ C.

Proof. Let F be an inner face of G and e an edge of F ∩Fext. Without loss of generality, we suppose that e ∈ Pst.
Let P = Pst ∪ F \ e. Then, P contains an st-path and by (3.1), (3.3) and (3.4), we have 0 ≤ x̄(P )− x̄(Pst) =
x̄(F \ Pst)− x̄e ≤ x̄(F \ e)− x̄e. This, together with (3.2), gives

x̄e ≤ x̄(F \ e), for all inner faces F and for all edges e ∈ F . (3.6)

In a planar graph, a circuit is the symmetric difference of inner faces. Suppose that a circuit C is the symmetric
difference of two inner faces F1 and F2. Let f be the edge of F1 ∩ F2 and let e be an edge of F1 \ F2. Adding
inequalities (3.6) associated with e and F1, and with f and F2 gives x̄e ≤ x̄(C \ e). The face F1 and the edge e
have been chosen arbitrarily so the inequality holds for every circuit consisting in the symmetric difference of
two inner faces and for every edge it contains. By induction on the number of inner faces contained in a circuit,
we obtain the desired result.

For any edge e ∈ E, let F be an inner face containing e. Combining inequality (3.5) associated with F and
inequality (3.6) associated with F and e gives x̄e ≤ 1. Thus, by (3.1), x̄ is the incidence vector of a subset of E,
say Ē.

Since x̄ satisfies (3.3), removing the set of edges Ē disconnects s and t. To end the proof, it remains to show
that x̄ is the incident vector of a bond. Since outerplanar graphs are series-parallel, by Lemma 2.4, one just needs
to show that x̄(C) equals 0 or 2 for each circuit C as x̄ is a 0–1 vector. This is immediate by inequalities (3.5)
and Claim 3.3.

Lemma 3.4. P (G) = Bst(G).

Proof. By Lemmas 3.1 and 3.2, it remains to show that P (G) is an integer polytope. Suppose this is not true and
let G be a counter example with a minimal number of edges. By hypothesis, there exists a fractional extreme
point of P (G), say x̄. The minimality assumption implies that G has no parallel edges because two parallel
edges have the same value in x̄ by (3.2). In the following, an st-path P satisfying x̄(P ) = 1 will be called a tight
path.

Claim 3.5. x̄e > 0 for all the edges e of the external face.

Proof. If x̄e = 0 for some e ∈ Fext, then contract e. The resulting graph G/e is still outerplanar. By minimality,
its st-bond polytope is described by (3.1)–(3.4), yet these are precisely the inequalities obtained by setting
xe to zero in P (G), thus x̄ yields a fractional extreme point in P (G/e) – a contradiction to the minimality
assumption.

Claim 3.6. No vertex of V \ {s, t} has degree two.

Proof. Suppose that u ∈ V \ {s, t} is such that δ(u) = {e, f}. Note that e, f ∈ Fext, hence we may assume
e, f ∈ Pst. By Claim 3.5 and equation (3.4) associated with Pst, we have 0 < x̄e < 1 and 0 < x̄f < 1. Let x̃ be
the vector obtained from x̄ by adding ε to x̄e and −ε to x̄f for some positive scalar ε. If ε is small enough, then
x̃ belongs to PG. As x̃ satisfies with equality all the inequalities (3.1)–(3.4) which are tight for x̄, it contradicts
the extremality of x̄.

Since G is a simple nontrivial 2-connected outerplanar graph, Lemma 2.1 and Claim 3.6 imply that s and t
have degree two. Moreover, st /∈ E as otherwise G/st would have only one vertex of degree 2 – a contradiction
to Lemma 2.1. Let p = |E \Fext|. Then, Fext has p chords and G has p+ 1 inner faces. Number the faces in such
a way that F1 is the face containing s and |Fi ∩ Fi+1| = 1 for i = 1, . . . , p. Then, Fp+1 contains t. Moreover,
F1 and Fp+1 are triangles and every inner face has at least one edge on the external face. Denote the chords of
Fext by c1, . . . , cp such that {ci} = Fi ∩ Fi+1, for i = 1, . . . , p – see Figure 1 for an illustration.
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Figure 1. Numbered inner faces and chords.

Now, inequalities (3.2) can be rewritten as:

xcj ≤ x(Fj \ cj), for j = 1 . . . , p, (3.7)

xcj−1
≤ x(Fj \ cj−1), for j = 2, . . . , p+ 1. (3.8)

We have the following property.

Claim 3.7. For each j = 2, . . . , p, at most one inequality among (3.7) and (3.8) associated with j is tight for
x̄.

Proof. By contradiction, suppose there exists j ∈ {2, . . . , p} such that x̄cj = x̄(Fj \ cj) and x̄cj−1
= x̄(Fj \ cj−1).

Then x̄e = 0 for all e ∈ Fj \ {cj−1, cj}. Since Fj contains at least an edge of the external face, this contradicts
Claim 3.5.

Let k be the maximum integer such that inequality (3.7) is satisfied with equality for every j = 1, . . . , k. Set
k = 0 if inequality (3.7) associated with j = 1 is not tight. Similarly, let ` be the minimum number such that
inequality (3.8) is satisfied with equality for every j = `, . . . , p+ 1. By Claim 3.7, we have k < `.

Claim 3.8. For j ∈ {1, . . . , k} ∪ {`− 1, . . . , p}, we have x̄cj > 0 and cj belongs to no tight path.

Proof. Since every inner face intersects the external face, the first part stems from Claim 3.5 and the tightness
of inequalities (3.7) for j = 1, . . . , k and (3.8) for j = `, . . . , p+ 1. We now prove the second part of the assertion.
Suppose it is not true for some j ∈ {1, . . . , k}. Let 1 ≤ j′ ≤ k be the minimum index such that cj′ is in a tight
path P . If j′ = 1, then 1 = x̄(P ) = x̄(P \ c1) + x̄(F1 \ c1) because x̄c1 = x̄(F1 \ c1). Since (P ∪ F1) \ c1 is the
disjoint union of an st-path and an edge of the external face, this contradicts (3.3) by Claim 3.5. Thus, j′ ≥ 2.
But now, 1 = x̄(P ) = x̄(P \ cj′)+ x̄(Fj′ \ cj′) ≥ x̄(P ′) ≥ 1, where P ′ ⊆ P ∪Fj′ \ cj′ is an st-path containing cj′−1.
This implies that cj′−1 is in a tight path – a contradiction to the minimality of j′. The case j ∈ {`− 1, . . . , p}
can be proved similarly.

Let fs be an edge of Fk+1 ∩Fext. Without loss of generality, we assume fs ∈ Pst. Let Xs be the set of vertices
of the component of Pst containing s after the removal of fs. Note that δ(Xs) = {c1, . . . , ck, fs, gs}, where gs is
the edge incident to s which does not belong to Pst. By construction of Xs and by Claim 3.8, every tight path
of G intersects δ(Xs) exactly once.

We define a vertex set Xt with respect to t in a similar way. Then, δ(Xt) = {c`−1, . . . , cp, ft, gt}, where
ft ∈ F`−1 ∩ Fext and gt ∈ δ(t). Moreover, every tight path of G intersects δ(Xt) exactly once. We refer the
reader to Figure 2 for an example of Xs and Xt.

Given an edge set F ⊆ E, we denote by χF its incidence vector. Let z = χδ(Xs) − χδ(Xt). By construction,
z(P ) = 0 for all tight paths. Furthermore, all the inequalities (3.7) except the one associated with j = k + 1
and all the inequalities (3.8) are satisfied with equality by χδ(Xs). Moreover, all the inequalities (3.8) except
the one associated with j = ` − 1 and all the inequalities (3.7) are tight for χδ(Xt). Hence, z satisfies with
equality all the inequalities (3.7) and (3.8) except two: the inequality (3.7) associated with k + 1 and the
inequality (3.8) associated with `− 1. Since none of these two inequalities is tight for x̄, and since x̄e > 0 for all
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Figure 2. Example of Xs and Xt.

e ∈ δ(Xs) ∪ δ(Xt) by Claims 3.5 and 3.8, the two points x̄ ± εz belong to P (G) for some ε > 0 small enough.
As z 6= 0, this contradicts the extremality of x̄.

4. The st-bond polytope on series-parallel graphs

We start this section by describing the st-bond polytope on 2-connected series-parallel graphs, see Section 4.1.
We then extend this description to general series-parallel graphs, see Section 4.2. We conclude by showing that
for these graphs, the st-bond polytope is actually the intersection between the bond polytope and the st-cut
dominant, see Section 4.3. Recall that Bst(G) denotes the convex hull of the incidence vectors of the st-bonds
of G. We define B(G) as the convex hull of the incidence vectors of the bonds of G.

4.1. 2-Connected series-parallel graphs

An ear of an open nested ear decomposition E whose circuit CE is an st-circuit is called an st-ear.

Lemma 4.1. Given a 2-connected series-parallel graph G = (V,E) and distinct vertices s and t, the st-bond
polytope Bst(G) is the set of x ∈ RE satisfying the following inequalities.

xe ≥ 0, for all e ∈ E, (4.1)

x(Q) ≤ x(C \Q), for all st-ears Q and circuits C ⊇ Q, (4.2)

x(P ) ≥ 1, for all st-paths P , (4.3)

x(P ) = 1, for all st-paths P contained in a circuit, (4.4)

xst = 1, whenever st ∈ E. (4.5)

Proof. The result holds if G is trivial because Bst(G) = {xst = 1}. Suppose now that G is nontrivial.
Equation (4.5) can then be removed because if st is an edge of G, then it is an st-path of G contained in
a circuit and the equation is of type (4.4). The result also holds when G is the circuit of length two, say {e, f},
since Bst(G) = {xe = xf = 1}.

Let us prove the result by induction on the number of edges of G. Assume that the bond polytope for every
2-connected series-parallel graph with less edges than G is given by (4.1)–(4.4).

First, suppose that G has two parallel edges g and h. By induction, Bst(G \h) is given by (4.1)–(4.4). Remark
that xg = xh for all x ∈ Bst(G) as every bond contains either none of g and h or both of them. This equation
is given in (4.1)–(4.4) for G by the two inequalities (4.2) associated with the circuit C = {g, h}. Moreover, for
any other inequality ax ≤ b, at most one among ag and ah is nonzero. Finally, the system (4.1)–(4.4) is such
that for every inequality ax ≤ b, there exists another a′x ≤ b where a′ is obtained from a by exchanging ag and
ah. These remarks imply that Bst(G) is described by (4.1)–(4.4).

Assume now that G has no parallel edge. By Lemma 2.1, G has at least two vertices of degree two. Suppose
that there are exactly two such vertices. Then G is outerplanar by Lemma 2.2. In this case, in the open nested
ear decomposition E with CE = Fext, the st-ears are precisely the chords of the graph. Thus, inequalities (4.2)
contain inequalities (3.2). We now prove the validity of (4.2) for Bst(G). Let Q be any st-ear and let E be
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an open nested ear decomposition containing Q such that CE is an st-circuit. For each e ∈ CE , since G is a
2-connected series-parallel graph, there exists a circuit containing both e and Q. By Observation 2.3, a bond
intersecting twice Q does not intersect CE , which implies that it is not an st-bond. Observation 2.3 gives the
validity of (4.2). Therefore, the result follows from Lemma 3.4.

The last case to consider is when G has at least three vertices of degree two. Then, one of them, say v, is
different from s and t. Let f and g be the two edges incident to v and H be the 2-connected series-parallel
graph obtained from G by replacing the path {f, g} by a single edge e. By the induction hypothesis, Bst(H)
is described by (4.1)–(4.4). Let Q be the polytope obtained by replacing xe by xf + xg in Bst(H), and adding
xf ≥ 0 and xg ≥ 0. This operation preserves integrality. Indeed, let z̄ be a vertex of Q. At least one of z̄f
and z̄g equals zero, as otherwise the points z̄ ± ε(χf − χg) both belong to Q for some ε > 0. Without loss of
generality, assume that z̄g = 0. Then, the point x̄ defined by x̄h = z̄h for h 6= e and x̄e = z̄f belongs to Bst(H).
By definition of Q and since xe ≥ 0 is an inequality of Bst(H), x̄ is a vertex of Bst(H). As Bst(H) is an integer
polytope, x̄ is integer and so is z̄. This implies that Q is an integer polytope.

Furthermore, the st-bonds of G are obtained from those of H as follows: keep the st-bonds of H not containing
e, and for every st-bond B of H containing e, take B \ e∪ f and B \ e∪ g. This implies that Q = Bst(G). Given
the form of inequalities (4.1)–(4.4), this proves the result.

4.2. General case

For the rest of the paper, G = (V,E) will denote a series-parallel graph and W the set of st-cut vertices
of G together with s and t. Recall that the vertices of W may be ordered according to the order induced by
running any st-path from s to t. This order is denoted by s = v1, v2, . . . , v|W | = t. Let k = |W | − 1 and ` be the
number of 2-connected components of G. Let H1 = (V1, E1), . . . ,H` = (V`, E`) be the 2-connected components
of G numbered in such a way that, for i = 1, . . . , k, Hi = (Vi, Ei) contains vi and vi+1. Observation 2.5 may
then be translated in terms of polytopes as follows.

Observation 4.2. Bst(G) = conv

(
k⋃
i=1

Bvivi+1(Hi)

)
.

The following observation stems from the definition of the 2-connected components H1, . . . ,Hk.

Observation 4.3. Every st-path of G is the union of vivi+1-paths of Hi over i = 1, . . . , k, and conversely.

We now provide a polyhedral description of the st-bond polytope on general series-parallel graphs, see
Theorem 4.4. The result is a consequence of Lemma 4.1, Observations 4.2 and 4.3, and the theorem of Balas
[1, 2] on the union of polyhedra.

Theorem 4.4. Let G = (V,E) be a series-parallel graph and s and t be distinct vertices of V . The st-bond
polytope Bst(G) is the set of x ∈ RE satisfying the following inequalities.

xe = 0, for all e which belongs to no st-path, (4.6)

xe ≥ 0, for all e ∈ E, (4.7)

x(Q) ≤ x(C \Q),
for all vivi+1-ears Q and circuits C ⊇ Q of Hi,
i = 1, . . . , k,

(4.8)

x(P ) ≥ 1, for all st-paths P of G, (4.9)

x(P ) ≤ 1,
for all st-paths P of G such that P |Hi is contained
in a circuit for all i = 1, . . . , k with Hi nontrivial.

(4.10)

Proof. First, note that every edge of an st-bond belongs to an st-path, which implies the validity of
inequalities (4.6). Moreover, the edges involved in (4.6) are precisely those which belong to Hk+1, . . . ,H`. From
now on, we may suppose that the only 2-connected components of G are H1, . . . ,Hk.
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Remark that in Lemma 4.1, equalities (4.4) and (4.5) can be replaced by inequalities of type ≤ because of
inequalities (4.3). Moreover, (4.5) is taken into account only for trivial 2-connected components as noticed in
the proof of Lemma 4.1. Since the polytopes of the right-hand side of Observation 4.2 live in different spaces,
by the theorem of Balas [1, 2], Bst(G) is the projection into the x-space of the set of x = (x1, . . . , xk) ∈ RE
(where xi ∈ REi for i = 1, . . . , k) and λ ∈ Rk satisfying:

xie ≥ 0, for all i = 1, . . . , k, for all e ∈ Ei, (4.11)

xi(Q)− xi(C \Q),≤ 0
for all i = 1, . . . , k, for all vivi+1-ears Q
and circuits C ⊇ Q of Hi,

(4.12)

− xi(P ) ≤ −λi, for all i = 1, . . . , k, for all vivi+1-paths P of Hi, (4.13)

xi(P ) ≤ λi, for all i = 1, . . . , k, for all vivi+1-paths P of Hi

contained in a circuit,
(4.14)

xivivi+1
≤ λi, for all trivial Hi, (4.15)

0 ≤ λi, for all i = 1, . . . , k, (4.16)

1 =

k∑
i=1

λi. (4.17)

The description of Bst(G) in the natural space is obtained by projecting out λ from (4.11)–(4.17). Since
(4.7)–(4.10) are valid for Bst(G), we prove that the projected inequalities are either contained in or implied by
(4.6)–(4.10), which implies our theorem.

We project out λ applying Fourier-Motzkin’s elimination method [12]. Recall that, to get rid of λi, one has
to combine every inequality where λi’s coefficient is negative with every inequality where it is positive. Due to
the structure of (4.11)–(4.17), it is enough to consider the following combinations.

Inequalities (4.11) and (4.12) have to be kept in the projection and are nothing but (4.7) and (4.8) respec-
tively. The inequalities obtained by combination with (4.17) are of two forms. First, due to Observation 4.3,
combining (4.17) and (4.13) for i = 1, . . . , k yields precisely inequalites (4.9). Second, by Observation 4.3, the
combination of (4.17) with, for every i = 1, . . . , k, an inequality of (4.14) if Hi is nontrivial and (4.15) otherwise,
gives precisely (4.10). Note that, in the previous combination, replacing some inequalities of (4.14) or (4.15) by
(4.16) provides redundant inequalities.

The last possible combinations are those involving inequalities containing only λi, for some i ∈ {1, . . . , k}. It
gives xi ≥ 0, xi(P ) ≥ 0 and xi(P )− xi(P ′) ≤ 0 for all vivi+1-paths P and P ′ of Hi such that P is contained in
a circuit. These are redundant with respect to (4.7) and (4.9)–(4.10).

4.3. Intersection property

The dominant of a polyhedron P of Rn is P+ = {x ∈ Rn : x ≥ y for some y ∈ P}. In this section, we show
that intersecting the bond polytope and the st-cut dominant of a series parallel graph preserves integrality.
Indeed, using Theorem 4.4 and the descriptions of the bond polytope [5] and the st-cut dominant [18], we prove
that this intersection is nothing but the st-bond polytope.

We first state the result of [5] describing the bond polytope of a series-parallel graph, for which we need a
few definitions. Two collections of edge subsets F = {F0, F1, . . . , Fq} and P = {P1, . . . , Pq} form an ear-cycle
collection if F is contained in an open nested ear decomposition E of G, F0 = CE , and Fi∆Pi is a cycle for
i = 1, . . . , q.

Theorem 4.5 (Borne et al. [5]). Let G be a series-parallel graph, G1, . . . , Gp its nontrivial 2-connected
components and B its set of bridges. The bond polytope of G is the set of x ∈ RE satisfying the following
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inequalities.

xe ≥ 0, for all e ∈ E, (4.18)

xe ≤ x(C \ e), for all circuits C, for all e ∈ C, (4.19)
p∑
i=1

(x(Fi)− x(Pi)) + 2x(B) ≤ 2,
for all i = 1, . . . , p,
for all ear-cycle collections Fi,Pi of Gi.

(4.20)

The st-cut dominant Bst(G)+ of G is described as follows, see e.g. [18]:

Bst(G)+ = {x ∈ RE+ : x(P ) ≥ 1 for all st-paths P}.

An st-bond being both an st-cut and a bond, we get the inclusion Bst(G) ⊆ Bst(G)+ ∩B(G). It turns out that
the converse holds for series-parallel graphs, see below.

Corollary 4.6. If G is series-parallel, then Bst(G) = Bst(G)+ ∩B(G).

Proof. To prove Bst(G)+ ∩B(G) ⊆ Bst(G), by Theorem 4.4, we show that (4.6)–(4.10) are valid for Bst(G)+ ∩
B(G). Note that Bst(G)+ is the set of x ∈ RE satisfying (4.7) and (4.9), as mentioned above. Recall that the
2-connected components H1, . . . ,H` of G are numbered in such a way that, for i = 1, . . . , k, Hi contains both
vi and vi+1. Note that G1, . . . , Gp of Theorem 4.5 correspond to the nontrivial 2-connected components among
H1, . . . ,H`.

Let P be any st-path associated with (4.10). By definition of P and Observation 4.3, there exists an st-path
P ′ such that the restriction Ci of P ∪ P ′ to Hi is a vivi+1-circuit, for i = 1, . . . , k with Hi nontrivial. For
i = k + 1, . . . , ` such that Hi is nontrivial, pick a circuit Ci of Hi. Since every circuit is contained in some open
nested ear decomposition, {Ci}, ∅ is an ear-cycle collection of Hi for i = 1, . . . , ` such that Hi is nontrivial. Let
BH denote the edges of the trivial Hi’s. Now, applying (4.9) for P and P ′, the definition of Ci and BH , (4.7),
and finally (4.20), yields

1 + 1 ≤ x(P ) + x(P ′) =

k∑
i=1

nontrivial Hi

x(Ci) + 2x(BH) ≤
p∑
i=1

x(Ci) + 2x(B) ≤ 2. (4.21)

Hence, there is equality everywhere and the validity of (4.10) follows. Moreover, since an edge e which belongs
to no st-path is either in B \BH or in some circuit of a nontrivial Hj with j > k, we also get (4.6).

Finally, we prove the validity of (4.8). Let j ∈ {1, . . . , k}, Q be a vjvj+1-ear of Hj , and C be a circuit of Hj

containing Q. By definition, there exists an open nested ear decomposition E of Hj containing Q such that CE
is a vjvj+1-circuit. By (4.21), we have

p∑
i=1

x(Ci) + 2x(B) = 2 (4.22)

for Cj = CE and Ci, i 6= j, is a circuit defined as in (4.21).
Note that {CE , Q}, {C \ Q} is an ear-cycle collection of Hj . Inequality (4.20) associated with Fj ,

Pj = {CE , Q}, {C \Q} and Fi,Pi = {Ci}, ∅ for i 6= j is

p∑
i=1

x(Ci) + x(Q)− x(C \Q) + 2x(B) ≤ 2. (4.23)

Subtracting equation (4.22) to inequality (4.23) gives (4.8).
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The problem of finding an st-bond arises in the context of partitioning a smart grid into areas having autonomy
requirements. One of these requirements is to ensure the connectivity of each area for local energy transportation. Hence,
partitioning a smart grid into two such areas reduces to finding an st-bond with additional properties.
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