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Abstract Few studies have evaluated land surface models for African ecosystems. Here we evaluate
the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) process-based model for the
interannual variability (IAV) of the fraction of absorbed active radiation, the gross primary productivity (GPP),
soil moisture, and evapotranspiration (ET). Two ORCHIDEE versions are tested, which differ by their soil
hydrology parameterization, one with a two-layer simple bucket and the other a more complex 11-layer
soil-water diffusion. In addition, we evaluate the sensitivity of climate forcing data, atmospheric CO2, and soil
depth. Beside a very generic vegetation parameterization, ORCHIDEE simulates rather well the IAV of GPP and
ET (0.5< r< 0.9 interannual correlation) over Africa except in forestlands. The ORCHIDEE 11-layer version
outperforms the two-layer version for simulating IAV of soil moisture, whereas both versions have similar
performance of GPP and ET. Effects of CO2 trends, and of variable soil depth on the IAV of GPP, ET, and soil moisture
are small, although these drivers influence the trends of these variables. The meteorological forcing data appear
to be quite important for faithfully reproducing the IAV of simulated variables, suggesting that in regions with
sparse weather station data, the model uncertainty is strongly related to uncertain meteorological forcing.
Simulated variables are positively and strongly correlated with precipitation but negatively and weakly correlated
with temperature and solar radiation. Model-derived and observation-based sensitivities are in agreement for
the driving role of precipitation. However, the modeled GPP is too sensitive to precipitation, suggesting that
processes such as increased water use efficiency during drought need to be incorporated in ORCHIDEE.

1. Introduction

Africa has experienced overall high climate variability over the course of the twentieth century and particularly
in the last three to five decades [Ackerley et al., 2011; Biasutti, 2013; Funk et al., 2008; Hession and Moore, 2011;
Hoerling et al., 2006; Lebel and Ali, 2009; Mohamed, 2011; New et al., 2006; Rosell and Holmer, 2007; Williams
and Funk, 2011]. This high climate variability, particularly at an interannual scale, makes the continent
vulnerable by affecting terrestrial ecosystem productivity, particularly though carbon and water cycling
between vegetation, soils, and atmosphere. Yet in spite of regional vulnerabilities to climate variability and
uncertainties in future responses to regional climate change [Solomon, 2007], the recent variability of African
productivity and water fluxes in response to climate, rising atmospheric dioxide carbon (CO2), and increased
human pressure, remains poorly studied. The largest uncertainties in African productivity stem from the
response to increasing CO2 as well as climate extremes [Fisher et al., 2013]. To reduce uncertainties on projected
future changes of productivity and their linkage with water availability, it is important for ecosystem models to
faithfully reproduce, the present-day dynamics, including interannual variability (IAV), of gross primary
productivity (GPP) and water fluxes, both for natural and managed ecosystems.

This study aims to assess the IAV of (1) Africa’s vegetation cover (through the fraction of absorbed
photosynthetically active radiation (fAPAR)), (2) productivity (GPP), (3) water fluxes (through evapotranspiration
(ET)), and (4) soil moisture over the last three decades simulated by different versions of the ORCHIDEE
(Organizing Carbon and Hydrology in Dynamic Ecosystems) process-based land surface model. The model

TRAORE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1554

PUBLICATIONS
Journal of Geophysical Research: Biogeosciences

RESEARCH ARTICLE
10.1002/2014JG002638

Special Section:
Experiment-Model Integration
in Terrestrial Ecosystem Study:
Current Practices and Future
Challenges

Key Points:
• High sensitivity of grassland fluxes to
climate compared to closed forests

• CO2 and variable soil depth are small
effect on the IAV of GPP and ET

• Relationship between carbon flux
IAV and T2m temperature is weak
and negative

Supporting Information:
• Figure S1
• Figure S2
• Figure S3
• Figure S4
• Figure S5

Correspondence to:
A. K. Traore,
traore@lsce.ipsl.fr

Citation:
Traore, A. K., P. Ciais, N. Vuichard,
B. Poulter, N. Viovy, M. Guimberteau,
M. Jung, R. Myneni, and J. B. Fisher
(2014), Evaluation of the ORCHIDEE
ecosystem model over Africa against
25 years of satellite-based water and
carbon measurements, J. Geophys. Res.
Biogeosci., 119, 1554–1575, doi:10.1002/
2014JG002638.

Received 4 FEB 2014
Accepted 13 JUL 2014
Accepted article online 17 JUL 2014
Published online 14 AUG 2014

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8961
http://dx.doi.org/10.1002/2014JG002638
http://dx.doi.org/10.1002/2014JG002638
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8961/specialsection/EMITES1
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8961/specialsection/EMITES1
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8961/specialsection/EMITES1
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8961/specialsection/EMITES1


evaluation is performed using satellite data, which are valuable in a context of scarce in situ data in Africa [Ciais
et al., 2011]. Satellite products were used to estimate phenology and carbon fluxes over Africa in several
previous studies [Jung et al., 2009; Owe et al., 2008;Weber et al., 2008; Yuan et al., 2011]. The level of confidence
in the ecosystem models for Africa remains low as they are generally not calibrated against regional
measurements and may poorly represent specific processes, such as phenology and soil hydrology, as well as
water efficiency. Moreover, a source of uncertainty in land surface model output also comes from uncertain
climate input data [Poulter et al., 2011], in particular, over Africa where there has been attrition ofmeteorological
networks. To estimate the bias in model output caused by the choice of a climate forcing data set, we
have run ORCHIDEE with two different gridded climate forcing data Watch Forcing Data - EraInterim
(WFDEI) and Watch Forcing Data (WFD) [Weedon et al., 2010, 2011] from the same WATer and global
CHange project (WATCH) project.

In this study, we combine measurements and model simulations to address the following questions:

1. Is the performance of the 11-layer soil hydrology ORCHIDEE version superior to the simpler two-layer
scheme, for simulating the average spatial distribution of fAPAR, GPP, ET, and soil moisture within
African regions when compared with the evaluation data sets?

2. What are the ecoclimatic regions of Africa that have the largest IAV, and do the model simulations
capture them?

3. Is the performance of the 11-layer soil hydrology superior for simulating IAV of fAPAR, GPP, ET, and soil
moisture, as well as the average difference of these variables between wet and dry years, over different
African regions?

4. What is the effect of the choice of a meteorological forcing data on the model-data misfit for the IAV of
fAPAR, GPP, ET, and soil moisture?

5. What are the climatic drivers (temperature, precipitation, and radiation) of the IAV of fAPAR, GPP, ET, and
soil moisture, and the sensitivity of fluxes to these drivers?

6. Did rising CO2 over the past three decades influence the IAV of modeled fAPAR, GPP, ET, and soil moisture?
Did soil depth (uniformly fixed or variable within vegetation) influence the IAV of these variables?

In the following sections, we first present a description of the different versions and configurations of the
ORCHIDEE model (section 2) and describe the climate forcing data as well the simulations used in this study
(section 3) and the satellite data sets used for evaluation in section 4. In section 5.1, we show the capability of
ORCHIDEE to simulate the spatial pattern of average fAPAR, GPP, ET, and soil moisture and analyze their IAV in
section 5.2. The contrast between composite wet and dry years (absolute difference between the average of all
wet years and the average of all dry years since 1979) is further examined in section 5.3. Finally, in section 5.4,
we investigate the relationship between fAPAR, GPP, ET, soil moisture, and climate drivers, before drawing
conclusions in section 6.

2. ORCHIDEE Model Parameterizations

ORCHIDEE is a land surface model that simulates carbon, water, and energy exchanges within ecosystems
and between the land and the atmosphere [Krinner et al., 2005]. The land vegetation is discretized using 12
plant functional types (PFTs) and bare soil. The definition of a PFT is deduced from a tree classification that
accounts for physiognomy (tree or grass), leaf types (needleleaf or broadleaf), phenology (evergreen,
summer-green, or rain-green), the photosynthetic pathway for crops and grasses (C3 and C4), and the
climatic regions (boreal, temperate, and tropical). The exchanges of energy (transfer of radiation and heat)
and water balance between the vegetation-soil-atmosphere are calculated using Ducoudré et al. [1993] and
De Rosnay and Polcher [1998] at a half-hourly time step. We only describe below the parameterizations of
ORCHIDEE for phenology, carbon assimilation, ET, and soil moisture, which are most relevant for this study.

2.1. Carbon Processes and GPP

In ORCHIDEE, GPP represents CO2 assimilation by photosynthesis and is calculated every 30min from the
Farquhar et al. [1980] and Collatz et al. [1992] leaf-scale equations for C3 and C4 PFTs, respectively. The scaling
of GPP within the canopy assumes an exponential attenuation of light, in a big-leaf approximation. Other
carbon flux components such as net primary productivity, plant growth and maintenance respiration,
mortality, litter, and soil organic decomposition are calculated on a daily time step following GPP. State
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variables such as the leaf area index (LAI) and plant water stress from soil moisture in the root zone are
prognostic and feedback on GPP, allocation, leaf age, and senescence [Krinner et al., 2005].

The description of phenology is taken from Krinner et al. [2005]. The leaf onset parameterization is based on
Botta et al. [2000] with an applied criterion depending on the PFT under consideration. Over Africa, the growing
season of the tropical broad-leaved rain-green trees PFT starts after a dry season and when a minimum
threshold of simulated soil moisture is reached. In regions where annual mean temperature is higher than 20°C,
the model has to decide regularly whether the grass leaf onset has to occur considering heat and/or moisture
stress criteria according to meteorological conditions. In regions where annual temperature is between 10 and
20°C, the grass will use its carbohydrate reserve (accumulated during the previous season) to grow a minimum
quantity of leaves and roots corresponding to its growing season. If the carbohydrate reserve is empty, leaf
onset cannot occur, and the PFT will be removed from the grid cell. The senescence criteria are depending on
temperature, water stress, and the leaf age [Krinner et al., 2005]. The plant dormancy occurs when the LAI falls
below 0.2 during senescence (all the remaining leaves been shed) and a new phenological cycle can restart.
Several phenological cycles can theoretically occur in 1 year for a suitable climate, e.g., with two wet seasons. In
this version of ORCHIDEE, phenology of agricultural C3/C4 is treated as grass C3/C4 with adapted maximum
possible LAI and slightly modified critical temperature and humidity parameters for phenology.

Water exchange through transpiration is related to photosynthesis by stomatal conductance, following the
formulation of Ball et al. [1987]. The long-term processes describing vegetation dynamics, fire, and tree
mortality can be either calculated (yearly time step) or prescribed in the ORCHIDEE model. In this study,
vegetation dynamic was not activated but fires are accounted for. In order to account for human pressure
driving the expansion of agriculture over Africa, we prescribed each year a new map of PFT distributions
obtained from global land cover maps (section 3).

2.2. ET

ET is computed from potential evaporation, which depends on the humidity gradient between air and air at
saturation for soil temperature [Budyko, 1961]. Potential evaporation is limited by the sum of the
aerodynamic resistance, stomatal resistance, and architectural resistance. Total ET is the sum of five
components including evaporation of water intercepted by the cover, transpiration of vegetation, and bare
soil evaporation. To simplify the transpiration parameterization, as well as for photosynthesis and light
competition, the ORCHIDEE model does not account for fluxes from and competition with understory
vegetation [Krinner et al., 2005]. Bare soil evaporation and transpiration are controlled by soil moisture and
thus depend on soil hydrology parameterization in ORCHIDEE. In addition, transpiration of the cover is
governed by the ability of the roots to extract water from the soil. Roots are represented in the model by an
exponential root profile [De Rosnay and Polcher, 1998]. Simulated water stress from soil moisture availability
influences photosynthesis and stomatal conductance through a scaling factor related to soil moisture when
root zone soil moisture falls below a threshold value [McMurtrie et al., 1990]. The chosen threshold is a root
extractible water (in the root zone) of 0.4, identical for all PFTs.

2.3. Soil Hydrology Processes and Soil Moisture

In this study we compare two versions of ORCHIDEE, which differs by their soil hydrology parameterizations:
one version with a two-layer bucket scheme [Ducoudré et al., 1993] and one with an 11-layer soil diffusion
model [D’Orgeval, 2006; De Rosnay et al., 2002; Campoy et al., Influence of soil bottom hydrological conditions
on land surface fluxes and climate in a general circulation model, submitted to Journal of Geophysical
Research: Atmospheres, 2013].

The two-layer hydrology scheme is based on a simple two-layer bucket-type mode. The soil upper layer varies
according to the water availability, and the deep soil layer is filled from top to bottom with the rain. When ET is
larger than precipitation, water is removed from the upper layer until it dries out, leaving only one deep soil layer.
Bare soil evaporation is computed through a resistance, proportional to the relative dryness of the upper soil layer.
Runoff occurs when the soil is saturated; canopy transpiration stops when the simulated soil is completely dry.

The 11-layer soil scheme represents the vertical soil flow based on physical processes of nonsaturated
condition from the one-dimensional Fokker-Planck equation by combining the mass and momentum
conservation equations using volumetric water content [De Rosnay et al., 2002; Campoy et al., submitted
manuscript, 2013]. This soil model has a multilayer discretization and equations based on the Center for
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Water Resources Research model [Bruen, 1997; Dooge et al., 1993]. The vertical discretization is not uniform:
the grid being finer near the surface (the three topmost layers being 1 cm apart) where the soil moisture
mostly varies, in order to ensure that rapid exchanges of soil moisture near the surface can be represented
[De Rosnay et al., 2002]. De Rosnay et al. [2000] showed that the 11-layer scheme was a suitable compromise
between a detailed vertical resolution and numerical stability of calculated fluxes. Soil texture heterogeneity
between grid cells is taken into account by employing three different soil types (coarse, medium, and fine
textured). The calculation of water vertical diffusion in the soil column is based on the Mualem-Van
Genuchten model [Mualem, 1976; Van Genuchten, 1980], using parameters estimated by Carsel and Parrish
[1988] for the corresponding soil texture classes of the United States Department of Agriculture. The soil
depth of the 11-layer module is fixed at a value of 2m everywhere. The bottom boundary condition is set to
be a free drainage and the upper boundary condition driven by the soil moisture at the surface and also the
meteorological variables. Bare soil evaporation is the maximum upward hydrological flux permitted by
diffusion if this flux is inferior to the potential evaporation. Surface runoff is governed by the precipitation
rate and the capacity of the soil to infiltrate [D’Orgeval et al., 2008].

3. Model Input Data and Simulation Setup
3.1. Climate Forcing Data Sets

Two different daily climate forcing data sets, WFD and WFDEI [Weedon et al., 2010, 2011], were used in this
study to drive ORCHIDEE. WFD is the WATCH Forcing Data twentieth century based on ERA40 (1958–2001)
extended back to 1901 following the methodology of Weedon et al. [2010]. Since WFD stops in 2001, we
extended this forcing by using the ERA-Interim data during 2001–2009. The alternative climate forcing is
WFDEI, which was produced using the WFD methodology but applied to ERA-Interim reanalysis [Dee et al.,
2011] with a bias correction of precipitation using (Global Precipitation Climatology Centre) GPCCv5 rain
gauge measurements [Schneider et al., 2014]. The WFDEI forcing covers the period 1979–2009. Eight
meteorological variables at daily time scale and at 0.5° spatial resolution are used to drive ORCHIDEE: rainfall
(mm d�1), solar and infrared incoming radiation (Wm�2), minimum and maximum near-surface air
temperature (K), wind speed (m s�1), surface air pressure (hPa), and specific humidity (kg kg�1). These daily
fields are extrapolated into half-hourly variables needed for the ORCHIDEE model. Hourly temperature was
calculated over the course of the day using a sinusoidal function, rainfall was split into rain and snow (for
temperature< 0°C) on each model time step. The WFDEI forcing, obtained from the more recent ERA-Interim
reanalysis product compared to ERA-40 for WFD, and further corrected using precipitation measurements
should be more realistic than WFD and hence give better performances.

3.2. Soil Depth and Vegetation Distribution

The natural vegetation distribution is derived from the International Geosphere Biosphere Programme map
based on the Olson classification [De Rosnay and Polcher, 1998]. The transient historical crop and pasture data
sets are based on the Intergovernmental Panel on Climate Change/Fifth Assessment Report (IPCC AR5)
Representative Concentration Pathways simulations protocol. The historical fractions of crop and pasture are
based on the History Database of the Global Environment (HYDE 3.0) database [Klein Goldewijk et al., 2011].

The variable soil depth map within vegetation profile is prescribed to the ORCHIDEE two-layer simulations
only from the Harmonized World Soil Database developed by the Land Use Change and Agriculture Program
of International Institute for Applied Systems Analysis (IIASA) and the Food and Agriculture Organization
(FAO) for Global Agro-ecological Assessment study (GAEZ 2008). Except over the Sahara desert and some
parts of northern Africa, more than 75% of grid cells have soil depth between 1.5 and 2m (the other grid cells
have less than 1.5m of soil depth). Note that the 11-layer version is always run with a fixed soil depth of 2 m.

3.3. Simulation Setup

We first perform a steady state spin-up run of ORCHIDEE using the Lardy et al. [2011] method integrated into
ORCHIDEE to accelerate the convergence of the soil carbon pools. Spin-up of 300 years was required to reach
equilibrium in carbon pools over Africa. The spin-up run recycles climate forcing data of the 1979–1988 period at
0.5° spatial resolution with atmospheric CO2 concentration fixed at the 1979 value (336.5ppm). We then carried
out a set of transient simulations from 1979 to 2009 starting from the end of the spin-up state. The changes of
GPP andwater fluxes in response to climate and CO2 are investigated using five factorial simulations summarized
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in Table 1. Simulation S1 uses the 11-layer soil schemewith a fixed 2m soil depth andWFDEI climatewith variable
atmospheric CO2 and land use change. This run is expected to be the most realistic one. Simulation S2 uses
the simpler two-layer soil scheme and is otherwise identical to S1. In order to analyze the effect of variable soil
depth, we carried out S2-VARDEP (variable soil depth simulation), a sensitivity simulation with the two-layer
scheme and a spatially variable soil depth instead of uniformly fixed at 2m. The effects of increasing CO2 are
analyzed with the S2-FIXCO2 (simulation with fixed atmospheric CO2) simulation, identical to S2 except for fixed
atmospheric CO2 concentration at the 1979 level (336.5ppm). The sensitivity of the ORCHIDEE results to the input
climate forcing data is investigated by comparing S2-WFD driven by WFD and S2 driven by WFDEI.

3.4. Regional Partitioning of African Ecosystems

Analyses are portioned over six subregions (see Figure S1 in the supporting information for their location), defined
from the distribution of African ecoclimatic-system types byWeber et al. [2008]. The northern savannah region of
Weber et al. [2008] is further split into two subregions: the Sahel region (1227 grid points) representing the
transition zone between the desert and the humid Guinea band zone (from 17°W to 40°E and from 12°N to 18°N)
and the Sudan-Guinea region (1612 grid points): extending from 15°W to 35°E and from 5°N to 12°N. The other
four regions are the central African forests (1008 grid points), the Horn of Africa (382 grid points), the southern
woodland rain-green (1574 grid points) and the southern African grasslands (925 grid points). The characteristics
of the seasonal cycle of themainmeteorological fields for each ecoclimatic region are shown in Figure S1 in the
supporting information and the dominant PFTs and climate data of the six subregions in Table 2. It can be seen
that none of the region has a land cover for agriculture higher than 5%, the largest agricultural fraction being
found in the Sahel region.

4. Data Sets for Model Evaluation
4.1. fAPAR

The latest version of the Global Inventory Modeling andMapping System (fAPAR3g) product is used to evaluate
the modeled fAPAR. This data set is available from July 1981 to December 2010. The fAPAR3g is based on the
normalized difference vegetation index (NDVI)3g data [Zhu et al., 2013], which is derived from the advanced
very high resolution radiometers aboard a series of satellites of National Oceanic and Atmospheric
Administration. The data set resolution is 8 km and 15 days time step. The 8 km original fAPAR3g data were
reaggregated at the ORCHIDEE resolution of 0.5° using bilinear interpolation. ORCHIDEE calculates LAI each day
for each PFT, and fAPAR is calculated from LAI by using the equation fAPAR=0.95 (1�exp(�0.5 × LAI)) from
Ruimy et al. [1999]. Thus, the interannual variability of modeled fAPAR has the same phase than that of LAI.

4.2. GPP and ET

We use the gridded GPP and ET data-driven model results from Jung et al. [2011]. The data-driven model is an
integration of site-level flux tower measurements of GPP and ET fluxes to the global scale using a model tree

Table 1. Overview of the ORCHIDEE Simulations Analyzed in This Study

Experiment Model Version Transient CO2 Climate Forcing Soil Depth

S1 11-layer Yes WFDEI 2m (uniform)
S2 two-layer Yes WFDEI 2m (uniform)
S2-FIXCO2 two-layer 336.525 ppm WFDEI 2m (uniform)
S2-VARDEP two-layer Yes WFDEI Variable (FAO)
S2-WFD two-layer Yes WFD 2m (uniform)

Table 2. Proportion (%) of the Three Dominant Plant Functional Types (PFTs) Within Each African Eco-climatic Sub-region Considered in This Study

Sahel Sudan-Guinea Horn of Africa
Central African

Forest
Southern Woodland

Rain-Green
Southern African

Grasslands

First main PFT 40% of C4 grass 42% C4 grass 38% C3 grass 42% Tropical broad-
leaved evergreen

26% C3 grass 33% C3 grass

Second main PFT 15% Tropical broad-
leaved rain-green

26% Tropical broad-
leaved rain-green

11% C4 grass 27% Tropical broad-
leaved rain-green

19% C4 grass 26% C4 grass

Third main PFT 5% C3 agriculture 8% C3 grass 7% Temperate broad-
leaved evergreen

21% C4 grass 9% Temperate broad-
leaved evergreen

10% Temperate broad-
leaved evergreen
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ensembles (MTE) statistical model. The MTE approach is based on a combination of the Tree Induction
Algorithm and the Evolving Trees with Random Growth technique described in Jung et al. [2009]. Jung et al.
[2011] used the trained MTE at site level to generate global GPP (MTE-GPP) and ET fluxes (MTE-ET). The
estimation of MTE-GPP and MTE-ET from extrapolation of local carbon, water, and energy fluxes eddy
covariance measurements (FLUXNET) measurements is based on 29 explanatory variables, including land use,
precipitation and temperature (both measured in situ), and remote sensing indices of monthly fAPAR from
GIMMS during the 1982–1997 period, Sea-viewing Wide Field-of-view Sensor during 1998–2005, and Medium-
Resolution Imaging Spectrometer since 2006 [Jung et al., 2011]. MTE-GPP and MTE-ET are provided at a 0.5°
spatial and monthly resolution from 1982 to 2010. Cross validation of MTE-GPP and MTE-ET at site level
suggested a 10% random error [Jung et al., 2010, 2011]. Note that the performance of MTE based on cross
validation was found better for energy fluxes than for GPP [Jung et al., 2011]. Even though theMTE products are
model results and not direct observations, they are assumed to bemore realistic than theORCHIDEE results, and
hence usable for its evaluation. MTE-GPP andMTE-ETare used in this study to assess the IAV of GPP and ET. Note
that virtually no flux tower measurements over the African continent were available to train the MTE, which
implies a lower confidence on this product over Africa. Further, MTE-GPP and MTE-ETare not independent from
the GIMMS NDVI and fAPAR, since these fields are used to integrate flux tower measurements in space and back
in time beyond the flux tower era (most of flux tower sites started only in the 2000s).

4.3. Surface Soil Moisture

The SM-MW product was developed through the European Space Agency Climate Change Initiative by
Vienna University of Technology and Vrije Universiteit Amsterdam [Liu et al., 2012; Wagner et al., 2012]. The
theoretical and algorithmic bases of the Soil Moisture from MicroWave (SM-MW) product are described in
Owe et al. [2008]. The SM-MW is available at a resolution of 25 km daily, from 1978 to 2010. The data were
reaggregated at 0.5° to match the ORCHIDEE spatial resolution used in this study. SM-MW corresponds to
water present in the top 1 to 1.5 cm of the soil [Owe et al., 2008]. Retrieval of SM-MW is impossible over dense
vegetation canopies, and data from central African forests are thus excluded. In ORCHIDEE, soil moisture
simulated by the 11-layer soil scheme version is sampled over the first centimeter of soil. Soil moisture
simulated by the two-layer scheme version represents the entire soil depth content (sum of moisture in the
superficial layer and in the deep layer) and was compared directly with SM-MW; see also Rebel et al. [2012] for
evaluation of ORCHIDEE two-layer version, against soil moisture data.

5. Model Evaluation

To harmonize the observation periods (1978–2010 for SM-MW and 1982–2010 for fAPAR3g and MTE
products) with the simulations period (1979–2009), we evaluate the ORCHIDEE results over the period
1985–2009. Starting evaluation from 1985 is motivated by the need to lower the influence of the spin-up
period (1979–1988, which corresponds to a dry decade especially over West Africa [Biasutti and Giannini,
2006]) on ORCHIDEE results.

5.1. Spatial Patterns

The spatial patterns of 1985–2009 average fAPAR, GPP, ET, and soil moisture (Figures 1a to 1d) from the five
simulations are compared with different data products over the six African subregions using Taylor diagrams
[Taylor, 2001]. The comparison between model and observation is quantified by their correlation (here spatial
correlation), root-mean-square difference, and magnitude of their variations (here spatial gradients)
represented by the ratios of modeled to observed standard deviation across the grid cells of each subregion.
5.1.1. fAPAR
Simulated fAPAR spatial patterns compare to the fAPAR3g observations well (Figure 1a) with positive spatial
correlations r> 0.8 (at 95% confidence interval) for all simulations at the continental scale. Over subregions,
highest r values are systematically found for the southern African grasslands region. In spite of a more
realistic representation of soil hydrology, the 11-layer version results have a poorer spatial correlation with
the fAPAR3g observations (r≈ 0.56, at 90% confidence interval). In fact, fAPAR from the two-layer simulations
show better spatial correlations than with the 11-layer version over the Sahel, Sudan-Guinean, and the Horn
of Africa regions (0.78< r< 0.9 at 95% confidence interval for the two-layer, compared with 0.5< r< 0.7 at
90% confidence interval for the 11-layer version).
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The choice of WFD climate forcing and the setting of variable soil depth have only a weak effect on themodel
performances for the fAPAR spatial patterns. In contrast with the rather high spatial correlations between
modeled and observed fAPAR, all simulations give poorer performance for fAPAR spatial standard deviations
(SD). This means that, despite capturing the patterns of fAPAR within each subregion, the model does not
represent the magnitude of the observed spatial fAPAR gradients well. Over the southern African grasslands
region, the modeled-to-observed ratio of the fAPAR SD is 2.3 in the two-layer version, and 1.2 in the 11-layer
one. The two-layer version shows more realistic SD over the Sudan-Guinean band, southern woodland
rain-green, and the Horn of Africa regions (SD≈ 1.3 times of fAPAR3g SD). Note also the smaller than observed
fAPAR spatial standard deviation of the 11-layer version over the Sahel and the Horn of Africa regions
(SD< 0.6 of fAPAR3g SD) while SD is high over the southern woodland rain-green (2.3 times of that
fAPAR3g SD).

Figure 1. Taylor diagram: statistical comparison of the spatial pattern between simulations and data products (variables are averaged over the 1985–2009 period) over
the six African subregions. Data products are represented by the star symbol. The axes represent the standard deviation of each variable normalized by the one of
the data product. Contours represent the RMS error normalized by the data product. (a) The comparison between modeled fAPAR and fAPAR3g, (b) the modeled GPP
versus MTE-GPP product, (c) the comparison between modeled ET and MTE-ET product, and (d) the modeled soil moisture versus SM-MW satellite product.
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5.1.2. Gross Primary Productivity
Evaluation of spatial patterns of simulated 1985–2009 average GPP with MTE-GPP product (Figure 1b) gives
similar results than for fAPAR. The two-layer version performance for the GPP spatial correlations is better
than the 11-layer version, especially over the Sahel and the southern African grasslands (r≈ 0.75 at 95%
confidence interval spatial correlation between two-layer GPP and MTE-GPP compared to r< 0.5 in the
11-layer version). In contrast, all simulations show low spatial correlations of modeled GPP with MTE-GPP
over the central African forest and the southern woodland rain-green regions (0.1< r< 0.5). This suggests
that either the MTE-GPP gradients, calculated from satellite fAPAR and climate predictors, are not very
reliable due, for example, to the presence of clouds over forests or that climate is not the main driver of
GPP gradients in those two regions. The spatial standard deviations of ORCHIDEE GPP are systematically too
high in comparison with MTE-GPP (Figure 1b). However, the 11-layer version has a very low SD over the
Sahel and the Horn of African regions (SD< 0.6 times of that MTE-GPP SD). Like for fAPAR, the choice of
WFD climate forcing compared to WFDEI has a very small effect on the model performance for spatial
patterns of GPP.
5.1.3. Evapotranspiration
By contrast with GPP and fAPAR, modeled ET (Figure 1c) shows better performance for both ORCHIDEE
versions over all African subregions and especially over the southern African grasslands and Sahel regions.
We found in these regions a correlation of r≈ 0.8 at 95% confidence interval between the 11-layer version
and the MTE-ET (r≈ 0.9 at 95% confidence interval for the two-layer version) and SD≈ 0.8 of MTE-ET SD
(SD≈ 1.01 of MTE-ET SD for the two-layer version). Over all savannah and grasslands zones, the 11-layer
version clearly improves the spatial correlation and the standard deviation of simulated ET (Figure 1c) in
comparison to fAPAR and GPP. The lowest performances for ET are still found for the central African forest
region, with r< 0.6 for all simulations. Note also that like for fAPAR and GPP, the choice of WFD has a limited
effect on the model performance for spatial pattern. A better score is obtained for ET with the WFDEI
meteorological forcing (0.4< r< 0.91) than with WFD (0.15< r< 0.87). Overall, for the spatial pattern
analysis, the scores of the 11-layer version are better for modeled ET than for modeled fAPAR and GPP,
suggesting better agreement with the MTE-ET product and that spatial gradients of ET are rather well
captured, except over central African forests.
5.1.4. Soil Moisture
The two-layer version has poor performance for spatial patterns (1985–2009 average) of soil moisture
(r< 0.5) for all subregions, when compared with the SM-MW product (Figure 1d). This poor performance
likely reflects the fact that modeled soil moisture in this version of ORCHIDEE is an average over the entire
soil depth, whereas the SM-MW product represents the top cm soil (see also Rebel et al. [2012]). Using the
11-layer version (sampled over the top 1 cm of soil) greatly improves the spatial correlation of the
ORCHIDEE results with SM-MW (r> 0.5 at 90% confidence interval except in the Horn of Africa (r≈ 0.30)),
especially over the southern woodland rain-green and the southern African grasslands (r≈ 0.7 at 95%
confidence interval), but SD remains underestimated in the 11-layer version (SD< 0.6 time of that
SM-MW SD).

Clearly, the use of a multilayer soil version allows a sound evaluation of the model against spatial patterns of
SM-MW, which was not possible with the two-layer bucket scheme. But it does not mean that the two-layer
bucket scheme is worse for estimate plant available moisture.

Note that unlike for fAPAR, GPP, and ET, the WFD forcing gives better scores of spatial correlations over all
subregions except in the Horn of Africa (Figure 1d): 0.15< r< 0.5 when forcing with WFD against
0.03< r< 0.45 with WFDEI forcing.
5.1.5. Summary of Spatial Patterns
Despite its more realistic description of soil hydrology, the 11-layer version has poorer performances than the
two-layer version for simulating fAPAR and GPP spatial patterns (see r values in Figures 1a and 1b). The
magnitude of fAPAR and GPP spatial gradients within each region (spatial standard deviation closer to data
sets) is however more realistic with the 11-layer version over the southern African grasslands. By contrast, ET
is improved for correlations and SD in the 11-layer version, and soil moisture in the two-layer version just
cannot be compared against SM-MW product. Generally, the settings of fixed CO2 or variable soil depth and
the choice of WFD climate forcing have very small effects on the model performances for the spatial
distribution of all variables considered in Figure 1.
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5.2. IAV

The IAV of fAPAR, GPP, ET, and soil moisture is obtained by calculating annual anomalies of detrended time
series of each variable (mean values of fAPAR, GPP and ET, and soil moisture as well as interannual correlations
with satellite andMTE products are summarized in Tables 3 to 6). Comparison of modeled and observed IAV is
discussed below. Note that in the Figures 2–5 we show the results for simulation S2 only as the IAV results of
fixed CO2 and variable soil depths simulations are very similar to S2 over the whole Africa (r= 0.98 interannual
correlation at 95% confidence interval between S2 and S2-FIXCO2 and r= 0.99 at 95% confidence interval
between S2 and S2-VARDEP). The variable soil depth has a very limited effect on simulations because the
GAEZ 2008’s map used here has a majority of grid cells (>75%) between 1.5 and 2m of soil depth, i.e., close to
the uniformly fixed 2 m soil depth of the S1 or S2 simulations.
5.2.1. Fraction of Absorbed Photosynthetically Active Radiation
Time series of detrended fAPAR anomalies over African subregions are shown in Figure 2. They present a high
variability over the most part of African subregions, which are dominated by C3/C4 grass (Sudan-Guinea,
Horn of Africa, southern woodland rain-green, and the southern African grasslands; see Table 2). The Sahel

Table 3. Statistics of IAV of fAPAR: x is the 1985–2009 Average, σ Represents the Interannual Standard Deviation, and r is the Temporal Correlation Coefficient
Between the Detrended fAPAR and fAPAR3g GIMMS Satellite Data Over the Six African Subregions

Sahel Sudan-Guinea Horn of Africa
Central

African Forest
Southern Woodland

Rain-Green
Southern African

Grasslands

S1 x 0.02 0.29 0.03 0.79 0.25 0.09
σ 0.004 0.029 0.005 0.006 0.024 0.015
r 0.17 0.28 0.82 0.12 0.25 0.81

S2 x 0.13 0.61 0.15 0.87 0.62 0.27
σ 0.015 0.048 0.02 0.005 0.03 0.04
r 0.31 0.27 0.58 0.26 0.23 0.86

S2-FIXCO2 x 0.13 0.60 0.14 0.87 0.61 0.27
σ 0.015 0.05 0.02 0.005 0.04 0.04
r 0.32 0.28 0.56 0.26 0.23 0.86

S2-VARDEP x 0.11 0.56 0.14 0.87 0.6 0.28
σ 0.011 0.044 0.02 0.005 0.034 0.04
r 0.22 0.26 0.57 0.26 0.24 0.87

S2-WFD x 0.13 0.61 0.18 0.85 0.63 0.29
σ 0.015 0.031 0.026 0.004 0.024 0.04
r 0.63 0.30 0.45 0.30 0.25 0.78

fAPAR3g x 0.18 0.45 0.22 0.79 0.49 0.25
σ 0.0059 0.011 0.013 0.01 0.0091 0.01

Table 4. Statistics of IAV for GPP (gC m�2 yr�1) over the Six African Subregions; Same Presentation as in Table 3

Sahel Sudan-Guinea Horn of Africa
Central African

Forest
Southern Woodland

Rain-Green
Southern African

Grasslands

S1 x 60 1115 90 3065 675 185
σ 15 140 20 55 80 40
r 0.15 �0.02 0.77 �0.24 0.44 0.75

S2 x 435 2715 370 3530 2005 660
σ 50 260 75 75 165 140
r 0.53 0.02 0.86 �0.11 0.49 0.87

S2-FIXCO2 x 415 2635 355 3380 1915 625
σ 50 255 75 60 160 130
r 0.54 0.03 0.86 �0.13 0.49 0.86

S2-VARDEP x 410 2525 375 3500 1960 710
σ 40 245 70 80 150 150
r 0.43 0.00 0.82 �0.07 0.51 0.86

S2-WFD x 470 2645 470 3190 2060 725
σ 65 210 95 105 125 145
r 0.56 �0.07 0.65 0.00 0.54 0.76

MTE-GPP x 300 1295 540 2395 1380 410
σ 20 30 65 20 35 45
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and the central African forest regions show a weak fAPAR IAV, both in the observations and the model results.
Both model versions have less than observed fAPAR IAV over the central African forest. Except in the central
African forest, the 11-layer version improves significantly the IAV of fAPAR and matches best the fAPAR3g
GIMMS data set particularly in the Horn of Africa and the southern African grasslands (Figures 2c and 2f). The
temporal SD of fAPAR in the 11-layer version is also improved but remains however overestimated, being 1.5
times larger than observed, compared to 4 times larger in the two-layer version. The 11-layer modeled fAPAR
IAV over the Sahel and the Horn of Africa is smaller than with the two-layer version and satellite observations
(SD is halved of that fAPAR3g; see Figures 2c and 2f). Using the WFDEI meteorological forcing gives slightly
more IAV than the WFD forcing over the most part of Africa, except in the Horn of Africa and the southern
African grasslands (Table 3).
5.2.2. Gross Primary Productivity
On average, the IAV of GPP is comparable to the fAPAR IAV. The model-data agreement is higher over the
Horn of Africa and the southern grasslands regions, as seen in Figure 3. Over these regions, ORCHIDEE has
good GPP interannual correlations with the MTE-GPP product for both versions: r≈ 0.86 at 95% confidence
interval in the Horn of Africa and the southern grasslands for the two-layer version (r≈ 0.77 at 95%
confidence interval for the 11-layer version). The 11-layer version better captures the amplitude of IAV,

Table 5. Statistics of IAV for Latent Heat Flux (W m�2) Over the Six African Subregions; Same Presentation as in Table 3

Sahel Sudan-Guinea Horn of Africa
Central

African Forest
Southern Woodland

Rain-Green
Southern African

Grasslands

S1 x 26.4 71.7 24.1 100 59.3 25.4
σ 2.3 2.3 3.9 2.3 3.4 3.7
r 0.84 0.19 0.52 0.24 0.58 0.91

S2 x 28.7 69.8 28.2 74.8 56 28
σ 2.3 6.1 3 1 2.4 3.4
r 0.68 0.10 0.74 0.33 0.41 0.87

S2-FIXCO2 x 28.7 70.1 28.2 75.1 56.1 28
σ 2.3 6.2 3 1.1 2.4 3.4
r 0.68 0.11 0.74 0.33 0.41 0.87

S2-VARDEP x 26.2 64.7 27.6 74.1 53.6 27
σ 2 5.7 2.9 1.1 2.3 3.1
r 0.64 0.08 0.70 0.28 0.41 0.86

S2-WFD x 25.3 59.5 28.9 61 51.5 26.8
σ 2.1 4.7 4.1 2.5 2 3.1
r 0.59 �0.07 0.41 0.51 0.19 0.8

MTE-LHF x 22.9 64 33.5 85.6 62 28
σ 1 1.15 2.9 0.5 1.1 2.2

Table 6. Statistics of IAV for Soil Moisture (%) Over the Six African Subregions; Same Presentation as in Table 3

Sahel Sudan-Guinea Horn of Africa
Central

African Forest
Southern Woodland

Rain-Green
Southern African

Grasslands

S1 x 0.10 0.15 0.13 0.22 0.14 0.11
σ 0.002 0.003 0.004 0.004 0.004 0.004
r 0.27 �0.12 0.23 Missing 0.21 0.80

S2 x 0.49 0.5 0.49 0.84 0.58 0.49
σ 0.05 0.04 0.06 0.02 0.05 0.07
r �0.12 �0.03 0.69 Missing 0.12 0.76

S2-FIXCO2 x 0.49 0.5 0.49 0.84 0.58 0.49
σ 0.05 0.04 0.06 0.02 0.05 0.07
r �0.12 �0.04 0.64 Missing 0.12 0.76

S2-VARDEP x 0.38 0.42 0.43 0.7 0.44 0.30
σ 0.027 0.03 0.05 0.02 0.04 0.05
r �0.16 �0.01 0.57 Missing 0.06 0.77

S2-WFD x 0.45 0.58 0.51 0.84 0.64 0.53
σ 0.08 0.04 0.06 0.02 0.04 0.07
r �0.26 �0.09 0.59 Missing 0.12 0.77

SM-MW x 0.13 0.19 0.15 Missing 0.19 0.15
σ 0.01 0.01 0.01 Missing 0.02 0.01
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Figure 2. Interannual time series of the detrended anomalies of the fraction of absorbed photosynthetically active radia-
tion: comparison between the modeled fAPAR and the fAPAR3g GIMMS satellite product over the six African subregions.

Figure 3. Interannual time series of the detrended anomalies of the gross primary productivity: comparison between the
modeled GPP (gC m�2 yr�1) and the MTE-GPP data-driven model over the six African subregions.
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Figure 4. Interannual time series of the detrended anomalies of the latent heat flux (W m�2): comparison between
modeled ET and MTE-ET data-driven model over the six African subregions.

Figure 5. Interannual time series of the detrended anomalies per standard deviation unit (z-score): comparison between
modeled surface soil moisture and SM-MW satellite product over the six African subregions.
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particularly in the Sahel and the southern grasslands (SD≈ 0.8 and 0.95 times respectively of that MTE-GPP SD
against 2.7 and 3.2 times respectively for the two-layer), but significantly underestimates the IAV over the
Horn of Africa (SD≈ 0.3 times the one of MTE-GPP against SD≈ 1.2 times for the two-layer) (Figures 3a, 3c, and
3f and Table 4). In central African forests (Figure 3d), the IAV of GPP is overestimated by all model versions
(SD> 2.4 times of MTE-GPP SD). Like for the evaluation against fAPAR3g, the effect of meteorological forcing
on IAV of GPP is significant (Figure 3), and the WFDEI forcing yields to a better agreement with MTE-GPP than
the WFD forcing, in particular with smaller, more realistic anomalies during wet and dry years (especially in
the Sahel, Horn of Africa, and the southern African grasslands).
5.2.3. Evapotranspiration
The modeled IAV of ET, shown in Figure 4, indicates the best performance of ORCHIDEE over the Sahel and
the southern African grasslands, both for the 11- and two-layer versions (Figures 4a and 4f). The modeled ET
shows a too high IAV variability only in the Sudan-Guinea region, ET variability being comparable to MTE-ET
IAV over the other African subregions. By contrast with GPP and fAPAR, the 11-layer version has greater
interannual correlations with MTE-ET than in the two-layer version over the most part of Africa (see Table 5).
As found for fAPAR and GPP, the ORCHIDEE 11-layer has less IAV of ET than the two-layer over all subregions
and best matches the MTE-ET IAV. The comparison between IAV of GPP and ET (Figures 3 and 4) shows that
the interannual SD of ET is better simulated by ORCHIDEE than the one of GPP, supporting either a more
reliable reconstruction of ET than GPP by the MTE algorithm (section 3) or a better ability of ORCHIDEE to
model ET than GPP, perhaps because the photosynthetic parameters of ORCHIDEE do not distinguish
between different types of steppes, shrub lands, and savannahs. As for GPP, the WFDEI climate forcing
provides better performance to reproduce the IAV of ET than the WFD forcing over all the regions, except for
the central African forest region. The values of r range from 0.10 to 0.87 with the WFDEI climate forcing,
compared to from �0.07 to 0.80 with WFD. However, the SD of the IAV of ET is slightly smaller with the WFD
forcing especially over the Sudan-Guinea and the southern woodland rain-green regions.
5.2.4. Soil Moisture
The comparison of modeled soil moisture IAV with SM-MW is given in Figure 5. As pointed out for the
evaluation of spatial gradients (section 5.1), the IAV of soil moisture in the two-layer version does not
compare to SM-MW well, given that the model represents soil moisture over a much thicker than observed
soil depth. The 11-layer soil model overcomes this shortcoming because it calculates the soil moisture profile
in the soil. Soil moisture averaged in four first layers representing the first centimeter of the soil is compared
with SM-MW. In order to have the same range of IAV for the simulations and the SM-MW satellite data, we
z-score transformed the (detrended) model output and the SM-MW observation. The detrended z-score
(anomaly normalized by standard deviation) of soil moisture varies mainly between �2 and +3 for the
ORCHIDEE simulations and the SM-MW data (Figure 5).

The results from the 11-layer version show that a multiple-layer soil hydrology allows to obtain more realistic
soil moisture IAV, especially over semiarid and arid regions. Yet some anomalies are not captured by the
model; the high positive SM-MW anomalies from 1988 to 1992 in the Sudan-Guinea region, and in 2002 over
Sahel for instance. Like for other fields, the southern African grasslands region has the best IAV correlation
between ORCHIDEE results and SM-MW (r=0.80 at 95% confidence interval with the 11-layer, and r=0.76 at
95% confidence interval with the two-layer). Generally, the 11-layer version better matches the IAV of
SM-MW, especially in the Sahel and the southern African grasslands (Figures 5a and 5f), but the absolute
SD (Table 6) remains between 65 and 70% lower than that of SM-MW. As for GPP and ET, the WFDEI
meteorological forcing provides high IAV of soil moisture, and a better correlation with SM-MW observation,
than the WFD forcing.
5.2.5. Summary of IAV
We found consistently that theORCHIDEE 11-layer version improves the IAV of fAPAR, GPP (through the amplitude),
ET, and soil moisture (through both correlation and amplitude) on arid and semiarid areas corresponding to
savannahs and grasslands vegetation. The simulations are always more realistic over southern African
grasslands, possibly because of a higher number of weather stations data that improves the quality of the
meteorological forcing data for this region. The main result is that the SD of IAV is at least halved with the
11-layer version compared to the two-layer one and in better agreement with all the evaluation data
products and over the most part of Africa. The only exception is for ET, where the 11-layer version has an IAV
approximately close to the two-layer version. Note also that the quality of the climate forcing is important to
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obtainmore realistic modeled IAV results and that WFDEI gives systematically better performances thanWFD.
Variable or fixed soil depth in the two-layer version has no significant effect on the simulated variables
(Tables 3 to 6). Finally, the effects of increasing CO2 and land use change on the IAV of GPP, ET, and soil
moisture are negligible, although these drivers influence the trends of these three variables.

5.3. Contrast Between Wet and Dry Years

Rainfall is a key atmospheric driver of carbon and water fluxes in Africa, and therefore, the ORCHIDEE model
produces a contrasted response between wetter and drier periods in each region. In this section the
performances of modeled soil moisture and GPP during highly wet (HW), wet (W), dry (D), and highly dry (HD)
years, respectively, are examined. A highly wet year (respectively highly dry) is defined as a year for which
yearly precipitation averaged (for considering climate forcing) over each grid cell is at least 10% higher
(respectively lower) than the 10 year running mean in this grid cell. A wet year (respectively dry year)
corresponds to when annual precipitation is between 0 and 10% above (respectively below) the 10 year
running mean. Remark that with this definition, the selection of wet and dry years does differ between grid
cells within a region.
5.3.1. GPP, fAPAR, and ET
Here we focus on GPP only, as the maps of ET and fAPAR composite differences for HW, HD years allow to draw
similar conclusions than for GPP and are not discussed further. Maps of the GPP composite difference between
HW and HD years (absolute difference between the average of all HW years and the average of all HD years
since 1979, hereafter called ΔGPP) is shown in Figure 6, for both versions of ORCHIDEE and for the MTE-GPP
product. The MTE-GPP product shows high positive ΔGPP values over northern Sahel, the eastern Africa and the
African southern grasslands. The simulated GPP shows a spatial pattern of ΔGPP similar to the MTE-GPP data
product, except in some grid cells over the central African forest. However, themagnitude of the simulatedΔGPP
is higher than the one from the data set. This larger modeled GPP contrast in response to rainfall compared to
MTE-GPP is obtained regardless of the climate forcing (data not shown). The 11-layer version simulates a smaller
ΔGPP than the two-layer version (especially in the southern grassland regions), but still larger than the
MTE-derived ΔGPP (Figure 6). The geographic patterns of ΔGPP are less coherent when the contrast in “normal”
W and D years is analyzed (Figure S2 in the supporting information) with different grid points taking either
positive or negative values within the same subregion. ORCHIDEE reproduces this loss of spatial coherence in W
and D maps, also found in MTE-GPP, regardless of the meteorological forcing or soil hydrology version used.
This result is interesting because it suggests that extreme years offer more contrast, and thus a more coherent
signal, to analyze the model responses to climate and evaluate them against observations.
5.3.2. Soil Moisture
Maps of the composite soil moisture difference between HW and HD years are given in Figure 7. As expected,
SM-MW takes higher values during HW years over the whole continent, but there are some grid cells where
ΔSM-MW remains negative even during HD years. The positive values of ΔSM-MW derived from satellite
observation (Figure 7, top left) are the largest over the African southern grasslands region. The two-layer
model version overestimates ΔSM-MW over the whole continent (Figure 7, bottom). Such a larger response
than in the SM-MWobservations can be explained by the integration of soil moisture over a 2m soil depth. By
contrast, the 11-layer version improves the situation greatly and results into a map of ΔSM rather similar to
that obtained with SM-MW data over the most part of the continent, yet with too small ΔSM-MW values in
southern Africa.

5.4. Interannual Sensitivities of Fluxes to Climate
5.4.1. Sensitivity to Rainfall
Figure 8 gives scatterplots of annual GPP versus rainfall IAV and of annual soil moisture versus rainfall. The
southern African grasslands region has the strongest positive relationship between interannual GPP and
rainfall IAV for both simulation and the MTE-GPP data-driven model (r> 0.80 at 95% confidence interval; see
Table 7). The sensitivity of MTE-GPP to rainfall defined by the slope of a linear fit between GPP and rainfall is of
50 gCm�2 per 100mm of rainfall. In comparison, the sensitivity of ORCHIDEE GPP is too high over this region,
suggesting that the model lacks negative feedbacks that stabilize the IAV of GPP (e.g., mechanisms of
resistance of plants to drought related to an increased water use efficiency [Ponce-Campos et al., 2013] or shift
in species composition during dry years allowing to sustain a higher GPP). The interannual sensitivity of GPP
to rainfall in the 11-layer version is of 44 gC m�2 per 100mm and 175 gC m�2 per 100mmwith the two-layer
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version. The 11-layer version shows much better performance when evaluated for the sensitivity of GPP to
rainfall. In other regions than southern African grasslands, the relationship between MTE-GPP and rainfall
shows a larger scatter (in particular over Sudan-Guinea and central African forest regions; Figure 8i). Note that
the relationship between GPP and rainfall in the Sahel region is higher for the MTE-GPP product (r=0.77 at
95% confidence interval) than for ORCHIDEE GPP when using the WFDEI climate forcing (0.35 for the 11-layer
version and 0.63 for the two-layer against 0.8 with the WFD climate forcing).

The relationship between soil moisture and rainfall (Figure 8ii) is strongest over southern African grasslands
and southern woodland rain-green regions, for both modeled soil moisture and the SM-MW satellite product.
The 11-layer version results show a strong and quasi-linear relationship between soil moisture and rainfall
interannual anomalies over all African subregions (r> 0.80 at 95% confidence interval, except in the Sudan
Guinea region; see Table 8), whereas the two-layer version exhibits more scatter (Figure 8ii). The correlation
between the 11-layer soil moisture and rainfall is higher than 0.9 at 95% confidence interval over the

Figure 6. ΔGPP: High wet years minus high dry years. The difference is expressed in % of the sum of GPP of all high wet and high dry years since 1979. (top left) The
MTE-GPP product, (top right) the result from S1 simulation (11-layer version), and (bottom) the result obtained with S2 simulation (two-layer version).
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southern woodland rain-green and the southern African grasslands regions (against 0.68 and 0.9 at 90%
confidence interval for the two-layer version, respectively). In comparison, the SM-MW satellite product has
lower r values of≈ 0.47 in the southern woodland rain-green and 0.85 in the southern African grasslands. The
stronger than observed relationship between modeled soil moisture and rainfall is possibly due to the fact
that fires are not properly represented in the both versions of ORCHIDEE tested in this study and that plant
phenology is only triggered by soil moisture in the model, thus not capturing ecosystem recovery after
burning. The interannual sensitivity of observed SM-MW to rainfall is of 3–4% per mm d�1 of rain over these
two southern regions, whereas the 11-layer simulation (the more realistic one) has a slope of about 1% per
mm d�1. This is interesting to see that the modeled sensitivity of soil moisture to rainfall is dampened
compared with the data product, whereas the GPP sensitivity was too high. It suggests altogether that the soil
water stress of GPP (a simple linear function of moisture in the root zone with stress inception for root
extractible water lower than 0.4; section 2) is too simply modeled in ORCHIDEE.

Figure 7. ΔSoil moisture: High wet years minus high dry years. The difference is expressed in % of the sum of soil moisture of all high wet and high dry years since
1979. (top left) The SM-MW satellite microwave product, (top right) the result from S1 simulation (11-layer version), and (bottom) the result obtained with S2
simulation (2-layer version).
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Figure 8. (i) Relationship between GPP and rainfall (mm/d) over the six African subregions. (ii) Relationship between soil
moisture and rainfall (mm/d) over the six African subregions.
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5.4.2. Sensitivity to Near-Surface Air Temperature
The relationships between GPP, soil moisture, and air temperature show a large scatter over all subregions than
with rainfall, and these relationships are systematically negative (Figure S4 in the supporting information),
especially over the southern of Africa for the GPP. The correlations between modeled GPP and temperature are
very weak over the continent (see Table 7), except in the southern woodland rain-green (r=�0.47 for the two-
layer; r=�0.41 for the 11-layer version against r=�0.54 for MTE-GPP product). Note that the simulation using
WFD climate forcing has high GPP correlation with temperature over the southern woodland rain-green
(r =�0.78). Using a linear fit, we found, in the southern woodlands, a decrease of �265 gC m�2 per °C for
the two-layer, �110 gC m�2 per °C for the 11-layer against �65 gC m�2 per °C for the MTE-GPP product.

The rp, partial correlation representing the correlation with temperature, controlling for rainfall colinearity, is
�0.24 between the two-layer modeled GPP and temperature (rp=�0.17 for the 11-layer) compared to �0.38
for MTE-GPP product, suggesting a higher control of GPP by rainfall than by temperature. Analysis of multiple
linear regressions representing the partial response of GPP as a function of rainfall, temperature, and radiation
over the southern woodland rain-green region further shows that GPP increases with rainfall and slightly
decreases with both temperature and radiation. According to multiple linear regression, the two-layer GPP
increases by 65 gCm�2 per 100mm (33 gCm�2 for the 11-layer against 15 gCm�2 for MTE-GPP) and decreases
rapidly with temperature and radiation respectively by 145 gCm�2 per °C and 15 gCm�2 per Wm�2 respectively
(50 and 5 gCm�2 for the 11-layer against 44 and 1 gCm�2 for MTE-GPP). Note that increasing atmospheric CO2

tends to strengthen the relationship between GPP and rainfall over all the subregions and especially in the
southern woodland rain-green. According to multiple linear regressions applied to the ORCHIDEE outputs, GPP
increases by 65 gCm�2 per 100mmagainst 40 gCm�2 per 100mm in the simulation with constant CO2 fixed at
its 1979 value. Increasing atmospheric CO2 also seems to limit the GPP decrease as a function of temperature

Table 7. Linear Correlation Between Year-to-Year GPP and the Main Climate Variables (P=Precipitation, T= Temperature at 2m, and R= Solar Radiation) Over the
Six African Subregions

Sahel Sudan-Guinea Horn of Africa
Central

African Forest
Southern Woodland

Rain-Green
Southern African

Grasslands

S1 r(GPP versus P) 0.35 0.11 0.66 0.38 0.58 0.84
r(GPP versus T) 0.21 0.00 0.04 0.03 �0.41 �0.35
r(GPP versus R) �0.19 �0.29 �0.69 0.23 �0.48 �0.74

S2 r(GPP versus P) 0.63 0.1 0.34 0.16 0.61 0.94
r(GPP versus T) 0.00 0.06 0.02 0.27 �0.47 �0.26
r(GPP versus R) �0.25 �0.23 �0.58 0.25 �0.51 �0.72

S2-WFD r(GPP versus P) 0.80 0.36 0.39 0.14 0.60 0.92
r(GPP versus T) �0.47 0.2 0.13 0.33 �0.54 �0.78
r(GPP versus R) �0.70 0.10 �0.34 0.58 �0.65 �0.75

MTE-GPP r(GPP versus P) 0.77 0.25 0.32 0.03 0.51 0.88
r(GPP versus T) 0.06 0.35 �0.01 0.16 �0.54 �0.18
r(GPP versus R) 0.00 0.00 �0.60 �0.2 �0.31 �0.68

Table 8. Same Statistics as in Table 7 for Soil Moisture

Sahel Sudan-Guinea Horn of Africa
Central

African Forest
Southern Woodland

Rain-Green
Southern African

Grasslands

S1 r(GPP versus P) 0.88 0.73 0.97 0.83 0.90 0.95
r(GPP versus T) �0.38 �0.47 �0.01 �0.49 �0.5 �0.16
r(GPP versus R) �0.59 �0.65 �0.77 �0.22 �0.72 �0.83

S2 r(GPP versus P) 0.54 0.28 0.53 0.68 0.68 0.90
r(GPP versus T) 0.25 �0.07 0.16 �0.33 �0.51 �0.17
r(GPP versus R) 0.13 �0.31 �0.73 �0.08 �0.57 �0.6

S2-WFD r(GPP versus P) 0.73 0.47 0.56 0.64 0.70 0.91
r(GPP versus T) �0.48 �0.26 0.03 0.06 �0.65 �0.77
r(GPP versus R) �0.65 �0.42 �0.54 0.23 �0.62 �0.74

SM-MW r(GPP versus P) 0.15 0.44 0.4 Missing 0.47 0.85
r(GPP versus T) �0.72 �0.40 �0.24 Missing �0.11 �0.32
r(GPP versus R) �0.56 �0.32 �0.46 Missing �0.5 �0.73
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(the simulated GPP multilinear regression slope is of �145 gC m�2 per °C in the two-layer, compared to
�240 gCm�2 per °C in the fixed CO2 simulation results). Using a spatially variable soil depth map for ORCHIDEE
has a positive but very small effect on the relationship between rainfall and GPP, and a negative effect on
the relationship between temperature and GPP (GPP has a temperature sensitivity of�120 gCm�2 yr�1 per °C
with a variable soil depth, against �145 gC m�2 yr�1 per °C with a soil depth uniformly fixed at 2m).

Like for GPP, the relationships between soil moisture and temperature or radiation drivers show a larger
spread than that with rainfall. Yet SM-MW product better correlates with temperature anomalies over the
Sahel (r=�0.72), whereas modeled soil moisture shows a weak correlation with temperature but in opposite
sign between the two model versions (r= 0.25 for the two-layer and �0.38 for the 11-layer) over this region
(see Table 8). Note that the simulated GPP and soil moisture using the WFD meteorological forcing have a
stronger relationship with temperature over the southern woodland rain-green and the southern African
grasslands (r≈�0.65 and �0.77, respectively) than with the WFDEI forcing (�0.57 and �0.6).
5.4.3. Sensitivity to Solar Radiation
The relationships between both GPP and soil moisture (Figure S3 in the supporting information) and solar
radiation IAV are strong and negative over the Horn of Africa, the southern woodland rain-green, and southern
African grassland regions but weak over all the other regions. The correlation between the two-layer GPP and
solar radiation is �0.58, �0.51, and �0.72 in the Horn of Africa, the southern woodland rain-green, and the
southern African grasslands, respectively, against�0.69,�0.48, and�0.74 for the 11-layer (see Table 7). However,
the partial correlation between GPP and radiation (removing the effects of rainfall) is weak over the southern
woodland rain-green and the southern African grassland regions (rp< 0.35 for all simulations) indicating a high
GPP dependence on rain, whereas GPP has less rainfall dependence in the Horn of Africa (rp≈0.5). In comparison,
the MTE-GPP product has smaller correlations of r=�0.6 (rp=�0.56) in the Horn of Africa, r=�0.31 (rp=0.15)
in the southern woodland rain-green, and r=�0.7 (rp=0.24) for the southern African grassland region. Over these
later regions, the two-layer version has a (negative) sensitivity to solar radiation of about�45 gC m�2 per Wm�2

compared to �13 gC m�2 per W m�2 for the 11-layer version, which is in better agreement with the sensitivity
of MTE-GPP product to radiation, equal to�13 gCm�2 perWm�2. Note that GPP variations associatedwith solar
radiation changes are much lower than the one linked to rainfall and even to temperature. In the two-layer
version, for instance, yearly GPP varies with radiation between�45 and 20 gCm�2 per Wm�2 across subregions
while it varies with temperature between�270 to 90 gCm�2 per °C. Analysis of the response of soil moisture to
solar radiation allowed us to draw similar conclusions than for GPP. Correlations between soil moisture and
radiation are thus strong and negative over the Horn of Africa, the southern woodland rain-green and the
southern African grasslands and weak over other regions (see Table 8).

6. Concluding Remarks

The African continent has an important role in the global carbon cycle yet not well quantified because of poor
observation networks across the region. Ecological modeling combined with long-term remote sensing data
can thus fill gaps in understanding how CO2 and water fluxes respond to climate and other drivers at various
temporal and spatial scales. This study highlights a large IAV of GPP, soil moisture, and ET over arid and semiarid
ecosystems of Africa. We developed a method to evaluate the ORCHIDEE land surface model with two
structurally different soil hydrology versions, which could be applied in the future to a larger ensemble of land
surface models, e.g., the TRENDY [Sitch et al., 2013] or the Multi-scale Synthesis and Terrestrial Model
Intercomparison Project (MsTMIP) [Huntzinger et al., 2013] model ensembles.

At the biome level, we found a greater sensitivity of grassland fluxes to climate compared to closed forests.
Clearly, the main drivers of GPP, ET, and soil moisture IAV are the precipitation and temperature variability.
Because of the extent of grasslands and savannahs across Africa, this signature emerges at the continental
scale. The ORCHIDEE simulations show a rather good agreement with satellite observations of regional IAV,
especially for the 11-layer hydrology version, which is clearly superior to the two-layer bucket hydrology for
soil moisture. This suggests that the two–bucket layer version buffers the effect of climate variability on
ecosystems water budget, by maintaining either too large of a water reservoir for plants or by incorporating a
too simple representation of rooting distributions and water access by plants. The fact that the 11-layer
version of a rather generic land surface model gives good performance to reproduce the magnitude of the
observed IAV of GPP and ET offers rather good prospects for using this category of models, with a specific
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description of crop phenology, for hindcast testing and future forecast of plant productivity, and perhaps of
crop yields over Africa. We also found that GPP and fAPAR were less sensitive to using the 11-layer version,
which suggests that these quantities are controlled by additional processes than soil moisture, with possible
lag effects and a strong influence of phenology.

For closed forests in central Africa, we found that the sensitivity of GPP to climate variability in the MTE-GPP
data-driven product is smaller than in the ORCHIDEE simulations. This suggests either an underestimation of
the IAV of GPP by the MTE algorithm, as previously noticed by Piao et al. [2013] with an ensemble of model
results, or alternatively, that forests maintain a capacity to sustain carbon uptake during dry periods.
Nevertheless, all the ORCHIDEE simulations appear to overestimate this capacity for fAPAR, while
underestimating (or having too high IAV) for ET, GPP, and soil moisture. Interestingly, ORCHIDEE soil moisture
and GPP are too sensitive to rainfall in comparison to data products, indicating some error compensation
mechanisms. We recommend developingmodel evaluation frameworks for the sensitivities of fluxes to climate
for future studies, such as attempted in section 5.4, because they bring more insights on model response.

We also note that data-driven products used in this study are not direct observations and that the MTE
interannual variance of GPP has been found in previous studies to be systematically smaller than the one
from process-based land surfacemodels [Anav et al., 2013; Piao et al., 2013]. One possible artifact of theMTE is
that this algorithm is trained mainly on spatial gradients between flux towers and uses space for time to
produce term series, with the overwhelming majority of sites located outside of Africa. In particular, MTE-GPP
of savannahs has been found to be smaller than GPP deduced using Greenhouse Gases Observing SATellite
(GOSAT) fluorescence data as a proxy [Frankenberg et al., 2011, 2012] or against Moderate Resolution Imaging
Spectroradiometer GPP data sets [Zhao et al., 2005]. To further elucidate the causes for this discrepancy, more
flux tower data are needed over arid and semiarid biomes, which cover approximately 45% of Africa. There
are also other remote sensing based data sets for ET [Fisher et al., 2008; Jiménez et al., 2011; Mu et al., 2007;
Vinukollu et al., 2011], though inherently direct satellite measurements limit the long temporal span we were
interested in here. Choice of reference data sets for evaluating models can completely change evaluation
results, so it is imperative that reference data sets contain spatiotemporally explicit and rigorously quantified
uncertainties [Schwalm et al., 2013]. We also note that new proxy vegetation optical depth retrievals of the
woody biomass fraction frommicrowave sensors [Andela et al., 2013], complementary to Advanced Very High
Resolution Radiometer (AVHRR) NDVI and fAPAR products that are more related to the herbaceous fraction,
are now available and should be used in future studies of the African CO2 and water fluxes IAV.
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