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ABSTRACT
Communicative gestures and speech prosody are tightly linked. Our
aim is to predict when gestures are performed based on prosody.We
develop a model based on a seq2seq recurrent neural network with
attention mechanism. The model is trained on a corpus of natural
dyadic interaction where the speech prosody and the gestures have
been annotated. Because the output of the model is a sequence,
we use a sequence comparison technique to evaluate the model
performance. We find that the model can predict certain gesture
classes. In our experiment, we also replace some input features with
random values to find which prosody features are pertinent. We
find that the F0 is pertinent. Lastly, we also train the model on one
speaker and test it with the other speaker to find whether the model
is generalisable. We find that the models which we train on one
speaker also works for another speaker of the same conversation.
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1 INTRODUCTION
Human naturally gesticulates while speaking [15]. There are differ-
ent families of gestures [20] that vary depending on the types of
information they convey. Gesture helps the locutor to form what
he wants to convey and also helps the listener to comprehend the
speech [11]. Therefore, it is desirable for a virtual agent which
interacts with humans to show natural-looking gesticulation be-
haviour. Because of that, researchers have been working on auto-
matic gesture generation in the context of human-computer inter-
action [6, 7, 17, 23]. So far, most of prior gesture generation works
simplify the problem by generating only one type of gesture. For ex-
ample, the algorithm proposed by Kucherenko et al [17] generates
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only beat gestures while the algorithm proposed by Bergman et
al [4] generates only iconic gestures. An ideal generator should be
able to generate various types of gestures. Therefore, it is desirable
to know when different types of gesture are performed. Here, we
attempt to compute when a virtual-agent should perform a certain
type of gesture. We are doing this in a larger context of generating
natural-looking gestures within the context of human-computer
interaction.

We compute the gesture class based on the speech prosody. For
the computation, we use a recurrent neural network with an at-
tention mechanism [2] to learn the relationship. This technique
is based on sequence-to-sequence formulation [25]. The input is
the speech prosody, broken into time-steps, and the output is the
sequence of gesture classes. Our input features are the F0, F0 direc-
tion score, and intensity. They are known to be related to gestures.
Besides that, by limiting the number of features, we mitigate the
problem of the curse of dimensionality.

In section 2, we explain the relevant prior works about gesture,
gesture generation techniques, and the evaluation techniques in
the related work section. In section 3, we explain the dataset we
use for our experiments. We explain the raw content, the various
annotations provided in the dataset, and how we process the data.
In section 4, we explain the model which we use and how it is
implemented. The evaluation of the model is presented in section 5.
The experiments are described in the section 6. Finally, we discuss
our results in Section 7 and draw some conclusions.

2 RELATEDWORK
McNeill [20] splits gestures into four classes: metaphorical gesture,
deictic gesture, iconic gesture, and beat gesture; metaphorical ges-
ture is to convey an abstract concept, deictic gesture is to point at an
object or a location, iconic gesture is to describe a concrete object
by its physical properties, and beat gesture marks the rhythm. A
gesture, except beat, consists of several phases, namely preparation,
pre-stroke-hold, stroke, post-stroke-hold, hold and retraction [20].
The stroke phase is obligatory while the preparation, the hold and
the retraction phases are optional. When multiple gestures are per-
formed consecutively, the gesture phases are chained together. For
example, if gesture X precedes gesture Y, there might not be any
retraction before gesture Y's stroke. Successive gestures coarticulate
one from the others. Beat gesture, on the contrary, has no phase.

Embodied Conversational Agents are virtual agents endowed
with the capacity to communicate verbally and nonverbally [6]. Sev-
eral models have been developed to drive the nonverbal behaviors
of these agents [4, 6]. The earliest gesture generators are rule-based
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systems [6, 23]. However, the rules governing the relationship be-
tween gesture and speech are too complex to be manually specified.
These past years, researchers develop machine-learning based ges-
ture generators. There are two classes of the machine-learning
based gesture generators, namely prosody-based model and text-
based model. Beat gestures are characterized by their rhythmic
pattern. They are often produced with a soft open hand gestures.
The hand shape and movements of non-beat gestures are mainly
related to semantic.

The prosody-based generators [7, 17] have a similar formulation:
they express the problem as a time series prediction problem where
the input is the prosody and the output is the gesture motion. They
generate beat gestures. There are also text-based generators [1, 4].
They generate iconic, metaphoric, and deictic gestures because
those gestures are related to the semantics, which are inferred from
the text. The semantics are then used to predict the gestures. Un-
like the prosody-based generators, they have more varied problem
formulations.

A common simplification which has been used in many existing
gesture generation works is that gestures can be inferred from the
speech. However, gestures and speech are generated from a com-
mon process [20]. In some cases, gestures and speech complement
each other instead of conveying the same information [20]. Never-
theless, in our work, we apply that simplification too. Speech, as
we assume for this work, consists of two components: the prosody
and the text.

3 DATASET
We use the Gest-IS English corpus [24]. In the dataset, there are vari-
ous dialogues between the same two speakers. Each dialogue is con-
tained in a video. The total length of those videos is around 50 min-
utes. The corpus has been annotated along different layers: gesture
phase, gesture types, chunk boundaries, classification annotations
on whether the gesture is communicative or non-communicative,
and the speech transcription data. With these data, we have to
decide which sub-data is pertinent.

We decide a sub-data to be pertinent if it is part of an utterance.
We use the transcription timestamps from the corpus to find the
start and end of the speeches. In the data, there are many times
when the person does not speak. We use these gaps to demarcate
the utterances. However, it is also normal to have short gaps within
an utterance. Therefore, we need a threshold to decide whether a
gap is short enough to actually be a part of the same utterance. For
this, we use the concept of Inter-Pausal Unit (IPU) [18] to define
one utterance, which in turn we consider as one sample. By using
the IPU concept, we consider two consecutive speeches whose gap
is less than 200 milliseconds to be one utterance [22].

After splitting the data into samples where each sample is one
utterance, we use OpenSmile [13] to extract the prosodic features
with 100 milliseconds time-steps. To avoid the curse of dimension-
ality problem, we limit ourselves to only F0, F0 direction score, and
intensity because they are known to be related to gestures [9, 19].

The model takes as input only the prosodic features. It does
not consider any semantic feature. Thus, we decide to divide the
communicative gestures into beats and all other gestures, that is
deictic, metaphoric and iconic gestures. We classify the gestures

into four classes, namely “NoGesture”, “Beat”, “NonBeatNonStroke”,
“NonBeatStroke”. The gesture class depends onwhat gesture is being
performed at that particular time-step. “NoGesture” refers to the
time when the person does not gesticulate. “Beat” refers to the time
when the person uses beat gesture. “NonBeatNonStroke” refers to
the time when the person does a non-stroke phase (e.g. preparation,
retraction) of either metaphoric, iconic, or deictic (i.e. non-beat)
gestures. “NonBeatStroke” refers to the time when the person does
the stroke phase of either metaphoric, iconic, or deictic gestures (i.e.
non-beat). Note that beat gestures do not have stroke or non-stroke
phases, therefore beat is treated as a separate class.

Each sample is one utterance surrounded by IPUs. The utter-
ances are natural utterances, therefore they have different lengths.
Unfortunately, the technical constraint of recurrent neural network
requires all samples to have the same length. Therefore, we pad the
inputs with 0-vectors and we pad the outputs with “suffix” auxiliary
class so that all samples have the same length. In our full dataset,
we have 3851 time-steps of “NoGesture”s (6.71%), 946 time-steps of
“Beat”s (1.65%), 3303 time-steps of “NonBeatNonStroke”s (5.76%),
2739 time-steps of “NonBeatStroke”s (4.77%), and 46536 time-steps
of the auxiliary “suffix”s (81.11%).

4 MODEL
We use recurrent neural network with attention mechanism [2] to
perform the prediction; it is based on the our previous work [26].
Our implementation is based on the Keras 1 code of Zafarali 2. The
model takes 3 speech prosody input features: F0, F0 direction score
and intensity. The prosody input itself is treated as a time series. The
output is another time series, namely the gesture class sequence.
The schema of the model is presented in the figure 1. The original
Zafarali's code is to do date format translation, therefore it uses
word embedding. Our input is already in the form of vector of num-
bers, therefore we remove the word embedding. Unlike the standard
sequence-to-sequence model where there are only encoder and de-
coder, the recurrent neural network with attention mechanism has
an attention map between the encoder and the decoder. The map
allows any encoder to directly influence any decoder. The map is a
set containing the weights of the connections between the encoders
and the decoders. The learning uses categorical cross-entropy as
the loss function and Adam as the optimiser.

5 EVALUATION TECHNIQUE
The recurrent neural network with attention mechanism is based
on the sequence-to-sequence formulation. This formulation is pio-
neered by Sutskever et al [25]. Sutskever et al use the formulation
to create a language translator. To evaluate their model, Sutskever
et al use BiLingual Evaluation Understudy (BLEU). BLEU, however,
is specific to language translation task. Chorowski et al [8] use
phoneme error rate (PER) to evaluate their sequence-to-sequence
model. Meanwhile, Bahdanau et al [3] use Character Error Rate
(CER) and Word Error Rate (WER) to evaluate their model. All of
these prior works are evaluated by using domain specific measure-
ments. Therefore, we devise our way of evaluating the model.

1https://keras.io/
2https://github.com/datalogue/keras-attention
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Figure 1: Our Neural Network Model

To evaluate the model, we use a general-purpose sequence simi-
larity measurement technique to compare the similarity between
the prediction and the ground truth, and we use the similarity mea-
sure as the performance measure. We use the sequence comparison
algorithm proposed by Dermouche and Pelachaud [10] as our evalu-
ation technique. It measures the city-block distance between a block
in the ground truth and a block in the prediction. If the distance
is below a certain threshold, then they are considered as matches.
The precise match formula is at formula 1. We define 𝑏𝑝𝑠 as the
start of the prediction block and 𝑏𝑝𝑒 as the end of the prediction
block. Correspondingly, we define 𝑏𝑡𝑠 as the start of the ground
truth block and 𝑏𝑡𝑒 as the end of the ground truth block. We also
define 𝑇 as the distance threshold. We define prediction block and
ground truth block as matches when formula 1 is true.��𝑏𝑝𝑠 − 𝑏𝑡𝑠

�� + ��𝑏𝑝𝑒 − 𝑏𝑡𝑒
�� ≤ 𝑇 (1)

We measure the performance based on how many blocks match
and how long those blocks are, and then we normalise against the
length of the sample and the proportion of that particular class.
The length of the blocks (for the same class) matters because the
ideal matches should be as long as possible. The normalisation
against the proportion of that particular class is done because the
class distribution is not balanced. For instance, “beat” comprises less
than 9% of the total time-steps (after excluding the “suffix” auxiliary
class).

We also introduce the concept of “insertion” and “deletion”. A
block which exists in the prediction but has no match in the ground
truth is considered to be “ìnserted”. This is similar to false positive:
we predict what actually does not happen. Similarly, a block which
exists in the ground truth but has no match in the prediction is
considered to be “deleted”. This is similar to false negative: we fail to
predict something which actually happens. The precise definition
of alignment, insertion, and deletion score are at formula 2. In the
formula, 𝑛 stands for the number of samples in the dataset, 𝑡𝑐 is the
number of time-steps of class c in the dataset, 𝑝𝑐 is proportion of
class c in the dataset, 𝑙 is sample length (which is the same for all
samples), 𝑏.𝑑 stands for deleted block, 𝑑𝑐 is the deletion score of
class c, 𝑏.𝑖 stands for inserted block, 𝑏.𝑝 stands for predicted block,
𝑏.𝑡 stands for ground truth block, and 𝑎𝑐 is the alignment score of

class c. The ideal alignment score is 1 while the ideal deletion and
insertion score are 0. It means everything is aligned and there is
neither deleted nor inserted block. The insertion score of class c
can exceed 1 if we predict class c more frequently than it actually
occurs. On the other hand, the deletion score is always between 0
and 1. The deletion score of class c is 1 when we fail to predict any
of the block of that class. For the alignment score, if the predictor is
accurate but slightly overestimates the length of the block, then the
alignment score will be slightly higher than 1. On the other hand,
if the predictor is accurate but often slightly underestimates the
length of the block, then the alignment score will be slightly lower
than 1.

𝑝𝑐 =
𝑡𝑐

𝑛 × 𝑙

𝑑𝑐 =
Σ𝑏.𝑑𝑙𝑒𝑛𝑔𝑡ℎ(𝑏.𝑑)

𝑛 × 𝑙 × 𝑝

𝑖𝑐 =
Σ𝑏.𝑖𝑙𝑒𝑛𝑔𝑡ℎ(𝑏.𝑖)

𝑛 × 𝑙 × 𝑝

𝑎𝑐 =
Σ𝑏.𝑝,𝑏.𝑡 .𝑎𝑙𝑖𝑔𝑛𝑒𝑑𝑙𝑒𝑛𝑔𝑡ℎ(𝑏.𝑝) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏.𝑡)

2 × 𝑛 × 𝑙 × 𝑝
(2)

6 EXPERIMENT
We split our data with the proportion of 64% training data, 16%
validation data, and 20% testing data. This is chosen according to
the common 80%/20% rule. To optimise the model, we vary the
dimensions of the encoder and the decoder. The dimensions of the
encoder and decoder are varied from 1 to 3, because our data has
three features. A challenge we face is that the loss function used
in the training measures the match at the same time step, and the
network is optimised according to that loss. This is slightly different
from the metric we use in our evaluation. Therefore, we have to
train the model many times to get a good result.

We run a series of experiments. In experiment 1, we generate
random outputs according to the data distribution and match it
against the ground truth output in order to establish a baseline
performance. In experiment 2, we perform training and testing
with our entire dataset in order to observe how well our model
learns. In experiment 3, we do ablation studies. Here, we replace
certain features with random values to observe how much the
model learns about the structure of the data and how each feature
affects the performance of the model. In experiment 4 and 5, we
train the model with one speaker only and then we test it the other
speaker in order to find out whether the model is generalisable to
the other speaker of the same conversation. It should be noted that
conversation partners are known to align their speech prosody [14].

In experiment 1 (random output), we generate random out-
puts according to the probability distribution of the gesture classes,
while completely ignoring the prosody input. Specifically, we mea-
sure two sets of probabilities, namely the probabilities that a sample
is started by a particular class and the probabilities that a class fol-
lows another (or the same) class. This is done because our data
consist of sequences, where an element affects the element at the
next time step. We match this result against the output from out
ground truth. We do this 50 times and we measure the mean of their
performances. This can be seen as an extremely simple predictor
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Table 1: Results

Random output result (result 1)
Alignment Insertion Deletion

Beat 0.084 1.043 0.945
NonBeatStroke 0.228 0.746 0.78

NonBeatNonStroke 0.232 0.655 0.775
NoGesture 0.464 0.629 0.509

Suffix 0.964 0.015 0.011
Trained and tested with the entire data (result 2)

Alignment Insertion Deletion
Beat 0.494 3.494 0.519

NonBeatStroke 0.568 0.38 0.459
NonBeatNonStroke 0.234 0.141 0.683

NoGesture 0.559 0.52 0.235
Suffix 0.997 0 0
All input features are randomised (result 3)

Alignment Insertion Deletion
Beat 0 0 1

NonBeatStroke 0.304 0.52 0.914
NoGesture 0.455 0.556 0.669

Using intensity only (result 4)
Alignment Insertion Deletion

Beat 0 0 1
NonBeatStroke 0.577 0.629 0.823
NoGesture 0.68 0.937 0.508
Using F0 and the F0 direction score only (result 5)

Alignment Insertion Deletion
Beat 0.375 3.181 0.594

NonBeatStroke 0.787 0.464 0.486
NoGesture 0.568 0.617 0.268

Using F0 only (result 6)
Alignment Insertion Deletion

Beat 0.766 3.869 0.594
NonBeatStroke 0.66 0.418 0.488
NoGesture 0.547 0.589 0.287

and thus can be seen as the baseline result. The result is in table 1
result 1.

In experiment 2 (training and testing with the entire data),
we train and test the neural network model with the entire data
with the 80% and 20% split mentioned earlier. Note that in this data,
we have two speakers. We mix and shuffle the data, and then split
them into training, validation, and testing data. The result is in
table 1 result 2.

In experiment 3 (ablation study), we want to observe how
much the model we obtain in experiment 2 learns about the struc-
ture of the data and how each feature affects the performance of the
model. In order to do that, we use the model and data used in ex-
periment 2, but we replace the some or all input features (intensity,
F0, and F0 direction score) with random values.

In the 1st sub-experiment, in order to observe how much the
model learns the structure of the data, we randomise all input
features (table 1, result 3). This way, we force the model to make
“educated guesses” about the outputs without being able to know

Table 2: Results (cont)

Using F0 direction score only (result 7)
Alignment Insertion Deletion

Beat 0 0 1
NonBeatStroke 0.346 0.555 0.918
NoGesture 0.437 0.573 0.623

Trained with the 1st speaker
tested on the 2nd speaker (result 8)

Alignment Insertion Deletion
Beat 0.553 2.076 0.489

NonBeatStroke 0.604 0.479 0.47
NoGesture 0.54 0.369 0.248

Trained with the 2nd speaker
tested on the 1st speaker (result 9)

Alignment Insertion Deletion
Beat 0.41 3.38 0.413

NonBeatStroke 0.487 0.553 0.601
NoGesture 0.49 0.4 0.107

what the inputs are. Unlike in experiment 1 where the random
outputs are generated based on two explicitly-set probability distri-
butions, here we use a model whose prediction ability comes only
from the training.

In the subsequent sub-experiments, we keep some features while
randomising the others in order to find which features are tied
to gesture classes. In the 2nd sub-experiment, we keep only the
intensity (table 1, result 4). In the 3rd sub-experiment, we flip the
condition, so we keep the F0 and F0 direction score (table 1, result
5). After that, to isolate the individual effect of the F0 and the
F0 direction score, we keep the F0 only (table 1, result 6) and F0
direction score only (table 2, result 7).

In experiment 4 (trained with the 1st speaker, tested on
the 2nd speaker), we train the model with the 1st speaker, and
then we test it on the 2nd speaker. In experiment 5 (trained with
the 2nd speaker, tested on the 1st speaker), we flip the condi-
tion. The results of both experiments are in table 2, result 8 and 9.
We do both experiments 4 and 5 to find whether the trained models
are generalisable to the other speaker of the same conversation.

7 DISCUSSION AND CONCLUSION
We observe in the performance of the random output (table 1, result
1), not all classes are equally easy to predict. For example, “Beat”
with the alignment score of 0.084, is harder to predict than all other
classes. The “Suffix” class is easy to predict, but is a mere auxiliary
class we add as a workaround of a technical constraint, so this class
has no significance.

In the performance of the model which is trained and tested with
the entire data (table 1, result 2), we observe that its alignment score
outperforms the random output (table 1, result 1), except on the
“suffix” and “NonBeatNonStroke” classes. Nevertheless, the model
outperforms the random output's alignment scores on the “Beat”,
“NonBeatStroke”, and “NoGesture” classes which suggests that the
model can predict those classes based on the intensity, F0, and F0
direction score.
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In our case, the difficulty of predicting “Beat” is partly explainable
by the lack of data. “Beat” occurs rarely in the corpus, therefore the
difficulty of predicting it is expected. This leads us to the question on
whether we would be able to predict “Beat” better if we have more
data. Although “Beat” is known to be related to prosody [20], we are
not aware of any prior work which attempts to distinguish “Beat”
from other gestures; for example, [7, 17] only use prosody as their
inputs, which means they implicitly assume that all gestures are
“Beat”. Besides that, “Beat” are not necessarily performed by hands.
“Beat” can also be performed by head or facial movements [5, 12, 16];
head nods and raised eyebrows often punctuate pitch accents. Our
corpus does not have head nor facial movement annotation, which
means we lose some information. Indeed, the incompleteness of
the corpus and the nature of our errors are problems we want
to investigate. It is possible that this absence of head and facial
movement annotation contributes to the difficulty of predicting the
“Beat”.

On the “NonBeatStroke” class, our predictor is able to surpass
the random output generator. This class encompasses the stroke
of all communicative gestures except beat gestures. Our model is
able to predict where a gesture stroke (other than beat) is aligned
with the acoustic features we considered. This phase is well-studied
in gesture literature as it carries the meaning of the gesture. This
phase usually happens at around or slightly before the pitch ac-
cent [20]. In our case, we have the F0, intensity, and the F0 direction
score features as our input. Pitch accents are characterised by these
acoustic features, but not solely by them. Using only these three
acoustic features may not allow us to fully capture where pitch
accents occur.

On the “NotBeatNonStroke” class our model does not do the
prediction well. As a recall, this class contains all the gesture phases
(e.g., preparation, hold, retraction) except the stroke phase for all
gestures but the beats. Indeed, in all our experiments, we never
obtain a good alignment on this class. This class is made of different
gesture phases that may not correspond to the same prosodic profile.

Ourmodel predicts well the “NoGesture” class. This class predicts
when no gesture occurs. We select our samples only when the
person is speaking. This class allows us to predict when the person
is speaking without gesticulating.

In our 1st ablation study, where we replace the entire speech
prosody input with random values and use in on the trained model
(table 1, result 3), we observe that it completely fails to predict “Beat”
(deletion score of 1) while its performance on “NonBeatStroke” is
slightly better than the random output one (alignment score of
0.304 against 0.228). On the other hand, its alignment score on
the “NoGesture” class is similar to the random output. This result
suggests that “Beat” is tied to speech prosody as reported in the
literature [20]. For the “NonBeatStroke” and “NoGesture” the result
suggests that the model did learn the distribution of the gesture
class. Unlike the random output in the table 1 result 1 where the
distribution is given, the model “knows” the distribution of the data
only from the learning.

In the sub-experiment where we use the intensity alone (table 1,
result 4), we find again that the model completely fails to predict
“Beat”, which suggests that “Beat” is not tied to intensity alone.
However, “NotBeatStroke” and “NoGesture” alignment scores are
similar to the performance of the model when it is tested with

all input features (table 1, result 2), which suggests that these two
features are tied to intensity. Finally, we find that with only F0 (table
1, result 6), we get alignment scores which are similar to what we
get when we use all input features. It suggests that F0 is tied and
is very pertinent to the “Beat”, “NonBeatStroke”, and “NoGesture”
classes. It should be noted, however, that the three features we
use, namely F0, F0 direction score, and intensity are not necessarily
independent to each other, especially in the case of natural human
conversation which we deal with. This ablation study is to find
which features are more relevant to our task, namely gesture class
prediction.

In experiments 4 and 5 where we train the model with one
speaker and test it on the other speaker of the same interaction
(table 2, result 8 and 9), we find that the models outperform the
random output (table 1, result 1), which suggests that some general-
isability exists even-though people have different gesturing styles.
These results may also be due as participants in a conversation tend
to align to each other [21].

Currently, we do the prediction based only on the prosody. Some
prior works rely also on prosodic features [7, 17]. Some other prior
works do the prediction based only on the text [1, 4]. Based on
this state, one interesting and relevant research question is how to
combine both modalities. In the future, we intend to go into this
direction.

8 DISCLAIMER
As of 30 January 2020 when this work is submitted for WACAI 2020,
an almost identical version of this work is also being reviewed for
a submission for ICME 2020.
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