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Abstract 

The potential of spatially resolved spectroscopy (SRS) for in situ monitoring is evaluated in this 

work. SRS is based on near-infrared spectroscopy. It is well adapted to heterogeneous systems and 

collects information about both physical and chemical properties. In this work, the polymer 

content in emulsion copolymerization is predicted using SRS. The reaction was first carried out in 

batch mode for particle nucleation followed by semi-continuous monomer addition under starved 

conditions to allow particle growth. SRS and Raman spectroscopy are compared, and the 

advantages and disadvantages of both methods are highlighted, revealing that each method has 

its own benefits. Different operating conditions were varied, including the monomer ratio, the 

surfactant mass fraction and the agitation speed. Regression models were developed using partial 

least square for both techniques. 

1. Introduction 

Online monitoring is essential in order to ensure the process security, increase its productivity and 

control the final product properties. Monitoring can be done at-line by employing a sampling loop, 

or in-line using in situ probes. The latter method is simpler to install and is more representative of 

the reaction medium as it does not imply changes in the process characteristics like temperature 

or shear. Different types of processes in pharmaceutical [1]–[3] and chemical industries [4]–[6] 

have been successfully monitored online, for both homogeneous and heterogeneous systems. 

Emulsion polymerization is a heterogeneous process for which monitoring is essential in order to 

predict changes in the operating conditions and be able to reconfigure the operation. Usually, it is 

desired to measure the different concentrations of monomer(s), polymer and surfactant as well as 

key product properties like the polymer molecular weight or the particle size. However, the 

multiphase aspect of the reaction medium represents an added challenge for its precise 
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monitoring. Calorimetry is historically the most widely used technique for online monitoring of 

polymerization processes due to the exothermic nature of the reaction. For instance, it has been 

used to monitor the monomer conversion and the copolymer composition in butyl acrylate-

styrene, acetate-butyl acrylate [7] or vinyl acetate-butyl acrylate [8] copolymerization systems, 

and to monitor the reaction rate in emulsion polymerization of styrene [9].  The conductivity was 

also introduced to monitor the concentrations of ionic species and their partitioning between the 

different phases, and thereby to deduce the different reaction steps in emulsion polymerization 

(i.e. nucleation, growth of particles, coagulation, and monomer-saturated and unsaturated 

intervals) [10]. However, monitoring by conductivity is limited for ionic surfactant. 

Spectroscopy has increasingly been used for online monitoring of polymerization systems, mainly 

Raman, mid infrared (MIR) and near infrared (NIR) spectroscopies [11], [12]. Such techniques use 

probes that can be inserted in an existing reactor with no need of sampling. Raman spectroscopy 

has been widely used in emulsion polymerization due to the low interference of water in the 

measurement [13], [14]. For instance, Elizalde et al. (2004) showed that Raman spectroscopy 

provides better results, under starved conditions and high solid content, than calorimetry in terms 

of monitoring of the monomer conversion and free monomer concentration in the 

copolymerization of vinyl acetate/butyl acrylate and butyl acrylate/methyl methacrylate [15]. 

Regarding NIR spectroscopy, it provides information similar to MIR spectroscopy with the 

advantage of being more energetic and so it is easier to implement online but it generates 

overlapping and harmonic vibrations which are more complex to interpret and therefore requires 

the use of advanced chemometrics to treat the data. Gossen & Al (1993) [16] were among the first 

to use it to predict the conversion in a copolymerization process of styrene and methyl 

methacrylate. 

NIR spectra contain chemical information like the monomer or polymer concentrations (from 

which the monomer conversion can be calculated) [17] as well as some physical information 

related to the size and morphology of particles  since it is sensitive to the diffusion of photons in 

the medium [18]. In order to benefit more from the information contained in the diffused photons 

to access physical characterization of the medium, spatially resolved spectroscopy (SRS) was 

developed, based on NIR spectroscopy. In SRS, data is collected at different angles from the 

excitation light source in order to collect both the transmitted and diffused light. SRS has been 

successfully used in food [19], pharmaceutics [20] and chemical applications, like silica 

precipitation [21]. Emulsion polymerization consists of a heterogeneous medium that generates 



strong light diffusion related to particles, for which the SRS is well adapted. The aim of this work is 

therefore to determine the efficiency of monitoring the polymer content using SRS and to 

investigate the impact of each angle. Raman spectroscopy is also employed for comparison. 

Raman is not as sensitive as NIR to the physical characteristics of the medium and is therefore 

mainly sensitive to its chemical composition. The polymer content constitutes a good indicative of 

the progress of the reaction, as the monomer conversion can be calculated from it, which 

represents the first desired information in polymerization processes. 

The paper is organized as follows: first of all, the SRS & Raman spectroscopies are presented and 

regression models are developed to predict the polymer mass fraction for each method. Both 

methods are implemented for online monitoring in emulsion copolymerization of butyl acrylate 

and methyl methacrylate under different operating conditions. The advantages and drawbacks of 

the SRS and the Raman spectroscopy are discussed. 

2. Materials and method 

2.1 Materials 

The used monomers are methyl methacrylate (MMA, Acros Organics, 99%, stabilized) and butyl 

acrylate (BuA, Acros Organics, 99+%, stabilized). Small amounts of acrylic acid (AA, Acros Organics, 

98% extra pure, stabilized) were added to enhance the nucleation and radical capture. The 

initiator was potassium persulfate (KPS, Acros Organics, 99+%). The monomers and initiator were 

stored in a fridge until used. Sodium dodecyl sulfate (SDS, Fisher Chemical) was used as ionic 

surfactant. Deionized water of 18 M cm resistivity was used throughout the work. 

2.2 Ab initio semi-continuous polymerization experiments 

A 1 L reactor was used with mechanical stirring between 300-400 rpm using a three blades 

Bohlender propeller. The reaction started by a batch polymerization period during which polymer 

particle nucleation took place, followed by a semi-continuous period to allow their growth. First, 

the SDS was dissolved in 800 g of water in the reactor and degassed using nitrogen for 30 min 

under stirring. The mixture was at the same time heated to 70 °C using a thermostated bath with 

silicon oil. Then, 40 g of a MMA/BuA/AA mixture was added and the polymerization was initiated 

by adding 1.6 g of KPS. During the reaction, the nitrogen gas flow was moved above the reaction 

medium, to the top of the reactor, to maintain saturation of the gaseous atmosphere with 

nitrogen. After particle nucleation, semi-continuous monomer addition was started by adding 

160 g of the monomer mixture at a flow rate of 0.02 g/s. With this flow rate, starved conditions 



are achieved thus ensuring monomer consumption with no accumulations inside the reactor. 

Samples were collected at specific time intervals to measure the solids content (i.e. mass fraction 

of solid) using a thermobalance (Mettler Toledo LJ16) and the particles size distribution was 

measured using a dynamic light scattering (DLS, Malvern Nano ZS®). The mass of surfactant and 

initiator were subtracted from the solid content to calculate the mass fraction of polymer. 

2.3 Design of experiments 

A design of experiments was done by choosing to vary different operating conditions, mainly the 

fraction of monomers, the amount of surfactant, the stirring rate and the impact of adding AA. The 

surfactant concentration was chosen in a way to start the reaction above the Critical Micellar 

Concentration (CMC, which is about 3.1 g/L for SDS at 70°C). In Table 1, the surfactant 

concentration is expressed in mass percentage according to the mass of monomer (MMA and 

BuA). The stirring rate was investigated to determine its effect on the quality of mixing and the 

measurement by the probes. The monomer composition was varied in a way to have the reaction 

temperature in some cases below and in others higher than the copolymer glass transition 

temperature (Tg). This allows to detect different adhesion or sticking behaviors on the probes. Fox 

equation (1) was used to estimate the monomer composition in a way to have different glass 

transition temperatures and thus different polymer properties: 
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As a result, eleven runs were carried out with different operating conditions (Table 1). The first run 

is considered as a reference. The design of experiment was then built on small variations of 

parameters around this reference to evaluate how the spectroscopy is sensitive to these 

variations. 

Table 1: Operating conditions of the different emulsion copolymerization runs 

Run MMA (%) BuA (%) AA (%) n (rpm) Surfactant (% wt) 

1 75 25 1 350 7.5 

2 75 25 1 300 5 

3 70 30 0 400 10 

4 75 25 1 350 7.5 

5 70 30 0 300 10 

6 80 20 1 300 10 

7 75 25 0 400 5 

8 75 25 1 350 7.5 

9 75 25 1 350 7.5 

10 70 30 0 300 5 

11 70 30 1 400 5 



 

2.4. Raman spectroscopy 

A Raman spectrometer OceanOptics® (QE65000) was used for in situ measurements at an 

excitation wavelength of 785 nm. The spectrometer is equipped with an Inphotonics immersion 

probe with a diameter of 9.5 mm and a working distance of 0.5 mm. The integration time was set 

to 1 minute, with a boxcar width of 1 and an acquisition frequency of 1 spectrum per minute. The 

wavelength region covered was from 500 cm-1 to 3620 cm-1. The region before 500 cm-1 was 

eliminated to remove the Rayleigh scattering from the spectrum. 

2.5 SRS spectroscopy 

A multiangle probe Sam-Flex (Indatech®, Chauvin Arnoux) was connected to a spectrometer from 

Indatech® (Hyternity) which is composed of a NIR camera coupled with an InGaAs detector. The 

measurement was done simultaneously at four angles with a 3 mm pathlength. These angles 

consist of: one angle in the transmission direction, i.e. at 180° (according to the light source), two 

angles in scattering directions at 170° and 175°, and one angle in the backscattering direction at 

30° (Figure 1). The NIR spectral domain was from 871 nm to 1723 nm, with a 3 nm interval, for 

each angle. 

Physical attenuators were set manually and used at 180° and 175° in order to avoid saturation of 

the signal at this angle and still collect good signal at the other angles. 

 

Figure 1: Measurement angles inside the SRS probe 

2.6 Chemometrics 

The chemometrics employed in this study are based on the partial least square (PLS) regression 

using the Nonlinear Iterative Partial Least Squares (NIPALS ) algorithm [22]. The PLS regression 

uses a combination of the different Raman shifts or wavenumbers in the NIR region and linearly 



correlates them to the polymer fraction in this work. All the chemometrics part was done using 

MATLAB R2017b®. 

3. Results and discussion 

Figure 2 shows the evolution of the reaction rate, with the different samples, as a function of time 

in the different runs. At the beginning of the reaction, different reaction rates are observed 

because of the different compositions in monomers. However, when the semi-batch period starts, 

the reaction rate of the different runs is similar because the reaction is done under starved 

conditions, and therefore the reaction rate is determined by the monomer addition flowrate. The 

observed fluctuations in this range are possibly caused by the variations of the pump used for the 

introduction of monomers. It is required to predict the effect of the changes in the different 

parameters on the reaction, or on the monomer conversion, which have to be monitored by the in 

situ probes. The progress of the reaction can be determined by monitoring the concentration of 

residual monomer or the quantity of formed polymer. 

Figure 3 shows the number of particles per liter (measured by NanoZS) as a function of the 

polymer fraction for the different runs. It can be seen that the main parameter affecting the 

number of particles is the concentration of surfactant. As expected, a higher surfactant 

concentration leads to the formation of a bigger number of particles. It is hard to detect an impact 

of the presence of acrylic acid on the monomer conversion or the number of particles in these 

experiments, probably due to its low concentration. Similarly, the effects of the monomer 

composition and the stirring rates on the number of particles are negligible in the investigated 

ranges. 

 



 

Figure 2: Reaction rate as a function of time for the different runs 



 

Figure 3: Number of particles per liter as a function of the mass polymer content for the different 
runs 

Online monitoring has to deal with the varying process conditions of temperature, aggressive 

monomer, mixing and fouling. In the case of predicting the polymer fraction, it is essential to 

overcome the difficulties due to the reaction heterogeneity and decouple it from changes in the 

particle size and number. In the following, both the Raman and SRS spectroscopies are introduced 

and employed to monitor this system. 

3.1 Raman spectroscopy 

In these experiments, the polymer content varies between 0 and 25 % wt. The SRS probe was 

subject to fouling which did not allow to monitor well the polymer content at higher values. At the 

beginning of the batch period, the reaction rate is very high, and the polymer fraction varies 

between 0 and 5 % wt in a very short time period. The optimal acquisition time of the Raman 

spectrometer that ensured a compromise between a sufficiently high intensity without saturating 

the signal, was found to be 1 min. Due to this long acquisition time, the signal was found not to be 

representative of the reaction medium in the initial reaction period. The Raman spectra were thus 

treated only in the range of 5-25 % wt of polymer fraction, so mainly in the semi-batch period. 



Figure 4 shows the Raman spectra acquired every minute during the semi-batch period. The 

spectra are colored according to time, going from blue (t=0) to red. It can be seen that the whole 

spectrum evolves with time. The important chemical functions to be investigated here are the C-

O-C at 836 cm-1, the C=C at 1657 cm-1, the C=O at 1751 cm-1 and the –CH2 at 2960 cm-1. The C=C 

bound is characteristic of the residual monomers. The intensity of the band correlated to this 

bound evolves by two ways: a decrease with time because the monomer is converted into 

polymer, and an increase due to the continuous addition of monomer (semi-batch operation). Due 

to the low concentration of monomer compared to the increasing amount of polymer, and the 

presence of most monomer within the polymer particles, monitoring the C=C bound by a 

univariate treatment has proven to be inaccurate and noisy and will not be shown here. The –CH2 

bound is characteristic of the polymer formed during the reaction. However, this –CH2 bound is 

also present in the monomers, and therefore univariate treatment based on this band is not 

appropriate to predict the polymer fraction in this study. A multivariate treatment is therefore 

necessary. 

 

Figure 4: Evolution of the Raman raw spectra according to time for run 6 

 



The Partial Least Square (PLS) regression was thus used to develop a multivariate prediction 

model. The spectral ranges selected for this regression were 500-1781 cm-1 and 2794-3620 cm-1. 

No significant chemical band is present on the spectra in the area between these two regions, and 

therefore there is no need to include it. The used set of data was pretreated with a Savitzky-Golay 

algorithm [23] (15 points averaged and polynomial of second order for smoothing, and first order 

derivative). A total of 66 spectra were used. 44 spectra were used to develop the calibration 

model and the 22 remaining spectra were used for model validation. The selection was done by 

regrouping all the runs in a matrix, and 1 spectrum out of 3 was taken for model validation. The 

remaining spectra were kept for the development of the calibration model. Runs 2 and 7 were not 

used in the Raman model because many fluctuations were observed in the acquired Raman 

spectra. This can be due to the position of the probe in the reactor (e.g. relative to the agitator or 

to the monomer feed) that could not be maintained identical in all runs due to the opacity inside 

the reactor. 

In order to determine the optimal number of latent variables (LVs, i.e. the number of components 

for the regression), the root mean square error of calibration (RMSEC) and prediction 

(RMSEP)were plotted against the number of LVs (Figure 5). The optimal number of latent variables 

is the one giving the lowest RMSEP and RSMEC in order to avoid overfitting and provide at the 

same time ensure robustness of the model. Figure 5 shows that the minimal RMSEC and RMSEP 

are achieved with 4 LVs. 

 



Figure 5: Root Mean Square Error of Calibration and Prediction according to the number of latent 
variables using the PLS model applied to Raman data 

The validity of the model predictions of the polymer content for both the calibration and 

prediction samples is studied by investigating the residuals. The residuals are the differences 

between the predicted and the experimental values. Figure 6 shows the residuals of the different 

data from calibration and validation. The acceptable limit, represented with the pink dots, is 

defined by taking a confidence interval of 95% (twice the RMSEC). The calibration and prediction 

errors, were calculated respectively at RMSEC=0.70 % wt and RMSEP=0.71 % wt. The residuals 

show that the model predictions using the Raman spectroscopy are in good agreement with the 

references obtained by gravimetry.  

  

Figure 6: Residuals of the different data points predicted using PLS regression applied to Raman 
data 
 

The uncertainty of the model developed in this work (RMSEC=0.70 %) was found to be in 

agreement with the literature, with some improvements. For instance, in the work of Elizalde et 

al., an RMSECV  around 0.9 % wt was reached using online Raman spectroscopy in a similar 

emulsion polymerization process [13]. 

The established regression model was then used to investigate the influence of the varied 

parameters in the different runs on the evolution of the reaction using the online Raman data 



(Figure 7). The effect of the agitation speed can be examined by comparing runs 3 and 5, with the 

agitation speeds of 400 rpm and 300 rpm respectively (Figure 7a). Both experiments behave 

similarly as shown by offline gravimetry as well as online Raman spectroscopy predictions which 

indicates that there is no effect of the agitation speed on the uniformity of the medium, nor on 

the coagulation of particles. A small fluctuation of the predictions by Raman is observed in the 

experiment with an agitation speed of 400 rpm. This could be due to the closeness of the probe to 

the agitator, but not to the increase in the agitation speed, as fluctuations were not observed in 

other experiments realized at 400 rpm.  

Concerning the quality of the regression model, the best performance is obtained for the 

intermediate polymer content. The spectra at the beginning of the reaction (i.e. for low polymer 

content) were not treated due to the fast reaction rate which would require a different acquisition 

time as explained above. Toward the end of the reaction, the model predictions are less accurate 

for high polymer fractions which can be explained by the fact that only few points in the learning 

data contain high polymer fractions. It would therefore be helpful to complete the calibration data 

base with higher fractions of polymer. 

Figure 7b shows the prediction of runs 5 and 6 for which only the MMA (and so BuA) weight 

fraction (compared to the total mass of monomers) changed from 70 % to 80 %. At 70 % wt of 

MMA, the prediction with Raman tends to be slightly underestimated at low polymer content then 

overestimated at higher polymer content but the trend is preserved and remains acceptable. 

During the batch period, a higher fraction of MMA led to a higher reaction rate, which should be 

due to its higher solubility in water (The solubility of MMA in water is much higher than BuA, 

    
       mol.L-1 and     

       mol.L-1 at 45°C [24]) which enhances the propagation of 

primary radicals and their capture by the micelles and particles. This cannot be confirmed with 

Raman data as batch period cannot be exploited. During the semi-continuous period, changing the 

monomer composition from 70/30 to 80/20 does not lead to a significant change of the reaction 

rate. This is explained by the fact that monomer addition is done under starved conditions, 

therefore both monomers are consumed gradually without accumulation of either monomer. 

Note that the monomer addition was not started exactly at the same time for all the experiments, 

which may create a difference in the polymer fraction with time. 

Figure 7c shows the prediction of runs 4, 6 and 10 for which the surfactant concentration is 7.5 % 

wt, 10 % wt and 5 % wt respectively. As described previously (Figure 3), the number of particles 



was increasing with the surfactant concentration, which led to a slightly higher reaction rate 

during the batch period. Thereafter, a good prediction of the conversion can be observed.  

The studied parameters thus validate the robustness of the Raman model of prediction in terms of 

the various operating conditions with a RMSEC close to 0.7 % wt of polymer. In the next section, 

the SRS is employed for the same experiments in order to evaluate its potential. 

 

Figure 7 : Prediction of the polymer fraction by online Raman spectroscopy, for varying (a) 
agitation speed, (b) monomer composition, and (c) surfactant mass fraction 

 

3.2 Spatially resolved spectroscopy (SRS) 

Spatially resolved spectra were collected at the angles of 180°, 175°, 170° and 30° in the NIR 

region. However, the data collected in the transmission direction, i.e. at 180°, could not be 

exploited in this study because the signal-to-noise ratio was too low. Note that manual 



attenuators were implemented in order to avoid saturation of the receptors by the signal. 

However, this manual attenuation was too strong at the beginning of the reaction in the absence 

of polymer in order to scatter the incoming beam. But, once the reaction started, the medium 

became quickly opaque and the transmission signal decreased drastically. The bands in 

transmission were still noticeable but the noise complicated the data treatment. 

The acquisition time of SRS was much shorter than Raman, 15 s for SRS against 1 min for Raman. 

Therefore, the batch period could be investigated using the SRS to estimate the polymer fractions 

starting from 0 to 25 % wt. However, in order to allow comparison between the SRS and the 

Raman, the model was developed based on data in the range 5-25 % wt. Only the prediction was 

done on the range 0-25 % wt. Figure 8 shows the SRS spectra collected at the angles 175°, 170° 

and 30° every 15s during the reaction (from blue to red). The spectra were put one after the other, 

in an unfolded way, with each spectrum acquired in the range 871-1723 nm. The spectral intensity 

corresponds to the light received by the camera. All spectra evolve during time but, as expected 

from the NIR spectra, it contains no direct correlations to chemical structures, that can be 

interpreted directly, as it exhibits overtones and combinations of fundamental vibrations of 

infrared. The multivariate analysis is therefore required in order to develop a prediction model of 

the polymer content, as traditionally done for NIR data [27]–[29]. 



 

Figure 8: SRS spectra at angles 175°, 170° and 30°, collected during run 6, according to reaction 
time 

Runs from 8 to 11 were not used because important fluctuations were observed in the SRS spectra 

with time. This can be due to the position of the probe (close to the agitator or monomer 

introduction), the presence of bubbles into the probe, or a stability issue of the optical 

connections of the attenuators. As a reminder, for Raman implementation, runs 2 and 7 were 

rejected due to instability of data. Also note that the Raman probe is flat while the SRS probe has a 

cavity, therefore bubbles are more likely to get stuck into the SRS cavity than on the Raman probe. 

A total of 48 spectra were used, with 32 of them for the development of a calibration model and 

the 16 remaining spectra for model validation. The selection was done on a similar base as for 

Raman. 

The choice of the number of latent variables is done based on the RMSEC and RMSEP, as done 

previously for the Raman data. Figure 9 shows the RMSEC and RMSEP as a function of the number 

of LVs, where both minima are reached with 4 to 7 LVs. In this case, 5 LVs were chosen. 

 



 

Figure 9 : Root Mean Square Error of Calibration and Prediction according to the number of latent 
values using the PLS model implement on the SRS data 

Gossen & Al.[16] obtained a model with a standard error of prediction around 0.5 % wt using 

classic NIR spectroscopy. Figure 10 shows the residuals of the polymer fraction prediction using 

the SRS data. The calibration and validation data are both almost included within the interval of 

confidence of 95% (twice the RMSEC). The calibration error is around 0.43 % wt and the prediction 

error is around 0.50 % wt, so similar to classic NIR spectroscopy obtained in the literature. This 

limit is better than that obtained by the Raman predictions. Note that classic NIR spectroscopy is 

usually obtained from transmission at 180°, or by back scattering at 0°. The SRS spectrum, without 

the angle at 180°, does not include direct transmission information. However, the information is 

still contained with the other angles as photons are necessarily transmitted in multiple 

pathlengths before being deflected making the transmission information partially present. 

Therefore, even in the absence of the direct transmission information at 180°, the model 

predictions by the SRS can be equivalent to classic NIR and the addition of this information would 

probably provide a better model. 



 

Figure 10: Residuals of the different data points of the polymer mass fraction predicted using PLS 
regression implemented on the SRS data 

 

The influence of the different process parameters could then be investigated using the SRS 

predictions. Figure 11a shows the results of runs 3 and 5 with an agitation speed of 400 and 300 

rpm respectively. It was concluded above, based on gravimetry and particle size measurements, 

that the stirring rate in the investigated region does not have any effect on the reaction rate nor 

on the product properties. Figure 11a also indicates that the stirring rate does not influence the 

performance of the probe in this region. A higher precision is obtained using the SRS compared to 

the Raman spectra for these two experiments, as both experiments follow exactly the same trend 

without any fluctuation. This confirms that the fluctuations observed in run 3 by the Raman probe 

are not due to a change in the reaction medium but only to a phenomenon correlated to the 

Raman probe and its position in that experiment. Note that the predictions of the SRS are good 

also in the high polymer fraction region, while a bias was systematically obtained in this region 

using the Raman spectra. 

Figure 11b shows the predictions of runs 5 and 6 where the MMA weight fraction total amount of 

monomer was 70 % and 80 % respectively. A good prediction of the polymer content is obtained 

for both experiments by the SRS-based model. The SRS predictions indicate a faster reaction with 



the higher fraction of BuA. Only in run 6 (with MMA weight fraction of 80 %) a significant bias is 

observed at the end of the reaction. This could be due to latex fouling in the gap of the SRS probe 

that was observed at high solid content. Note that the Raman probe is flat and does not contain 

any gap, and would possibly be less prone to fouling. 

Figure 11c shows the predictions of runs 1, 2 and 4 with surfactant mass fraction of 7.5 % wt, for 

runs 1 and 4, and 5 % wt for run 2. A good prediction is obtained for all surfactant mass fractions 

and no impact of the surfactant fraction, which is correlated to the number of particles (cf. Figure 

3), is observed. 

 

Figure 11: Prediction of the polymer content using the SRS, for varying (a) agitation speed, (b) 
monomer composition, and (c) surfactant mass fraction. 



3.3 Comparison of Raman and SRS 

Different conclusions can be drawn when comparing the predictions of the polymer fraction by 

the Raman and SRS spectroscopies. Figure 12 shows the predictions of runs 1, 3, 4, 5 and 6 that 

were monitored and treated by Raman and SRS. 

In general, a greater accuracy is obtained using the SRS for all runs, except at the end of run 6 as 

discussed previously. Also, the SRS presents a more stable signal and less fluctuations with time 

than the Raman. For instance, the results of run 3 are much less accurate using Raman than using 

SRS, and the fluctuations observed in the Raman spectra are not representative of the process, as 

they do not appear in the gravimetry or particle size measurements. Also, with the Raman 

spectrometer used here, the optimal integration time was one minute, which did not allow us to 

monitor efficiently the initial batch period, where the reaction rate is very high and averaging the 

spectra over one minute is not adapted. Furthermore, the models could not be established with 

reasonable error for the initial 2 minutes due to the lack of reference data in this period. Even with 

the absence of reference data, the SRS could predict well the polymer mass fraction in the 

nucleation period. 

However, the SRS probe showed more difficulties related to the presence of air bubbles that were 

difficult to remove. This made a portion of the runs useless. Installing the SRS probe on an incline 

in the reactor would probably prevent bubbles from sticking in the measurement gap. For the 

Raman, no air bubbles stayed stuck on the probe as it is flat. Raman spectroscopy could therefore 

be used more systematically, though with a lower precision. Using a Raman spectrometer with a 

higher signal to noise ratio (or resolution) would certainly improve the prediction quality. 

It is reasonable to suppose that combining the Raman and SRS data to build a calibration model 

would provide a better prediction accuracy. Merging the data sets should be done in an 

appropriate manner to be efficient. However, in this system, no real gain in terms of predictive 

capability was obtained. Instead of combining the benefits of the two techniques, the combined 

prediction accumulated the problems met with the two making the system less robust. 

Furthermore, from a practical point of view, combining the two techniques for process monitoring 

would constitute an expensive monitoring solution. 



 

Figure 12: Predictions of the polymer fraction for runs 1, 3, 4, 5 and 6 using SRS and Raman 
spectroscopy 

4. Conclusions 

The use of spatially resolved spectroscopy was evaluated in emulsion copolymerization of MMA 

and BuA and the results were compared to Raman spectroscopy. It is shown that the prediction of 

the polymer fraction by SRS provides at least similar results as classic NIR, even though the direct 

transmission information at 180° could not be used in this work. Also, the SRS generally provided 

better predictions compared to Raman spectroscopy. The prediction was robust to changes in the 

agitation speed and could detect small changes in the evolution of the polymer fraction when 

changing the MMA/BuA ratio. In the investigated scope, as the reaction takes place under starved 

conditions, the surfactant mass fraction had little impact on the reaction rate in the semi-

continuous period, where the monomer feed becomes the limiting factor.  

The data used for the models contains polymer fractions up to 20 %. The Raman model was 

however less efficient at higher polymer fractions. It would be good to include data with much 

higher polymer fractions to make the model more precise over a wider range of variation.  

This work demonstrates the potential of the SRS for online monitoring of emulsion polymerization. 

It is highlighted that the geometry of the probe may lead to bubbles getting stuck within the 

measurement gap. Therefore, the positioning in a process loop should be well thought of. Latex 

fouling into the probe at high polymer fractions is also a risk, so proper cleaning protocols should 

be established for industrial online applications. In order to solve this problem of attenuation at 



the transmission angle, the possibility of using automated attenuators is developed by the 

manufacturers of the SRS spectrometer. 

The interest of the SRS is to obtain both chemical and physical information at the same time. The 

capacity to monitor chemical properties has been demonstrated in this paper. The case of physical 

information, like the diameter of particles, will be detailed in another paper. 
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