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ABSTRACT: Emulsion polymerization reactors usually operate under starved conditions to better control
the polymer properties and keep a safe operation. The main drawback is the low productivity obtained.
In this work, we optimize offline the flowrates for semi-batch emulsion polymerization of styrene under
starved conditions and keeping the reaction under diffusion limitation in order to maximize the reaction
rate. To achieve this, we impose the maximal concentration of monomer in the particles as a path
constraint. This results in a higher reaction rate compared to starved conditions close to saturation. At
the same time, it enables safe operation by avoiding accumulation of monomer that may react

hazardously at the end of the reaction, once the gel effect occurs. Therefore, we show that high



productivity can be obtained by operating the reactor under starved conditions. We compare the
optimal recipe under diffusion limitations with the benchmark of keeping the concentration of
monomer in the polymer particles close to saturation and with constant feeding flowrates. We find
consistent improvement of both the average reaction rate and the amount of polymer produced in the

optimized strategy.

1. INTRODUCTION

Optimization and control of emulsion polymerization is a timely topic. Competition in the polymer
industry implies that even a small improvement in process performance may strongly contribute to
commercial success® 2. Challenges for optimization and control include the lack of online measurements,

complex mathematical models, and different desired properties of the final products®.

Many of the emulsion polymerization reactions are run in batch or semi-batch?®, and aim to maximize
the polymer production rate, minimize the batch time, and obtain desired polymer properties. It is
frequently necessary to use indirect measurements to control the polymer properties that cannot be
measured online, such as the molecular weight or the particle size distribution (PSD)*> ®. Moreover, it is
necessary to respect process constraints for safe operation, e.g., avoiding high temperatures that may
result in thermal runaway. Dimitratos et al.” present the main challenges in the control of emulsion
polymerization reactors and Asua® highlights the main topics of the field, including, among others, the
development of mathematical models, new sensors and methods for online monitoring, and tools for

control and optimization.

Mathematical models for emulsion polymerization are usually complex, with many parameters and
rate coefficients that are difficult to obtain independently and accurately®. Moreover, simulation of
these models must be fast and robust in order to be employed within online/offline optimization

methods®. Dynamic models have been employed by many authors®* %% to find optimal operation



strategies of semi-batch reactors for styrene polymerization. The typical objective in optimization is to
maximize the reactor productivity, while obtaining a polymer with desired properties and keeping a safe

operation® 1% 7

. In order to have a better control of the reactor temperature and the polymer
properties, the reactor usually operates under starved conditions, which however results in low
productivity’®2. The reduction in the reaction rate is usually due to the implementation of a small time-
constant monomer flowrate, which is calculated to avoid saturation at the beginning of the semi-batch

period. Herein, we demonstrate that high reaction rates can be obtained under starved conditions by

restricting the concentration of monomer in the particles.

Recently, Brunier et al.'® combined different models from literature for the second (saturated) and
third (starved) intervals of emulsion polymerization of styrene and identified their parameters. The
model consists of mass balances for monomer, polymer, initiator and emulsifier. It takes into account
the evolution of the particle size distribution by growth and the gel effect as a function of the monomer
concentration. Indeed, particle growth depends on the concentrations of monomer and radicals in the
polymer particles. The concentration of radicals in the polymer particles, in turn, depends on radical
capture by the polymer particles, radical desorption from the polymer particles to the aqueous phase
and bimolecular radical termination by recombination within the particles. A decrease in the
concentration of monomer is known to influence radical diffusion in the polymer particles, leading to a
decrease in bimolecular radical termination, and in extreme conditions to the gel effect, where a high
reaction rate is obtained. Therefore, operating under diffusion limitation can increase the reaction rate
when compared to operation under saturated conditions. The authors'® provide a precise identification

of this region.

In this work, we focus on the offline dynamic optimization of a semi-batch emulsion polymerization
for the production of polystyrene taking into account the experimental findings in the work of Brunier et

al.’8, We determine optimal feeding rates of monomer that maximize the amount of product at a



defined final time. In contrast to previous works in the literature® 1 1!

, we do not keep the
concentration of monomer inside the particle close to the thermodynamic saturation limit. Instead, we
control the reaction under diffusion limitation by maintaining this concentration below the limit
identified by Brunier et al.!®. To achieve this, we introduce a path constraint in the optimization
problem. Most control works neglect the diffusion limitations in the model and assume monodisperse
particles, which lead to non-optimal operating conditions. We show that keeping the concentration of
monomer in the particle at lower levels results in higher reaction rates than keeping it close to
saturation as assumed by previous works* 1% 11, This is a particularly important result because it shows

that it is possible to operate under starved conditions with high productivity by appropriately adjusting

the monomer flowrate over time.

Additionally, the proposed strategy avoids the undesired gel effect in the end of the reaction. This is
accomplished by keeping the operation under starved conditions (i.e. diffusion controlled) and achieving
a high reaction rate that avoids the accumulation of monomer in the reactor. By avoiding the monomer
accumulation, the safety of the reactor operation is enhanced. Indeed, in case of monomer
accumulation in the reactor, soon or later its concentration will decrease, and the diffusion limitations
will appear. In this case, the reactor still has a lot of monomer that will react suddenly, increasing
significantly the reaction rate (usually called gel effect or Trommsdorff—Norrish effect), which can be

dangerous.

We validate the optimal feed rates calculated by offline optimization of the dynamic model
experimentally, i.e., we perform experiments using the optimized feed rates and compare with the
expected results. We confine this work to offline methods and keep the investigation of an online

optimization strategy for a future work.



The remaining of this article is as follows. In Section 2, we briefly introduce the model of the process.
We give in Section 3 a description of the experimental setup followed by the optimization scheme in
Section 4. Section 5 presents the main results and a discussion. Finally, we give a summary and

conclusions in Section 6.

2. POLYMERIZATION MODEL

We employ the detailed model described by Brunier et al.®

in the optimization. The model consists of
a set of differential and algebraic equations that describe the broadening of the polymer particles during
Phase 2 and 3 of emulsion polymerization of styrene. It assumes that the number of particles is
constant, i.e., coagulation and nucleation of particles are avoided and it employs different reaction rate
coefficients when the polymerization occurs under diffusion limitations. We present the model
equations related to the reaction rate and diffusion limitation in Appendix A, and discuss the implication

of the different rates for the optimization of the process. We provide the full Matlab?! model in the

supplementary material.

3. EXPERIMENTAL SETUP AND OPERATION MODES

In all the conducted experiments, the monomer, styrene (Acros Organics, 99% extra pure, stabilized)
is stored in a fridge until use. Potassium persulfate (KPS, Sigma-Aldrich, minimum 99%) is used as
initiator and sodium dodecyl sulfate (SDS, Sigma-Aldrich) is used as surfactant. Deionized water of
18 MQ cm resistivity is used throughout the work. A 1L reactor is used with mechanical stirring at
350 rpm using a three blades Bohlender propeller. First, the surfactant is dissolved in water for 30 min
under stirring in the reactor at ambient temperature and degassed using nitrogen. The mixture is next
heated to 70 °C using a thermostated bath and styrene is added. The polymerization initiates by adding
1.6 g of KPS. During the reaction, the nitrogen gas flow is moved upwards off the reaction medium to

the top of the reactor to maintain saturation of the gaseous atmosphere with nitrogen.



Figure 1 presents a flowsheet of the used laboratory setup. The system has two main controllers,
where one controls the reactor temperature and the other the flowrate of monomer fed into the
reactor. The flowrate is inferred from balance measurements of the monomer container and the desired
flowrate is set manually. The temperature of the reactor is controlled by adjusting the setpoint of the
bath temperature. The reaction is monitored by calorimetry that allows estimating the monomer

conversion and the reaction rate online.

We investigate two different operation procedures, named “ab-initio” and “seeded”. In the “ab-initio”
operation mode, the polymerization reaction starts with a batch polymerization period during which
polymer particles nucleation takes place and all the initial monomer is consumed. When the reaction
stops, a sample is taken and the reactor is kept in the same operating conditions without any monomer
feeding for one hour. During this time, the particle size distribution and the mass of polymer are
measured in order to have an initial condition of the dynamic model, and thus be able to calculate the
optimized flowrates. After one hour, the semi-batch reaction phase starts with the optimized flowrate of

monomer to allow growth of the polymer particles.
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Figure 1: Flowsheet of the laboratory setup.

In the “seeded” operation mode, small polymer particles are generated first, following the same
procedure described above. Then, the resulting polymer product is divided in several samples that are
used as seeds for the semi-batch operation. The initial conditions of the system are obtained by
analyzing the fraction of polymer (i.e. the solid content) and the particle size distribution of the
generated seed. Since the second part of the reaction is run in another day, the feed flowrate does not
start directly with the optimized flowrates, but with a constant small flowrate of monomer of 0.01 g.s*
for 30 min in order to ensure swelling of the polymer particles with monomer and effective initiation of
the reaction. After this initial time, the monomer feeding flowrates calculated by optimization are

employed.

4. OFFLINE DYNAMIC OPTIMIZATION



The optimization problem maximizes the mass of polymer produced m,, at an a-priori fixed final time
tr, by manipulating the feeding flowrate of monomer F,,. The total amount of polymer produced is the
integral of the polymer reaction rate over time. Thus, for a fixed amount of monomer and assuming
complete conversion, an increase in the polymer reaction rate is equivalent to a decrease in the total
reaction time. We could instead choose to explicitly minimize the reaction time, but we would then
need to define the maximum amount of monomer added to the reactor (or the mass of polymer to be
produced) as an endpoint constraint. In both problem formulations, the minimum time is achieved
when the reaction rate over time is maximized®?, still under the assumption of complete conversion of

monomer.

The dynamic model calculates the reaction rate by different equations based on the system condition,
i.e., there is one equation for starved conditions (for [M], < [M]ls:,at) and another for saturated
conditions (for [M], = [M]f,at). Moreover, within the starved condition interval, at some concentration
of monomer, diffusion limitations appear and the termination rate coefficient (k;) is not constant
anymore (see eq. (3) of Appendix A). For [M]p higher than this limit, k; is constant similarly as in the
saturated interval. The condition, and consequently the reaction rate equation, changes according to
the concentration of monomer in the particles [M]p. Higher reaction rates can be obtained under a
diffusion limitation condition and Brunier et al.’® identified the onset of the diffusion limitations at
[M]p = 3.3 mol L. This indicates that higher reaction rates can be obtained when [M]p is lower than
this onset value. Consequently, we tested different values of [M]p‘max (3.3 mol.L'* or 2.5 mol.L?) as a
path constraint in the optimization problem in order to maximize the reaction rate and to make it robust
to potential modelling errors, since the model predictions are not exact. We formulate the dynamic

optimization problem described above as follows:



1{"2,%)15 my, (x(tf, Fm)) (1.a)

s.t.x(t,Fy) = f(x(t, Fy), t, By, (1.b)
x(to) = xO, (lc)
[M]p < [M]p,max ,V te [to,tf], (l-d)

where F, € F :== {Fm’i ER™MEO<Fp; <03gsi=1, ...,ndf} denotes the degrees of freedom of
the optimization problem arising from control vector parametrization. The objective function is the mass
of polystyrene my, at the final time, x(t) represents the states that are computed from the model

equations given by Brunier et al.18

, which are briefly described in Appendix A. The initial conditions are
denoted by x,. Eq (1.d) defines the path constraint corresponding to the maximum concentration of

monomer in the polymer particles.

4.1 Optimization Algorithm

The optimization is performed using the algorithm proposed by Fu et al.?? that guarantees the
inequality path constraints are not violated at any time during the operation. The optimization algorithm
and the model are implemented in Matlab?! version 9.0.0.341360 (R2016a, win64), using the function

fmincon as NLP solver, and odel5s as integrator.

The flowrates are discretized along the time by piecewise constant functions with a fixed interval of
10 min between the change of the flowrate. This time interval was chosen based on the settling time of
the flowrate controller available in the laboratory setup. It takes the controller 2 min to change the
flowrate from one setpoint to another, thus, using a 10-minutes interval keeps the feed rate at the
desired setpoint 80% of the time. Additionally, we tested the optimization for half of this interval (5
min), and the simulation results predict just a small improvement in the final mass of polymer produced

(lessthan 1 g).



Since we use local optimizers, good initial guesses are crucial. This is particularly important herein
because the model is discontinuous and highly nonlinear. To obtain a good initial guess, we
approximately calculate the flowrates that make [M],, the closest possible to [M], .x over time. More
specifically, we first approximately determine the flowrate by considering one interval after another and
testing discrete values of the flowrate. The idea of the initialization procedure is to keep the
concentration of the monomer in the polymer particles close to the upper bound. This may indicate that
using a simple controller to keep [M]p at a desired setpoint by manipulating the feed rate would be an
optimal solution. However, accurate online measurement of [M]p is not available as well as precise
control of the flowrate, resulting in possible violation of the constraint. Moreover, the optimization
further improves the feed policy calculated by the initial procedure and violations of the path constraint
occur when rigorous algorithms are not employed, thus, we employ the algorithm proposed by Fu et

al.?? to avoid violations.

5. RESULTS AND DISCUSSION
Two types of experiments are considered:

1) ab initio experiments where the seed is generated at the beginning of the reaction and, after a

batch period, the optimized flowrates are implemented;

2) seeded experiments where a previously prepared latex is used and, after a semi-batch period at a

constant monomer flowrate, the optimized flowrates are implemented.

Both types of experiments are practiced in industry, and for which the optimization strategy is
adapted and implemented identically. Three experiments are thus realized. In the first (seeded)
experiment, the objective is to demonstrate the main consequence of operating under saturated

conditions, that is, a strong gel effect takes place when the feed stops and the concentration of

10



monomer decreases below a critical value. In the second (ab initio) experiment, [M], may is defined as
the value of [M]p that leads to the onset of diffusion limitations identified by Brunier et al. [1] (i.e., 3.3
mol.L}), thus keeping the system under diffusion limitations. Finally, in the third experiment, we
demonstrate that the method can also be employed in seeded polymerization, but a more conservative
[M]p‘max is employed which is found to increase significantly the mass of polymer produced in a time
period. Therefore, for both “ab-initio” and “seeded” strategies, optimal feed policies can be calculated
by offline optimization. We compare the results of the second and third experiments with the
benchmark of keeping [M]p close to the saturation limit. Moreover, we show that using the same
amount of monomer with an average constant rate results in less polymer produced during the semi-

batch operation.

5.1 “Saturated” experiment

We show in this experiment the main consequence of saturating the polymer particle with monomer,
resulting in unsafe operation. In this case, the reaction is initiated with seeds produced in a previous
experiment. The full initial conditions are given in Appendix B. The concentration of monomer in the
particles is allowed to reach [M]Is,at=5.42 mol.L? and we show in Figure 2 the main results of the

experiment.

Note that an arbitrary flowrate of 0.01 g.s? is first employed during 30 min, and then the optimized
flowrate sequence starts. This flowrate sequence leads to the saturation of the polymer particles, as
estimated by the offline measurements and by calorimetry (Figure 2.b). The model predicts well the
concentration of monomer until getting close to the saturation point, where it drifts away from the
measured values. This might be due to the fact that a small error in the diffusion limitation parameters
and the onset of diffusion limitations or in the measurements of the flowrate and particle size

distribution may lead to big drifts after some time. Another model limitation is that it assumes a

11



constant number of particles and neglects possible coagulation or renucleation of particles. The creation
of new particles would affect both the concentration of monomer and the reaction rate. The coagulation
of particles reduces the number of particles and the consequent change in their size would affect the
rates of radical capture and desorption. However, measurements indicate almost a constant number of
particles in all experiments. Further studies, not covered in this work, are required to determine if
higher precisions are required in the measurements or to better identify the model parameters and the
onset of the maximum concentration of monomer in the polymer particle to ensure working under

diffusion limitations, thus to avoid fast radical termination and increase the reaction rate.

12
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Figure 2: Results for the “saturated” experiment. (a) Reaction rate and flowrates measured online and
their setpoints, together with the reaction rates calculated by the model (using the setpoints) and by

calorimetry; (b) concentration of monomer in the particles; (c) reactor and jacket temperature profile.

Due to monomer accumulation, we observe a peak in the reaction rate 150 min after the flowrate has
stopped, indicating that the accumulated monomer in the reactor reacts quickly due to the gel effect. In
order to remove the energy generated during the occurrence of the gel effect, the reactor cooling
system needs to be oversized. This is even more critical in an industrial case because the heat exchange
area per unit volume is smaller in big reactors and the dynamics of the jacket temperature slower.
Therefore, this operation policy likely becomes unsafe in an industrial size reactor, considering the

abrupt increase of the temperature, shown in Figure 2.c. In this case, the change in the temperature is

13



only 1 K because the reactor is small and the heat removal capacity of the reactor is high. Nevertheless,
the temperature controller is not able to keep the temperature controlled during the peak in the
reaction rate. This can be seen in Figure 2.c. by a significantly decrease in the jacket temperature.
Therefore, this would result in a much larger variation in the temperature in an industrial case, where

heat removal capacity is lower, in view of the reduced surface to volume ratio of the reactor.

5.2 “Ab-initio” experiment

In this experiment, the polymerization reaction is initiated without any seed (the full initial conditions
are described in Appendix B) and the experimental procedure is divided in three phases. In the first
phase, an initial batch is performed, where the polymer particles are generated. When the online
calorimetry indicates that this reaction period is finished (i.e., the reaction rate gets back to zero), a
sample is taken. The second phase is the period required to analyze the sample and calculate the
optimal feed flowrates. During this time, we measure the mass of polymer in the system (by gravimetry)
and the particle size distribution (by dynamic light scattering), providing initial conditions for the model.
We simulate the system from the time that the sample is taken to the time the feed should start. This
allows accounting for initiator decomposition that continues to take place even though there is no
polymerization. The dynamic optimization problem (1) is solved to calculate the flowrates, restricting
the maximum concentration of monomer in the particle to below 3.3 mol.L! along the entire semi-batch

part. The computed feeding policy is implemented and the third phase of the experiment starts.

We show the different phases of the experiment in Figure 3.a, together with the reaction rate along
the entire operating time, measured by calorimetry and calculated by the model. No peak is observed in
the reaction rate after the flowrate stops. We recall that in the “saturated” experiment the reaction rate
keeps an average value between 1.0 and 2.0 X 10™* mol.L'X.s™ during and after the feed and it

undergoes a hazardous gel effect at the end of the reaction. In this experiment, the reaction rate is as

14



high as 3.0 — 4.0 X 10™* mol.L™.s* during the feed, and decreases to almost zero when the flowrate

stops. Thus, it is possible to keep the reactor operating at a much higher reaction rate for a long time.
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Figure 3: Results for the “ab-initio” experiment. (a) Reaction rate and flowrates measured online and
their setpoints, together with the reaction rates calculated by the model (using the setpoints) and by

calorimetry; (b) concentration of monomer in the particles; (c) mass of polymer along the time.

In Figure 3.c, we show the mass of polymer along the operation, comparing the results of the model
with the ones calculated by calorimetry and the offline measurements made using the samples taken
during operation. The model shows a much better agreement with the measurements when compared
to the previous case where there is accumulation of monomer. However, Figure 3.b shows that the

concentration of monomer in the particles does not have a good agreement between the calculated
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concentration based on the samples, calorimetry and by simulation of the model. Even though, only one

sample at about 180 min seems to violate the constraint of [M], nax = 3.3 mol.L™.

We present in Figure 4 the reaction rate obtained by the optimized flowrates with a simulation for the
benchmark case ([M], close to [M]f,at) and for an average constant feed rate (3.8 X 10™* mol.s?,
average of the optimized flowrates over time). Note that the comparison is for the semi-batch period
(time between 160 and 220 min). The graphs of Figure 3 present the results until the time 250 min to
show that the reaction rate quickly drops after the feed stops, i.e., the reactor is operating in a safe
region, where no peak in the reaction rate occurs when the flowrate stops. However, we assume that
operation finishes at time 220 min and all unreacted monomer inside the reactor is lost. We see that the
flowrates calculated by optimization give approximately a 47 % higher reaction rate than the benchmark
and the mean flowrate. The actual mass of polymer produced during the semi-batch period with
optimized flowrates is 95 g (calorimetry) while the model predicts a production of 78 g. Simulating the
operation for the other two flowrate policies, we obtain 56 g of polymer for the mean flowrate and 59 g

for the benchmark, demonstrating a good improvement that can be obtained by optimal feed policies.
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Figure 4: Comparison of the reaction rate obtained in the experiment with the simulated ones for a
constant flowrate (average of the optimized ones) and a high flowrate that saturates de system for the

“ab-initio” experiment.

5.3 “Seeded” experiment

In this experiment, the polymerization reaction is initiated with seeds obtained from a previous batch
experiment (the full initial conditions are described in Appendix B). The initial conditions differ from the
previous experiment, mainly in terms of the PSD, which allows evaluating the methodology for a wide
range of properties and conditions. Initially, the system is activated by a small feed flowrate of 0.01 g.s
for 30 min (in order to ensure swelling of the polymer particles and reaching steady state in Rpp), and
then the optimal feed flowrate starts. The maximum concentration of monomer in the particles is
restricted to [M], max =2.5 mol.L™. A lower value (than that of the onset of diffusion limitation) is
employed because in the previous experiment, “ab-initio” in Section 5.2, the reaction rate decreased to
a lower value when [M]p = 3.3. Therefore, a lower limit should guarantee that the system operates the
entire operation time under diffusion limitation, lower radical termination, and higher reaction rate. In
this case study, the semi-batch period is from time 30 to 110 min, and we compare the reaction rate and

the mass of polymer produced only during this period.

Figure 5 presents the main results of the experiment, showing that the system does not saturate
during the feed period and that there is no peak of reaction rate after the feed stops. Moreover, the
reactor operates at a higher reaction rate during the semi-batch time in this case (Rpp =4.0-5.0x%
10~* mol.L™.s™ with [M], max = 2.5 mol.L"") than with [M]}, max = 3.3 mol.L? (Rp, = 3.0 — 4.0 x 107*
mol.L.s?). This is due to the higher diffusional limitations of radicals in this region that may not meet

and terminate, which increases their number and therefore the reaction rate.

17



For this lower concentration of monomer in the particles, the results of the model are closer to the
calorimetry as well as to the offline samples analysis, as shown in Figure 5.b. This indicates that the

modelling error is mainly due to an error in the onset value of [M]p for diffusion limitations.
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Figure 5: Results for the “seeded” experiment. (a) Reaction rate and flowrates measured online and
their setpoints, together with the reaction rates calculated by the model (using the setpoints) and by

calorimetry; (b) concentration of monomer in the particles; (c) mass of polymer along the time.

We compare again the reaction rate for the optimized flowrates with the simulation for the
benchmark case ([M],, close to [M]Sf,at) and for an average constant feed rate (4.0 X 10™* mol.s™%, which
is the average of the optimized flowrates over time). Figure 6 shows the curves for the different

flowrates and the experimental one for the optimized flowrates showing again that the optimized
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flowrates keep the reaction rate at higher levels during the semi-batch operation, except in the initial

minutes.
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Figure 6: Comparison of the reaction rate obtained in the experiment with the simulated ones for a

constant flowrate (average of the optimized ones) and a high flowrate that saturates the system for the

“seeded” experiment.

The average reaction rate over the semi-batch operation is approximately 7.2 % higher than using an
average flowrate, and 51 % higher than the flowrates that maintain the system close to saturation. In
this case, the average flowrate keeps the system under diffusion limitation during the whole operation
time, what did not happen in the previous case. By keeping the system under diffusion limitation, the
average flowrate provides a reaction rate close to the one obtained by the optimized flowrates (as
shown in Figure 6), reducing the relative gain of the optimized flowrates, although still significant. The
mass of polymer produced for the optimal feed, between time 30 and 110 min, is 190 g, and the model
predicts a production of 170 g. Simulating the system for the benchmark case and average flowrate, we

obtain a mass of polymer of 128 g and 154 g, respectively.
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5.4 Summary of results

We observe that the model has almost no error in interval lll under starved conditions. The main error
appears when we get close to the onset of diffusion limitations and under saturated conditions, as
shown in (Figure 2). The reaction rate calculated by the model for the first experiment (under saturated
conditions) is in significant disagreement with the measurement. This error can be due to the onset
value of the diffusion limitations ([M]p=3.3 mol.L') or an experimental error in the residual amount of
monomer. Only a small error in one of these values may lead to an accumulation of monomer in the
reactor, leading to a big error in the model results. A more robust measurement, by Raman
spectroscopy for instance, would be of great help to have a higher precision in the residual amount of

monomer.

Another possible justification for this behavior is that the pseudo-bulk equation, used to calculate the

number of radicals per particle (i7), might not be appropriate. Indeed, the pseudo-bulk equation is valid
for large number of radicals per particle?, i.e. when % > 1 or % > 1. 71 varied between 2.47 to 29.6

for the controlled experiments, where the system is forced to work under diffusion limitations (an
average of 5.76 for the ab initio experiment and 20.8 for the seeded experiment). However, the values
of n obtained under saturation conditions are between 0.70 and 1.82 with an average of 1.12 along the
feeding period. The increase in 71 is expected under starved conditions as diffusion limitations reduce
radical termination. This constitutes the driving force leading to an increase in the reaction rate in this
work. Table 1 indicates the values of p., kges and c. It is clear that the pseudo-bulk equation is
appropriate for the experiments under diffusion limitation, but not for the first experiment that is close

to the limit of validity of this model.

Table 1: Mean value and range of pe, kges, and c during the feed period of each experiment.

Saturated Ab initio - Optimized Seeded — Optimized
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Pe (s7) 57 (52-78) 43 (35-53) 76 (69-93)
Kges (s) 0.077 (0-0.3) 0.038 (7.8x10°°- 0.050) 0.0083 (0-0.017)
c(sY 66 (20-100) 9-24 (18) 2.6 (1.4-4.3)
pe/c (-) 1.16 2.39 29.2
Kges/C (-) 0.0014 0.0021 0.0032

Note that the suggested changes in the reaction rate may influence the polymer molecular weight
within a certain limit. In this work, the impact on the polymer molecular weight was not measured.
However, it was found in a previous work'’ that changing the concentration of monomer in the polymer
particles leads to a negligible change in the polymer molecular weight in the case of styrene (while a
higher impact was observed for methyl methacrylate). However, in case the polymer molecular weight is
also to be controlled, we need to extend the optimization strategy and use additional manipulated
variables, like temperature® or chain transfer agent' 2%, to control both the reaction rate and the
polymer molecular weight. For instance, Plessis et al.?® showed that chain-transfer agents can be used to
control the gel content and the molecular weight distribution, and Salazar et al.?’ used chain-transfer
agents to control the molecular weight distribution of emulsion polymerization of styrene under starved

conditions. Such extension is however left for a future work.

We sum up the results for both case studies in Appendix B, where we show the improvement
obtained by using optimal feed rates compared to keeping the concentration of monomer in the
polymer particle close to saturation and by employed average flowrate policies with the same amount

of monomer.

6. CONCLUSION AND FUTURE WORK
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We maximized the mass of polymer produced during semi-batch operation of emulsion
polymerization. The concentration of monomer in the particles is constrained to keep the system under
diffusion limitation and avoid the gel effect. In order to do so, a detailed model is employed to account
for radical diffusion limitations in the polymer particles as a function of the concentration of monomer.
Two operating modes are addressed, ab initio, commonly employed in laboratory experiments, and
seeded experiments, widely practiced in industry. The results show that the optimal feed flowrates
increase the polymer production when compared to the benchmark of keeping the concentration of
monomer in the polymer particles close to saturation and to a constant feed rate employing the same

amount of monomer.

Further studies are required to have a better prediction of the concentration of monomer in the
particles at which radical diffusion limitations start. A small error in this value may make the model drift
from the real situation. With a better prediction of this limit, it would be possible to calculate optimal
feed flowrates that are closer to the maximum while remaining under starved conditions, thus
maximizing the reactor production while keeping a safe operation. Moreover, further investigation is
required in order to develop online methods that could improve further the results of this work and be

robust to process disturbances.

Our experimental and computational results show that optimal operation under diffusion limitations
may almost double the reaction rate of styrene compared to saturated conditions. Such diffusion
limitations might be even higher for other emulsion polymerization systems (e.g., methyl methacrylate),
and therefore the proposed methodology has the potential to provide even better results. Thus, the
investigation of the onset of diffusion limitation for other emulsion polymerization systems and its

application to maximize the reactor productivity represents a potential future work.

APPENDIX A: POLYMERIZATION MODEL
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Brunier et al.’® presented the full model used in this work. To give an overview of the model and the
main implications on the formulation of the dynamic optimization problem in Section 4, we briefly

summarize the main equations of the model related to the reaction rate and diffusion limitation.

Mass balances

The number of moles of residual monomer, N, is obtained from the monomer mass balance in the

reactor:

ANy

Tar - m T Rephe =R

p Pw VW

where F,, is the inlet monomer flowrate and V,, is the total volume of the aqueous phase. The

polymerization rate in the aqueous phase R,  is given by

where [R],, is the concentration of radicals in the aqueous phase.

The polymerization rate in the particles Rpp is related to the particle size distribution (PSD). In

emulsion polymerization involving only particle growth (no nucleation or coagulation), the PSD can be

described by a population balance model as follows?:

oF

a(F - G)
at

rt or

Tt

where F(r,t) is the number density of particles of radius between r and r + §r at time t. G(r, t) is the

growth rate of particles of size r, i.e.

dr kp[M],MW 7(r, t)
T dt 4 p Nyt 712

where n(r, t) is the average number of radicals per particle of size r.
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The polymerization rate in the particles Rpp is given by:

kM1, [
RPP=% fo f(r, OF (r, t)dr (2)

and the density number of monomer-swollen particles per unit volume of latex is given by N =

fooo F(r,t)dr.

The pseudo-bulk model? is used to describe the PSD based on the average number of radicals per
particle 7i(r, t). In this model, the particles contain radicals that can coexist for a significant period®. In
the pseudo-bulk model, the evolution of the average number of radicals in the polymer particles can be

obtained using:

o7 _ o
S| = pe — kaesMA, ) = 2R
rt

k
where kges is the rate coefficient for radical exit, and ¢ = N;z is the pseudo-first order termination rate
AVs

coefficient between two chains. The term p. = k.[R],, represents the rate of radical entry and k. the

rate coefficient for radical entry from the aqueous phase to the polymer particles.

Diffusion limitations

When controlling the monomer flowrate, the reaction rate is first directly affected (proportionally) by
the increase in the concentration of monomer in the polymer particles. There is also an indirect (inverse)
effect of the monomer concentration on the radical concentration, which influences the reaction rate.

This is due to changes in monomer/radical diffusivity in the polymer particles.

As a first diffusional limitation, a reduction of the diffusion of long molecules (polymeric radicals) is

observed. The onset of such diffusion limitation was identified by Brunier et al.’® to be [M],=3.3 mol.L™.
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This effect is described by a decrease in the radical termination rate coefficient in the polymer

particles®.. In this work, the following relationship is used:

ke = ke, exp[—a't(wp — Wgat)] (3)

sat

where wp?" is the weight fraction of polymer in the particles under saturation with monomer, a; is a

fitting parameter and w;, is the weight fraction of polymer in the particles, given by:

Vpppp

VooPp t+ Vin, Pm

Wp

A glass effect might also take place at very low monomer fractions for polymers with high glass
transition temperature. It consists in a decrease in the diffusion of monomer or monomeric radicals in
the polymer particles and is thus described by a reduction in the diffusion coefficient of small molecules

as follows (V¢ < Vg )**

where D, is the monomer diffusion coefficient in the polymer particles under saturation, V¢ is the
critical free volume in the particles at the onset of the glass transition and V; is the free volume in the

particles given by:

where V¢ and pr are the monomer and polymer contributions to particle free volume, respectively,

given by the following semi-empirical relationships3!:

Ve, =0.025+ ay(T — Ty, ) (4)
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Vi, = 0025+ a, (T =Ty )
where an, and @y, are the thermal expansion coefficients of monomer and polymer. Ty and Tgp are the

glass transition temperatures of monomer and polymer, respectively.

The investigation of diffusion limitations is essential for the optimization of the process in order to
increase the reaction rate while keeping a safe operation. For instance, the reaction rate in eq 2 is

proportional to the concentration of monomer in the polymer particles [M],, indicating that the

p’
reaction rate is maximized for high concentrations. However, a deep investigation of the model proves
the opposite. Indeed, the number of radicals in the polymer particles (ii(r,t)) decreases when
increasing [M]p, resulting in a lower reaction rate and possible accumulation of monomer in the reactor.
Therefore, calculating the optimal operating conditions requires advanced optimization strategies where
the full model is employed and the constraints guaranteeing a safe operation for a high reaction rate are

respected.

APPENDIX B: EXPERIMENTS INITIAL CONDITION
Experiment 1

The initial conditions of “saturated” experiment are:
Mass of initiator: 1.60g

Mass of polymer: 39g

Mass of monomer: Og

Mass of water: 618g

Figure 7 shows the initial PSD.

26



]
[&)]

)
o

PSD in number(%)
= o

w

0 100 200 300 400 500 600
Diameter (nm)

Figure 7: Initial PSD of the “saturated” experiment.
Experiment 2
The initial conditions of “ab-initio” experiment, at the end of stage 1 are:
Mass of initiator: 0Og (the initial mass was 1.60 g)
Mass of polymer: 30g
Mass of monomer: 8.3g

Mass of water: 740g

Figure 8 shows the PSD at the end of stage 1.
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Figure 8: PSD at the end of stage 1 of “ab-initio” experiment.
Experiment 3
The initial conditions of “seeded” experiment are:
Mass of initiator: 1.60g
Mass of polymer: 90g
Mass of monomer: Og
Mass of water: 658g

Figure 9. shows the initial PSD.

28



[Ae]
(&3]

[a~]
o

PSD in number(%)
= o

(&3]

0

100 200

300

400 500

Diameter (nm)

600

Figure 9: PSD at the end of stage 1 of “seeded” experiment.

APPENDIX B: RESULTS COMPILATION

We compile in Table 2 the gain obtained by the optimal flowrates compared to the benchmark case

and to a constant mean flowrate.

Table 2: Compilation of results.

Case “Ab initio” “Seeded”
Mass of polymer
) z Y 95 190
Calorimetry for produced (g)
optimal flowrates Average reaction
ge reactl 286x10™* | 4.26x107*
rate (mol.L™".s™)
M f pol
a.;so Zo ymer 78 170
Simulation for produced (g)
optimal flowrates Average reaction
ge reactl 254x10~* | 3.74x107*
rate (mol.L™*.s™)
M f pol
ass of polymer 6 154
Simulation for produced (g)
average flowrate Average reaction
ge react! 1.73x107% | 3.49x 107
rate (mol.L".s™)
Simulation for the Mass of polymer 59 128
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benchmark produced (g)
Average reaction —4 4
4o 1.73 x 10 2.47 x 10
rate (mol.L".s™)
Mass of polymer
Improvement e 39 % 10 %
produced (%)
compared to a
A ;
average feed rate verage reaction 47 % 7.2%
rate (%)
Mass of polymer 0 0
Improvement produced (%) 32% 33 %
compared to
benchmark Average reaction 47 % 51
rate (%)
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Variables
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pseudo-first order termination rate coefficient between two chains (s!)

average diffusion rate coefficient of monomer or oligoradicals in the polymer particles
(dm2.s?)

monomer diffusion coefficient in the polymer particles under saturation (dm?2.s?)
representation of model equations

number density of particles (part.L?)

inlet monomer flowrate (mol.s?)

constant inlet monomer flowrate at time interval T; (mol.s™)

growth rate of particles of radius r (dm.s?)

radical desorption rate coefficient (s?)

radical capture rate coefficient (L.mol.s)

propagation rate coefficient (in water and in particles) (L.mol? s%)

radical termination rate coefficient in the polymer particles (L.mol™* s%)
pre-exponential radical termination rate coefficient in the polymer particles (L.mol* s)
termination rate coefficient in the polymer particles (L.molt.s?)

polymer mass (kg)

concentration of monomer in the polymer particles (mol.L?)

maximum concentration of monomer in the polymer particles constrained by the
optimization (mol.L?)

concentration of monomer in the polymer particles at saturation (mol.L?)
monomer concentration in the aqueous phase (mol.L})

monomer molecular weight (kg.mol?)

average number of radicals per particles of size r (-)

number of degrees of freedom of the optimization problem (-)

total number of monomer-swollen polymer particles (part)

Avogadro’s number (mol?)

number of moles of residual monomer (mol)

particle radius (dm)

polymerization rate inside the particles (mol.s.L?)
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polymerization rate in water (mol.st.L?)

Pw
[R]w total concentration of radicals in the aqueous phase (mol.L?)
t time (s)
to initial time (s)
tr final time (s)
T reaction temperature (K)
Ty, glass transition temperature of monomer (K)
Tgp glass transition temperature of polymer (K)
Vi free volume in the particles (L)
V. critical free volume in the particles at the onset of interval Ill (L)
Ve, monomer contributions to particle free volume (L)
pr polymer contributions to particle free volume (L)
V; total volume of phase j (L)
Vm]. volume of monomer in phase j (L)
ij volume of polymer in phase j (L)
Vg Volume of swollen polymer particles (L)
Wp weight fraction of polymer in the particles (-)
Wgat weight fraction of polymer in the particles under saturation with monomer (-)
X model states
X0 model initial conditions
Greek Symbols
am thermal expansion coefficient of the monomer (L.K?)
ap thermal expansion coefficient of the polymer (L.K?)
a; fitting parameters of the radical termination model (-)
At initial time interval [tg, t1] [(s), (s)]
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Atg final time interval [tr_q, t¢] [(s), (s)]

At; time interval i [¢t;, t; 1] [(s), (s)]

T constant 1 (-)

Pe rate of radical entry (s)

Pm monomer density (kg.L™)

Pp polymer density (kg.L?)
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