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Summary  

We already have extraordinarily detailed and competent accounts of the genesis of 

general relativity, and a few suggestive summaries of these accounts. This article offers a 

medium-sized, matter-of-fact account, followed by a critical commentary and a pocket-

history for the hurried physicist. It is based on an independent study of Einstein's relevant 

writings, with special attention to his continual concern with measurement and reference-

frames on the one hand and to his central requirement of a stress-based field dynamics on 

the other hand. It leads to a new evaluation of the relative importance of Einstein's 

various heuristic principles.  

 

Keywords: General relativity; Albert Einstein; reference-frames; measurement; stress-

energy tensor. 

 

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1355219818301217
Manuscript_a54b449df6554866379502b9086b8b32

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1355219818301217
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1355219818301217
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1355219818301217


 

FRAMES AND STRESSES 

IN 

 EINSTEIN'S QUEST  FOR A GENERALIZED THEORY OF RELATIVITY 

 

Summary  

We already have extraordinarily detailed and competent accounts of the genesis of 

general relativity, and a few suggestive summaries of these accounts. This article offers a 

medium-sized, matter-of-fact account, followed by a critical commentary and a pocket-

history for the hurried physicist. It is based on an independent study of Einstein's relevant 

writings, with special attention to his continual concern with measurement and reference-

frames on the one hand and to his central requirement of a stress-based field dynamics on 

the other hand. It leads to a new evaluation of the relative importance of Einstein's 

various heuristic principles.  

 

Keywords: General relativity; Albert Einstein; reference-frames; measurement; stress-

energy tensor. 

 

 

Introduction 

By mid-1912 Albert Einstein had the idea of a generalized theory of relativity based on 

generally covariant equations for the coefficients of a pseudo-Riemannian, 4-dimensional 

metric. In retrospect, this idea should have quickly led him to general relativity as we 



know it. Yet it took him almost four years of outwardly useless detours to arrive at this 

theory. Whereas historians normally focus on the emergence of new constructive ideas, in 

the present case they feel compelled to to explain why these ideas did not sooner lead to 

the now expected result. This unusual challenge has attracted some of our best scholars, 

in the hope of learning something on the nature of theoretical invention in general and on 

the interpretive difficulties of general relativity in particular.  

 After a few pioneering studies by John Earman, Clark Glymour, and Abraham 

Pais, the first editor of Einstein's Collected papers (ECP), John Stachel, gave his own 

perceptive account and a hint to  an important manuscript trace of Einstein's struggles: 

the "Zürich notebook" written in 1912-1913. In the1980s, John Norton first exploited this 

source to offer essentially  new historical insights. In addition to his influential "How 

Einstein found his field equations" of 1984, he produced a commented and annotated 

version of the notebook for Volume 4 of Einstein's Collected papers, published in 1995.. 

Subsequently, a Berlin-Pittsburgh team including John Stachel, John Norton, Jürgen 

Renn, Tilman Sauer, Michel Janssen and a few other scholars launched a systematic 

study of the genesis of general relativity and of related theories and contexts, leading to 

the monumental Genesis published in 2007 in four volumes (GGR). Among other 

accomplishments, this history offers an extremely detailed and competent reconstruction 

of the calculations in the Zürich notebook, a powerful analysis of Einstein's contemporary 

heuristics (Renn and Sauer), and a penetrating study of the transition from the so-called 

Entwurf  theory to general relativity in 1914-1915 (Renn and Janssen).1  

                                                 
1 Earman and Glymour 1978; Pais 1982; Stachel 1989b [1980]; Norton 1984; ECP 4; GGR. I thank John 
Norton for clarifying his role in this sequence.  



 The abundance and the quality of these studies are so high that it may seem 

preposterous to write still more on their topic. No history, however, is truly final, and 

new perspectives always remain possible. Three or four years ago, I studied the early 

reception of general relativity and was struck by the confusing character of Einstein's 

statements of 1916 regarding the meaning of coordinates and reference frames, and by 

seeming inconsistencies in the way he derived the three major predictions of his theory 

(gravitational redshift, gravitational deviation of light, relativistic precession).2 I 

suspected that these obscurities had to do with his persisting reliance on coordination and 

measurement concepts that had guided his earlier attempts at a generalized theory of 

relativity. At that point I decided to scrutinize all relevant sources, including the Zürich 

notebook, before studying the relevant secondary literature and the critical editions. I 

could thus form an independent opinion about the driving and retarding forces in 

Einstein's project.3 

 When I compared my own reading of the sources with the best available histories, 

I did not find any significant error or misconception in these and I was instead impressed 

by their depth and accuracy. Yet, there are a few differences. My focus on reference-

frames and measurement issues brings more continuity between Einstein's earliest 

exploitation of the equivalence principle and his later metric-field based approach. 

Although I agree with Norton, Renn, and Sauer's identification of Einstein's chief 

heuristic principles, I give them different relative weights. In particular, I believe that 

Einstein's stress principle, according to which there should exist a stress-energy (pseudo-

)tensor for the gravitational field, played a much more important role, both critically and 

                                                 
2 Darrigol 2015. 
3 I deliberately did not rely on Einstein's own retrospective accounts of his past efforts. 



constructively, than other considerations for instance about rotating frames and static 

fields. Also, I find that most of the obstacles that had early diverted Einstein from the 

Riemann tensor did not persist as long as assumed in earlier histories. Einstein's most 

resilient prejudices were bound to the stress principle. Lastly, in order to elucidate the 

mystery of Einstein's three or four years of wandering, I consider not only the conflict 

between his various heuristic principles but also the absence of a more powerful 

principle. Had Einstein from the start based his search for a gravitational field equation 

on the principle of least action, he would probably have reached his aim much faster than 

he did.4  

 The present article first gives a direct and minimally-commented account of 

Einstein's writings on generalized relativity and gravitation in the years 1907-1915, so 

that the reader can form his own impressions on the nature of Einstein's efforts. The 

second part is a more committed analysis of the dynamics of Einstein's researches, often 

confirming earlier studies but sometimes shifting the perspective. This analysis is then 

used to produce a simplified history of the genesis of general relativity, focusing on 

crucial steps and missteps and eliminating inessential details. The resulting pocket history 

(section 2.5) can be read independently of the two previous sections. Some readers may 

want to start with it, for it is technically less demanding and for it directly shows the 

consistency of the perspective adopted in this study.5 

Notation 
 

                                                 
4 On principles that forcefully lead to general relativity, cf. Ehlers 1973; Darrigol 2014a, Chaps. 5, 7.  
5 There already exist a few lucid, short histories of this genesis: see Stachel 1995; Janssen 2014; Sauer 2013 
(in part); Janssen and Renn 2015; Norton [2018]. This last essay (which I did not know when I wrote mine) 
comes closest to my own perspective by arguing the prevalence of energy-momemtum considerations over 
the equivalence principle in Einstein's "two-tiered" heuristics. As John Norton told me, there is a remaining 
difference: whereas I regard the stress-energy tensor of the gravitational field as a crucial conceptual 
component of Einstein's developing theory, he tends to see it as an "intermediary." 



Now standard notation and conventions (largely inspired from Einstein's Grundlage of 

1916) are used through this article (except for ρ
µνΓ , which Einstein defined differently). 

Greek indices run from zero to three, Latin indices from one to three. The Minkowksi 

metric has the signature ( , , , )+ − − − . Summation over repeated indices is understood. 

Upper indices are used for contravariant components, lower indices for covariant 

components (Einstein originally used Latin letters for covariant 2-tensors and Greek 

letters for contravariant 2-tensors). The product of a tensor by g−  (giving the 

associated tensor density) is indicated by bold face: for instance, gTν ν
µ µ= −T (Einstein 

used gothic letters). 

 
c : velocity of light as defined in special relativity. 

( )c r
) : location-dependent velocity of light in Einstein's theory of the static 

gravitational field. 
G: gravitational constant. 
xµ : coordinates of a point of the space-time manifold. 

2ds : square of the interval between the point-events of coordinates xµ  and dx xµ µ+  
gµν : metric tensor such that 2d d ds g x xµ ν

µν= . 

g : determinant of the metric gµν . 

µ∂ : partial derivative with respect to xµ . 

Dµ : covariant derivative. 

{ }σ
νρ : Christoffel symbol defined by 1

2
{ } ( )g g g gσ

µσ νρ ν µρ ρ µν µ νρ= ∂ + ∂ − ∂ . 

Rµνρσ : Riemann curvature tensor. 

Rµν : Ricci tensor, here defined as R ρ
µνρ . 

tµν : stress-energy (pseudo-)tensor of the gravitational field. 

T µν : stress-energy tensor of matter (including the electromagnetic field). 
µνθ : stress-energy tensor of a dust. 

 
 



Frequently used identities are: g gνρ ρ
µν µδ= , δ δg g g gνρ νρ

µν µν= − , δ δg gg gµν
µν= , 

0D g µν
ν = , and 1

2
(1 / ) ( ) ( )g D S g g S g Sµν µ µν

µρ ν µ ρ ρ µν= − ∂ − − ∂  for any symmetric 

tensor S µν . 

 

 

 

1. BASIC ACCOUNT  

 

1.1 Local time and true time (1907) 

 

Einstein first addressed the extension of relativity theory to gravitation at the end of a 

long review of the present state of this theory for the Jahrbuch für Radioaktivität und 

Elektronik. In the relevant section, he first introduces what he later called the principle of 

equivalence, namely: the laws of physics should be the same in an accelerated frame 

without gravity and in an inertial frame with gravity equal and opposed to the 

acceleration of the former frame. For the laws of free fall, this equivalence results from 

Galileo's observation that all bodies fall with the same acceleration in a constant gravity 

field independently of their mass. Einstein assumes the equivalence to extend to all laws 

of physics, thus generalizing the principle of relativity to accelerated frames.6 

 There is an evident similarity between the equivalence principle and the reasoning 

through which Einstein introduced the principle of relativity in 1905. In the received 

electromagnetic theory, Einstein then remarked, we express the laws of electromagnetism 

                                                 
6 Einstein 1907, p. 454. Cf., e.g., Janssen 2012, p. 160.  



differently in the ether frame and in another inertial frame. Similarly, in the received 

theory of gravitation we regard the free motion of a body in a uniform gravity and the 

motion of a body in an accelerated frame as fundamentally different processes. In the first 

case, the asymmetry is removed by making the electric and magnetic  fields  frame-

dependent concepts. In the second case, the asymmetry is removed by making the 

gravitational field a frame-dependent concept. This explains why Einstein regards the 

principle of equivalence as an extension of the relativity principle to accelerated frames.7 

 Einstein's next step is kinematic: he relates the measurement of space and time in 

an accelerated frame to their measurement in an inertial frame. For this purpose, he 

considers a frame Σ  moving with the constant acceleration γ along the x axis of the 

inertial frame S. At every instant of this motion (with respect to S), there is an inertial 

frame S' whose axes coincide with those of Σ . This frame, now called the tangent frame, 

plays an essential role in the rest of the reasoning.8  

 A priori, Einstein tells us, the lengths of identically built rods and the rate of 

identically built clocks might differ in the frames Σ  and S' owing to the acceleration of 

Σ . This effect can only be of second order in γ  since opposite accelerations obviously 

produce the same effect. Einstein therefore decides to neglect it. Consequently, within a 

small enough time lapse, rod-based surveying and optical synchronization of clocks 

should yield the same space and time measurements in both frames. 

 Now suppose that at 0t =  in S, the origin of Σ coincides with the origin of S and 

the velocity of Σ with respect to S vanishes. Einstein conceives two ways of defining 

time in Σ . Identically built clocks being attached to every point of this frame, the first 

                                                 
7 Einstein 1905, p. 891. 
8 Cf. Pais 1982, pp. 180-182. 



option is to synchronize these clocks at 0t = ; call σ the time given by these clocks. The 

second option is to constantly resynchronize the clocks of Σ  with its central clock; call 

τ  the time then given by these clocks. According to these definitions, equal σ times in 

Σ  correspond to equal t times in S; and equalτ times in Σ correspond to equal 't times in 

the tangent frame S'. Setting the origin of the time t' so that it coincides with the time t of 

S at the common origin of  S' and Σ , we therefore have 

(1)  't tτ σ− = − . 

Calling υ the velocity of S' with respect to S at time t' and neglecting second-order terms 

in υ , we have 

(2) 2 2' '/ /t t x c cυ υξ− = − = − . 

The σ time and the τ time therefore differ according to 

(3) 2(1 / )cσ τ γξ= + . 

As Einstein explains, theσ time is the time we should naturally use when defining 

physical quantities at a given location in Σ , because these quantities should be measured 

with standard devices brought to the location. In contrast, the τ time is the one with 

respect to which the invariance of physical laws is to be stated. For this reason, Einstein 

calls τ the "time" tout court, whereas he calls σ  the "local time."9 

 According to the equivalence principle, the accelerated frame Σ  should be 

equivalent to an inertial frame in which the constant gravity γ−  acts. The gravitational 

potential in this field being 2/ cγξΦ = , we may rewrite Eq. (3) as 

(4) 2(1 / )cσ τ= + Φ . 

                                                 
9 Einstein 1907, pp. 454-457. 



Now suppose we bring two exemplars of the same clock to two different locations. By 

the former argument, they yield the local time σ . Einstein imagines an observer 

comparing light signals from the two clocks at a third location. The τ time that a signal 

takes to travel from one clock to the observer is a constant. Accordingly, the period of the 

clock immersed in the smaller gravitational potential will appear to be larger to the 

observer. In other words, this clock runs slower. Extending this law to a non-uniform 

gravitational field and applying it to spectral emitters, a spectral line from a source 

situated at the surface of the sun should appear to us red-shifted by about 62 10−× in 

relative value.10 

 Readers familiar with modern general relativity can easily see that Einstein's local 

time σ corresponds to the proper time given by the invariant metric element ds , whereas 

the τ time corresponds to the time coordinate with respect to which the metric 

coefficients are constants in a static gravitational field. Whereas we now regard the 

proper time as the only fundamental time, Einstein privileges the τ time and 

consequently talks about the gravitational slowing down of clocks where one should 

rather speak of the non-conservation of the interval ds between the light signals emitted 

at two successive ticks of the clock and traveling from the remote source to the observer 

(the conserved quantity being 2 1d (1 / ) dt c s−= +Φ ). 

 Imitating special relativity, Einstein proceeds to show that the form of the 

fundamental equations of electrodynamics is preserved in the accelerated frame Σ , 

mutatis mutandis. In the tangent frame S', the Maxwell-Lorentz equations for the electric 

                                                 
10 Einstein 1907, pp. 457-459. 



field 'E , the magnetic field 'H , and the current eρ u  (for an electric charge of density 

eρ moving at the velocity u) read 

(5) e

1 ' 1 '
' ' ' ' , ' '

' 'c t c t
ρ ∂ ∂ ∇ × = + ∇ × = − ∂ ∂ 

E H
H u E . 

At times infinitesimally close to ' 0t = , the time lapse d 't is identical with the time lapse

dσ in the accelerated frame, the coordinates ( ', ', ')x y z agree with ( , , )ξ η ζ , and the fields 

E and H  in the accelerated frame are related to the fields in the tangent frame by   

(6) 
' '

' , '
t t

c c
= − × = + ×E E H H H E

γ γ
. 

In terms of this new variables, the field equations  read 

(7) e 2 2

1 1
,

c c c c
ρ

σ σ
∂ ∂ ∇ × = + − × ∇ × = − − × ∂ ∂ 

E γ H γ
H u H E E . 

Introducing the fields 2* (1 / )cγξ= +E E , 2* (1 / )cγξ= +H H , and 2
e e* (1 / )cρ ρ γξ= + , 

this is equivalent to 

(8) e

1 * 1 *
* * , *

c c
ρ

σ σ
∂ ∂ ∇ × = + ∇ × = − ∂ ∂ 

E H
H u E . 

Einstein thus retrieves the form of the equations in an inertial frame.11  

 According to Einstein,  non-stationary electromagnetic processes must be referred 

to the true time 2 1(1 / )cτ σ γξ −= + . Neglecting the concomitant change in the gradient 

operator, he gets  

(9) e

1 * 1 *
* * , *

c c
τ

τ τ

ρ
τ τ

∂ ∂ ∇ × = + ∇ × = − ∂ ∂ 

E H
H u E ,  with 2(1 / )c c cτ γξ= + . 

                                                 
11 Einstein 1907, pp. 459-460. 



Consequently, in a gravitational field of acceleration − γ , light travels with the location-

dependent velocity 

(10) 2(1 / )c c cτ = + Φ . 

By analogy with the optics of heterogeneous transparent media, this implies a deviation 

of the light rays at a rate proportional to 2/ cγ  . At that time Einstein considered only the 

deviation by the gravitational field of the earth, which he judged much too small to be 

detectable.12  

 Lastly, from Eq. (8) Einstein derives  

(11) 2 2
e

d 1
* * d d d ( * * )d d d

d 2
E Hρ ξ η ζ ξ η ζ

σ
⋅ = +∫ ∫u E . 

In terms of the truly measured field E and H and of the true time τ , this gives 

 (12) 2 2 2 2
e

d 1
(1 / )d d d ( )(1 / )d d d

d 2
c E H cτρ ξ η ζ ξ η ζ

τ
⋅ + Φ = + + Φ∫ ∫u E . 

This means that the energy e τρ ⋅u E  brought by the currents to the field per time unit and 

the field energy 2 2( ) / 2E H+  per unit volume must both be corrected by a gravitational 

term corresponding to the potential energy of the associated masses. In other words, an 

added energy implies not only an added inertial mass but also an added gravitational 

mass. 

 To sum up, in these pioneering considerations Einstein investigated the effects of 

the acceleration of a reference frame on space and time measurement, on electromagnetic 

processes, and on the energy balance. He thereby introduced two different time variables 

and used them to derive three promising consequences of general relativity: the 

gravitational redshift, the gravitational deviation of light rays, and the energy dependence 
                                                 
12 Einstein 1907, pp. 461-462. I have corrected a number of typos in the published text. 



of the gravitational mass. As he later realized, his reasoning based on the transformed 

Maxwell-Lorentz equations is shaky for it involves uncontrolled approximations in the 

change of coordinates from an inertial frame to an accelerated frame. As we may 

retrospecively judge, one consequence of this reasoning, the gravitational deviation of 

light rays is qualitatively correct; and the other, the dependence of the gravitational mass 

on energy content, is exact. 

 

 

1.2 Direct applications of the principle of equivalence (1911) 

 

Four year elapsed before Einstein published again on generalized relativity. He had two 

motivations to do so: he was no longer satisfied with his considerations of 1907, and he 

now realized that the gravitational deviation of light rays might be observable for the 

light seen from stars in a direction close to the surface of the sun (it would then be of the 

order of a second of arc). His new reasoning was more elementary and rested on direct 

applications of the equivalence principle, in the strong version of which an accelerated 

frame simulates uniform gravity in an inertial frame "with respect to all physical 

processes."13 

 A first consequence of the principle is the equality of the inertial and gravitational 

masses associated with a given amount of energy. This is immediately seen by noting that 

the acceleration of a body carrying this energy should be the same in an inertial frame 

with the constant gravity γ  and in an accelerated frame with the acceleration − γ . In 

                                                 
13 Einstein 1911, p. 900. Cf. Pais 1982, pp. 198-200. 



addition to this simple reasoning, Einstein considers the following concrete operations. 

The source S2 sends radiation of energy 2E  to the absorber S1 in the direction of  the 

acceleration of gravity γ (see Fig. 1) in the inertial frame K. According to the principle of 

equivalence, the process should be the same in a gravity-free frame K' with the 

acceleration − γ  . In the inertial frame tangent to the K' frame at the time of emission, the 

radiation reaches S1 when S1 has acquired the velocity /h c−γ (in a first approximation). 

The energy of the radiation with respect to S1 therefore is 

(13) 2
1 2 (1 / )E E h cγ= +  

(using the transformation laws of special relativity). In the frame K, the product hγ  is the 

difference Φ  between the gravitational potentials at the locations of S2 and S1.Therefore, 

the energy of the radiation emitted at S1 exceeds the energy absorbed at S2  by the 

potential energy 2
2( / )E c Φ  of the mass 2

2 /E c . In other words, the energy is conserved in 

this process if any addition of energy to a body contributes to its gravitational mass (from 

which the potential energy is computed) just as much as it contributes to its inertial 

energy.14 

 

 

 

Fig. 1:  A source S2 and an absorber S1 in the 
gravitational field γ . From Einstein 1911, p. 901. 

  

 

                                                 
14 Einstein 1911, pp. 900-902. On pp. 902-903, Einstein also gives another reasoning based on a cycle 

similar to the one used in an earlier derivation of 2E mc= . 



 

 By similar reasoning, monochromatic radiation sent in K' from S2 with the 

frequency 2ν  arrives in S1 with the Doppler-shifted frequency 

(14) 2
1 2 (1 / )h cν ν γ= + . 

In the frame K, this means that light from a source placed in a higher gravitational 

potential appears to be shifted toward the violet, by the relative amount 2/ cΦ  if Φ  

denotes the excess of potential. In his reasoning, Einstein makes clear that the frequency 

of the same spectral source as judged at the two locations by identically built clocks 

should be the same. It is only when the clock used to measure the frequency is at a 

location different from the location of the source that the frequency shift occurs.15 

 How could the frequency of the light not be conserved during its travel from the 

source to the observer? In agreement with his two-time reasoning of 1907, Einstein 

solves this paradox by arguing that 1ν  and 2ν  are not true frequencies since they are not 

referred to the "true time" with respect to which the numbers of oscillations of a wave  

extending between S2 and S1 is stationary. It is only with respect to this true time that the 

laws of physics do not explicitly depend on time. In order to measure this time, clocks  

must be built so that in a location of potential Φ  they run 21 / c+ Φ  times slower than a 

standard clock brought to this location.16 

 The velocity of light, when measured with a standard clock at any location should 

always have the same constant value c whatever be the gravitational potential. From this 

                                                 
15 Einstein 1911, pp. 903-905. 
16 Einstein 1911, pp. 905-906. 



consequence of the principle of equivalence, Einstein infers that the light velocity c
)  

measured with respect to the true time depends on the location according to 

(15) 2( ) [1 ( ) / ]c c c= + Φr r
)

. 

The constancy of the velocity of light, Einstein concludes, no longer holds in the new 

theory.17 

 Accordingly, the path of light should be deviated when it travels through an 

intense gravitational field. Einstein computes the amount of the deviation by Huygens's 

principle. For the deviation by a celestial body of mass M , he finds 22 /GM c ∆ , 

wherein G denotes the gravitational constant and ∆  the closest distance of the light ray 

from the center of the body. This gives 64 10−× in the case of stars appearing close to the 

surface of the sun. Einstein endsby calling astronomers to check for effects of this kind.18 

 To sum up, in this brief memoir Einstein retrieved his three predictions of 1907: 

the gravitational redshift of stellar light, the gravitational deviation of light rays, and the 

relation between gravitational mass and energy content. Although the reasoning was 

more direct and more solid, it still involved two effects seemingly at variance with 

modern general relativity: the slowing down of clocks and the increase of the velocity of 

light in a gravitational potential. Both oddities derive from Einstein's definition of time as 

what would now be the time coordinate in a static metric field, and the velocity of light 

with what is now called the coordinate-velocity. Einstein still saw the equivalence 

principle as a step toward a fuller relativity in which all frames of reference would be 

equally acceptable, with a uniform rule for transforming fields from one frame to another. 

Just as there was no absolute velocity in special relativity, there was no absolute 

                                                 
17 Einstein 1911, p. 906. 
18 Einstein 1911, pp. 906-908. 



acceleration in the generalized relativity. Einstein did not give the transformation 

formulas, although he hinted he already had them in the case of constant acceleration.  

 

 

1.3 The static gravitational field (1912) 

 

At the end of 1911, the renowned Göttingen theorist and experimentalist Max Abraham 

generalized Minkowski's 4-dimensional spacetime to accommodate for Einstein's gravity-

dependent velocity of light, without any recourse to the equivalence principle. The formal 

elegance of this theory, about which more in a moment, challenged Einstein. In a memoir 

published in February 1912, he rejected Abraham's theory and proposed his own, 

equivalence-based theory in the more limited case of a static gravitational field.19   

 

The velocity of light and the static field 

Einstein again considers a reference frame K in constant acceleration with respect to the 

inertial frame Σ  (the notation differs from that of 1907). Thanks to Max Born's earlier 

work on rigid motion, he can now give a precise meaning to the constancy of the 

acceleration: at every instant the acceleration is constant with respect to the tangent frame 

to K. The first problem is to find the relation between the coordinates ( , , , )x y z t in the 

accelerated frame and the coordinates ( , , , )ξ η ζ τ in the inertial frame. For this purpose, 

he assumes that the length gauges in K are not affected by its acceleration, and he also 

assumes that the velocity of light as measured near a given point of K does not depend on 

                                                 
19 Abraham 1911,1912a; Einstein 1912a. On the latter memoir and its sequel, cf. Pais 1982, pp. 201-206. 



the direction of propagation. In passing, he remarks that the first assumption is far from 

obvious and that it is likely not to hold in the case of a frame rotating around an axis in an 

inertial frame, because with respect to the latter frame radial rods are not affected by the 

rotation while orthoradial rods are subject to the Lorentz contraction. He also notes that 

the implied rigidity can only be of a kinematic kind.20 

 From these metric assumptions, Einstein first infers that y η=  and z ζ= for the 

coordinates perpendicular to the acceleration. Then he reasons that for two light-

connected, infinitesimally close events one must have 2 2 2 2 2d d +d d 0x y z c t+ − =)
 

whenever 2 2 2 2d d d d 0ξ η ζ τ+ + − = . The velocity of light is set to one in the inertial 

frame, and its value c
)

 in K may depend on the abscissa x. Without further ado, Einstein 

requires21 

(16) 2 2 2 2 2d ( )d d dx c x t ξ τ− = −)
.   

Einstein then seeks a non-linear, second-degree transformation for which this relation 

holds to a sufficient approximation. He finds that such a transformation exists if and only 

if 

(17) 0c c ax= +) )
. 

To second order, the transformation is given by 

(18) 2 / 2,x act ctξ τ= + =) )
 

                                                 
20 Einstein 1912a, pp. 355-357; Born 1909a, 1909b. In private, Einstein repeatedly discussed the rotating 
disk in this period: cf. Stachel 1980, 1989a, 2007, who argues that in this context Einstein became aware of 
the possible lack of direct metric significance of spatial coordinates. In print, however, Einstein was much 
more concerned with the meaning of the time coordinate. 
21 The two forms must be proportional, and the proportionality coefficient reduces to one if the length unit 
is the same in both frames. 



if the origins of the two frames coincide and if their relative velocity vanishes at 0t = . 

For small times, the origin of K travels with the constant acceleration 0/a c
)

 with respect 

to Σ .22 

 Had Einstein been familiar with the theory of quadratic differential forms or with 

the theory of Gaussian surfaces, he would have known that the Gaussian curvature of the 

form 2 2 2d dx c t− ) , being equal to "/c c−) )
, vanishes if and only if c

)
 varies linearly in x. 

This is also the condition for the existence of a transformation that brings this form to the 

(pseudo-) Euclidean form. By analogy with the polar-coordinate transformation 

cosX ρ θ= , sinY ρ θ=  that turns 2 2d dX Y+   into 2 2 2d dρ ρ θ+ , the exact expression of 

the transformation sought by Einstein is 

(19) 0cosh at c
c

a a
ξ = −

)
)

,     
sinh at

c
a

τ = )
. 

Einstein does not need these formulas because, as we are about to see, he wants c
)

 to be 

any function of the spatial coordinates, in which case the curvature does not vanish and 

the transformation formulas have only local validity.  

 From his earlier work, Einstein knows that c
)

 plays the role of the gravitational 

potential (at least in the case of uniform gravity). He therefore requires the Laplacian c∆)

to be proportional to the density ρ of matter. In addition, he requires his field equation to 

be homogeneous in c
)

, because the unit for the time t is arbitrary by the former reasoning 

(it depends on the location in K of the standard clock with respect to which the other 

clocks of K are synchronized). As the simplest equation meeting these conditions, he 

takes 

                                                 
22 Einstein 1912a, pp. 357-359. I use c

) instead of Einstein's  c in order to avoid confusion with the usual 
constant of nature c. 



(20) c kcρ∆ =) ) ,  

wherein k is 4πtimes the usual gravitation constant G.23 

 Einstein's next task is to determine the motion of a particle in the static field c
)

. 

For this purpose, he considers the motion for small time t in which the coordinate 

transformation of Eqs. (18) can locally be used to eliminate the gravitation field. With 

respect to the transformed coordinates, the motion is rectilinear and uniform. Switching 

to the ( , , , )x y z t coordinates, it is easily seen to satisfy 

(21) 
2

d

d

c

t c c

∇  = − 
 

v
)

) )   with d / dt=v r  and  ( , , )x y z=r . 

Although this equation is here established only for small times and for a specific choice 

of the x axis, Einstein takes it to be valid at any time and for any choice of the function 

( )c r
) , because "the instant 0t =  has nothing special compared to other instants."24  

 In modern terms, Einstein's procedure amounts to introducing local geodesic 

coordinates at any time t (coordinates for which the metric takes the Minkowskian form 

and the derivatives of the metric coefficients vanish) for the metric 2 2 2d dx c t− )  and 

assuming rectilinear uniform motion with respect to these coordinates in a sufficient 

approximation. Equivalently, the trajectory in spacetime should be a geodesic of the 

metric manifold. Being unaware of this geometric interpretation, Einstein did not 

immediately realize that his equations of motions derived from the variation 

(22) 2 2 2 2 2δ d d δ d 0c t t c υ− = − =∫ ∫r
) ) . 

 Einstein arrived at this conclusion a few months later, presumably by generalizing 

Max Planck's Lagrangian formulation of the equation of motion in special relativity. 

                                                 
23 Einstein 1912a, p. 360. 
24 Einstein 1912a, pp. 361-362. 



Indeed this formulation corresponds to the special case of constant c
)

 in the former 

variation. The corresponding equation of motion is 

(23) 
d

d

L L

t

∂ ∂=
∂ ∂v r

, with 2 2L c υ= −) . 

This gives 

(24) 
2 2 2 2

d

d 1 / 1 /

c

t c c cυ υ
∇= −

− −
v

)

) ) )
, 

which is equivalent to Einstein's Eq. (21) because both equations imply the constancy of 

2 2 1/ 2(1 / )c cυ −−) )
for any given motion.25  

 Einstein exploits this constancy to define the energy of a moving mass m as 

(25) 2

2 2
/ 2

1 /

mc
E mc m c

c
υ

υ
= ≈ +

−

)
) )

)
. 

(This does not imply any dimensional heterogeneity because time and length have the 

same dimension in his units). In general, he expects forces and energies to be 

proportional to c
)

and thus to depend on the gravitational potential at the location of the 

system. For instance, he considers the energy of a compressed spring. A particle of mass 

m projected by this spring acquires a velocity independent of the location if only this 

velocity is measured with respect to the local time l ct= )
 . This is a consequence of the 

equivalence principle, which Einstein here takes to imply that the relations between 

quantities measured at a given location with identically built apparatus should give the 

same result whatever be the value of the gravitational potential at this location. The 

associated kinetic energy, 

(26) 2 2 2/ 2 (d / d ) / 2 (d / d ) / 2m c m x t c mc x lυ = =) ) )
, 

                                                 
25 Einstein 1912b, p. 458; Planck 1906. 



is therefore proportional to c
)

and so is the force of the compressed spring (since the work 

of this force is responsible for the velocity of the projectile).26 

 Just as in his earlier publications, Einstein regards the time t as more fundamental 

than the local time. He now calls it the "universal time." Since the rate of physical 

processes at a given location is independent on location when referred to the local time, 

all processes run faster in a higher gravitational potential. Again, the premise is a 

consequence of the principle of equivalence: gravitation does not affect the measuring 

contraptions when acceleration does not. Einstein confirms this in two simple cases. The 

first case is the light-clock obtained by counting the successive bounces of light between 

two parallel mirrors separated by the unit distance. The number of bounces per unit t-time 

is evidently proportional to c
)

 and therefore increases with the gravitational potential. 

The second is the gravitation-clock obtained by counting the revolutions of a mass m 

around a mass M at a standard distance. By Eqs. (20) and (21), the acceleration 2 2d / dtr

of the mass m should be proportional to 2c
) . Kinematically, this acceleration is centripetal 

and proportional to the square of the angular frequency. This frequency is therefore 

proportional to c
)

, as was to be proved.27  

 

Electromagnetism and gravitation 

In a sequel to this memoir, Einstein investigated the electromagnetic field equations in a 

static gravitational field. This investigation, usually neglected by commentators, is 

historically important in inauguring the strategy of covariant field equations and in 

considering a metrology of the transformed coordinates and fields. In conformity with the 

                                                 
26 Einstein 1912a, pp. 365-367. 
27 Einstein 1912a, pp. 325-327. 



principle of equivalence, Einstein simulates the gravitational field by acceleration with 

respect to the tangent frame. In the tangent frame, the Maxwell-Lorentz equations read 

(27) e

' '
' ' ' ' , ' '

' 't t
ρ ∂ ∂∇ × = + ∇ × = −

∂ ∂
E H

H u E ,  ' ' 0∇ ⋅ =H ,   e' ' 'ρ∇ ⋅ =E . 

The coordinates and fields in the accelerated frame are related to those in the tangent 

frame by 

(28) 2' / 2x x act= + ) ,  'y y= , 'z z= ,  't ct= )
   with 0c c ax= +) )

, 

(29) ' ' 't= − ×H H γ E ,  ' ' 't= + ×E E γ H   with 1c c−= ∇γ
) )

. 

(30) e e'ρ ρ= ,   'c=u u
)

. 

The field equations in the local accelerated frame at ' 0t t= =  therefore read 

(31) e ,c c
t t

ρ ∂ ∂∇ × = + ∇ × = −
∂ ∂
E H

H u E
) )

,  0∇⋅ =H ,   eρ∇⋅ =E . 

By the equivalence principle, they also are the field equations in the static gravitational 

field ( )c r
) . The equations agree with Eqs. (9) of 1907, except that Einstein there used the 

fields * c=E E
)

 and * c=H H
)

instead of E and H.28  

 The chief novelty, besides the generalization to a heterogeneous gravitational 

field, is Einstein's discussion of electromagnetic field measurement in the static 

gravitational field. All measurements are done by what Einstein now calls "pocket" 

devices, following a suggestion by Paul Ehrenfest. Namely, the measurements are done 

with identically built devices that can be transported to the location of the measurement. 

The aforementioned light-clock is a pocket device for time measurement. A spring-scale 

is a pocket device for the measurement of forces. By the earlier given argument, the force 

                                                 
28 Einstein 1912b, pp. 443-446. 



thus measured is c
)

 times the true force. Consequently, the electric field measured by the 

force acting on a unit point charge is c
)

 times the true field E.29 

 By reasoning similar to the one used for Poynting's theorem, the field equations 

(31) imply the identity 

(32) 3 2 2 3
e

d 1
d ( )d ( ) d

d 2
x c E H x c c

t
ρ ⋅ = − + + × ⋅∫ ∫ ∫u E E H S

) ) )
, 

wherein the surface integral is taken over the boundary of the volume integral. The 

following interpretation suggests itself: the energy furnished to the field by the currents in 

a given domain equals the variation of the electromagnetic energy in this domain plus the 

electromagnetic energy flux across the boundary of this domain. The quantity

2 2( / 2)( )c E H+)
thereby plays the role of the electromagnetic energy density. This means 

that the quantity 2 2(1/ 2)( )E H+ plays the role of a gravitational mass, in conformity 

with the principle of equivalence. As such, Einstein tells us, this quantity should be added 

to the density of matter ρ in Eq. (20) for the gravitational field. At this point Einstein 

briefly mentions that the variable c
)

 in the electromagnetic field Eqs. (31) implies the 

gravitational deviation of light but he does not repeat the derivation.30 

 

Action and reaction 

Lastly, Einstein detects and solves a contradiction in the present theory. The equation of 

motion of a particle in the gravitational field, as given in Eq. (21), suggests the expression 

c−∇)
 for the force acting on a unit mass at rest. Accordingly, the sum of all forces acting 

                                                 
29 Einstein 1912b, pp. 446-448. 
30 Einstein 1912a, pp. 448-450. Einstein also notes that in all rigor, including the electromagnetic energy in 
the source of the gravitational field contradicts its static character. I skip the thermodynamic section of pp. 
450-452.  



on the static mass distribution ρ  is 3dc xρ− ∇∫
)

. By the principle of equality of action and 

reaction, this force should vanish (as long as the masses are contained within a finite 

domain of space). Together with the gravitational field equation (20), this condition gives 

(33) 3d
c

c x
c

∆ ∇ ≡∫ 0

)
)

) . 

Unfortunately, no such identity holds for an arbitrary function ( )c r
) . Something must be 

changed in the theory. After considering several possibilities, Einstein decides that the 

only reasonable option is to modify the field equation (20). For this purpose, he uses the 

identity 

 (34) 
2

2 1

2

c c c

c cc

∆ ∆ ∇ = −  
 

) ) )

) ))  

thanks to which the modified field equation 

(35) 
2

1

2
ρ∆ ∇ − = 

 

) )

) )

c c
k

c c
 

is compatible with the equality of action and reaction. Indeed, for u c= )
we have 

(36) / 2ρ∆ =u ku    and  12 4ρ ρ −= − ∇ = − ∇ = − ∆ ∇f
)
c u u k u u . 

By analogy with electrostatics or by 1
2

( )i k k j i j k ku u u u u u u∂ ∂ ∂ = ∂ ∂ ∂ − ∂ ∂ , the spatial 

integral of f vanishes. In other words, there is a stress tensor from which the gravitational 

force derives, which automatically implies that the principle of action and reaction is 

globally satisfied. The field equation (35) is still homogeneous in c
)

, and the new term, 



being of second order in c∇)
, does not sensibly affect the earlier physical 

considerations.31 

 Rewriting the field equation as 

(37) 
21 ( )

2
ρ

 ∇∆ = + 
 

)
) )

)

c
c k c

k c
, 

Einstein recognizes in c ρ) the gravitational energy density for the mass distribution ρ and 

suspects the second term in the square bracket to represent the energy of the gravitational 

field. He confirms this suspicion by proving that the work Wδ of the gravitational forces 

cρ− ∇ )  during an infinitesimal displacement δr of the masses is equal to the variation of 

the total energyδUρ of the masses plus the variation of the total energy δ cU of the field. 

The relevant calculations read: 

(38) 3 3 3δ d ( δ )d δ dW c x c x c xδ ρ ρ ρ= − ∇ ⋅ = ∇ ⋅ =∫ ∫ ∫r r
) ) )

, 

(39) 3δ ( δ δ )dU c c xρ ρ ρ= +∫
) )

, 

(40) 
2

3 2 3 3 31 ( ) 2 4 4
δ δ d δ( ) d δ d δ d

2

∇= = ∇ = ∇ ⋅ ∇ = − ∆∫ ∫ ∫ ∫
)

)c

c
U x u x u u x u u x

k c k k k
 

                3 32 δ d δ du u x c xρ ρ= − = −∫ ∫
)

. 

This reasoning greatly increased Einstein's confidence in the new field equation.32 

 

From the equivalence principle to the metric field  

                                                 
31 Einstein 1912b, pp. 452-457.  Cf. Norton 2018, pp. 15-18. Yet, on pp. 455-456, Einstein notes he had 
difficulty accepting the new term because it contradicts the strict equivalence principle (it does not vanish 
in a uniform field for which c

) is a linear function of the space coordinates): cf. Norton 2018, pp. 19-20. 
32 Einstein 1912b, pp. 457-458. 



These twin memoirs of 1912 marked a crucial transition from piecemeal applications of 

the equivalence principle to a metric approach integrating this principle. The first memoir 

introduces the form 2 2 2d ( )dc t−r r
)

in order to express the isotropy of light propagation in 

the static field locally interpreted as an inertial acceleration field. Einstein's derivation of 

the coordinates ( ', ')tr  in a tangent inertial frame, based on equating the previous form to 

2 2d ' d 't−r , imitates a then common derivation of the Lorentz transformation through the 

invariance of the Minkowski interval. Despite his awareness of Minkowski's 4-

dimensional geometric conception, Einstein does not use geometric language or methods 

in the two memoirs.33 His derivations betray a lack of familiarity with the methods of 

differential geometry.34  

 However, there are two reasons to think that by March 1912 Einstein saw the 

prospects of a metric interpretation of the differential form 2 2 2( )d dc t −r r
)

. The first 

reason is found in the aforementioned remark added in the proofs of the second memoir. 

There he shows that the motion of a particle in the static field corresponds to an 

extremum of 2 2 2( )d dc t −∫ r r
) . He could not possibly have missed the analogy with the 

determination of geodesics on a surface, and he probably recognized the problem of 

geodesics on a pseudo-Riemannian 4-dimensional manifold with the metric 

(41)  2 2 2d ( )d ds c t= −r r
)

.  

 Three months earlier, in December 1911, Max Abraham had tried to integrate 

Einstein's idea of a variable velocity of light in a Minkowskian framework. According to 

                                                 
33 In 1908, Einstein had collaborated with Jakob Laub on a 3-vector reformulation of Minkowski's 
electrodynamics of moving bodies. In texts written after Minkowski's death (1909), he mentioned 
Minkowski's 4-dimensional approach favorably: see ECP 3, pp. 169-170 (1910), 438 (1911). 
34 Yet, at the ETH in Zürich Einstein had attended Carl Friedrich Geiser's lectures on infinitesimal 
geometry, which included Gauss's theory of surfaces. Cf. Stachel 2007, pp. 103-104. 



Minkowski's representation," Abraham writes, "we regard , ,x y z  and iu ct= )
 as 

coordinates in a space of four dimensions." The only difference with Minkowski's theory 

is that the velocity c
)

 now depends on the gravitational potential Φ . In modern index 

notation, Abraham's gravitational field equation reads 

(42) 04πµ µ ρ∂ ∂ Φ = G , 

wherein G denotes the gravitational constant and 0ρ the density in the frame tangent of 

the moving matter. The equation of motion of a particle in this potential reads 

(43) xµ µ= −∂ Φ&& , 

the dot denoting derivation with respect to Minkowski's proper time τ for which 

(44) d d dc x xµ µτ = −)
  and  2x x cµ µ = − )& & . 

Combining  x x ccµ µ = −))&& &&  with the equation of motion, Abraham gets 

(45) x ccµ µ− ∂ Φ = −))&&  ,    
2d 1 d

d 2 d

c

τ τ
Φ =

)

,   and   
2 2

0

2 2

c cΦ = −
) )

. 

In a first approximation, this gives 2
0 0(1 / )c c c≈ + Φ) ) )

, in conformity with the result 

Einstein has earlier obtained through the equivalence principle. In addition, Abraham 

finds 2 2/ 1 /mc cυ−) ) to be a first integral of the equation of motion, just as in Einstein's 

subsequent theory.35 

 Einstein was originally impressed by the mathematical elegance of Abraham's 

theory, although he complained about the lack of proper physical foundation. As he soon 

communicated to Abraham, the characterization of iu ct= )
 as the fourth coordinate is not 

                                                 
35 Abraham 1911, p. 678; 1912a, p. 1. 



compatible with c
)

 being the local value of the velocity of light, because it is 

incompatible with d 0τ =  for 2 2 2d dc t=r
) . Abraham published the following corrective:  

Instead of  ['we regard , ,x y z  and iu ct= )
 as coordinates in a space of four 

dimensions'], one should read 'we regard dx, dy, dz  and d i du c t= )
as the components 

of a displacement ds  in four-dimensional space.' –Thus, 
2 2 2 2 2 2d d d d ds x y z c t= + + − )

is the square of a 4-dimensional line-element, wherein 

the velocity of light c
)

 is given by [ 2 2
0 2c c− = Φ) )

]. 

 
From this statement, Einstein inferred thatAbraham believed  the Lorentz transformation 

to apply infinitesimally with the local velocity c
)

. In the first installment of his static 

theory, he proved this to be mathematically impossible. He recommended to restrict the 

application of the Lorentz group to regions of space in which c
)

 had a uniform value, and 

he predicted that a larger group and more complicated equations would be needed in the 

general case. In a subsequent publication, Abraham made clear that he meant to apply the 

Lorentz group (more exactly rotations in Minkowski space) to the 4-vector 

(d ,d ,d ,i d )x y z c t
)  (whereas Einstein believed Abraham was applying a Lorentz boost of 

velocity c
)

to d ,d ,d ,dx y z t ). Einstein's chief objection, the incompatibility of Abraham's 

field equation with the equivalence principle, remained valid. Yet he learned something 

important in his exchange with Abraham: a Minkowskian integration of the variable 

velocity of light leads to a Riemannian metric.36  

 Altogether, in early 1912 Einstein already had in hand the representation of a 

gravitational field by a quadratic differential form as well as the now usual method for 

deriving the equations of motion of a particle from this form. He was aware of a possible 

geometric interpretation of this form and method. Still his static theory of 1912 differed 

                                                 
36 Abraham 1912b; 1912c, p. 433; 1912d, p. 312; Einstein 1912a, pp. 368-369. For a thorough study of 
Abraham's theory and his polemic with Einstein, cf. Renn 2007a. 



from the modern theory in three ways. The first difference is that the quadratic form is of 

the restricted kind 2 2 2d ( )dc t−r r
)

, which Einstein believed to exactly represent a static 

gravitational field (whereas we now know that the spatial part of a non-trivial static 

metric is non-Euclidean). The second difference is that Einstein considered only two 

kinds of coordinates: the coordinates ( , )tr  through which the laws of physics in the static 

gravitational field should be expressed and which Einstein believed to be giving the true 

space and time relations in some sense (even though the time t differs from the time ct
)

given by a standard clock), and the coordinates ( ', ')tr in a tangent frame in which the 

gravitational force is eliminated. The third difference concerns the gravitational field 

equation. With the assumed restriction of the fundamental form, this equation concerns 

the function ( )c r
) only. In order to derive this equation, Einstein relied on three principles: 

correspondence with Poisson's equation for Newtonian gravitation, homogeneity with 

respect to c
)

(dictated by the kinematic analysis), equality of action and reaction 

(impossibility of perpetual motion). He verified its compatibility with two additional 

principles: energy conservation and the equivalence between energy and gravitational 

mass. He was convinced that the only field equation compatible with these five principles 

was Eq. (35). The fact that so many principles could be satisfied at the same time 

comforted him in his choice of the restricted form 2 2 2d ( )dc t−r r
)

, although he originally 

doubted that space measurements would remain Euclidean in a gravitational field. 

 It is usually believed that Einstein's first realization that non-Euclidean geometry 

may be needed in general relativity came in his remark, at the beginning of the first 

memoir of 1912, that the tangent-frame method of measurement leads to a non-Euclidean 

perimeter/radius ratio in a rotating frame. In reality, the first way in which non-Euclidean 



geometry truly entered his theory was in his choice of 2 2 2d ( )dc t−r r
)

 for what we would 

now call the metric in a static field. By somewhat daring generalization from the case of a 

constantly accelerated frame (for which ( )c r
) is an affine function) to an arbitrary static 

field for which the acceleration varies from place to place, he implicitly introduced a 

curved 4-manifold for which no change of coordinates can globally turn the metric to its 

Minkowskian form. 

 Einstein had great confidence in his static theory of 1912: "I really believe to have 

found a piece of truth," he then wrote to Ehrenfest. Paradoxically, this work of 1912 both 

initiated and blocked Einstein's subsequent quest for a theory of gravitation based on a 

more general metric. On the positive side, the static theory introduced a few basic formal 

elements of such a theory as well as a few heuristic principles including correspondence 

with Newton's theory of gravitation, energy-momentum conservation, and existence of a 

stress-energy tensor for the gravitational field. On the negative side, it blocked further 

progress by suggesting that the more general field equation should agree with the 

equation of 1912 in the static case, and, above all, by conflating coordinate systems with 

physically meaningful reference systems.37 

 

 

1.4 The Zürich notebook 

 

                                                 
37 Einstein to Ehrenfest, 10 March 1912, ECP 5. 



Soon after completing his theory of the static gravitational field, Einstein considered the 

extension to arbitrary fields. This is already apparent in his remark, in the appendix to his 

second memoir of 1912, that the variational principle 

(46) 2 2 2δ ( )d d 0c t − =∫ r r
)  

 is easily extended to dynamical fields.38 Although Einstein did not tell more on this 

extension, he plausibly reasoned that for a dynamical field more general systems of 

coordinates and the more general form d dg x xµ ν
µν  would be needed. The resulting 

principle 

(47) δ d d 0g x xµ ν
µν =∫  

 and the resulting equations are evidently covariant. This induced Einstein to look for a 

covariant extension of his static field equation. It will soon be clear that he initially did 

not expect covariance with respect to any (mathematically acceptable) change of 

coordinates. In order to have physical, metrological meaning, the choice of coordinates 

had to be somewhat restricted. All he knew was that the permitted coordinate 

transformations should at least include transformations corresponding to uniformly 

accelerated or uniformly rotating frames,39 and also transformations locally turning the 

form d dg x xµ ν
µν  into the Minkowskian form of special relativity. 

  

First tries: linear covariance 

That Einstein reasoned in this or a similar way is confirmed by his first notes on 

gravitation in a notebook he filled in the years 1912-1913, usually called the Zürich 

                                                 
38 Einstein 1912b, p. 458. 
39 See Einstein to Besso, 26 March 1912: I am "still far from being able to conceive rotation as rest." 



notebook because most of it was written after his move to Zürich in July 1912. There are 

no dates in this notebook, and it is not easy to time the various steps taken by Einstein. 

All we know, from his correspondence, is that in the fall of 1912 he believed to have "the 

most general equations of gravitation" in hand; that by October at least he had received 

help from his friend the mathematician Marcel Grossmann and that he had thereby 

developed a "high regard for mathematics . . ., which [he] heretofore naively considered a 

luxury in its subtlest parts." At some point, he must have encountered unsuspected 

difficulties: no sooner than March 1913 could he write to his cousin and future wife that 

he had "solved the gravitational problem only a few weeks ago after half a year of most 

strenuous investigation."40 

 In his notebook [p. 39L], Einstein starts from the expression 

(48) 2d d ds g x xµ ν
µν=  

and writes the equations for the transformation of gµν  and / xµ
µ∂ ≡ ∂ ∂ under a linear 

change of coordinates. Although the ds notation indicates analogy with the length 

element on a (hyper)surface, Einstein proceeds unaware of the general theory of 

Riemannian manifolds and the attached tensor calculus. This may explain why he 

confines himself to linear changes of coordinates, which are much easier to handle than 

general changes.41 

                                                 
40 Einstein to Hopf, 16 Aug. 1912 (cited); Einstein to Freundlich, 27 Oct. 1912; Einstein to Sommerfeld, 29 
Oct. 1912 (cited); Einstein to Löwenthal, 23 March 1913 (cited). 
41 The entire contents of the Zürich notebook have been published both in ECP 4 with rich annotation by 
John Norton, and in GGR 1 (there also in facsimile). The most detailed and accurate interpretation is given 
in GGR 2, pp. 489-714, under the joint efforts of Janssen, Renn, Sauer, Norton, and Stachel. The page 
numbering is the one used in these sources (Einstein filled the book from both ends, so that these numbers 
are not always a growing function of time). I use slightly modernized notation (with the now usual 
conventions for indices and summation). 



  His strategy [pp. 39L-40L] is to find linearly covariant generalizations of the 

equations  

(49) 0
c

t

∂ =
∂

)

,  
2

1
0

2

c c

c c

∆ ∇ − = 
 

) )

) ) ,  with 2
00g c= )

 

for the static field. For the first equation he tries the divergence condition 0gµ µν∂ =  and 

fails since this is not covariant by linear transformations.42 He then [pp. 40L-40R] tries to 

construct generalizations of the second equation (the field equation proper) by taking the 

most symmetric possible combinations of gµν and µ∂ that are of second order with respect 

to µ∂ , but he soon gives up. Something will be left from this first unsuccessful attempt: 

for a while Einstein will keep requiring the equations (49) for the static case to be special 

cases of the general equations. In particular, in addition to the second-order field equation 

for the gµν he will often require a first-order equation. 

 

The stress-energy tensor of a dust 

At some point, Einstein introduces energy-momentum considerations as an additional 

guide in his quest for a field equation [pp. 5R, 43LB].43 Rewriting the geodesic equation 

(47) as  

(50) δ d 0L t =∫  with d / dL s t= , 

and interpreting / iL x∂ ∂  (with 1,2,3i = ) as the spatial components of the momentum of 

the particle, the equations of motion read 

                                                 
42 A linearly covariant condition would be 0g µν

µ∂ = , later used by Einstein. My analysis here differs from 

GGR 2, p. 507. 
43 In special relativity, Hermann Minkowski had introduced the energy-momentum tensor of the 
electromagnetic field in 1908 and Max Laue had generalized this notion in 1911. 



(51) 
d 1 d d

d 2 d d

p x x
g

s s s

ν ρ
µ

µ νρ= ∂   with 
d

d

x
p g

s

ν

µ µν= . 

For a quasi-continuous dust of spatial density ρ  in the small volume V, Einstein 

introduces the true density 0ρ  and the volume 0V  in the tangent frame. Combining the 

invariance of 4dg x−  (with detg gµν= ) and the invariance of mass, he gets 

(52)  0d dgV t V s− =   and  0 0V Vρ ρ=    ⇒  0 d / dg t sρ ρ= − . 

The 4-force acting on the unit volume of the dust is 

(53) 0

d d 1

d ds 2

p p
g g g

t
µ µ νρ

µ νρρ ρ θ= − = − ∂   with 0

d d

d d

x x

s s

ν ρ
νρθ ρ= . 

The 4-momentum flux of the dust is 

(54) 0

d d d

d ds ds

x x x
p gg gg

t

ν ρ ν
νρ

µ µρ µρρ ρ θ= − = − . 

By energy-momentum conservation, the 4-divergence of this quantity should be equal to 

the 4-force: 

(55) 
1

( )
2

g g g gνρ νρ
ν µρ µ νρθ θ∂ − = − ∂ . 

As Einstein correctly surmises, this equation is equivalent to the equation of motion (55) 

because by mass conservation we have [pp. 43LB, 19R] 

(56) 
0( d / d ) ( d / d ) 0x t g x sµ µ

µ µρ ρ∂ = ∂ − = .  

 Einstein calls νρθ  the motion tensor, and g νρ
µρθ  the energy-momentum tensor 

(although he later favored "stress-energy tensor"). He asserts [p. 5R] 44 that  

(57) 1
2

( )V g g S g g Sνρ νρ
µ ν µρ µ νρ= ∂ − − − ∂  

                                                 
44  Einstein also notes that 0Vµ =  for S gµν µν= .   



is a covariant vector (zugeordneter Vektor) for any symmetric tensor S µν . This is almost 

true since, as he does not yet know, the quotient /V gµ −  is the covariant divergence of 

S µν . At any rate, the 4-divergence equation (55) and its physical derivation will condition 

Einstein's ulterior considerations in several manners. Firstly, they reinforce his idea that 

covariance should play a central role in constructing the gravitational field equation. 

Secondly, the interpretation of 1
2

g g νρ
µ νρθ− ∂ as the 4-force acting on a dust of stress-

energy µνθ gives to the derivatives gµ νρ∂ prominence in expressing the strength of the 

gravitational field (thus generalizing the relation between force, mass, and gravitational 

potential). Thirdly, these considerations suggest that the gravitational field equation 

might have the form G Tµν µνκ= , in which G µν is a tensor combination of the derivatives 

of the metric tensor and T µν  is the stress-energy tensor of matter (including the 

electromagnetic field). Fourthly, they will induce Einstein to demand that the product 

g g Gνρ
µ νρ− ∂  be expressible as the 4-divergence of a (pseudo-)tensor45  representing the 

stress-energy of the gravitational field (up to a numerical factor). This last condition is a 

generalization of Einstein's earlier demand that the sum of all gravitational forces should 

vanish in the static case. 

 

Scalar and tensor generalizations of the d'Alembertian 

Einstein does not immediately explore the tensor option G Tµν µνκ= , presumably 

because it is much easier to explore the scalar option in which the field equation in the 

absence of matter is obtained by setting to zero a scalar combination of the metric tensor 

                                                 
45 I will henceforth drop the "pseudo" in conformity with Einstein's usage (as we will see in section 1.8, 
Einstein was unaware of this distinction until late 1913).  



and its first and second derivatives [pp. 6R-11L]. He knows that for any scalar function 

ϕ  the expression  

(58) 2 (1 / ) ( )D g g gµν
µ νϕ ϕ= − ∂ − ∂   

is also a scalar.46He also believes (wrongly) that [(1/ ) ]gg gµν
µ νϕ− ∂ − ∂ is an invariant. 

Inserting gϕ = − , into the latter expression and using the identity g gg gνρ
µ µ νρ∂ = ∂  

leads him to 

(59) ln( ) ( ) 0g g g g gµν µν ρσ
µ ν µ ν ρσ∂ ∂ − ≡ ∂ ∂ =  

for the vacuum field equation[6R]. Einstein does not take this candidate seriously, if only 

because when applied to his static metric 2 2 2 2d ( )d ds c t= −r r
)

it leads to ln 0c∆ =)  instead 

of Eq. (35).47  

 As Einstein knows, the determinant g and the derived expression g− are not 

truly scalars. They are so only with respect a restricted class of transformations, now 

called unimodular because their determinant is one. He is more than willing to adopt this 

sort of restriction. In his following notes, he tries various would-be scalar combinations 

of g, gµν , gµν , and µ∂ , sometimes with additional conditions such as ( ) 0g g µν
µ∂ − =  

(harmonic coordinates), 0g µν
µ∂ = , or 1g = − , thanks to which the candidates become 

invariant (for the transformations compatible with the conditions). Ideally, these 

conditions should be compatible with the static metric and they should be satisfied by the 

metric of a flat spacetime in a uniformly accelerated or rotating frame (henceforth called 

"acceleration metric" and "rotation metric" respectively) in order to allow for the frames 

                                                 
46 Richard Dedekind had privately discovered this generalized Laplacian, and Beltrami had rediscovered 
and published it in 1868: cf. Dell'Aglio 1996, pp. 231-235; Darrigol 2014b, p. 68. 
47 For a more detailed analysis, cf. GGR 2, pp. 526-531. 



implied in the equivalence principle. As Einstein will realize sooner or later, they are 

not.48 

 At some point, Einstein abandons the scalar option and turns to the tensor option 

in which the field equation takes the form G Tµν µνκ= .49 He hits upon [p. 12L] 

(60) 
1

( )G g g g
g

µν ρσ µν
ρ σ= ∂ − ∂

−
, 

which is analogous to the scalar invariant expression (58) and reduces to 

G g g gµν ρσ µν µν
ρ σ= ∂ ∂ ≡  for harmonic coordinates. For no obvious reason, he then [p. 

13R] computes D G µν
µ  under the simplifying conditions 1g− =  and 0g µν

µ∂ = . He of 

course knows that D G µν
µ  should vanish as a consequence of the equations 0D T µν

µ =  

and G Tµν µνκ= combined. He is unlikely to have regarded this condition as an identity, 

for he did not do so in the rest of the notebook. Instead he probably regarded it as a 

further restriction on the metric field ( )g xµν . This was the end of his first naive attempts 

to derive a conditionally covariant field equation. 

 

Building on the Riemann tensor  

Around that time Grossmann told Einstein about the absolute differential calculus of 

Elwin Christoffel, Gregorio Ricci-Curbastro, and Tullio Levi-Civita.50 Einstein thus 

became aware of the Riemann tensor 

                                                 
48 Using Eqs. (16-17), the acceleration metric has the form 2 2 2 2

0d ( + ) d ds c t= ⋅ −a r r . Injecting 

cos sinx t y tξ ω ω= + , sin cosx t y tη ω ω= − + , zζ = , tτ =  into the Minkowskimetric 
2 2 2 2 2 2d d dξ d ds c τ η ζ= − − − , we get 2 2 2 2 2 2d ( )d d 2 d d 2 d ds c t y x t x y tω ω ω= − − − +r r for the rotation 

metric. 
49 According to GGR 2, pp. 600-602, he rather has in mind ( )G T tµν µν µνκ= + . If this were the case, I 

think he would have considered G µν
µ∂ instead of D G µν

µ on p. 13R. 



(61) ( , ) g Rτ
µτ νρσµν ρσ = ,  

with 

(62)   { } { } { }{ } { }{ }Rµ µ µ µ τ µ τ
νρσ ρ νσ σ νρ τρ νσ τσ νρ= ∂ − ∂ + −    and 

(63) 1
2

{ } ( )g g g gσ
µσ νρ ν µρ ρ µν µ νρ= ∂ + ∂ − ∂ . 

 Rµνρσ  is the simplest fully covariant combination of second-  and first-order derivatives 

of the metric tensor (up to a constant coefficient). Einstein forms the Ricci tensor51 

R Rρ
µν µνρ=  and tries [p. 14 L] 

(64) R Tµν µνκ= −   

for the field equation in the presence of matter of stress-energy tensor Tµν . In continuity 

with his previous approach, he tries and fails to reduce Rµν  to a simple combination of  

gµν , gµν , g, and µ∂ , even under the restriction 1g = − . He deplores that in the first, 

linear approximation (corresponding to the two first terms in R µ
νρσ ), the Ricci tensor 

reduces to 

(65) (0) 1
( )

2
R g g g g gρσ

µν ρ σ µν µ ν ρσ µ ρ νσ µ σ νρ= ∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂ , 

which contains unwanted terms besides the desired d'Alembertian 1
2

g gρσ
ρ σ µν∂ ∂ . 

Manipulating the curvature scalar g Rµν
µν under 1g = −  he tries to extract from it a 

gravitation tensor that would not have this defect, to no avail [pp. 14R-18R].52 

                                                                                                                                                 
50 Cf. Stachel 2007,  pp. 106-107; Sauer 2013. 
51 Einstein's definition of the Ricci tensor differs from the now common R R ρ

µν µρν=  by a change of sign.  
52 Cf. GGR 2, pp. 614-622. On the Einstein-Grossmann collaboration, cf. Sauer 2013. 



 At some point [p. 19L], Einstein realizes that these terms can be eliminated (in the 

linear approximation) by the harmonic coordinate condition 0g µν ρ
µνΓ = (this condition is 

equivalent to the earlier encountered ( ) 0g g µν
µ∂ − = , thanks to 0D g µν

µ = ). In the 

weak-field approximation for which gµν differs from the Minkowski metric µνη by the 

small tensor hµν , and for a dust of stress-energy µνθ , he arrives at the field equation [p. 

19R] 

(66)  h hρσ ρσ
µν ρ σ µν µρ νση κη η θ≡ ∂ ∂ = − ,  or  4hµν µνκθ∆ =  

in the imaginary system of coordinates ( 0 ix ct= ) for which µνη  becomes the identity and 

the d'Alembertian becomes the 4-dimensional Laplacian 4∆ .53  

 In the same approximation, the energy-momentum equation 0D µν
µθ =  reduces to 

0µν
µθ∂ =  because the product of µνθ by a Christoffel symbol is of second order; and the 

the harmonic condition 0g µν ρ
µνΓ =  reduces to 

(67) 2 h hµ µν ν µµ∂ = ∂   or  1
2

( ) 0h hµ µν µν ρρδ∂ − =  

in the imaginary coordinate system.  Combining the latter equation with 4hµν µνκθ∆ =  

and 0µν
µθ∂ = , we get 

(68) 1 1
2 2

0 ( )µ µν µν ρρ ν ρρθ δ θ θ= ∂ − = − ∂ , 

which is incompatible with 0ρρθ ρ= . Einstein removes this contradiction by means of  

the modified field equation [p. 20L] 

(69) 1
4 2
( )h hµν µν ρρ µνδ κθ∆ − = . 

He also gives the equivalent form54 
                                                 
53 Cf. Renn and Sauer 1999, pp. 109-114. 



(70) 1
4 2

( )hµν µν µν ρρκ θ δ θ∆ = − , 

which is easily obtained using the contraction 4hµµ µµκθ−∆ = of the former equation.55

 As we saw, for Einstein a good field equation of the form Gµν µνκθ= − should 

make the force density 1
2

( )g g Gνρ
µ νρ− ∂  a 4-divergence. Einstein verifies this for the 

field equation (69) in the linear approximation [pp. 19R, 21L]: 1
4 2

( ) ( )h h hµ νρ νρ νρ σσδ∂ ∆ −  is 

a 4-divergence by analogy with ϕ ϕ∇ ∆ in electrostatics. Alas, for the d'Alembertian term 

1
2

g gρσ
ρ σ µν∂ ∂ of the exact field equation, Einstein fails to bring the product 

( )g g g gστ
µ νρ σ τ νρ− ∂ ∂ ∂  into the form of a 4-divergence [p. 21L]. In addition [p. 21R], his 

older static field theory turns out to be incompatible with the harmonic condition 

0g µν ρ
µνΓ =  (the only non-vanishing coefficients of Einstein's static metric are 2

00g c= )
, 

11 22 33 1g g g= = = − , so that  ( ) (0, )g g g cµν ρ µρ
µν µΓ = ∂ − = ∇ ) ).56 

 At this point, Einstein could have questioned the truth of the static theory. On the 

contrary, he finds a new argument for the vanishing of the non-diagonal elements of the 

static metric [p. 21R]. According to the 4-momentum formula in Eqs. (51), the energy E 

of a particle in the metric field gµν is given by 0 d / dg x sµ
µ . Being certain that 

01 02 03 0g g g= = = , Einstein gets 0
00d / dE g x s= . The metric coefficients being 

                                                                                                                                                 
54 I have corrected an algebraic error leading to the wrong sign in front of 1/2. 
55 As we may retrospectively judge, the new field equation is the linear approximation of the equation 

1
2R g Rµν µν µνκθ− = − on which Einstein based his final theory of gravitation. 

56 Einstein writes only that the static case is "impossible because of the divergence condition." I take this 
condition to be a first-order differential condition on the metric, the harmonic condition in the present case. 
An alternative candidate is the weak-field energy-momentum condition 0µν

µθ∂ = , which requires the 

weak-field equation (69), leading to 00( / 2)ij ijh κ δ θ∆ = −  in the static case, in contradiction with Einstein's 

static metric of 1912 (for which 0ijh = ). Still another reading is given in GGR 2, p. 643. 



independent of time, by Eq. (51) the force 0d / dxp acting on the particle reduces to 

01
002

(d / d )g x s∇ if and only if the gradient of the spatial coefficients of the metric vanish. 

Therefore, the spatial part of the metric must be uniform, as it is in Einstein's static 

solution, in order that the energy and the force vary in the same manner with respect to 

the velocity. Einstein does not justify this condition. Plausibly he wants the kinetic 

energy to contribute to the gravitational mass of the particle, therefore also to its 

gravitational potential and to the derived force. 

 After stumbling over this difficulty, Einstein tries to modify the field equation in 

such a manner that its second-order terms can be reduced to the d'Alembertian form 

without the harmonic condition. His strategy is to subtract from the Ricci tensor a 

unimodular tensor built from g and its derivatives (remember he has already explored 

such tensors). He thus arrives at the tensor [p. 22R]57 

(71) ln { } { }{ }R R D g ρ σ ρ
µν µν ν µ ρ µν µρ νσ
× = − ∂ − = −∂ − , 

whose second-order part reduces to the d'Alembertian 1
2

g gρσ
ρ σ µν∂ ∂ under the condition 

0g µν
µ∂ = . Unlike the harmonic condition, this condition is compatible with Einstein's 

static metric. Yet Einstein does not pursue the consequences of the field equation 

(72) R Tµν µνκ× = − ,  

probably because of his prejudice that the true field equation should only involve a 

simple combination of gµν and its derivatives. 

 In the following pages of his notebook, Einstein  restricts the coordinate 

transformations to those for which the symmetric derivative 
                                                 
57 Einstein called this tensor Tµν

× . I changed the notation in order to avoid confusion with the energy-

momentum tensor. 



(73) g g gµνρ ρ µν µ νρ ν ρµϑ = ∂ + ∂ + ∂   

behaves like a tensor. With respect to these transformations, the simple expression [p. 

23L] 

(74) 1
2

( )R g g g g g gρσ ρα σβ
µν ρ σ µν α µρ β νσ
×× = ∂ ∂ + ∂ ∂  

is a tensor. It is easy to understand why the new condition so much simplifies the field 

equation: it allows replacing the Christoffel symbol { }ρ
µν  with the much simpler 

g gρσ
σ µν− ∂ . Plausibly, Einstein had the idea of this condition because he had earlier 

studied the metric for which 0µνρϑ =  (call it the ϑ - metric) and found it to be simply 

related to the rotation metric [pp. 42L-42R]. 58 

 In the notebook, the study of the ϑ - metric comes right after the consideration of 

geodesics on a surface [p. 41R]. At that time, Einstein plausibly knew that the geodesics 

for the metric gµν satisfy Eq. (51), although the relevant calculations appear further in the 

notebook. This equation, 

  
d 1 d d

d 2 d d

p x x
g

s s s

ν ρ
µ

µ νρ= ∂    with  
d

d

x
p g

s

ν

µ µν= , 

implies  

(75) 
dd 1 d d d

d d 6 d d d

px x x x

s s s s s

µ µ ν ρ
µ

µνρϑ= . 

                                                 
58 Cf. GGR 2, pp. 652-679. The following reconstruction significantly departs from GGR by giving a reason 
why Einstein had earlier explored the ϑ -metric. Whereas GGR believe that pp. 42L-42R were filled after 
Einstein introduced Rµν

××  (on the other side of the notebook), I tend to believe that they naturally follow the 

previous pages of the same side of the notebook and that p. 43L is the only page on this side of the 
notebook that is contemporary to Rµν

×× (as could be suspected from the fact that this page is written both 

downwards and upwards). 



For a particle at rest in an inertial frame, the motion in a rotating frame is a rotation for 

which the left side of this equation vanishes (because 0d 0p =  and  d d 0⋅ =p r ). 

Conversely, one might hope the rotation metric to be a solution of the equation 0µνρϑ = . 

This is a plausible reason why Einstein solves this equation on pp. 42L-42R. The result is 

amazing: the solutions gµν of determinant 1−  differ from a rotation metric, but the 

associated contravariant coefficients gµν  are exactly identical with the coefficients of a 

rotation metric.  

 Let us return to the context of the Rµν
××  field tensor. Einstein tries two alternatives 

to the ϑ - condition, one in which gµν is replaced with gµν  [p. 43LA], and another in 

which the permitted transformations are those preserving 2g g gρ µν µ νρ ν ρµ∂ + ∂ − ∂ [pp. 

23L, 25R]. Both fail. Einstein still hopes to conciliate the ϑ - condition with the 

equivalence principle, by showing that the geodesics in a metric field of vanishing µνρϑ

resemble the motion of a particle in a centrifugal force field [pp. 42R, 43LA].59 

 In general, Einstein regards his coordinate conditions as restrictions on the choice 

of physically permitted coordinate systems. This is clear from the fact that he usually 

tries to determine the transformations satisfying these conditions or the resulting field 

equation--with little or no success because the relevant differential equations are too 

complex. For instance, he tries [p. 22L] to determine the transformations for which the 

condition 0g µν
µ∂ =  (he knows that the transformations for which the condition 

0g µν ρ
µνΓ = is preserved are those for which the new coordinates are harmonic functions 

                                                 
59 Cf. GGR 2, pp. 668-679. On p. 24L Einstein does the same for the motion of a dust obeying Eq. (55). 



of the old coordinates, hence the name harmonic condition), and he does the same [p. 

23R] for the transformations under which µνρϑ is a tensor. 60 

 For the sake of the equivalence principle, Einstein wanted these transformations 

to include (uniform) rotation in Minkowski space.61 There is no relevant calculation for 

the two conditions 0g µν ρ
µνΓ =  and 0g µν

µ∂ =  in the section devoted to the Riemann 

tensor. This may be because Einstein remembers his earlier proof [p. 11L] that the 

rotation metric satisfies the first condition (then the second condition should also be 

satisfied, for it is the same as the first for unimodular transformations).62 Probably for a 

similar reason, there is almost nothing in the Riemann-tensor-based section of the 

notebook regarding the compatibility of the ϑ - condition with rotation.63 In contrast, 

Einstein is repeatedly concerned with the existence of a stress-energy tensor for a metric 

field obeying the conditioned field equations.This is the stress principle, so far acting as a 

test for a physically acceptable field equation.  

  

The Entwurf strategy  

In the case of the last Riemann-tensor-based candidate, based on the field operator Rµν
××  of 

Eq. (74), Einstein fails to re-express the force density 1
2
( )g Rµν

ρ µν
××− ∂  as the 4-divergence 

                                                 
60 Cf. Norton 2005, pp. 88-90 for the importance of coordinate restrictions in the rejection of the Riemann-
based tensor. However, I tend to disagree with his opinion, amplified in Norton 2007, that Einstein initially 
considered coordinate conditions and turned them into restrictions after being misled by a reification of 
coordinate systems. The distinction between coordinate condition and coordinate restriction belongs to 
Renn and Sauer 2007, p. 109. It is emphasized in GGR 1, p. 11. 
61 One might also want to cover   permitted transformations to  uniform acceleration in Minkowski space. 
Einstein's silence in this regard is easily explained by the evident impossibility of satisfying this condition: 
the acceleration metric is incompatible with the harmonic condition since it is a sub-case of the static metric 
of 1912; and the unimodular restriction used by Einstein for his other field equations is incompatible with 
accelerated coordinates. 
62 Unfortunately, this is not true for finite rotations: cf. Norton 2005, pp. 89-90, and GGR 2, pp. 574-577. 
63 The exception is p. 24L: cf. GGR 2, pp. 674-679. 



of a stress-energy tensor. This test involves a repeated application of the identity 

( )X Y XY Y Xµ µ µ∂ = ∂ − ∂  to the product  ( ) ( )g g gµν στ
ρ σ τ µν∂ ∂ ∂ to which the first term of 

the field operator leads. Einstein thus generates the identity [p. 24R] 

(76)  1 1
2 2

( )[ ( ) ] ( ) ( )g g g g g g g g g g gµν στ στ στ µν στ µν
ρ σ τ µν ν στ µ σ ρ τ µν ρ τ µν σ∂ ∂ ∂ − ∂ ∂ = ∂ ∂ ∂ − ∂ ∂ ∂ , 

which suggests to him that the true vacuum field equation might be  

(77) 1
2

( ) 0g g g gστ στ
σ τ µν ν στ µ∂ ∂ − ∂ ∂ = . 

Through an erroneous calculation, he finds the rotation metric to be a solution of this 

equation [p. 25R].64 

 At any rate, identity (76) does not hold. It is easily seen to be equivalent to65  

(77) g g g g g gστ µν στ µν
τ ρ σ µν τ µν ρ σ∂ ∂ ∂ = ∂ ∂ ∂ .  

Einstein believed he could derive the latter identity by differentiating 

g g g gµν µν
σ τ µν σ µν τ∂ ∂ = ∂ ∂ , itself obtained by repeated use of g g g gνρ νρ

µν σ σ µν∂ = − ∂  [p. 

24R, right column]. In reality, the resulting relation 

(78) g g g g g g g gµν µν µν µν
σ ρ τ µν σ τ ρ µν σ ρ µν τ σ µν τ ρ∂ ∂ ∂ + ∂ ∂ ∂ = ∂ ∂ ∂ + ∂ ∂ ∂  

gives only a tautology after contraction with gστ . Despite this error, Einstein had in hand 

an efficient strategy to derive a field equation: start with a simple generalization of the 

d'Alembertian operator, and introduce additional first-order terms so that the associated 

4-force density becomes a 4-divergence. The remaining pages of the notebook [pp. 26L-

29L] contain fragments of a rigorous implementation of this strategy, soon published 

                                                 
64 The error is explained in GGR 2, pp. 699-702. 
65 As noted in GGR 2, pp. 683-686, this identity holds to second order in hµν (the departure of gµν from the 

Minkowskian metric) because in this approximation the index-raising and index-lowering tensors needed to 
convert gµν into g µν (and vice versa) can be regarded as constants. I doubt, however, that Einstein reasoned 

in this approximation. 



jointly with Grossmann as "Outline [Entwurf] of a generalized theory of relativity and of 

a theory of gravitation."66 

 To sum up, in his notebook Einstein first tried naive combinations of the metric 

tensor and its derivatives in order to get conditionally covariant expressions of the 

gravitational field equation. Conditional covariance here means covariance with respect 

to transformations compatible with simple, first-order differential conditions on the 

metric field. At some point, Einstein became aware of the Riemann tensor, and tried to 

build the field equation from it, using the fully covariant Ricci tensor as well as related, 

conditionally covariant tensors. None of the resulting candidates passed the four tests of 

correspondence with the d'Alembertian equation for weak fields, compatibility with the 

static metric of 1912 (which contains the acceleration metric as a subcase), compatibility 

with the rotation metric, and existence of a stress-energy pseudo-tensor for the 

gravitational field. At this point, Einstein realized that this last test could be used to guide 

the construction of the modified d'Alembertian in the gravitational field equation. This 

was the final, winning strategy leading to the published Entwurf. 

 All these considerations were of an utterly formalistic nature, at variance with the 

more intuitive approach of Einstein's earlier memoirs on generalized relativity. The 

equivalence principle, being now encapsulated in the geodesic principle, no longer played 

a direct role in the construction (save for the rotation-metric test). There were no thought 

experiments, and there was much tensor algebra. Not being accustomed with this more 

mathematical way of thinking, Einstein encountered a number of difficulties. He lacked 

familiarity with tensor calculus on a differentiable manifold, and he was relying on 

conflicting heuristic principles. On the one hand, the full covariance of the equation of 
                                                 
66 Einstein and Grossmann 1913. 



motion of particles and of energy-momentum conservation for a dust suggested to him 

the full covariance of the gravitational field equation. On the other hand, his earlier 

theory of the static field, the correspondence with the d'Alembertian operator, and the 

physical interpretability of the coordinates suggested a conditional covariance.  

 Earlier commentators of the Zürich notebook did not fail to notice that in the 

second, Riemann-tensor-based stage of his research, Einstein wrote down the correct 

weak-field equations and even the equations from which he would later derive the correct 

value of the relativist precession of the Kepler ellipse. He did not pursue their empirical 

consequences at that time because they did not pass his tests of correspondence and 

energy-momentum conservation. Moreover, Einstein was laboring under the prejudice 

that the field equations should  be simple combinations of the metric tensor and its 

derivatives. The Ricci tensor did not have this kind of simplicity since it was built from 

the Christoffel symbols, to which Einstein then accorded little significance (he did not 

even use them in the geodesic equation).  

 

 

1.5 The Entwurf  memoir of 1913 

 

Fundamental equations 

In the Entwurf they published together in the spring of 1913, Einstein and Grossmann 

start with the generalized d'Alembertian (1/ ) ( )g g g gαβ µν
α β− ∂ − ∂  of Eq. (60), 



contract it with g gσ µν− ∂ , and repeatedly apply the identity ( )X Y XY Y Xµ µ µ∂ = ∂ − ∂  to 

the resulting force density until it becomes a 4-divergence. The resulting identity reads67 

(79) ( ) ( )g g G gg Xµν νρ
σ µν ν σρ− ∂ = ∂ − , with   

(80) 1
2

X g g g g g g g gµν αµ βν ρσ µν αβ ρσ
α ρσ β α ρσ β= ∂ ∂ − ∂ ∂ ,  1

2
G Xµν µν µν= ∆ + ,    

(81) (1/ ) ( )g g g g g g g gµν αβ µν αβ µρ νσ
α β ρσ α β∆ = − ∂ − ∂ − ∂ ∂ . 

The linear tensor G µν is the new d'Alembertian for which the gravitational field equation 

reads68 

(82) G Tµν µνκ= . 

Einstein interprets the tensor ( 1/ 2 )t Xµν µνκ= −  as the stress-energy tensor of the 

gravitational field, so that the field equation can be rewritten as 

(83) ( )T tµν µν µνκ∆ = + , 

which means that the energy-momentum of matter and the energy-momentum of the 

gravitational field both act as sources of the gravitational field. In addition, the equation  

(84)  
1

( )
2

g g T g g Tνρ νρ
µ νρ ν µρ− ∂ = ∂ −  

for the 4-force acting on matter and the field equation together lead to 

(85) [ ( )] 0gg T tνρ νρ
ν µρ∂ − + = , 

which is the local expression of the conservation of the energy and momentum of matter 

and field together.69  

                                                 
67 Einstein (1913, p. 15) claims that this identity is unique. It may be true that this is the only identity that 
can be obtained by repeated partial integration in the expression of the 4-force. However, as John Norton 
(1984, p. 282) pointed out, this is not the only possible identity of the desired form; it is only the simplest 
one. 
68 The plus sign is needed on the right hand side because in the linear approximation G gµν µν=  and 

G g Tµν µν µνκ= − = , which gives the correct Newtonian limit. 



 Einstein insists that the weak-field approximation of the new theory produces the 

desired d'Alembertian. He privately believes that the rotation metric is a solution of his 

field equation. This equation is linearly covariant by construction, and he hopes for a 

broader covariance in harmony with the equivalence principle. He has not yet been able 

to specify the relevant class of transformations even though he regards this task as "the 

most important one." Nor has he solved any concrete problem. The theory truly is 

nothing but an outline. So much so that one may wonder why Einstein and Grossmann 

published it. A plausible answer is that Einstein strongly believed in a strategy based on 

seeking a generalized d'Alembertian compatible with energy-momentum conservation.70 

  Einstein has arguments against the three alternatives that immediately come to 

find. First, one cannot obtain a field equation simply by taking the double covariant 

derivative of gµν since the first covariant derivative of this tensor vanishes. Second, a 

scalar theory of gravitation would not comply with the equivalence principle (more on 

this in a moment). Third, the Ricci tensor cannot serve to write the field equation because 

this operator does not reduce to the d'Alembertian in the weak-field approximation. 

Although Einstein does not give details here, we know from his notebook that he has 

convinced himself that no coordinate condition would solve this difficulty.71  

                                                                                                                                                 
69 Einstein and Grossmann 1913, pp. 15-17, 37-38. 
70 Einstein and Grossmann 1913, p. 13 (weak field), p. 18 (citation); for the rotating frames, relevant 
(erroneous ) calculations are found on pp. 24R and 25R of the Zürich notebook, and also in the Einstein-
Besso MS of 1913, ECP 4, pp. 442-445. On the latter, cf. Janssen 1999, 2007. Besso seems to have reached 
the opposite conclusion by August 1913 (cf. Janssen 2007), and Einstein must have agreed with him for a 
while since in early 1914 he believed the Entwurf  theory to be covariant under linear transformations only. 
In a letter to Lorentz of August 1913 (cited in Janssen 2007, p. 833), Ehrenfest reported that Einstein had 
already changed his mind five or six times on this issue. 
71 Einstein and Grossmann 1913, pp. 12 ( 0D g µν

µ ≡ ), 20-22 (scalar theory), 11 and 36 (Riemann tensor). 

On p. 11, Einstein writes: "It must be emphasized that it proves to be impossible to find a [second-order] 

differential expression Gµν that is a tensor generalization of ϕ∆ ."  This is compatible with the statement 
that the Ricci tensor does not agree with the d'Alembertian of the metric field in the weak-field limit. On p. 
36, Grossmann writes: "It turns out that [the Ricci tensor] does not reduce to ϕ∆ in the limit of an infinitely 



  From the covariance of the geodesic equation δ d 0s =∫  and of the energy-

momentum equation of a dust, Einstein judges it plausible that the exact gravitational 

equation would be fully covariant. However, he also insists that "we lack any clue for a 

general covariance of the equations of the gravitational equations." He hopes that in a 

future theory in which the gravitational field equation would include derivatives of order 

higher than two, general covariance might be reached. But in a theory limited to second-

order derivatives, he is convinced that full covariance is impossible.72 

 

Measurement 

In the three first paragraphs of his contribution to the Entwurf, Einstein lays out the 

interpretive basis of his theory. He first recalls that the equivalence principle, when 

applied to the static gravitational field, leads to a value of the velocity of light depending 

on the gravitational field. These considerations have suggested to him an extension of the 

relativity principle in which a larger class of coordinate systems would be considered and 

in which the element ds would take the general form d dg x xµ ν
µν . Owing to its role in 

determining the motion of particles in the field, this element has to be an absolute 

invariant and gµν is a covariant tensor determining the gravitational field. In a section 

entitled "Meaning of the fundamental tensor gµν for the measurement of time and space," 

Einstein goes on:73 

                                                                                                                                                 
weak static field." This is incorrect if taken literally. Taking the Zürich notebook into account, Grossmann 
(and Einstein) probably meant that the static weak field case should be the static subcase of a 
d'Alembertian, which does not agree with the weak-field limit of the Ricci tensor. For a different 
interpretation, see Stachel 1989b, p. 67. 
72 Einstein and Grossmann 1913, p. 12 (citation), 18. 
73 Einstein and Grossmann 1913, p. 8. 



From the previous considerations, we may already infer that between the space-time 
coordinates xµ  and the results of measurements through rulers and clocks there 
cannot be relations as simple as in the old theory of relativity. Regarding time, this 
feature was already apparent in the case of the static gravitational field. Thus we must 
raise the question of the physical meaning (principal measurability) of the coordinates 
xµ . 
 We remark that ds is to be regarded as the invariant measure of the distance 
between two infinitesimally close points of spacetime. Therefore, ds must have a 
physical meaning independent from the selected system of reference. We assume that 
ds is the "naturally measured" distance of the two points, to be understood in the 
following manner.  

 

 Einstein then introduces a system of coordinates µξ  in which 2ds  takes the 

Minkowskian form at a given point, and he assumes that the usual measuring 

prescriptions of special relativity, based on a rigid frame, rulers, and clocks, can be used 

locally to determine the value of these coordinates.74 The metric significance of the 

coordinates xµ  can then be determined by means of the relation between the differentials 

dxµ and the differentials d µξ . This relation being a function of the gµν coefficients, 

Einstein concludes: 

We see that by given dxµ , the natural distance belonging to these differences can be 
specified only if the quantities gµν that determine the gravitational field are known: 

the gravitational field influences the measuring bodies and the clocks in a definite 
manner. 

 
In this citation, we observe the persistence of Einstein's viewpoint, first expressed in his 

static field theory, that the coordinates in some sense represent the readings of clocks and 

rulers. These readings being different from the "naturally measured" ds, the relation 

between ds and dxµ  being dependent on the gravitational field, the rulers and clock are 

influenced by this field.75  

                                                 
74 He overlooks the additional requirement that the derivatives of the metric coefficients should vanish at 
the selected point. 
75 Einstein and Grossmann 1913, p. 9. 



 

Mercury's perihelion 

In June 1913, Einstein collaborated with his close friend Michele Besso to calculate the 

advance of Mercury's perihelion in the Entwurf  theory. The calculation involved  a 

center-symmetric, second-order, weak-field solution of the gravitational field equation. 

Contrary to the static theory of 1912, Einstein and Besso found that the metric had non-

diagonal elements in this approximation (although these do not contribute to the equation 

of motion in the same approximation). Injecting this metric into the equation of motion of 

the planet, and solving to second order in / cυ  (υ being the velocity of the planet),  they 

arrived at the expression 

(86) 
2

5π
δ

4 (1 )a e

αθ =
−

 

for the relativist anomaly in the advance of the planet, wherein 22 /GM cα =  , M  is the 

mass of the sun, G the constant of gravitation, a the semi-major axis of the elliptic orbit, 

and e its eccentricity. This differs from the expression in the final theory only by having

5π / 4instead of 3π . In the case of Mercury, the formula gives 18" instead of the 43" 

needed to explain the observed anomaly. Einstein does not seem to have taken this failure 

too seriously, for he did not mention it in later accounts on the Entwurf theory. He may 

have judged that there were too many simultaneous causes of the perihelion advance 

(ordinary perturbations by other planets, relativistic correction, and the rotation of the 

sun) for it to be reliably computed. This is an interesting case of asymmetry between 

confirmation and refutation: whereas a negative result in the Enwurf context did not 



suffice to reject the theory, the positive result of November 1915 significantly contributed 

to the credibility of the final theory.76 

 

 

1.6 The scalar theory 

 

Nordström's theory 

In 1912, the Finnish theorist Gunnar Nordström published a scalar, Minkowskian theory 

of gravitation in which the motion of a particle does not depend on its mass. The evident 

Minkowskian generalization of Poisson's equation for the scalar field ψ  reads 

(87) ψ κρ= − , 

wherein 2 21 / cρ ρ υ= − is the density of matter in the local rest frame. The naive 

Minkowskian generalization of the Newton law of acceleration for a particle of mass m 

moving in the fieldψ  reads 

(88) 
d

d

p
f mµ

µ µψτ
= = ∂    with 

d

d

x
p m µ

µ τ
=    and  d d dx xµ ν

µντ η= . 

This law being incompatible with 

(89) 
d dd d d

2 0
d d d d d

p xx x
m

µ µ
µ µ

τ τ τ τ τ
 

= = 
 

, 

Nordström assumes a variable mass m for which the equation of motion becomes 

(90) 
2

2

d dd

d d d

x xm
m mµ µ

µψτ τ τ
+ = ∂ . 

                                                 
76 ECP 4, pp. 344-473, 630-682. Cf. Earman and Janssen 1993. Einstein and Besso originally made a 
mistake by a factor hundred in the numerical estimate of the anomaly, but later corrected this error.  



Contraction with d / dxµ τ then yields d dm m ψ=  and 0em m ψ ψ 0−= . The equation of 

motion is still independent of the mass m since it may be rewritten as77 

(91) 
2

2

d dd

d d d

x xµ µ
µ

ψψ
τ τ τ

= ∂ − . 

  

Einstein's objections 

In private Einstein told Nordström he had already considered the scalar theory but did not 

pursue it for it led to a slower fall of rotating bodies, against the spirit of the equivalence 

principle.78 In the Entwurf , he briefly discussed a variant of Nordström's theory in which 

the equation of motion of a particle in the gravitational field ϕ  reads 

(92) 
2

2

d dd

d d d

x xµ µ
µ

ϕϕ ϕ
τ τ τ

= ∂ −  

(as would results from Nordström's equation for lnψ ϕ= ) and the field equation reads 

(93) T µ
µϕ κ= −  

if T µ
µ  denotes the trace of the Minkowskian stress-energy tensor. Einstein derives the 

equation of motion from the variational principle 

(94) δ d 0ϕ τ =∫ , 

and uses the more general "Laue scalar" T µ
µ  instead of the density 0ρ  of a dust (more on 

this in a moment). He does not repeat his earlier objection based on a free-falling 

                                                 
77 Nordström 1912. For a thorough study of this theory and Einstein's contribution to it, cf. Norton 1992; 
for a broader discussion, cf. Giulini 2008. 
78 See Nordström 1912, p. 1129 (addendum). Einstein probably obtained this result by (a misleading) 
analogy with the slower fall of a body with initial horizontal theory in a scalar theory. The latter effect is 
easily derived by considering the fall from a frame moving uniformly at the initial horizontal theory of the 
body. By relativistic time dilation, the fall time in the earth-frame is larger than the fall time in the former 
frame, which is the same as the time of fall of a body initially at rest owing to the invariance of the scalar 
field. 



spinning body, because he must have understood that in such a body the stresses 

balancing the centrifugal force contribute to the effective mass 3dT xµ
µ∫ . Instead he briefly 

describes a thought experiment in which cavity radiation is used to construct a perpetual 

motion. Here is a reconstruction of his argument.79 

 Consider a system made of electromagnetic radiation and of a (quasi-) rigid 

closed vessel whose internal walls are perfect mirrors. As is well known, the trace of the 

stress-energy tensor for electromagnetic radiation vanishes. The walls of the vessel 

nonetheless contribute to the total energy-momentum of the system. According to a 

theorem by Max Laue, for a closed system in equilibrium the volume integrals 1 3
1 dT x∫  

etc. of the spatial components of the trace vanishes (because for every section of the 

system the momentum fluxes 1
1 2 3d dT x x∫  etc. vanish). Therefore, the net source of the 

gravitational field is the total energy 0 3
0 dE T x= ∫ . From this result Einstein infers that the 

gravitational mass of the system is 2/E c . 

 Einstein then imagines a long rigid cylinder and two rigidly connected pistons that 

can slide within the cylinder in a frictionless manner. The internal walls of the cylinder 

and the pistons are perfect mirrors and they contain a fixed amount of electromagnetic 

radiation. Consider the system made of the radiation and the double piston. Taking the 

first coordinate axis along the axis of the cylinder, for this system we have  

(95) 1 3
1 d 0T x =∫  , 2 3 3 3

2 3d d / 3T x T x E= = −∫ ∫   

because by Maxwell's theory the electromagnetic pressure is one third of the energy 

density. Therefore, the effective source of the gravitational field is 3d / 3T x Eµ
µ =∫ , and 

                                                 
79 Cf. Norton 1993, pp. 18, 20.  



the associated gravitational mass is 2/ 3E c . Imagine a cycle in which 1) the double 

piston is raised to the height h in the constant gravity g, 2) the cylinder is replaced by a 

new wall rigidly attached to the piston,  3) the resulting box is brought to the original 

elevation, and 4) the new wall is replaced with the sliding cylinder. In this cycle the work 

2(2 / 3 )E c gh  is produced without compensation. Einstein regards this result as a 

sufficient reason to reject the scalar theory, although his strongest reason is the lack of 

relativity with respect to arbitrary frames of reference.80  

  

Natural measures 

A few months later, Einstein gave Nordström's theory a new hearing in a review of the 

gravitation problem for the Naturforscherversammlung of September 1913 in Vienna. By 

then he had worked out the scalar option and changed his mind on its value. By analogy 

between the variational principles of the scalar and tensor theories, which both involve 

replacing the Minkowskian form d dx xµ ν
µνη  with more complex forms ( 2 d dx xµ ν

µνϕ η and 

d dg x xµ ν
µν respectively), he surmised that in the scalar theory just as in the tensor theory 

the "natural" lengths and times measured by transportable devices differed from the 

"coordinate-" lengths and times expressed in coordinate differences.81 

 Then the cycle in the former thought-experiment no longer is a cycle if the 

coordinate-section of the cylinder is invariable and if the natural distance between the 

two pistons is a constant. Under these assumptions, the true volume V of the radiation 

expands by 2 δV α during step 1, wherein α is the ratio between natural length and 

                                                 
80 Einstein and Grossmann 1913, pp. 20-22. 
81 Einstein 1913, p. 1252. 



coordinate-length in the field ϕ . In order to complete the cycle, an additional step is 

needed in which the box built in step 2 is contracted back to the volume V. The work 

needed for the contraction is the product of 2 δV α by the radiation pressure / 3E V . It 

compensates the work 2(2 / 3 )E c gh  produced by the rise and fall of the radiation if and 

only if δ ghα = . In other words, the impossibility of perpetual motion requires α ϕ=  (+ 

constant) for the ratio between natural length and coordinate-length.82 

 Since in Nordström's theory the (coordinate-)velocity of light is a constant, the 

same ratio obtains between natural time and coordinate-time. In his communication, 

Einstein asserts that a gravitational clock (made of two bodies orbiting around each other 

under gravitational pull) gives the natural time for α ϕ= .83 This is seen as follows. The 

mass in the scalar theory being proportional to the potential ϕ , the centrifugal force is 

proportional to 2RTϕ − if R denotes the distance between the two bodies (for a circular 

orbit) and T the period of the motion. This force is balanced by the gravitational pull, 

which is proportional to 2R− . This balance is unaffected by the gravitational field if and 

only if 1 2 2ϕα α α− = , or α ϕ= .  

 The same result obtains directly by assuming that the form 2 d dx xµ ν
µνϕ η in the 

variational principle of the scalar theory represents the square 2ds of the naturally 

measured interval between two events of coordinates xµ  and dx xµ µ+ , just as in the 

                                                 
82 Einstein 1913, p. 1253. Einstein does not explain how the absurdity is removed. However, Nordström 
(1913b, pp. 544-545) details a similar thought-experiment in which Einstein imagined a horizontal stressed 
rod to be lowered, then raised unstressed to its original height, and stressed again. The rod being heavier 
when stressed than when unstressed, work would be gained in this cycle if it were not for the work 
associated with the change of length of the rod (this work is done during the descent of the rod if this 
descent is done at constant natural length). For a lucid discussion of the latter experiment, cf. Norton 1993, 
pp. 18-24.  
83 Einstein 1913, p. 1254. 



tensor theory. As we will see in a moment, Einstein will develop this view a few months 

later in collaboration with the young Dutch theorist Adriaan Fokker.84 

 In his Vienna talk, Einstein judges the scalar theory to be nearly as hopeful as the 

Entwurf theory. Not only his previous objection has turned out to be invalid, but the 

scalar theory is compatible with the four basic demands of energy-momentum 

conservation, universality of free fall, local validity of the Minkowskian structure, and 

observable laws independent of the value of the gravitational potential (in regions of 

uniform potential). Its only drawbacks are the lack of relativity with arbitrary reference 

frames and the incompatibility with Mach's principle.85  

 Einstein has earlier remarked that in his theory the inertia of a particle increases 

when it is brought near large masses, because the gravitational potential energy of the 

particle contributes to its inertia. This confirms Ernst Mach's idea that the inertia of a 

body should be traced to its interaction with all other bodies and not to any mysterious 

property of space. In the scalar theory, the mass does depend on the gravitational 

potential but it diminishes when the particle is brought near large masses. Although this 

incompatibility with Mach's principle diminishes the probability of the scalar theory in 

Einstein's eyes, he admits that only experience can decide between the scalar and tensor 

options, and he urges astronomers to test the gravitational deviation of light during the 

solar eclipse of 1914.86 

 

  

                                                 
84 Einstein and Fokker 1914. 
85 Einstein 1913, p. 1250. See also Einstein to Freundlich, mid-Aug. 1913, in which Einstein judges 
Nordström's theory "very reasonable." 
86 Einstein and Grossmann, p. 6; Einstein 1913, pp. 1254, 1260-1261, 1262 (eclipse). On Einstein and 
Mach's principle, cf. Renn 2007b. 



1.7  Bridled covariance 

 

The fatal rope? 

In the part of his Vienna talk devoted to the Entwurf , Einstein dwells on the meaning of 

coordinates. He recalls that all the information needed to determine the motion of 

particles and to measure lengths and times is contained in the 2ds . Somewhat at variance 

with this view, in his discussion of the Newtonian approximation he still interprets 

0d / ds x  as the rate of clocks and he still has the deviation of light hinge on a variable 

(coordinate-) velocity. Yet he insists that from the observational point of view and in the 

spirit of the absolute differential calculus "the coordinate by themselves have no physical 

meaning" and are mere "auxiliary variables." It is therefore natural to require the general 

covariance of the fundamental equations of the theory:87 

The space-time coordinates thereby degenerate into intrinsically meaningless, freely 
selectable auxiliary variables. Then the entire problem of gravitation would receive a 
satisfactory solution if we succeeded in finding generally covariant equations for the 
quantities that determine the gravitational field. 

 
 Einstein goes on to admit that he has not been able to find fully covariant field 

equations of second differential order. In the Entwurf  memoir, he expressed the hope that 

full covariance would obtain at a higher differential order. In a letter to Lorentz written 

on 14 August 1913, he deplored his incapacity to reach general covariance or even to find 

any non-linear transformation that left his equations invariant. Two days later, he again 

wrote to Lorentz because he had just realized that energy conservation could serve to 

justify the restriction to linear transformations: "Now that this ugly dark spot [an 

                                                 
87 Einstein 1913, pp. 1256-1257 (citations), 1260 (Newtonian approximation). 



unjustified restriction of the covariance] has been eliminated, the theory can at last bring 

me some pleasure."88 

 In September in Vienna, Einstein explains that the equation  

(85) [ ( )] 0g t Tν ν
ν µ µ∂ − + =  

for energy conservation is covariant only through linear transformations if tν
µ  has the 

same transformation properties as T ν
µ (as Einstein then believes it should). In the 

discussion following his talk, Gustav Mie denies that a wagon's frame is equivalent to the 

earth-bound frame because fluctuations in the wagon's motion (owing to irregularities of 

the rails etc.) cannot be assimilated to a gravitational field. Einstein replies that this lack 

of equivalence is to be expected in the Entwurf theory. In a footnote to the published text 

of his talk, he mentions that he has just discovered an argument excluding a generally 

covariant field equation. Almost certainly, this is the hole argument that he will soon 

publish in reply to other criticism by Mie.89 

 In the latter publication, Einstein reasserts that the "kernel of the equivalence 

principle," which is the geodesic equation δ d 0s =∫ , leads to the demand of general 

covariance, and he presents the lack of covariance of the Entwurf  equations as the "fatal 

rope" with which his colleagues hope to strangle the theory. He distinguishes two ways in 

which an equation may lack general covariance: 1) There exists a covariant equation 

from which the given equation can be obtained by specializing the coordinates, 2) There 

                                                 
88 Einstein to Lorentz, 14 Aug. 1913, 16 Aug. 1913, ECP 5. See also Einstein to Ehrenfest, Nov. 1913, ECP 
5; Einstein to Mach, Dec. 1913, ECP 5: "The reference frame is so-to-say fitted [angemessen] to the 
existing word by means of the energy principle and thus loses its aprioristic nebulous existence. . .. [The 
coordinates] are otherwise quite arbitrary." 
89 Einstein 1913, pp. 1258 (linear covariance), 1264 (reply to Mie), 1257n (hole argument). On the 
argument for linear covariance, cf. Norton 1984, pp. 285-286. 



is no such covariant generalization. In the first case, we have a genuine field equation 

acting as a restriction on possible fields. In the second case, we have only a restriction on 

the choice of coordinates. An example of the first case would be Eq.  (72), which is a 

restriction of R Tµν µνκ= − for 1g− = . An example of the second case is 1g− = , 

because any metric (any system of geodesics) can be expressed under this restriction. 

Einstein firmly believes that the field equation of the Entwurf  belongs to the first 

category and that his colleagues' objection therefore reduces to the weaker objection that 

no sufficient ground has been given for specializing the system of coordinates.90  

 

The hole argument  

Einstein then gives two such reasons, a "logical" one, and an "empirical" one. We have 

already encountered the empiricalreason, which is the alleged impossibility of expressing 

energy-momentum conservation in covariant form. The logical reason is what will later 

be known as the "hole argument." Einstein considers a finite portion of space in which 

the stress-energy tensor of matter T µν vanishes. If the field equation is fully covariant, 

from a given solution ( )g xµν of this equation we may construct another solution ' ( )g xµν

by the following procedure (x stands for the quadruplet 0 1 2 3, , ,x x x x ). Perform a (regular) 

change of coordinates in which the new coordinates agree with the old ones outside the 

hole. This leads to the field ' ( ')g xµν , which satisfies the transformed field equation by 

general covariance. In the transformed equation, we have ' ( ') ( ')T x T xµν µν=  everywhere 

because the coordinates are unchanged outside the hole and because T µν vanishes within 

                                                 
90 Einstein 1914a, pp. 177-178. 



the hole. Consequently, ' ( )g xµν is a solution of the original field equation. As Einstein 

wants the field ( )g xµν to be uniquely determined by the field equation for a given value 

of ( )T xµν , he feels compelled to specialize the reference frames. The argument is 

repeated in an appendix to his contemporary republication of the Entwurf. Einstein will 

hold fast to it for two more years.91  

  

Bridging the scalar and tensor theories 

In early 1914, Einstein and Fokker together published a new study of the scalar theory in 

which the methods of the absolute differential calculus were applied to the form 

(96) 2 2d d ds x xµ ν
µνϕ η= . 

From this point of view, the scalar theory differs from the tensor theory only by a 

specialization of the gµν coefficients. The characteristic assumption is the existence of a 

system of coordinates for which the (coordinate-)velocity of light is the constant c. For all 

such systems of coordinates the above-given form of the metric element applies. As 

Einstein knows, the simplest scalar invariant that can be derived from the metric is the 
                                                 
91 Einstein 1914a, p. 178; 1914b, p. 260. In modern language, Einstein performs an active diffeomorphism 
instead of a mere change of coordinates. This is made clear in footnote (1) of Einstein 1914a, and also in 
Einstein 1914c, p. 1067. Cf. Norton 1984, pp. 287-289; Stachel 1989b. The argument almost certainly 
originated in a private question of Besso to Einstein, as recorded in a memo of 28 August 1913 by Besso: 
cf. Janssen 2007,  pp. 789, 819-830; Renn and Sauer 2007, p. 237-243. There Besso notes that if the field 
equation was fully covariant, then the metric field outside a domain containing all matter would not be 
uniquely determined. This looks like the hole argument, inside out. However, Besso argues that observable 
phenomena (e. g. the motion of a material point) may not be affected by this indetermination (not quite the 
modern reply, because the motion of the points in a given coordinate system is not an intrinsic notion). In a 
subsequent insert plausibly recording Einstein's reaction, this escape is excluded by arguing that different 
solutions of the field equation yield different motions in a given reference system. This response betrays the 
reification of reference systems implicit in the hole argument. Renn and Sauer suggest that Besso's 
consideration emerged out of concern for the uniqueness of the solutions of the Mercury problem (in which 
the matter of the sun is indeed contained within a finite domain). I suggest it may be more directly directed 
with the rotation problems studied by Einstein and Besso: the metric generated by a rotating sun, the metric 
of a non-rotating sun in a rotating frame, and the possibility of substituting one for the other. The 
comparison naturally suggests the intermediate case of coordinates agreeing with those of the rest frame 
inside the sun, and agreeing with those of the rotating frame outside the sun. 



twice contracted Riemann tensor R (the trace of the Ricci tensor). Given the form (96) of 

the metric, a straightforward calculation yields 

(97) 36R ϕ ϕ−= −  . 

For the field equation, Einstein simply takes 

(98) 'R T µ
µκ= . 

In the dust case, 0T µ
µ ρ= , with 3

0ρ ρϕ−= since the density 0ρ is defined with respect to 

the natural volume and the density ρ  with respect to the coordinate-volume. The field 

equation is therefore the same as the Einstein-Nordström Eq. (93), with '/ 6κ κ= .92 

 These considerations reinforced Einstein's conviction that in any theory 

compatible with the equivalence principle, the basic field equation could be obtained 

from a fully covariant field equation by specializing the choice of coordinates:  

Since Nature does not provide us with reference systems to which we could relate 
things [Dinge], we refer the four-dimensional manifold to fully arbitrary coordinates 
(corresponding to the Gaussian coordinates in the theory of surfaces) and we limit the 
choice of the reference system only when the treated problem induces us to do so.  

 
In the scalar case, the specialization of coordinates rests on the light principle. In the 

tensor case, it rests on the energy-momentum principle.93  

 Most important, Einstein now believes that the Riemann tensor could serve to 

derive the field equation both in the scalar and in the tensor case. As he indicates in a 

footnote, he no longer holds that a field equation based on this tensor would be 

incompatible with Poisson's equation in the weak-field static limit. He even hopes to 

retrieve the Entwurf  field equation by specializing the coordinate system in a generally 

covariant, Riemann-tensor-based equation, thus providing a derivation independent of the 

                                                 
92 Einstein and Fokker 1914. 
93 Einstein and Fokker 1914, p. 321. 



more "physical" requirements such as energy-momentum conservation and 

correspondence with Newton's theory:94 

Finally, the role played by the Riemann-Christoffel tensor in the present investigation 
[of the scalar theory] makes it plausible that this tensor may also open the way to 
deriving  the Einstein-Grossmann equations in a manner independent of physical 
assumptions. A proof of the existence or inexistence of a connection of this sort 
would be a significant theoretical progress. 

 

 

1.8 Justified transformations and adapted coordinates 

 

The restricted covariance of the Entwurf theory 

A proof of a connection between the Riemann tensor and the Entwurf  field equation 

would be conceivable only after determining the transformations that preserve this 

equation. In the Entwurf memoir, Einstein had already declared this question as the most 

important in his agenda. In particular, he hoped that these transformations would include 

accelerated and rotating frames. As we saw, in mid-August 1913 he abandoned this hope 

and came to believe that the equation for momentum-energy conservation restricted the 

covariance to linear transformations. At some point he realized that this argument was 

invalid, because it rested on the false assumption that the stress-energy tν
µ  "tensor" of the 

gravitational field was a genuine tensor. In March 1914, Einstein wrote to his friend 

Heinrich Zangger that, contrary to his earlier view, the Entwurf theory allowed for 

                                                 
94 Einstein and Fokker 1914, p. 328. 



"arbitrarily moving reference frames." The remark made the theory so "harmonious" that 

he "no longer had the slightest doubt about the correctness of the theory."95 

 The reason for this volte-face was Einstein's renewed collaboration with 

Grossmann. The two friends had recently proved that the "justified" (berechtigte) 

transformations leaving the Entwurf field equation invariant were those preserving the 

equation 

(99) ( ) 0B gg g gαβ µν
σ ν α σµ β≡ ∂ ∂ − ∂ = . 

From the form 

(100) ( ) ( )gg g g g t Tαβ µν ν ν
α σµ β σ σκ∂ − ∂ = − + , 

of the Entwurf field equation (83) and from the conservation equation (85), it is clear that 

any justified transformation leaves Eq. (99) invariant. The reciprocal statement is less 

evident. Following an advice from the mathematician Paul Bernays, Einstein and 

Grossmann based their proof (about which more in a moment) on the invariance 

properties of the field action 

(101) 4
F

1
d

2
S g g g g xαβ ρσ

α ρσ β= ∂ ∂ −∫ , 

whose variation leads the Entwurf field equation through96 

(102) 4
Fδ δ d 0S T g g xµν

µνκ− − =∫ . 

Bernay probably reasoned that it was easier to investigate the covariance properties of a 

scalar than those of a tensor. Having attended Max Planck's lectures in Berlin and David 

Hilbert's lectures in Göttingen, he was aware of the power of the principle of least action. 

                                                 
95 Einstein and Grossmann 1913, p. 18; Einstein to Zangger, 10 March 1914, ECP 5. The argument for 
linear transformations is given in Einstein 1913,  p. 1258; 1914a, p. 178; 1914b, p. 260. It is rejected in 
Einstein and Grossmann 1914, p. 218n. 
96 Einstein has 2κ instead of κ in the following equation. 



He did a great service to Einstein in directing him to the action of the gravitational field. 

So far Einstein had used the principle of least action only for the motion of particles and 

had based his field heuristics on energy-stress considerations.97  

 At first glance, the reduction of the covariance of the Entwurf  field equation to 

the covariance of 0Bσ =  does not seem to be a huge progress. In particular, as Einstein 

admitted to Lorentz, the transformations do not constitute a group, since they depend on 

the metric ( )g xµν  to which they are applied. Einstein accepted this "non-autonomous" 

character of the transformations and did not worry much about the complexity of  the 

condition 0Bσ = . What mattered to him was that in his opinion this condition allowed for 

non-linear transformations, in harmony with the equivalence principle.98 In private, he 

also told Besso that the justified transformations included the transformation of the 

Minkowski metric to a rotating frame.99 

 

Formal  foundation of the Entwurf theory 

In November 1914, Einstein published a bulky memoir entitled "The formal foundation 

[formale Grundlage] of general relativity theory." After a brief introduction of the 

equivalence principle and the fundamental metric field, comes the "theory of 

covariance"; then the stress-energy tensor of matter, the vanishing of its covariant 

divergence, and its expressions for a dust and for the electromagnetic field; next, a new 

"formal" derivation of the Entwurf equations based on the invariance properties of the 

                                                 
97 Einstein and Grossmann 1914, p. 219n (Bernay). 
98 Einstein and Grossmann 1914, p. 8. Einstein there asserts the possibility of non-linear transformations 
without giving a proof.  He may have reasoned, as he did in Einstein to Lorentz, 23 Jan. 2015, ECP 8, p. 
80, that 0Bσ =  was compatible with any choices of the coordinates at the border of a hole. 
99 Einstein to Besso, 10 March 1914, ECP 5. Einstein long hesitated on the validity of this calculation (see 
note 64 above), until he firmly decided against it : Einstein to Freundlich, 30 Sept. 1915, ECP 8. 



field action. This derivation capitalizes on Einstein and Grossmann's earlier 

characterization of the restricted covariance of the Entwurf equations.100  

 A little more needs to be said on this characterization. It relies on the fact that the 

condition 0Bσ =  (Eq. (99)) is satisfied if and only if the coordinates xµ are chosen so that 

Fδ 0xS =  under any infinitesimal transformation δx x xµ µ µ→ + . In Einstein and 

Grossmann's terms, such coordinates are "adapted" (angepasst) to the manifold with the 

metric ( )g xµν . The Entwurf field equation turns out to be invariant with respect to a 

transformation preserving the adaptation of coordinates, because the variation Fδ g S of the 

action for δg g gµν µν µν→ +  (whose vanishing implies the field equation), is invariant 

under such transformations. In Einstein's eyes, the adapted coordinates have the 

additional virtue of solving the hole paradox: the adaptation provides four conditions 

through which the coordinates in the hole are fully determined when they are known on 

the border of the hole.101  

 In his formale Grundlage of November 1914, Einstein no longer assumes the 

expression (101) of the field action and instead tries to derive this expression by "formal" 

considerations. For the generic action 

(103) 4( , ) dFS g g g xµν ρ µν= Λ ∂ −∫ , 

the variation δx x xµ µ µ→ +  leads to102  

                                                 
100 Einstein 1914c. 
101 Einstein and Grossmann 1914, pp. 219-224. Remember that for Einstein the existence of two different 
solutions of the field equation with the same coordinates derives from the possibility of expressing the 
same solution in two different systems of coordinates.  
102 The correctness of the following formulas is easily judged from 

4 4[ ' ( ')] 'd ' [ ' ( )] dF X x g x F X x g xµ µ− = −∫ ∫ ,  ' ( ) ' ( )X x x X xµ µ ν
ν= ∂ , with ' δx x x= +  and 

δ ( ) ' ( ) ( )X x X x X xµ µ µ= − . 



(104) 4
Fδ (δ ) dx xS g x= Λ −∫ ,  with δ δ δ ( )

( )
x x xg g

g g
µν µν

ρµν µν
ρ

∂Λ ∂ΛΛ = + ∂
∂ ∂ ∂

, 

(105) δ δ δx g g x g xµν µα ν να µ
α α= ∂ + ∂ , δ ( δ δ ) δx g g x g x g xµν µα ν να µ µν α

ρ ρ α α α ρ∂ = ∂ ∂ + ∂ − ∂ ∂ . 

A simple calculation gives 

(106) δ δ 2 δ
( )

x X x g x
g

ν µ να µ
µ ν ρ αµν

ρ

∂ΛΛ = ∂ + ∂ ∂
∂ ∂

. 

At this point, Einstein assumes the Lagrangian Λ to be invariant through linear 

transformations. Then the coefficients X ν
µ  must vanish, and the variation δxΛ reduces to 

the second term of Eq. (106). A double integration by parts of the resulting expression of  

leads to 

(107) 4
Fδ 2 δ dxS B x xµ

µ= ∫ ,     with    
( )

B g
g

να
µ ρ α µν

ρ

 ∂= ∂ ∂  ∂ ∂  

Λ
, 

granted that the fields g µν
ρ∂  vanish at the border of the domain in which δxµ does not 

vanish. Hence, the adapted coordinates are those for which 0Bµ =  (I use bold face 

instead of Einstein's gothic script for the field density X g= −X associated to the field 

X).103  

 Einstein next proves that Fδ g S  is invariant for transformations between adapted 

coordinates. Consequently, the field equation 

(108) G Tµν µνκ=    with   
( )g g

µν ρµν µν
ρ

∂ ∂= − ∂
∂ ∂ ∂
Λ Λ

G , 

                                                 
103 Einstein 1914c, pp. 1069-1071. The similarity with Noether's theorem should be obvious to the modern 
reader. 



which results from Fδ 0g S =  is covariant under such transformations.104 In order to 

restrict the choice of Λ , besides its invariance under linear transformations Einstein 

assumes that it is of the first differential order, that it is of second degree with respect to

g µν
ρ∂ , and that the field equation G Tµν µνκ=  should automatically yield the condition 

0Bµ =  for adapted coordinates. This last requirement is needed because the ten gµν  

coefficients would otherwise be overdetermined by the fourteen equations G Tµν µνκ=  

and 0Bµ = .105 

  The identity 0D Tν
µν =  for the stress-energy tensor Tµν of matter leads to  

0D Gν
µν = , which is equivalent to B Sν

ρ ν ρ= ∂ ,  with 

(109) 
1 1

( ) 2 2 ( )
S g g g

g g g
ν νρ νσ ν ρσ
µ ρ µ µµρ µσ ρσ

ρ ν

δ∂ ∂ ∂= + ∂ + − ∂
∂ ∂ ∂ ∂ ∂
Λ Λ Λ

Λ . 

Therefore, the condition 0Bµ =  will be automatically satisfied if  0Sν
µ ≡ . Einstein uses 

the latter condition as a constraint on the form of the Lagrangian Λ . Unfortunately, he 

does not see that the quantities Sν
µ  are identical with the coefficients X ν

µ  in the full 

expression ( 106) of δxΛ  (his earlier reasoning on adapted coordinates did not require 

computing these coefficients). With this knowledge, it is clear that the condition 0Sν
µ ≡  is 

nothing but the condition for the invariance of Λwith respect to linear transformations. 

Without this knowledge and with false guesses on the value of Sν
µ  for the various 

                                                 
104 As Levi-Civita told Einstein, this seemingly obvious implication does not hold for infinitesimal 
transformations. Einstein believed he could save his proof by appealing to finite transformations. See the 
correspondence published in ECP 8. 
105 Einstein 1914c, pp. 1071-1074. 



candidate actions, Einstein wrongly believes that the Entwurf  action (101) is the only one 

to meet this condition.106 

 The failure of Einstein's reasoning is easily understood from the modern point of 

view. Einstein's condition for adapted coordinates Fδ 0xS =  is equivalent to 0D Gν
µν =  

owing to the identities107 

(110) δ δ δx g D x D xµν ν µ µ ν= +  and 4
Fδ δ dx xS G g g xµν

µν= −∫ , 

which together imply  

(111) 4
Fδ 2 ( )δ dxS D G x g xν µ

µν= − −∫  

by partial integration. Hence the adapted coordinates are just those for which the field 

equation G Tµν µνκ=  is compatible with the equation 0D Tν
µν = . 

 Even though Einstein believes the Entwurf  field action to be the only possible 

one, he expresses energy-conservation in the more general case of a linearly covariant Λ . 

For this purpose, he rewrites Eq. (108) as 

(112) 
( ) ( )

g g g
g g g

νρ ν νρ νρ
α µ αµρ µρ µρ

α α

κ
 ∂ ∂ ∂−∂ = − − ∂ ∂ ∂ ∂ ∂ ∂ 

Λ Λ Λ
T   

Applying ν∂ to this equation and using 0Bµ = , he gets108  

(113) ( ) 0ν ν
ν µ µ∂ + =T t   with   

1

( )
g g

g g
ν νρ νρ
µ αµρ µρ

ακ
 ∂ ∂= − + ∂ ∂ ∂ ∂ 

Λ Λ
t . 

 Although Einstein does not do so, we may use the equation 0Sν
µ =  to retrieve the more 

familiar form of the stress-energy tensor of the gravitational field: 

                                                 
106 Einstein 1914c, pp.1074-1076. 
107 See Landau and Lifshitz 1951, §94. 
108 I have corrected sign typos.  



(114) 
1

2 ( )
g

g
ν ν ρσ
µ µ µ ρσ

ν

δ
κ
 ∂= − ∂ ∂ ∂ 

Λ
t Λ , 

which remains valid when Λ is not linearly invariant.109  

 Toward the end of his memoir, Einstein offers a few remarks about the possibility 

that the same coordinate, say 0x , may be time-like in some portion of spacetime and 

space-like in another; about his inability to exclude closed time-like paths in space-time 

even though they "badly hurt his physical intuition," and about the necessity of 

abandoning Euclidean geometry because of its implicit appeal to direct action at a 

distance (through the notion of rigid body). He also gives the Newtonian approximation 

in which the metric can be approximated by  

(115) 2
0 00, 0, 1 2 /ij ij ig g g cδ= = = + Φ . 

Again, he regards ds as the naturally measured time and 0dx as the rate of a clock. 110 

 Since his first introduction of the stress-energy tensor of matter in the Zürich 

notebook, Einstein has sought equations in which the quantity gµ νρ∂  occurred in a simple 

manner, because in Eq. (84), 

 
1

( )
2

g g T g g Tνρ νρ
ν µρ µ νρ∂ − = − ∂ , 

for the stress-energy tensor of matter, the right side represented the 4-force density acting 

on matter. Granted that Tνρ  in the field equation for the potentials gµν is the counterpart 

of  the mass density in Poisson's equation for the potential Φ , then 1
2

g gµ νρ− ∂  should 

                                                 
109 Einstein 1914c, pp. 1076-1077. 
110 Einstein 1914c, pp. 1078-1080 (remarks), 1080-1082 (Newtonian approximation). 



be a generalization of the gravitational field −∇Φ. Soon after the publication of the 

Entwurf, Einstein favored the simpler form 

(116) 
1

2
g gν νρ σ

ν µ µ ρσ ν∂ = ∂T T  

of Eq. (84), which gave a prominent role to the quantities 

(117) 
1

2
g gν νρ

µσ µ ρσΓ = ∂ . 

 In his formale Grundlage Einstein introduces these Γ coefficients and calls them 

the "components of the gravitational field." He rewrites the Entwurf field equation as111 

(118) ( ) ( )ggαβ σ σ σ
α νβ ν νκ∂ − Γ = − +t T  

with112 

(119) 
1 1

2
( )g g gσ ντ ρ µ σ αβ ρ µ

ν µσ ρτ ν µα ρβκ δ−= − − Γ Γ − Γ Γt  

The field action also is a simple function of the Γ components: 

(120) 4dFS g g xστ α β
σβ τα= − Γ Γ −∫ , 

The relative simplicity of these equations and their analogy with the electromagnetic field 

equations probably contributed to Einstein's faith in the Entwurf  theory.113  

 Remember that right before determining with Grossmann the transformation 

properties of the Entwurf  theory, Einstein had speculated that the field equation of this 

theory might be obtained by specializing the coordinates in an equation based on the 

                                                 
111 The kappa in the following equations is half the kappa of the original Entwurf equations. 
112 I have added the missing minus sign. 
113 Einstein 1914c, p. 1058. Einstein had earlier introduced the "field strengths" 1

2G gg gν νρ
µσ µ ρσ= − ∂

(ECP 4, p. 568). The form (118) of the field equations is derived from the original Entwurf equation (83) 
by replacing the equated contravariant tensors with the corresponding mixed tensor densities (as suggested 
by the simplified form of the divergence equation for the total energy-momentum tensor). I do not believe 
Einstein got it by analogy with the electromagnetic field equation F jµν ν

µ∂ = . Rather, similar principles 

produced a similar equation. 



Riemann tensor. In early April 1914, Einstein wrote to Ehrenfest: "Grossmann wrote to 

me that he is now able to derive the gravitational equations from the generally covariant 

theory. That would be a nice complement to our investigation." Whatever Grossmann 

did, there is no mention of it in the formale Grundlage of November 1914. Plausibly, the 

concept of adapted coordinates and Einstein's erroneous belief that it could be used to 

formally determine the field action, had again diverted him from the Riemann tensor.114 

 

 

1.9 November 1915 

 

Returning to the Riemann tensor 

Einstein had long known that the Entwurf  theory gave a too small value for the 

relativistic precession of Mercury's perihelion but he did not seem to worry much about 

it. In September 1915, he firmly decided that the Entwurf field equation was incompatible 

with the rotation metric, after much wavering on this issue. In a letter to his favorite 

astronomer Erwin Freundlich, he called this result  "a logical contradiction of the 

quantitative kind." Yet he did not yet suspect the foundations of his theory. He opined 

that "a computational error must be hidden somewhere in the edifice" and that the same 

                                                 
114 Einstein to Ehrenfest, early Apr. 2014, ECP 8, #2. It seems impossible to derive the Entwurf  field 
equation from the Riemann tensor with coordinate conditions (because there are vacuum solutions of this 
equation for which 0Rµν ≠ ). It could well be that Grossmann got similar but different equations, as 

Einstein himself did in November 1915. 



error might be responsible for the Mercury perihelion failure. He hesitated between a 

mistake in the coefficients of the field equation and a misapplication of this equation.115  

 The most serious blow came a few weeks later, in early October 1915, when 

Einstein realized that his condition 0Sν
µ ≡  did not further  restrict the choice of the field 

action. More broadly, the condition  0Bµ =  for adapted coordinates follows from the 

field equation and the vanishing divergence of the energy-stress tensor, for any choice of 

the Lagrangian.. In the letter in which Einstein announced this failure to Lorentz, he 

concluded that the correspondence with Newton's theory was the only way to justify the 

Entwurf  choice for the field action. However, he soon came to favor a more formal way 

to restrict this choice, based on general covariance. In the ensuing communication of  4 

November 1915, he explains:116 

Thus I returned to the requirement of general covariance for the field equations, from 
which I had departed with a heavy heart three years ago, during my collaboration 
with my friend Grossmann. In fact at that time we came quite close to the 
forthcoming solution of the problem. 
. . . 
The charm of this theory will not escape anyone who has truly grasped it. It means a 
true triumph of the methods of the general differential calculus founded by Gauss, 
Riemann, Christoffel, Ricci-Curbastro, and Levi-Civita. 

 
 All the obstacles Einstein had originally imagined against the covariant approach 

based on the Riemann tensor had successively vanished: since mid-1913 he no longer 

expected agreement with his scalar theory of 1912; since early1914, he no longer 

required the linear part of the field equation to agree with the d'Alembertian equation (at 

least not without a proper coordinate condition); and he had just ceased to believe that  

                                                 
115 Einstein to Freundlich, 30 Sept. 1915, ECP 8. For two space-dimensions, Einstein found 

2 2 2
00 1 21 (3 / 4) ( )g x xω= − + to second order in the angular velocity ω  by injecting the first-order rotation 

metric into the Entwurf  field equation, whereas for the true rotation metric 2 2 2
00 1 21 ( )g x xω= − + . 

116 Einstein to Lorentz, ECP 8, 12 Oct. 1915. Einstein 1915a, pp. 778-779. 



the  field equation shouldinvolve a simple combination of the field derivatives gρ µν∂ . In 

his first  communication of November 1915, , he denounces the "fatal prejudice" (ein 

verhängnisvolles Vorurteil) that the quantities 1
2

g gνρ
µ ρσ∂  were the natural candidates for 

the components ν
µσΓ of the gravitational field, as suggested by the form (115) of energy-

momentum conservation. He now realizes that the absolute differential calculus and the 

standard form of the geodesic equation instead favor the Christoffel symbols and he takes 

{ }ρ ρ
µν µνΓ = −  for the field components.117 

 The hole argument should not be counted among the obstacles toward general 

covariance, because Einstein had long ceased to believe that this argument excluded a 

fully covariant field equation at the most fundamental level. It only meant that the 

coordinate system had to be adapted to the metric field. It is not clear whether Einstein 

had yet renounced the hole argument in early November 1915.  

 For the sake of general covariance, the gravitational field equation should be built 

from the Ricci tensor. In order to simplify the equation, Einstein subtracts from the Ricci 

tensor the unimodularly covariant lnD gν µ∂ − , as he has done in the Zürich notebook to 

get the tensor Rµν
×  of Eq. (71). He thus obtains the unimodularly covariant equation  

(121) Tρ σ ρ
ρ µν µρ νσ µνκ∂ Γ + Γ Γ = − , 

which is easily seen to derive from 

(122) 4
Fδ δ d 0S T g xµν

µνκ− =∫ ,    with 4dFS x= Λ∫  and gστ α β
σβ ταΛ = Γ Γ . 

Einstein next derives the expression 

                                                 
117 Einstein 1915a, pp. 782-783. 



(123) 
1

2 ( )
t g

g
ν ν ρσ
µ µ µ ρσ

ν

δ
κ
 ∂Λ= Λ − ∂ ∂ ∂ 

 

for the stress-energy tensor of the gravitational field such that ( ) 0t Tν ν
ν µ µ∂ + = . For 

gστ α β
σβ ταΛ = Γ Γ , this gives118 

(124) 1 1
2

( )t g gν ν αβ ρ µ ντ ρ µ
σ σ µα ρβ µσ ρτκ δ−= Γ Γ − Γ Γ .  

Eqs. (122-124) are the same as in the earlier formale Grundlage except that the 

expression of ρ
µνΓ  has changed and the g− factors have disappeared.119 

 Combining the field equation, its trace, and the equation for energy-momentum 

conservation, Einstein gets 

(125) ( ) 0g gαβ στ α β
µ α β σβ τα∂ ∂ ∂ − Γ Γ = , 

and integrates it to  

(126) 0g gαβ στ α β
α β σβ τα∂ ∂ − Γ Γ = . 

This condition is covariant because the trace of the covariant field equation leads to120 

(127) ( ln )g g g g Tαβ στ α β αβ µ
α β σβ τα α β µκ∂ ∂ − Γ Γ +∂ ∂ − = −  

and because T µ
µ  and ( ln )g gαβ

α β∂ ∂ − are unimodular invariants.  

 Einstein does not see that. On the contrary, he uses the alleged non-covariance of 

this condition to adapt the coordinates to the manifold.121 The condition has only one 

component instead of four in the Entwurf . This is one more reason why it cannot be used 

to compensate the indetermination in the hole paradox. Einstein is silent on this issue. 

                                                 
118 The 1κ −  factor is missing in Einstein's text. 
119 Compare with Eqs. (118-120) above. 
120 This is equation (21) in Einstein's text. 
121 Einstein 1915a, p. 485. 



From a modern point of view, combining energy conservation with the field equation 

leads to 

(128) 0D Rµ
µν
× = , with lnR R D gµν µν ν µ

× = − ∂ − . 

Using the contracted Bianchi identity 1
2

( ) 0D R g Rµ
µν µν− ≡ , this condition is equivalent 

to 

(129) 1
2

ln 0D D g Rµ
ν µ ν∂ − − ∂ = , 

which is not an identity. Being (unimodularly) covariant, it restricts the solutions of the 

field equation without restricting the coordinate system.  

 In the first, linear approximation, Einstein's condition (126) reduces to 

(130) 0g αβ
α β∂ ∂ = . 

This condition, Einstein goes on, "does not yet determine the coordinate system since 4 

equations are needed for this purpose. Therefore, in the first approximation we may 

arbitrarily set 0gαβ
β∂ = ." This leads to the d'Alembertian equation 

(131) 2g Tµν µνκ= , 

of which Poisson's law is the non-relativistic approximation. Clearly, Einstein no longer 

regards 0gαβ
β∂ =  as a universal condition on physically admissible coordinates. Instead 

he understands that the linear approximation and the correspondence  with Newton's 

theory in themselves require a specification of the coordinate system. In the end he notes 

that unimodular transformations include uniform rotation, as he wishes in order to satisfy 

the equivalence principle. Interestingly, he no longer restricts the transformations to 



adapted coordinates (even though he still believes adaptation is needed for the sake of 

energy conservation) and he considers only the covariance of the initial field equation.122 

 

Addendum 

In his article, Einstein remarks that despite the unimodular covariance of the theory, the 

coordinates cannot be chosen so that 1g− = , because Eqs. (126-127) together imply 

(132) ( ln )g g Tαβ µ
α β µκ∂ ∂ − == −  

and because the trace of the stress-energy tensor of matter does not vanish in general (for 

a dust, the trace is equal to the density of the dust). In an addendum, Einstein speculates 

that all material energy may be reducible to a combination of electromagnetic and 

gravitational energy, in which case 0T µ
µ =  for the non-gravitational part of the stress-

energy tensor. Then it becomes possible to adopt the fully covariant  

(133) R Tµν µνκ= −  

for the gravitational field equation. The equations of the article are retrieved by 

specializing the coordinates so that 1g− = .123 

 

The gravitational deviation of light and the advance of Mercury's perihelion 

Einstein announced his new theory (without the addendum) to the Berlin Academy on 4 

November 1915. Two weeks later, on 18 November, he communicated two basic 

predictions of the theory: a gravitational deviation of light twice as large as in his earlier 

theory; and an anomaly of about 43" in the advance of Mercury's perihelion, in stunning 

                                                 
122 Einstein 1915a, p. 786. 
123 Einstein 1915a, pp. 799-801. 



agreement with the 45" 5"± measured by astronomers. In the first approximation, 

Einstein gives 

(134) 3/ij ij i jg x x rδ α= − − ,   0 0 0i ig g= = ,  00 1 /g rα= − , with 2 2 2 2
1 2 3r x x x= + +  

for the center-symmetric solution of the field equation in quasi-Cartesian coordinates.  

The coordinate-velocity of light, 

(135)  1 0 2 2 0 2 3 0 2( ) (d / d ) (d / d ) (d / d )c r x x x x x x= + +  for  d d 0g x xµ ν
µν = ,  

depends on location. By Huygens's principle (in analogy with familiar reasoning of the 

propagation of light in a medium of variable index), this leads to the deviation 2 /α ∆  

instead of the /α ∆  given by Einstein's earlier theories. The coefficient α being 22 /GM c

for a central mass M, the deviation of rays passing close to the surface of the sun is about 

1.7".124 

 In order to compute the motion of a point-mass in a central gravitational field, 

Einstein uses the Γ coefficients derived from the expression (134) of the metric, except 

for the 00
iΓ coefficients, which he gets to the next order of approximation through 

00 0i
i

σ ρ
µρ νσ∂ Γ + Γ Γ = . He then injects these coefficients into the geodesic equation 

(136) 
2

2

d d d
0

d d d

x x x

s s s

µ ν ρ
µ
νρ− Γ = .  

Using the techniques of integration earlier elaborated with Besso in the Entwurf context, 

he finds  

(137) 
2

δ 3π
(1 )a e

αθ =
−

, 

which is 12/5 of the Entwurf value given in Eq. (86).  

                                                 
124 Einstein 1915b. Cf. Earman and Janssen 1993. 



 

The final equation 

In the former communication, Einstein still defends the electromagnetic-gravitational 

reduction of matter for which the trace T µ
µ vanishes and the gravitational field equation 

can consistently be R Tµν µνκ= − . Under this hypothesis, he notes, "space and time are 

deprived of the last remnant of physical reality." However, in a footnote to the printed 

version of his text, he mentions he will soon show how to do without this hypothesis. The 

new reasoning is found in a third communication to the Berlin Academy of 25 

November.125 

 The basic idea is that a slightly modified version of  the field equation, 

(138) 1
2

R g R Tµν µν µνκ− = −    (with R R g Rµ µν
µ µν= = ) 

no longer requires 0T µ
µ = . Einstein thereby uses the kind of calculations with which he 

related T µ
µ  to g−  in his first November communication. These involve complex, non-

covariant manipulations in which the stress-energy tensor of the gravitational field still 

plays a prominent role. We would now rely on the contracted Bianchi identity 

1
2

( ) 0D R g Rµ
µν µν− ≡ , which is a consequence of the invariance of the field action (using 

Eq. (111)).  If the field equation is taken to be R Tµν µνκ= − , then the former identity 

combined with 0D Tµ
µν =  gives ( ) 0D g Rµ

µν = , which requires 0Rµ∂ =  since 

0D gµ
µν ≡ . Consequently, Rµ

µ  andT µ
µ  must both vanish. This is avoided by adopting Eq. 

(137) instead  of R Tµν µνκ= − .   

                                                 
125 Einstein 1915b, p. 831; 1915c. As Einstein mentions in his footnote, the prediction for the relativistic 
precession is unaltered by the change in the fundamental equation (because this prediction relies on the 
source-free equation only). 



 Einstein concludes:126 

With this, the general theory of relativity is finally made a closed logical construct. 
The relativity principle in its most general conception, according to which the space 
and time coordinates become physically meaningless, inevitably leads to a completely 
determined theory of gravitation explaining the motion of mercury's perihelion. 

 

What happened to the hole argument? 

Whereas in the formale Grundlage of November 1914 the hole argument played a role in 

justifying adapted coordinates, no mention of this argument appears in Einstein's later 

writings. The reason cannot be incompatibility with the general covariance of the 

fundamental equations, because Einstein believed any physically meaningful equation to 

be the expression a generally covariant equation in a limited subclass of reference 

systems. It cannot just be a new awareness that coordinates are mere labels devoid of a 

physical substratum, because Einstein had earlier expressed this opinion even in the texts 

in which he presented the hole argument. Yet the lack of any reference to adapted 

coordinates in the two last communications of November 1915 and in the Grundlage of 

1916 is a sign that Einstein had abandoned the argument, since the two notions were 

intimately related. At any rate, the full covariance of the gravitational field equation 

(already in the addendum to the first communication), signaled a basic error in the 

argument. 

 Einstein spelled out this error in a letter to Ehrenfest of 26 December 1915:127   

From the fact that the two systems ( )g xµν and ' ( )g xµν  in the same reference frame 

satisfy the conditions of the gravitational field, one cannot deduce any contradiction 
to the univocality of evolution. The seeming force of this argument is lost as soon as 
one considers 1) that the reference system is nothing real, and 2) that the 
simultaneous realization of two different g-systems (better: two different gravitational 

                                                 
126 Einstein 1915c, p. 847. 
127 Einstein to Ehrenfest, 26 Dec. 1915,  ECP 8. See also Einstein to Besso, 3 Jan. 1916, ECP 8. For a 
discussion of possible origins of the coincidence argument, cf. Howard and Norton 1991. 



fields) in the same domain of the continuum is impossible by the very nature of the 
theory. §12 [of the formale Grundlage, about the hole argument] should be replaced 
by the following: 
 
The physically real in the world's evolution (in contrast with what depends on the 
choice of the reference system) consists in coincidences in space and time. For 
instance, real is the intersection or the non-intersection of two different world-lines. 
Consequently, the propositions concerning the physically real are unaltered by 
(univocal) transformations of coordinates. When two gµν systems (and all variables 

necessary to the description of the world) are such that one can be deduced from the 
other by a space-time transformation, then they are completely equivalent. Indeed 
they share the same point-like coincidences in space and time, that is, they share all 
observables. At the same time, these considerations show how natural the demand of 
general covariance is. 
  

 In brief, the functions ( )g xµν and ' ( )g xµν  describe the same metric manifold in 

different systems of coordinates, even though the notation suggests differently (the 

argument x is the same for the two functions). When the metric field ( )g xµν is given, we 

know only that there exists a labeling of the points of the manifold for which the interval 

between two point labeled by xµ  and dx xµ µ+  is given by d dg x xµ ν
µν , but we have no 

independent knowledge of how the labeling is done. Now, the functions ( )g xµν and 

' ( )g xµν  are constructed by means of a diffeomorphism 'x x→  such that 

( )d d ' ( ')d ' d 'g x x x g x x xµ ν µ ν
µν µν= . The intervals given by the first function with the labeling  

x of the manifold are therefore equal to the intervals given by the second function with 

the labeling  x' of the manifold.  

 Einstein did not publicly reject the hole argument in the early years of general 

relativity. Rather, in his Grundlage  of 1916 he replaced it with the coincidence 

argument, just as he told Ehrenfest he would do. Yet there is an interesting formal 



connection between Einstein's earlier concept of adapted coordinates and his 

considerations of  26 October 1916 on the principle of least action in general relativity.128 

  By that time Einstein knew that the field equation (138) could be derived from 

the invariant action 

(139) 4
F dS R g x= −∫  . 

As he also knew, this action differs from the simpler action 

(140) 4
F dS g x= Λ −∫   with  ( )gστ α β α σ

σβ τα στ ατΛ = Γ Γ − Γ Γ  

through a vanishing surface integral. In his memoir he replicates the calculation found in 

his formale Grundlage of November 1914 for the variation FδxS  or the action during the 

change of coordinates δx x xµ µ µ→ + within a hole, with the result of Eq. (107): 

 4
Fδ 2 δ dxS B x xσ

σ= ∫ ,   with  
( )

B g
g

µν
σ ρ ν µσ

ρ

 ∂= ∂ ∂   ∂ ∂ 

Λ
. 

Whereas in the formale Grundlage the action FS was invariant with respect to linear 

transformations only, it now is invariant with respect to any smooth transformation. 

Therefore, we have Fδ 0xS =  for any value of x, and the expressions Bµ vanish identically. 

Einstein uses this result to prove that the field equation  

(141) ( )
( )

g
g

µν ν ν
ρ σ σµσ

ρ

κ
 ∂∂ = − +  ∂ ∂ 

Λ
t T    with   

1

2 ( )
g

g
ν ν ρσ
µ µ µ ρσ

ν

δ
κ
 ∂= − ∂ ∂ ∂ 

Λ
t Λ  

implies the equation ( ) 0ν ν
ν σ σ∂ + =t T for the conservation of the total energy-momentum. 

Note that the stress-energy tensor of the gravitational field ( ν
µt ) still plays a role in this 

reasoning. Remember that in November 1914, Einstein defined the adapted 

                                                 
128 Einstein 1916a, pp. 776-777; 1916b. On the latter article, cf. Janssen and Renn 2007, pp. 900-911. 



coordinates by Fδ 0xS = . His reasoning  of October 1916 implies the impossibility of this 

definition when the action is invariant. Using fully covariant reasoning instead of 

Einstein's recycled calculations, we find  

(142) 4
Fδ 2 δ dxS D G x g xν µ

µν= − −∫   with 1
2

G R g Rµν µν µν= − , 

which yields the contracted Bianchi identity 0D Gν
µν ≡ . Owing to this identity, the field 

equations G Tµν µνκ= − are not independent. They determine the 10 functions ( )g xµν only 

up to 4 arbitrary functions. This freedom exactly corresponds to the indetermination 

exhibited in the hole argument. 

 

 

2. RESEARCH DYNAMICS 

 

2.1 Heuristic principles 

 

As recognized by most commentators, Einstein relied on a few heuristic principles and on 

mathematical techniques and results he learned from Grossmann, Bernay, and others 

while he was constructing his theory. Although he was a novice in the theory of 

Riemannian manifolds and although he had to surmount a spontaneous dislike of abstract 

formalism, he gradually mastered the mathematics he needed for his purpose. His 

approach was thoroughly algebraic, with rare hints at geometric interpretation. Where we 

see geodesics, connections, and curvature, he saw trajectories, field strengths, and a 

covariant 4-tensor, in conformity with the "absolute differential calculus" he inherited 

from Christoffel, Ricci-Curbastro, and Levi-Civita. A more geometric approach, based on 



analogy with the theory of surfaces or on Levi-Civita's later concept of affine connection, 

would plausibly have oriented Einstein's research differently.129 

 In contrast with the mathematical techniques, Einstein's heuristic principles had 

physical and intuitive meaning. They guided the construction of the theory, either by 

suggesting constructive elements, or by testing tentative constructions. In partial 

conformity with earlier histories, we will consider five principles: the equivalence 

principle, general covariance, the stress principle, the correspondence principle, and the 

principle of least action.130 

 

The equivalence principle 

The equivalence of a gravitational field with the inertial field in an accelerated frame 

plays a capital role in Einstein's theory. It is based on an extrapolation of the empirically 

known equality of gravitational and inertial mass. Einstein uses it in a variety of manners: 

to directly derive observable phenomena including the gravitational redshift, the 

gravitational curvature of light rays, and the dependence of the gravitational mass on 

energy content; to determine the space and time coordinates in an accelerated frame; to 

justify tangent inertial frames and to introduce the invariant 2ds first in the static case and 

then in the most general case; and to test possible field equations through their 

compatibility with the rotation metric. 

                                                 
129 On this mathematical background, cf. Reich 1994; Darrigol 2015. According to Lehmkuhl 2014, 
Einstein never conceived general relativity as a kind of geometrical reduction. 
130 I do not include electromagnetic analogy among Einstein's heuristic principles, although I agree with 
Janssen and Renn that there are evident formal analogies between Einstein's gravitational equations and the 
Minkowskian formulation of electromagnetic theory. The reason is that I do not believe Einstein obtained 
his equations through this analogy. Rather, the analogy was produced by shared principles, for instance the 
stress principle, linear covariance, and least action. The stress principle is usually conflated with broader 
considerations of energy-momentum conservation. I believe it must be singled out and emphasized.  



 Nowadays, physicists still use the equivalence principle as a springboard to the 

pseudo-Riemannian manifold of general relativity and to the geodetic principle, but they 

hurry to say that coordinates are mere labels devoid of physical significance in a generic 

metric field. In contrast, for Einstein coordinate systems remained tied to reference 

systems (he indifferently used Koordinatensystem and Bezugsystem), and he never ceased 

to believe that accelerated frames were physically meaningful (at least in small domains), 

in conformity with our common use of earth-bound reference frames despite their not 

being in free fall. It is with respect to such a frame that the familiar free-falling elevator is 

falling.131 

 

General covariance 

Einstein arrived at general covariance through the equivalence principle. Firstly, the 

principle removes the restriction to inertial frames that is characteristic of special 

relativity. Secondly, the application of the principle by means of local tangent frames 

leads to the invariant 2ds and to the equation of motion δ d 0s =∫ , which is generally 

covariant. Thirdly, the motion of a dust is described by a generally covariant equation, 

0D µν
µθ = , wherein µνθ denotes the stress-energy tensor of the dust. A pure 

mathematician, at this point, would focus on the intrinsic structure of the Riemannian 

manifold for space and time and require general covariance for all meaningful field 

equations on the manifold. Einstein did not do so because he did not divorce general 

                                                 
131 Cf. Norton 1985 for a lucid discussion of Einstein's version of the equivalence principle and for 
Einstein's persistent defense of this version. On accelerated frames (local tetrads) in modern general 
relativity, cf. Synge 1960, pp. 114-118. On the consistency of the equivalence principle with modern 
general relativity, cf. Darrigol 2015, pp. 186-187. Einstein and Leopold Infeld introduced the free-falling 
elevator picture in The evolution of physics (Cambridge: Cambridge University Press, 1938). 



covariance from its physical justification through the equivalence principle. In his view, it 

could happen that a mathematically acceptable coordinate system would not correspond 

to a physically acceptable reference system. In practice, he considered local frames in 

which the metric takes the Minkowski form, and also frames that accelerate or rotate in 

the former frames. Although it is not clear what he meant a frame to be for the global 

manifold, one may easily imagine the kind of reference "mollusk" he later popularized: a 

space-filling array of pre-clocks.132  

 At any rate, in his earliest writings on generalized relativity Einstein insisted on 

the frame-dependence of space, time, energy, force, and field measurements. Although 

this  metrological aspect has been generally neglected by commentators, it helps 

understand why Einstein, in his subsequent quest for a gravitational field equation, could 

easily imagine a covariance restricted to physically and metrologically significant frames. 

It also explains the implicit reification of coordinate systems that John Norton sees 

behind the hole argument.133  

 

The stress principle 

In conformity with received field theories, Einstein required the conservation of the total 

energy and momentum of matter and field. In addition he required the gravitational force 

density acting on a dust or any matter to derive from stresses in the gravitational field, 

just as electromagnetic forces acting on a charged matter derive from Maxwell's stress 

tensor. This is what I called the stress principle. In the static case, this condition 

                                                 
132 Einstein 1917, p. 67.  
133 Although historians (e. g. Janssen 2014) and philosophers have frequently discussed Einstein's thought 
experiments based on the equivalence principle, they have usually ignored his operational definitions of 
physical quantities in accelerated frames (optical synchronization and "pocket" measuring contraptions). 



comprehends the vanishing of the total force acting on matter and thereby excludes 

perpetual motion (by Newton's scholium to his third law). Einstein elevated the four-

dimensional generalization of this field-stress assumption to a capital heuristic principle 

of his new theory of gravitation. Today, we would be content with requiring 0D T µν
µ =  

for the energy-stress tensor of matter T µν , and most of us would be suspicious of any 

attempt at defining energy, momentum, and stress within the gravitational field. In 

contrast, Einstein wrote 0D T µν
ν =  under the form (116) 

 
1

2
g gν νρ σ

ν µ µ ρσ ν∂ = ∂T T , 

interpreting the left-hand side as the momentum variation of matter, the right-hand side as 

the force acting on it. He further required this force to derive from the stress-energy 

tensor ν
µt  for the gravitational field. In the tentative field equation G Tµν µνκ= − , the field 

operator Gµν built from gµν and its derivatives must be such that g gνρ σ
µ ρσ ν∂ G  can be 

expressed as the 4-divergence of a symmetric 2-tensor.  

 This stress principle played an enormous role in Einstein's quest for a field 

equation, first as a test for tentative equations, then as a means to construct this field 

equation when it is further assumed to yield a d'Alembertian equation in the weak-field 

limit (the Entwurf strategy). Einstein read the product 1
2

g gνρ σ
µ ρσ ν∂ T  as a generalization 

of the Newtonian product of the gravitational vector field by the mass density matter. For 

this reason, he long regarded the quantities (117) 

  
1

2
g gν νρ

µσ µ ρσΓ = ∂  



as the "gravitational field components" of which the gravitational field operator would 

hopefully be a simple combination. This is the "fateful prejudice" he would condemn in 

November 1915. 

 

The principle of least action 

Soon after introducing the invariant element 2ds , Einstein realized that it could serve to 

construct the action ds∫  for a particle in the gµν field. From the associated Lagrangian he 

derived the energy and momentum that guided his construction of the energy-stress 

tensor of a dust. Yet he did not consider an action for the gravitational field until, in early 

1914, the mathematician Paul Bernay advised him to do so in order to study the 

covariance properties of the Entwurf  theory. It is not clear why Einstein did not earlier 

think of basing his theory on an expression for the field action. Had he studied 

Helmholtz's latest works on electrodynamics or Poincaré's Palermo memoir on the 

dynamics of the electron, he would have appreciated the the power of the principle of 

least action in field theory. He would also have seen, as he did with much delay in his 

Formale Grundlage, that this principle offered the simplest and most efficient way to 

derive field equations that automatically admit a stress-energy tensor. Retrospectively, we 

can see that some of the Gµν field operators Einstein considered in 1913 derived from a 

field action and were therefore compatible with the existence of an energy-stress tensor, 

even though Einstein then believed the contrary.  

 

The correspondence principle 



Einstein relied on four different correspondence criteria. Firstly, the new theory had to be 

compatible with special relativity in a local free falling frame. In the metric approach, this 

is automatically warranted by the fact that in every small neighborhood of the space-time 

manifold there is a system of coordinates for which the metric takes the Minkowskian 

form (Einstein did not specify to which approximation, although Riemann had done so 

long ago in the Euclidean case by means of geodesic coordinates).  

 Another of Einstein's correspondence requirements was that in the weak-field 

limit the gravitational field equation should take the d'Alembertian form g Tµν µνκ= − , 

in evident analogy with the electromagnetic field equations. The failure of a given Gµν to 

meet this condition was not eliminatory, because Einstein felt free to add coordinate 

conditions that eliminated the unwanted terms in the linearized field operator. 

 For a while Einstein further required the static solutions of the tentative field 

equation to agree with his static theory of 1912, in which the metric element has the 

simple diagonal form 2 2 2 2d ( )d ds c t= −r r
)

. His excessive confidence in this theory could 

not last long for he knew, by mid-1913, that the Entwurf field equation admitted static 

solutions with non-vanishing off-diagonal elements (of order 2 2/ rα in the center-

symmetric case).134 More solidly, Einstein required the Newtonian theory of gravitation 

to hold in the non-relativistic limit of the static case. 

  

 

                                                 
134 ECP 4, p. 370.  Being of second order, the non-diagonal terms do not contribute to the first-correction to 
the Newtonian motion of  planets (whereas they do in the final theory in which they are of first order). They 
still conflict with the static theory of 1912, because Einstein originally regarded his expression of the static 
metric as exact (not as an approximation). Some commentators , including Stachel 1989b [1980] and 
Norton 1884, pp. 299-300  (corrected in Norton 2018, pp. 24-25) have judged differently. 



2.2 Early failure with the Riemann tensor  

 

Today we know there are ways of interpreting Einstein's various heuristic principles so 

that they become mutually compatible and lead toEinstein's field equations of November 

1915. We also know that general covariance and the principle of least action are 

sufficient for this purpose. Unfortunately, Einstein did not rely on a field action before 

1914, and he understood his other principles in ways that made them mutually 

incompatible. This can be seen by examining the reasons why Einstein early rejected 

gravitational field equations built from the Riemann tensor.135  

 

A missed opportunity  

In the Zürich notebook, Einstein briefly considered the fully covariant equation 

R Tµν µνκ= −  and two variants obtained by subtracting from the Ricci tensor terms 

invariant through transformations that preserve the determinant  g  and the symmetric 

derivative g g gµνρ ρ µν µ νρ ν ρµϑ = ∂ + ∂ + ∂  respectively. He rejected the fully covariant 

choice because the harmonic coordinate condition that turned Rµν  into 1
2

gµν in the 

linear approximation was incompatible with his static metric of early 1912 and because 

he could not re-express the product g g Rνρ
µ νρ− ∂  as a 4-divergence. The unimodular and 

ϑ -based variants did not have the first defect but they still had the second.  

 For the sake of the equivalence principle, Einstein also wanted the rotation metric 

to be a solution of his field equation and coordinate conditions. On the basis of earlier 

inexact considerations, he probably believed this was the case for the coordinate 

                                                 
135 For a review of the reasons evoked in earlier studies, cf. Weinstein 2018. 



conditions used in the generally and unimodularly covariant options. He knew the ϑ -

covariant option to be incompatible with the rotation metric, but he still hoped there was 

sufficient analogy between particle motion in a rotating frame and in a metric of 

vanishing µνρϑ  .  

 Thus we see that Einstein abandoned the Riemann-tensor-based options 

essentially for two reasons: incompatibility with the static metric of early 1912 (for the 

first option), and incompatibility with the existence of a gravitational stress-energy 

tensor. In the Entwurf  memoir and in later reminiscences, he suggested that the main 

reason was incompatibility with the d'Alembertian form in the linear approximation. 

Before the Zürich notebook was taken into account, this statement was commonly 

interpreted as Einstein's ignorance of coordinate conditions that bring the desired form. In 

reality, he was fully aware of such conditions. But in his opinion they failed to solve the 

d'Alembertian correspondence difficulty because they conflicted with other heuristic 

requirements: compatibility with the older static metric, existence of an energy-stress 

tensor.136 

 As noted by Norton, Renn, and Sauer, Einstein thereby understood coordinate 

conditions as universal restrictions of the class of physically admissible reference frames. 

In this view, in any physical situation the gravitational field is determined by the original 

field equation together with the coordinate condition. In contrast, the coordinate 

conditions of general relativity as we know it are adapted to specific problems and they 

should not be included among the fundamental equations of the theory. Had Einstein used 

modern coordinate conditions instead of coordinate restrictions, he would still have had 

                                                 
136 Cf. Norton 1984. 



reasons to reject the Riemann-tensor-based field operators: The equation 0Rµν =  allows 

for non-diagonal static solutions (for instance the Schwarzschild solution) incompatible 

with his earlier static theory; he would not have seen, without evoking the field action, 

that the product g g Rνρ
µ νρ− ∂  can be turned into a 4-divergence; the field operator is not 

a simple combination of the expressions g gνρ
µ ρσ∂ that Einstein then regarded as the 

natural field components.  

 

Evolving obstacles 

Einstein's early objections to a Riemann-tensor-based field operator gradually subsided, 

while new objections emerged. Incompatibility with the static metric of 1912 could no 

longer be alleged after Einstein and Besso found, in mid-1913, that the center-symmetric 

solution of the Entwurf field equation was non-diagonal. At some point, Einstein may 

have discovered that none of his coordinate conditions were compatible with the rotation 

metric. But he had no reason to investigate these conditions in the Entwurf context and 

there is no evidence that he did. 

  In the late Summer of 1913 Einstein discovered the hole argument following 

which a generally covariant field equation does not sufficiently determine the metric 

field. Originally, he believed this argument excluded any generally-covariant field 

equation. He changed his mind in January 1914, thus appeasing colleagueswho deplored 

his abandonment of general covariance: he now argued that a genuine field equation 

should be obtainable from a generally covariant equation by specializing the coordinate 

system. In his subsequent memoir with Fokker on the metric reformulation of the scalar 

theory, he even expressed the hope that the Entwurf field equation would derive from the 



fully covariant R Tµν µνκ= − by such specialization. He was therefore willing to resurrect 

the Riemann tensor, although what truly mattered to him was the effective field equation 

in the specialized coordinate systems. In his mind this specialization was a necessary 

precondition for constructing a gravitational stress-energy tensor.   

 In the same memoir with Fokker, Einstein indicated that he no longer held the 

non-d'Alembertian character of the linear approximation against a Riemann-tensor-based 

field operator. The remark evidently resulted from his observation that the Einstein-

Nordström field equation could be derived from 'R T µ
µκ=  even though it had the desired 

d'Alembertian form. Of course, Einstein already knew that proper specialization of the 

coordinate systems could generate the d'Alembertian from the Ricci tensor. He now 

believed this could be done without contradicting his other heuristic principles. In 

particular, the specialized field equation could be compatible with the existence of a 

gravitational stress tensor as the Entwurf  field equation was, and it could admit the 

rotation metric as a solution, as Einstein still hoped.  

 In the end what blocked Einstein from using a Riemann-tensor-based field-

equation was not any prejudice against the heuristic value of this tensor, but the 

conviction that it could not be used without coordinate restrictions that led to the Entwurf  

field equation. The restrictions seemed necessary in order to avoid the hole paradox. 

They had to lead to the Entwurf  field equation because this equation seemed to be the 

only one compatible with d'Alembertian correspondence and the existence of the stress-

energy tensor. 

 Thus we see that in order to escape from the Entwurf  charm and move toward a 

truly general relativity, Einstein had to get rid of two prejudices: the incompatibility of 



the Ricci field operator with the existence of the energy-stress tensor, and the necessity of 

a universal restriction of admissible coordinate systems.  

 

2.3 Einstein's errors 

The spotting of errors in works of the past is notoriously risky. Yet there is a clear sense 

in which Einstein sometimes committed errors he would have himself recognized if 

anyone had been able to tell him. These are of variable gravity and subtlety. 

 

Trivial errors 

The Zürich notebook and other manuscript sources contain numerous errors of 

calculation, sometimes corrected sometimes not. Most of them are inconsequential. A 

few are more significant. For instance Einstein repeatedly erred in judging the 

compatibility of  his field equations with the rotation metric, even though the relevant 

calculations are not especially difficult. Probably, he did not bother to redo a calculation 

when the result met his expectations. When it did not, he still hoped some minor 

modification would save the situation. It could also be that, despite the large amount of 

relevant calculations, the compatibility of his theory with rotating frames was not as 

crucial as most commentators have assumed. For a short while, in the Fall of 1913, he 

was willing to limit the covariance of his theory to linear transformations. The rest of the 

time, he would perhaps have contented himself with non-linear transformations not 

necessarily including rotation.137 

                                                 
137 A non-linear transformation 'x x→ can be seen as implying the mutual acceleration 2 2 0/ix x∂ ∂ of local 
frames See Einstein and Grossmann 1914, p. 8: "[The principle of equivalence] is especially convincing 
when the 'apparent' gravitational field . . . [in an accelerated frame]can be conceived as a 'real' gravitational 



 Another trivial error occurred in Einstein's argument that energy-momentum 

conservation, written as ( ) 0ν ν
ν µ µ∂ + =t T was covariant under linear transformations only. 

There Einstein implicitly assumed the gravitational stress-energy tensor ν
µt  to be 

generally covariant whereas from its expression it is easily seen not to be so.  

 A more consequential and most embarrassing error occurred in the formale 

Grundlage of November 1914, when Einstein wrongly asserted that the condition 0Sν
µ ≡  

was compatible with the Entwurf  field action only, when it is easily seen to be 

compatible with any linearly invariant action. 

 

A less trivial error 

Although he had no rigorous proof of this, Einstein strongly suspected the Riemann-

tensor-based field operators to be incompatible with the stress principle. This is not true 

for the Ricci tensor and for the Rµν
× tensor of Eq. (71), but it would be very difficult to 

derive the associated stress energy-tensor without knowing that the associated field 

equation derives from an invariant action. This is true for the Rµν
××  tensor of Eq. (74), but 

too much covariance is lost in the way. A crucial turning point occurred in Einstein's 

program when he realized, in the late Fall of 1914, that there existed a stress-energy 

tensor for any field equation deriving from a field action. 

 

More subtle errors 

                                                                                                                                                 
field, which is the case when accelerative transformations (that is, non-linear tranformations) belong to the 
justified transformations of the theory." 



The hole argument was long judged to be based on the trivial error of regarding the 

expressions of the same metric field in two different coordinate systems, ( )g xµν and 

' ( ')g xµν , as two different fields. 138 In reality, Einstein clearly indicated that he was 

dealing with two different fields ( )g xµν and ' ( )g xµν  in the same reference frame, the latter 

field being the same function of  x  as ' ( ')g xµν  is a function of 'x . Implicitly, Einstein 

thereby assumed that the reference system to be given before expressing the metric field 

( )g xµν . Analogously, in Euclidean space an orthonormal basis must be given before 

expressing a field as a function of the Cartesian coordinates. 

 The falsity of this analogy is easily seen by considering the simple case of a two-

dimensional surface with the metrics 2 2 2d d ds u υ= +  and 2 2 2 2d d ds u u υ= + . These 

metrics differ exactly in the manner of the hole argument, because the latter can be 

obtained by substituting 'cos 'u u υ= , 'sin 'uυ υ=  into the former and then replacing 

( ', ')u υ  by ( , )u υ . When we write these metric formulas, we of course assume that each 

doublet ( , )u υ specifies a point of the surface. But we do not know in which manner until 

we investigate the consequences of the metric formula. The first formula implies that the 

lines of constant u and the lines of constant υ are geodesics, that they are orthogonal to 

each other, that the segments of the lines of constant u delimited by two lines of constant

υ  are all of the same length, and reciprocally. We thus discover that we are describing a 

plane in Cartesian coordinates. The other metric formula implies that the lines of constant 

υ  are geodesics converging to a single point at 0u = , that these lines are orthogonal to 

the lines of constant u, and that the length of the segments of the latter lines delimited by 

                                                 
138 Stachel 1980 first remarked the non-trivial character of the hole argument. 



two lines of constant υ  are proportional to the value of u. That is to say, we are 

describing the same plane in polar coordinates. 

 This argument is so simple and so elementary that one may wonder how it eluded 

Einstein. Even more perplexing is the fact that mathematicians of Hilbert's caliber 

approved the hole argument. One reason may be that Einstein was not thinking 

geometrically and that he was instead implementing a highly algebraic "absolute 

differential calculus" à la Ricci-Curbastro. Another is that in a physical, trans-geometrical 

context he could imagine a reification of coordinate systems, a concrete reference 

independent of the choice of the metric field. One could indeed assume such concrete 

reference; for instance one could, as John Synge suggested in 1921, use local radar 

coordinates with respect to the world-lines of two clocks. 139  But then the form of the 

metric field would be constrained in a complex manner and the task of determining the 

field equations would become formidable. It is more advantageous to admit any metric 

field and to regard the metric meaning of the coordinates as a consequence of the metric 

formula. So we have the choice between an a priori given interpretation of the 

coordinates with concomitant constraints on the metric field, and an interpretation of the 

coordinates through an arbitrarily given metric field. Einstein's error was to 

unconsciously mingle these two incompatible views.140  

 Einstein used the hole argument to justify restricted covariance. He had other 

reasons to restrict covariance even before he introduced this argument. In his view, some 

general physical requirements such as energy-momentum conservation or correspondence 

principles could impose a general restriction of the coordinate system, even if general 

                                                 
139 Synge 1921. 
140 For a fuller discussion, cf. Darrigol 2015, pp. 165-167. 



covariance held at a more fundamental and formal level. For instance, in the Riemann-

tensor-based approach he believed the implicit restrictions ( ) 0g g µν
µ∂ − =  or 

0g µν
µ∂ =  were necessary to warrant the d'Alembertian form of the linearized field 

equation. Nowadays, we would use the harmonic condition for propagation problems but 

consider it inconvenient for other problems, for instance those involving static 

gravitational fields. In contrast, Einstein meant his coordinate conditions to be universal, 

hence the felicitous name "coordinate restrictions" introduced by Renn and Sauer. He 

tolerated these restrictions, provided they did not conflict with Mach's principle (they 

could not define a metric structure independent of the distribution of matter) and they did 

not exclude the accelerated or rotating frames he needed to express the equivalence 

principle. 

 Einstein's reliance on coordinate restrictions contributed to his early rejection of a 

Riemann-tensor-based field operator. One of the restrictions he tried was indeed 

incompatible with the expected form of the static metric, and he had difficulty judging 

the compatibility of his other restrictions with the rotation metric. However, recourse to 

coordinate restrictions was not the chief obstacle and Einstein seems to have quickly 

shifted to the modern understanding of the harmonic condition once he had overcome the 

difficulty of conciliating a Riemann-tensor-based field equation with the stress principle.  

 Should we call Einstein's original reliance on coordinate restrictions an error? It 

was so from a strategic point of view, since it interfered with the heuristic exploitation of 

general covariance. From a logical point of view, any problem of general relativity can be 

solved under any given coordinate restriction since the choice of coordinates is fully 

arbitrary and untied to the system under consideration. All we can say is that for a given 



problem some restrictions are more convenient than others. Well after Einstein arrived at 

his final equations, there were attempts to reintroduce coordinate restrictions on a 

physical basis, for instance Vladimir Fock's in the 1950s with harmonic coordinates.141  

 

 

2.4 Continuities and discontinuities 

 

A superficial reading of Einstein's struggles toward a generalized theory of relativity 

from 1911 to 1915 could leave the impression that he moved through a chaotic 

succession of failed attempts until he reached the correct solution. In reality, at every 

stage of his research Einstein learned something useful for the following stages, both 

physically and formally. During his first naive guesses at equations for the metric field, 

he familiarized himself with tensor calculus and a few algebraic properties of the metric 

tensor, and he already conceived useful coordinate conditions. He soon introduced the 

energy-stress tensor of matter and the accompanying stress principle, which never ceased 

to be essential components of his theory. In his aborted attempts at a Riemann-tensor-

based field equation, he mastered the relevant calculus of Christoffel, Ricci-Curbastro, 

and Levi-Civita with Grossmann's help, and he developed the use of coordinate 

conditions. His failure to conciliate the resulting field equations with the stress principle 

led him to the Entwurf  strategy. While working out the relativistic precession of the 

perihelion in the Entwurf  theory, he and Besso developed all the techniques he would 

need for the similar calculation in his final theory. While consolidating the Entwurf 

                                                 
141 Fok [Fock] 1959. 



theory, he developed the action-based approach that ultimately allowed him to satisfy the 

stress principle with a Riemann-tensor-based field equation. 

 In November 1915, Einstein announced that he was giving up the long favored 

Entwurf  theory to return to general covariance. This statement has induced most 

commentators to exaggerate the discontinuity of  the transition from the Entwurf  to the 

final theory. In reality, there was much continuity, which explains why it took Einstein so 

little time to complete his theory after returning to full covariance. Janssen and Renn, 

who properly emphasize this continuity, see it mostly in the "physical" requirements of 

correspondence, energy-momentum conservation, and analogy with electromagnetic 

theory, which they oppose to the "formal" requirement of general covariance. Indeed 

whereas Einstein moved from restricted covariance to general covariance, he preserved 

the strong electromagnetic analogy Janssen and Renn see in the latest form of the Entwurf 

equations.142   

 In my view, the continuity is best captured by using Einstein's own definition of 

the physical and formal approaches. In his terms the physical approach is the one he 

originally used to derive the Entwurf field equation by means of the stress principle 

combined with the correspondence principle: correcting the d'Alembertian equation so 

that it becomes compatible with the existence of a gravitational stress-energy tensor. The 

formal approach is based on the covariance properties of the field equation, as 

investigated by means of the field action. Einstein judged this approach to be superior to 

the physical approach because it did not rely on the correspondence principle. He 

originally believed he could re-derive the Entwurf field equation in this formal approach. 

When he discovered a fatal error in this derivation, he saved the formal approach by 
                                                 
142 Janssen and Renn 2007, p. 840; also GGR 2, pp. 500-501. 



replacing conditional covariance with general covariance. All he had to do was to change 

the expression of the field components ρ
µνΓ  in the field action. In terms of these 

quantities, most equations of the theory were unchanged, but the field equation was 

altered to become unimodularly covariant. So with Einstein's definition of  "formal" and 

"physical," the continuity is in the formal approach shared by the Formale Grundlage and 

the November 1915 theory. 

 Some of the difficulties that had haunted Einstein's theory suddenly disappeared. 

The hole argument and the dilemmas of restricted covariance went to Einstein's dustbin; 

the coordinate restrictions became coordinate conditions; the stress principle became 

compatible with a Riemann-tensor-based field equation. Yet, as Janssen and Renn rightly 

emphasize, there also was some continuity in the experienced difficulties. The theory 

remained an evolving, imperfect construct with persisting roots in earlier approaches. 

Einstein maintained the correspondence between general covariance and the equivalence 

principle, thus preserving an unexplained reification of coordinate systems; in his 

discussions of the gravitational redshift or of the gravitational deflection of light, he kept 

relying on coordinate-based quantities as if they were truer than the invariants built from 

them; and he maintained the gravitational stress-tensor as an essential component of his 

theory whereas most physicists  now regard itas a physically ill-defined formal 

intermediate in better founded energy-momentum considerations. 143 

 That said, no one would deny that by November 1915 Einstein had the correct 

general field equations for general relativity (without the cosmological term) and that he 

                                                 
143 On Einstein and the stress-energy (pseudo-)tensor for the gravitational physicists, cf. Cattani and De 
Maria 1993. A few physicists later defended the physical character of this tensor: see Trautmann 1962. 



knew how to use them to derive the Newtonian approximation and three crucial 

departures from it. 

 

 

2.5 A simplified history 

 

The following pocket history is meant to bring forth two central features of Einstein's 

quest for a generalized theory of relativity: his concern with the frame-dependence of 

measurement, and his adherence to a stress-based field ontology.  

 

From the equivalence principle to the metric field 

In 1907, Einstein introduced the equivalence principle according to which the effects of 

gravitation of intensity g in a small portion of space can be simulated by the acceleration 

−g of the reference frame. In a direct application of this principle, as given by Einstein in 

1911, the frequency of monochromatic light emitted from a terrestrial source at the 

moderate elevation h and received at sea-level will appear to be increased by 2/gh c , 

because in a frame of upward acceleration g, the receiver acquires the velocity ( / )g h c

toward the source during the (approximate) traveling time /h c  and therefore sees a light 

Doppler-shifted by the amount ( / ) /g h c c . Yet, for a properly defined time in the 

accelerated frame, the frequency of light should be conserved during its travel from the 

emitter to the receiver. Einstein eliminates this discrepancy with the former result by 

assuming that natural clocks (spectral sources) give a "local time" differing from this 

truer time. The velocity of light being the constant c with respect to the local time, its true 



value must depend on the gravitational potential mΦ = − ⋅g r   according to 

2( ) (1 / )c c c= + Φr
)

. Generalizing this law to any form of the potential and using analogy 

with a transparent medium of variable optical index, Einstein predicts that a heavy 

spherical body should deviate light by the amount 22 /GM c ∆ , wherein G denotes the 

gravitational constant and ∆  the closest distance of the light ray from the center of the 

body. 

 In another kind of reasoning developed in 1907 and 1911, Einstein directly 

compared the time and space measured in an inertial frame with the time and space 

measured in a constantly accelerated frame. Assuming that the acceleration did not distort 

the frame and that the velocity of light in the accelerated frame depended on location 

only, he required 

(143) 2 2 2 2 2d ( )d d dx c x t ξ τ− = −)
 

for corresponding differentials of the coordinates in the two frames (Greek letters refer to 

the inertial frame, Latin letters to the accelerated frame; the x-axis is parallel to the 

acceleration; and the time unit is chosen so that 1c = ). For sufficiently small coordinates, 

this relation is satisfied by the transformation 

(144) 2 / 2,x act ctξ τ= + =) )
 

if and only is ( )c x
) has the affine form 

(145) 0c c ax= +) )
. 

Together with the equivalence principle, these relations enabled Einstein to predict the 

effects of a uniform gravitation field on physical phenomena. 



 In early 1912, Einstein considered an arbitrary static field and mimicked its effect 

around a given event through an accelerated local frame. The interval between two 

infinitesimally close events now takes the more general form 

(146) 2 2 2 2d ( )d ds c t= −r r
)

. 

Einstein first obtained the equations of motion in this field by local transformation to a 

free-falling frame. In the end, he realized that these equations derived from  

(147) δ d 0s =∫ . 

They may be written as  

(148) d / dt=f p ,  with 
2 21 /c cυ

=
−

v
p

) )
  and   

2 21 /

c

cυ
∇= −

−
f

)

)
 

for a unit mass-point. The function ( )c r
)  thereby plays the role of the gravitational 

potential. 

 For the relation between this potential ant the density ρ of matter, Einstein 

generalized Poisson's equation to 

(149) 
2

1

2

c c
k

c c
ρ∆ ∇ − = 

 

) )

) )  , 

The form of the first-order term is dictated by homogeneity, and the second term is 

needed so that the force density cρ− ∇ )  on matter of density ρ  derives from the stress 

system 

(150) 
1 1

2
4 ( )ij i j k kG c c cσ −= − ∂ ∂ − ∂ ∂) ) )

 

and therefore satisfies the equality of action and reaction. 

 With this theory, Einstein believed to have found the unique way of 

simultaneously satisfying the equivalence principle, Newtonian correspondence, and the 



stress principle in the static case. He published it in early 1912 and then tried to 

generalize it to an arbitrary gravitational field. His successive trials are found in the 

Zürich notebook written in 1912-1913. 

 

Private attempts 

In Einstein's eyes, higher generality of the gravitational field meant higher generality of 

the permitted reference frames. This is why he looked for a theory in which the motion of 

particles would be given by the geodesics for the general metric  

(151) 2d d ds g x xµ ν
µν= . 

The geodesic equation being covariant with respect to any change of coordinates, he 

looked for a gravitational field equation that would be a covariant generalization of the 

Poisson equation. He also expected the metric field to satisfy a first-order differential 

equation that would generalize the equation 0 00 0g∂ =  for the static case. That is to say, 

from the beginning he was willing to restrict the covariance so that the coordinates would 

be physically meaningful (in the static case, he would exclude coordinates for which the 

metric coefficients become time-dependent). At the same time, there is ample evidence 

that he wanted the covariance to be broad enough to include transformations to 

accelerated or rotating frames, so that the equivalence principle could be concretely 

implemented. 

 At some point, Einstein introduced the energy-stress tensor 

(152) 0

d d

d d

x x

s s

ν ρ
νρθ ρ=   



for a dust of density 0 gρ −  , as the natural counterpart of the mass density in a tensor 

generalization of Poisson's equation. The particles of the dust satisfy the geodesic 

equation if and only if  

(153) 
1

( )
2

g g g gνρ νρ
ν µρ µ νρθ θ∂ − = − ∂ . 

Einstein noticed the general covariance of this equation (which we would now write as 

0D µν
νθ = ) and took it as an additional reason for seeking a covariant gravitational field 

equation. In addition, he interpreted 1
2

g g νρ
µ νρθ− ∂  as the 4-force acting on the dust and 

required it to derive from a gravitational stress tensor, as he had already done in his static 

theory. This is what I call the stress principle. 

 A tensor generalization of the Poisson equation would read 

(154) G µν µνκθ= . 

wherein the field operator G µν  is a second-order combination of  µ∂  and gµν . Not being 

acquainted with the theory of Riemannian manifolds, Einstein tried naive combinations 

sometimes complemented with coordinated conditions until he learned from Grossmann 

about the Riemann tensor, which offers a straightforward way to built a fully covariant 

field operator. Einstein first tried the Ricci tensor Rµν , which is the first contraction of the 

Riemann tensor. In a weak-field approximation, he expected the gravitational field to 

propagate at the velocity c and he therefore wanted the field equation to agree with the 

d'Alembertian equation gµν µνκθ= − . For this purpose, he introduced the harmonic 

coordinate condition 0g µν ρ
µνΓ = , which reduces the second-order, linear terms of the 

field operator to the d'Alembertian operator. He gave up after finding this condition to be 



incompatible with his earlier static metric. He next tried the unimodularly covariant field 

operator  

(155) ln { } { }{ }R R D g ρ σ ρ
µν µν ν µ ρ µν µρ νσ
× = − ∂ − = −∂ − , 

whose second-order part takes the d'Alembertian form under the condition 0g µν
µ∂ = . 

He did not dwell on this option and immediately switched to the much simpler 

(156) 1
2

( )R g g g g g gρσ ρα σβ
µν ρ σ µν α µρ β νσ
×× = ∂ ∂ + ∂ ∂ , 

which has the same limited covariance as the expression g g gµνρ ρ µν µ νρ ν ρµϑ = ∂ + ∂ + ∂  . 

 Einstein hoped that his various restrictions of the covariance still allowed for 

something like rotating frames, as needed for implementing the equivalence principle. 

But he stumbled over the incompatibility of the tentative field operators with the stress 

principle. According to this principle the product  g g Gνρ
µ νρ− ∂  should be expressible as 

the 4-divergence of a tensor built from the metric field and its first derivatives. This 

seemed implausible to Einstein for G Rµν µν= and for G Rµν µν
×= , and he could easily see it 

was impossible for G Rµν µν
××= . Also, the two first choices of the field operator were 

incompatible with Einstein's expectation that the gravitational operator should be a 

simple function of the derivatives gνρ
µ∂ . In his opinion, these quantities naturally 

represented the components of the gravitational field because their contraction with the 

field-stress tensor of matter yielded the 4-force acting on matter. 

 

The Entwurf theory 

While testing whether the field operator Rµν
××  was compatible with the stress principle, 

Einstein discovered that he could easily build a compatible operator by correcting the 



d'Alembertian operator with  non-linear terms generated by partial integration. This led 

him to the equations he would later rewrite as 

(157) ( ) ( )ggαβ σ σ σ
α νβ ν νκ∂ − Γ = − +t T ,  with 

(158)  
1

2
g gν νρ

µσ µ ρσΓ = ∂  and  
1 1

2
( )g g gσ ντ ρ µ σ αβ ρ µ

ν µσ ρτ ν µα ρβκ δ−= − − Γ Γ − Γ Γt . 

The ν
µσΓ are the "field components"; the tensor densities σ

νT and  σ
νt represent the stress-

energy of matter and gravitational field respectively, and they satisfy the equation of 

conservation 

(159)  ( ) 0ν ν
ν µ µ∂ + =T t . 

Einstein believed these relatively simple equations to be the only ones compatible with 

the stress principle and d'Alembertian correspondence. This is why he published them 

with Grossmann in early 1913 in an outline (Entwurf ) of a new theory of gravitation, 

even before testing their compatibility with the equivalence principle.  

 The Entwurf  equations are easily seen not to be generally covariant. This did not 

bother Einstein for he (erroneously) found them to be compatible with the rotation metric 

while collaborating with Besso on the relativistic precession of a planet's perihelion. 

During the same collaboration, he arrived at the hole argument following which the 

metric field within a matter-free hole cannot be uniquely determined by the distribution 

of matter around the hole if the field equation is fully covariant: if a given field is a 

solution, any field obtained by diffeomorphic deformation of this field in the hole is also 

a solution. Originally, Einstein believed the hole argument to exclude full covariance at 

any level of the theory. In light of his and Fokker's geometric interpretation of the 

Einstein-Nordström scalar theory of gravitation, he changed his mind and he even came 



to hope that the Entwurf field equations could be obtained by specializing the coordinate 

systems in a Riemann-tensor-based field equation.  

 Resuming his collaboration with Grossmann in early1914, Einstein succeeded in  

characterizing the transformations under which the Entwurf  field equation was covariant. 

The key, provided by the mathematician Paul Bernay, was to reduce the covariance 

properties of the field equation to the invariance properties of the field action from which 

it derives. Einstein and Grossmann found  

(160) 4dFS g g xστ α β
σβ τα= − Γ Γ −∫  

for the relevant field action, introduced "adapted coordinates" such that the action is 

stationary under an infinitesimal variation of the coordinates, and proved that the field 

equation was invariant under any transformation between adapted coordinates. The four 

conditions of adaptation, 

(161) ( ) 0B ggαβ σ
ν α σ νβ≡ ∂ ∂ − Γ = , 

where just what he needed to avoid the diffeomorphic freedom in the hole. Most 

important, he believed them to be compatible with non-linear transformations and 

rotating frames in particular.  

 Einstein soon exploited these covariance considerations to design a new "formal" 

derivation of the Entwurf theory. For this purpose, he started with an arbitrary, linearly 

invariant field Lagrangian, and required that the derived field equation G Tµν µνκ=  , when 

combined with the energy-momentum conservation 0D Tµ
µν = should automatically yield 

the condition for adapted coordinates (in the Entwurf case the conditions (161) indeed 

derive from Eqs. (157) and (159)). Otherwise, there would be 10+4 equations for 



determining the 10 unknowns of the metric field. Unfortunately, Einstein erred in 

developing this condition and falsely concluded that it was compatible with the Entwurf 

action only. From a modern point of view, the impotence of Einstein's condition is easily 

understood. The variation associated with his condition for adapted coordinates leads to 

0D Gν
µν = , which is precisely the condition for the field equation G Tµν µνκ=  to be 

compatible with the equation 0D Tν
µν =  for energy-momentum conservation. 

 

The final theory 

Einstein became aware of this flagrant error in October 1915. He now understood that 

any linearly covariant Lagrangian led to a field equation compatible with the stress 

principle. He also realized that taking { }ρ ρ
µν µνΓ = − instead of 1

2
g gν νρ

µσ µ ρσΓ = ∂ in the 

field action (160), he could retrieve the unimodularly covariant field operator Rµν
× he had 

briefly considered in the Zürich notebook. He reconsidered this option in the following 

month, now understanding that the condition 0g µν
µ∂ =  could be used in the weak-field 

limit to get a d'Alembertian field equation and the static Newtonian sub-case without 

compromising the unimodular covariance of the theory. He next derived a center-

symmetric solution of the field equation 0Rµν
× =  (with 1g = − ) and solved the geodesic 

equation for a particle moving in this field. The first approximation yielded the Kepler 

motion, the second a precession compatible with the observed 43" anomaly in Mercury's 

case. 

 Instead of the unimodularly covariant field operator Rµν
× , Einstein briefly 

considered the fully covariant Rµν , with the coordinate restriction 1g = −  . As he 



understood, this choice is not compatible with the non-vanishing trace of the stress-

energy tensor of usual matter. In modern terms, the equation R Tµν µνκ= − , the contracted 

Bianchi identity 1
2

( ) 0D R g Rµ
µν µν− ≡ , and the conservation law 0D Tµ

µν =  together 

imply the undesired 0Tµ∂ = . Einstein first avoided this difficulty by assuming that all 

matter was of electromagnetic-gravitational nature (in which case Tµν is purely 

electromagnetic and has a vanishing trace). In the last week of November he realized that 

a simple variant of the field equation, 

(162) 1
2

R g R Tµν µν µνκ− = − , 

was compatible with any value of the trace of the energy-stress tensor. This was his final 

choice.  

 Einstein and Hilbert later found out that this equation simply derived from the 

invariant field action 4dR g x−∫ built from the Riemann scalar R. They also realized, by 

reasoning similar to Einstein's adaptation of coordinates to the non-invariant Entwurf  

Lagrangian, that the invariance of this action led to the contracted Bianchi identity, as 

needed for compatibility with energy-momentum conservation. Had Einstein originally 

based his search for a gravitational equation on an invariant gravitational field 

Lagrangian, he could have taken this Royal route to general relativity much earlier. This 

would not have annihilated the difficulties he had conciliating the field operator with the 

correspondence principle; but he would have thus avoided the chief and most persistent 



obstacle in his three years of struggle: seeming incompatibility with the stress 

principle.144 
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