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The unnamed structuralism of four nineteenth-
century philosopher-physicists 

Olivier Darrigol 

CNRS: UMR SPHere1 
 
Structuralism is commonly believed to have emerged in the twentieth century, 

first in linguistics and in mathematics, then in anthropology, psychology, literary 
criticism, and other human sciences, with a surge in the 1960s. The word is also 
used to characterize a variety of the semantic approach to physical theory and a 
variety of realism in today‘s philosophy of physics. Although there are many vari-
eties of structuralism, they all share a focus on structure qua self-contained, ab-
stract, generic system of relations. Abstractness here means that the nature of the 
relata is indifferent; genericity means that the same structure is shared by a multi-
plicity of objects. This minimal definition of structuralism is adopted here, for it is 
well adapted to a study of interdisciplinary exchanges in a historical perspective. It 
implies a kind of cohesion and holism, because in a given structure the meaning of 
a term is entirely defined by its relations with other terms and because any term is 
related to any other term through a chain of relations (otherwise the structure 
would divide itself into several independent substructures). In some varieties of 
structuralism, ―structure‖ may have additional connotations including rigidity, 
agency, dynamism, or analogy with organisms. The most pervasive structuralist 
qualifications nonetheless remain abstractness and genericity.  

The word ―structuralism‖ received the meaning just defined in the 1920s.2 In 
earlier times the word ―structure‖ rarely had its modern structuralist meaning. It 
usually referred to the way an object is constructed (concretely or metaphorically), 
with no intended abstraction of the structure from its object(s).This lexical obser-
vation raises two questions: How did the word ―structure‖ acquire its structuralist 
meaning? Did structuralism exist before it was so named? The answer is not easily 
given because it involves the consideration of a number of different sciences and 

                                                           
1 E-mail: darrigol@paris7.jussieu.fr. The following abbreviations are used: BB, Akademie der 
Wissenschaften zu Berlin, mathematisch-physikalische Klasse, Sitzungsberichte; MSP i, The sci-
entific papers of James Clerk Maxwell, ed. William Davidson Niven, 2 vols. (Cambridge, 1890), 
vol. i. All translations are mine, except those of Poincaré‘s texts, which are taken from Henri 
Poincaré, The foundations of science (New York, 1913); HWA i, Hermann Helmholtz, Wissen-
schaflische Abhandungen, 3 vols. (Leipzig, 1882, 1883, 1895), vol. i; SHPMP, Studies in the his-
tory and philosophy of science; SHPS, Studies in history and philosophy of science. 
2 The words ―structuralist‖ and ―structuralism‖ had earlier been used in psychology to character-
ize the approach of Wilhelm Wundt and his disciples, as opposed to ―functionalism.‖ However, 
Wundt‘s structures did not have the modern structuralist meaning. See, e.g., Jared Sparks Moore, 
The foundations of psychology (Princeton, 1921), 27-28. 
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their intricate relationships, and because the importance of abstract structures in a 
given discipline is not easy to assess objectively. To some extent, structure is in 
the eyes of the beholder: looking intently and carefully, one could find structure in 
any science since the scientific approach demands generality and since generality 
is about shared systems of relations. In order to avoid this difficulty, we must fo-
cus on overtly structuralist practices and statements. This still leaves us with a 
huge corpus of potentially relevant sources. Having considered only a few of them 
and being unfamiliar with most of the relevant fields, all I can offer is tentative, 
fragmentary answers. 

The first part of this essay is an inquiry into the origins of the structuralist 
meaning of the word ―structure.‖ The answer necessarily involves the detection of 
structuralist practices in the fields considered. It turns out that in some fields, most 
evidently in mathematics, structuralist tendencies and approaches existed well be-
fore the name existed, although in others the reverse scenario prevailed. The se-
cond part of this essay deals with the special case of nineteenth-century physics. 
Although no physicist in this period employed the word ―structure‖ as we would 
now do in similar circumstances, it is shown that four major figures of nineteenth-
century physics and its philosophy, James Clerk Maxwell, Hermann Helmholtz, 
Henri Poincaré, and Pierre Duhem all defended varieties of structuralism. They 
did so more insistently than other philosopher-physicists of this period, and their 
reflections were deeply interconnected: Helmholtz and Poincaré drew much on 
Maxwell, and Duhem much on Helmholtz. The comparison of their approaches, as 
is argued in the conclusion, reveals different conceptions of the historical import 
of structures. 

It is of course not enough to describe structuralism as a historical fact, in phys-
ics and elsewhere. We also want to understand its cognitive advantages. In the 
case of nineteenth century physics, we will see that structures were used as mate-
rial or tools for theory construction, that they were meant to limit the surplus con-
tent of theories and bring them closer to experience, and that they permitted a va-
riety of realism in Poincaré‘s case. In the conclusion, I will briefly indicate why 
these virtues do not contradict the self-contained, abstract character assumed in 
my definition of structures.  

1. Structures defined 

In today‘s sciences and in their philosophy, the word structure often refers to a 
system of relations between terms, wherein the nature of the terms is indifferent. 
As was just said, a structure in this sense has two essential characteristics: It exists 
abstractly and independently of its intended object (if there is any); and it can be 
shared by various objects, in which case the objects are said to be isomorphic. 
This definition of structure is mostly a twentieth-century novelty. In the nineteenth 
century, structure referred to the manner in which an object is constructed or orga-
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nized, in accordance with the Latin root struere. This still is the usual dictionary 
definition. No separation of the structure from its object is hereby intended; no 
special attention is paid to the sharing of structures.  

Received definitions 

Dictionary definitions of the eighteenth and nineteenth century typically cited 
―the structure of a building‖ for the original use, ―the structure of an organism‖ for 
a concrete analogical use, and the ―structure of a discourse or of a sentence‖ for an 
abstract use. Although the abstract use has structuralist potentialities, these are not 
brought out. One late nineteenth-century French dictionary, conceived by the lin-
guist Adolphe Hatzfeld, includes an abstract, holistic definition of structure as 
―l‘arrangement des parties d‘un tout.‖  In 1926, André Lalande‘s influential Voca-
bulaire for philosophy similarly gives ―disposition des parties qui forment un 
tout‖ as a first definition of structure; but he innovates in distinguishing two uses 
of the word in psychology: ―combinaison des éléments que manifeste la vie men-
tale, considérée à un point de vue relativement statique‖ (sense A); and ―par oppo-
sition à une simple combinaison d‘éléments, un tout formé de phénomènes soli-
daires, tels que chacun dépend des autres et ne peut être ce qu‘il est que dans et 
par sa relation avec eux‖ (sense B). Sense A plausibly refers to the older ―structur-
alist psychology‖ of Wilhelm Wundt and his disciples; sense B explicitly refers to 
the more recent gestalt psychology (―Cette idée est le centre de ce qu‘on appelle 
théorie des formes (Gestalttheorie et spécialement Gestaltphychologie)‖), alt-
hough its Viennese originator Christian von Ehrenfels and his Berlin followers 
had hardly used the word Struktur. It could easily pass for a structuralist definition 
and was indeed often cited by later structuralist thinkers. It is not clear, however, 
that Lalande meant the mutual relations between interdependent phenomena 
(phénomènes solidaires) to define them completely; possibly he meant only that 
these relations necessarily contributed to their definition.3 

We will later see that the structuralist meaning of ―structure‖ was already in the 
air when Lalande‘s Vocabulaire appeared. It was not so in the nineteenth century. 
Consider, for instance, how two prominent physicists used the word in the nine-
teenth century. Maxwell studied the mechanics of ―framed structures,‖ the ―struc-

                                                           
3 Adolphe Hatzfeld and Arsène Darmesteter, Dictionnaire général de la langue française, 2 vols. 
(Paris, 1890-1893); André Lalande, Vocabulaire technique et critique de la philosophie, 2 vols. 
(Paris, 1926), vol.2, supt., 1059. Lalande thanked the Swiss psychologist Édouard Claparède 
(one of Piaget‘s mentors) for the information. He translated Gestalt as ―structure,‖ in conformity 
with usage in early French and English texts on gestalt psychology. For instance, the definition 
of Webster‘s New international dictionary of the English language (Springfield, 1910) reads: ―a 
structure or system of phenomena, whether physical, biological, and psychological, so integrated 
as to constitute a functional unit with properties not derivable from its parts; as, in music, a chord 
or a melody; also the pattern or figure assumed by such a system.‖ 
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ture of [material] bodies,‖ the ―structure of the retina,‖ the ―internal structure of 
molecules,‖ and the ―molecular structure of liquids.‖ Helmholtz most frequently 
used the word Structur in physiology, referring to the structure of organs; in other 
domains he rather used the German alternative Gebilde where English speakers 
would have used ―structure.‖ Stepping into the twentieth century, we encounter 
―structure‖ in Pierre Duhem‘s La théorie physique, son objet et sa structure, pub-
lished in 1906. As will be explained in a moment, the word is there used, possibly 
for the first time, with the intention to promote a structuralist view of physical 
theory.4 

What about ―structure‖ in nineteenth-century mathematics? The word rarely 
occurred until when, late in the century, there started to be much talk about ―the 
structure of a group,‖ or the ―relations of structure of a group,‖ as defined by the 
―structure constants‖ in the case of Lie groups and by the list of products reducing 
to the identity in the case of finite groups. Élie Cartan‘s dissertation of 1894 had 
the title Sur la structure des groupes de transformations finis et continus, the 
structure of a group of transformations being defined as that which does not de-
pend on the nature of the transformations and remains unchanged through isomor-
phism. Starting in 1899, Poincaré abundantly used this terminology in his own 
writings on Lie groups and groups of transformation.5 

As for the word isomorphism, from the Greek for ―same form,‖ its main scien-
tific use in the nineteenth century was for the chemical isomorphism Eilhard 
Mitscherlich discovered in 1819 and according to which chemically similar salts 
tend to crystallize in the same form. In the last third of the century, it began to be 
used for isomorphism between groups, defined as it still is today as a one-to-one 
correspondence for which the image of the product of two elements of the group is 
the product of the images. In his Theory of groups of 1897 William Burnside ac-
companied the definition with the remark that two isomorphic groups are truly the 
same group when ―abstractly considered.‖ But he did not use the word ―structure‖ 
in this context. Cartan and Poincaré did.6 

                                                           
4 James Clerk Maxwell, MSP 1, 603; MSP 2, 275, 276, 549, 463, 549; Hermann Helmholtz, 
Handbuch der physiologischen Optik  (Leipzig, 1867), on 19, 65, 192; Wissenschaftliche 
Abhanlungen, 3 vols. (Leipzig, 1882, 1883, 1895), vol. 2, pp. 32, 146, 273, 607; Pierre Duhem, 
La théorie physique, son objet et sa structure (Paris, 1906). 
5 Élie Cartan, Sur la structure des groupes de transformations finis et continus (Paris, 1894); 
Henri Poincaré, ―Sur les groupes continus,‖ Transactions of the Cambridge Philosophical Socie-
ty, 18 (1899), 220-255; ―Sur l‘intégration algébrique des équations linéaires et les périodes des 
intégrales abéliennes,‖ Journal de mathématiques, 9 (1903), 139-212. 
6 Eilhard Mitscherlich, ―Über die Kristallisation der Salze in denen das Metall der Basis mit zwei 
Proportionen Sauerstoff verbunden ist,‖ Akademie der Wissenschaften zu Berlin, Abhandlungen 
(1818-1819), 427-437; Camille Jordan, Traité des substitutions et des équations algébriques 
(Paris: Gauthier-Villars, 1870), 56; Felix Klein, Vorlesungen über das Ikosaeder und die 
Auflösung der Gleichungen vom fünften Grade  (Leipzig, 1884), 7-8; William Burnside, Theory 
of groups of finite order (Cambridge, 1897), 22. More exactly, what is now called an isomor-
phism was called a ―holoedric isomorphism‖ because the old isomorphisms were not necessarily 
bijective. 
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With this group-theoretical exception and a few others to be given soon, ―struc-
ture‖ retained its ordinary meaning through the nineteenth century. How did the 
newer meaning of structure as an abstract system of relations come to pervade 
common and scientific parlance?  

Natural history 

In order to answer this question it is tempting to first consider the case of natu-
ral history since, as was mentioned, dictionaries have long included ―the structure 
of an organism‖ or the ―structure of an organ‖ as sample uses of the word ―struc-
ture.‖ Although this employment of the word does not necessarily imply the struc-
turalist abstractness and genericity, the idea of the same (sub-)structure being 
shared by different organisms or by different organs naturally occurs in compara-
tive anatomy, which is as old as Greek philosophy. Genericity came to the fore 
when a few botanists and anatomists of the eighteenth century emphasized the uni-
formity of design of living organisms. For instance, in the fourth volume of his 
Histoire naturelle (1753) Georges Louis Leclerc, Comte de Buffon wrote: 

The reader will decide whether this hidden resemblance is not more marvelous than the 
apparent differences, whether this constant conformity of design from man to quadrupeds, 
from quadruped to cetaceans, from cetaceans to birds, from birds to reptiles, from reptiles 
to fish, etc., in which the essential parts such as the heart, the intestines, the spine, the 
senses, etc. are always found, does not indicate that in creating animals the supreme Being 
wanted to employ one idea only and vary it in all possible manners at the same time, so 
that man might admire both the magnificence of the execution and the simplicity of the 
design. 

Similarly, in his Traité d’anatomie (1786), Félix Vicq d‘Azyr pondered: 
Is not this [sharing of more or less hidden clavicular bones by all quadrupeds] clear 
evidence of the ways of Nature, which constantly seems to operate according to a 
primitive and general model from which she departs but with regret and of which traces 
can everywhere be found?  
 
Nature thus seems to follow a type or general model, not only in the structure of the 
diverse animals but also . . . in the structure of their different organs; and we do not know 
what is more worth our admiration: the abundant variations of forms, or the constancy and 
the kind of uniformity that a keen eye discovers in the immense extent of her productions. 

Although Vicq d‘Azyr here uses the word ―structure,‖ it is the word ―type‖ that 
conveys the structuralist idea of genericity.7 

                                                           
7 Georges Louis Leclerc, Comte de Buffon, Histoire naturelle, générale et particuliére, avec la 
description du cabinet du Roi, vol. 4 (Paris, 1753), ―L‘asne,‖ 377-436, on 381; Félix Vicq 
d‘Azyr, Traité d’anatomie et de pathologie, avec des planches colorées représentant au naturel 
les divers organes de l’homme et des animaux, 2 vols. (Paris, 1786), vol. 1, pp. 9, 12. 
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At the turn of the eighteenth and nineteenth centuries, Wolfgang Goethe based 
his ―morphology‖ of plants and animals on the comparison of their forms (Ge-
stalt). Goethean form was a holistic, ill-defined concept, implying irreducibility to 
mechanical elements, and eluding Linnean principles of classification. It purported 
to be the proper basis of a scientific approach to the biological phenomena that 
Newtonian mechanical reduction would never capture. Goethe thereby shared 
Buffon‘s and Vicq d‘Azyr‘s belief in the structural unity of nature, a precondition 
for scientific studies. For a given group of animals, vertebrates for instance, he as-
sumed the existence of a general ―type‖ of which the individual species only were 
continuous variations. The aim of his comparative anatomy was to identify this 
type, which could then be used dynamically: a given species could continuously 
evolve within a type, by adjustment of the relative size of the different organs or 
bones under environmental pressure. Goethe also conceived, in his ―Metamorpho-
sis of plants,‖ that the various parts of plants evolved into each other in a form-
preserving manner. He used the word Structur in its ordinary sense, and his basic 
concepts of form, type, and metamorphosis were too vague and too fleeting for 
him to be associated with a well-defined variety of structuralism. In particular, he 
did not clearly express the idea that form, type or structure were defined by the 
mutual relations of parts. His, Buffon‘s, and Vicq d‘Azyr‘s emphasis on compari-
son and their faith in the existence of biological archetypes nonetheless had a 
structuralist flavor.8 

Charles Darwin abundantly used the word structure in his On the origins of 
species (1859), in the usual sense of the build-up of an organism or an organ. In 
his theory, the structure (and habits) of animals and plants evolve through the 
combined effect of structure-changing mutations and selection of the structures 
best fitted to the environment. Structure is never quite the same even between two 
individuals in the same species, and the partial sharing of structure between the 
individuals of different species reflects common ancestry. Darwin called this 
shared portion of structure ―generic characters.‖ Unlike Goethe‘s purely idealist 
types, these characters received a historico-empirical justification through the evo-
lution process. Although, they have the genericity required for a structuralist no-
tion, Darwin did not truly consider them as abstract systems of relations. Moreo-
ver, what he called structure was specific to a given individual, and what could be 
generic was only some component of a structure.9 

                                                           
8 Wolfgang Goethe, Sämtliche Werke, 40 vols. (Stuttgart, 1902-1907), vol. 39: Schriften zu 
Naturwissenschaften. Cf. George Wells, Goethe and the development of science 1750-1900 
(Alphen aan den Rijn, 1978); Stéphane Schmitt, ―Type et métamorphose dans la morphologie de 
Goethe, entre classicisme et romantisme,‖ Revue d’histoire des sciences, 54 (2001), 495-521; 
Georgy Levit, Petra Reinhold, Uwe Hoßfeld, ―Goethe‘s ‗comparirte Anatomie‘: Die 
entscheidende Grundlage für die Begründung der Jenaer theoretischen Morphologie, Medizin 
und Veterinärmedizin,‖ Deutsches Tierärzteblatt, 63, (2015), 1729-1733. 
9 Charles Darwin, On the origin of species by means of natural selection, or the preservation of 
favoured races in the struggle for life (London, 1859). 
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Sociology 

By definition, sociology deals with large groups of people and their interrela-
tions, irrespective of the identity of these people. It therefore deals with structures 
in a fairly abstract sense. Talk about ―social structures‖ or the ―structure of socie-
ty‖ is pervasive in early sociology as well as in socialism and Marxism, in analogy 
with the structure of living organisms. For the English polymath Herbert Spencer, 
the model to follow was Darwin‘s evolution theory, in which the adaptation of 
structures to the environment played a central role. Toward the end of the century, 
the Belgian sociologist Guillaume de Greef and the French sociologist Émile 
Durkheim adopted Spencer‘s analogy, with a twist: whereas for Spencer the social 
organism was reducible to an aggregate of human components in a given physical 
environment, for de Greef and Durkheim this organism had a specific structure of 
interrelated ―social facts.‖ While this structure still responded to biologically and 
environmentally defined functions, it also had laws of its own, to be traced to so-
cial contracts for de Greef, and to be investigated by empirical methods for Durk-
heim. These two authors combined the biological metaphor of structure with Au-
guste Comte‘s invention of ―sociology‖ as a genuine science with its own object 
and methods. They were pioneers of what is now called structural functionalism. 
In their theories, social structures acquired a structuralist meaning and the mean-
ing of the word ―structure‖ implicitly took a modern turn.10 

Mathematics and philosophy 

Although late nineteenth-century sociology used the word structure with a 
structuralist meaning, it did not formally redefine structure to suit its structuralist 
purposes. Such formal redefinition first occurred in mathematics. We already saw 
that the structuralist use of ―structure‖ entered mathematics in the later nineteenth 
century, in the limited context of group theory. This does not mean that structural-
ism did not exist earlier in mathematics. On the contrary, the idea of systems of re-
lations existing independently of their concrete or intuitive object is as old as 

                                                           
10 Herbert Spencer, The principles of sociology, vol. 1 (London, 1875); Guilllaume de Greef, In-
troduction à la sociologie,  2 vols. (Paris, 1886-1889); Sociologie générale élémentaire 
(Bruxelles, 1895), leçon 19: ―Structure générale des sociétés‖; La structure générale des socié-
tés, 2 vols. (Paris, 1907-1908); Émile Durkheim, ―La science sociale selon de Greef,‖ Revue phi-
losophique, 22 (1886), 658-663; De la division du travail social: étude sur l’organisation des so-
ciétés supérieures (Paris, 1893); Les règles de la méthode sociologique (Paris, 1895). Unlike de 
Greef, Durkheim used the word ―structure‖ sparingly; he preferred ―organism‖ and ―organs.‖ Cf. 
Ferdinand Tonnies, ―The present problems of social structure,‖ The American journal of sociolo-
gy, 10 (1905), 569-588; Peter Corning, ―Durkheim and Spencer,‖ The British journal of sociolo-
gy, 33 (1982), 359-382; Jonathan Turner, ―Durkheim‘s and Spencer‘s principles of social organi-
zation: A theoretical note,‖ Sociological perspectives, 27 (1984), 21-32. 
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mathematics itself. This idea is intimately bound to analogy, which can be defined 
as the sharing of systems of relations; and it is the main source of generality in 
science as well as the nerve of much mathematical reasoning. The Polish mathe-
matician Stefan Banach is reported to have said: ―Good mathematicians notice the 
analogies between theories and between methods of proof. The very great ones see 
the analogies between analogies.‖ This is why structuralist ideals frequently oc-
curred in the history of mathematics, for instance in Euclid‘s Elements, in Gott-
fried Wilhelm Leibniz‘s philosophy of mathematics, in George Boole‘s algebra, in 
Hermann and Robert Grassmann‘s theory of quantity, in projective geometry, in 
Felix Klein‘s Erlangen program, in Georg Cantor‘s set theory, in the late nine-
teenth-century arithmetization of geometry, in the concept of interpretation of a 
system of axioms by a model, or in David Hilbert‘s axiomatic program.11 

An extreme form of structuralism emerged in the early1910s with the publica-
tion of the Principia mathematica by Bertrand Russell and Alfred North White-
head, an ambitious attempt to reduce all mathematics to a symbolic logic. The se-
cond volume, published in 1912, contained the definition of relation-numbers as 
classes of equivalence of isomorphic relations (just as an ordinary number is a 
class of equivalence of equipotent sets). This may be regarded as a generalization 
of group structure, which was defined as the class of groups isomorphic to the 
same group. In his Mathematical philosophy of 1819, Russell renamed the rela-
tion-numbers as ―structure‖ (using quotation marks for the technical sense): 

We may say, of two similar relations, that they have the same ―structure.‖ For 
mathematical purposes (though not for those of pure philosophy) the only thing of 
importance about a relation is the cases in which it holds, not its intrinsic nature. 
 
What we define as the ―relation number‖ is the very same thing as is obscurely intended 
by the word ―structure‖--a word which, important as it is, is never (so far as we know) 
defined in precise terms by those who use it. 

Russell went on with a broader philosophical discussion, starting with the remark: 
There has been a great deal of speculation in traditional philosophy which might have 
been avoided if the importance of structure, and the difficulty of getting behind it, had 
been realised. 

In his opinion, philosophers had in vain assumed a distinction between phenome-
nal world and noumenal world, because we have access only to the common struc-
ture of the two worlds:12  
                                                           
11 Stefan Banach, cited in Stanislas Ulam, ―Marian Smoluchowski and the theory of probabilities 
in physics,‖ American journal of physics, 25 (1957), 475- 481, on 477. On the prehistory of 
structures in mathematics, cf. Nicolas Bourbaki, Éléments d’histoire des mathématiques (Paris, 
1960), 29-39. 
12 Bertrand Russell and Alfred North Whitehead, Principia mathematica, 3 vols. (Cambridge, 
1910, 1912, 1913), vol. 2, 303-346; Russell, Introduction to mathematical philosophy (New 
York, 1919), 59-61. Cf. Paolo Mancosu, Richard Zach, and Calixto Badesa, ―The development 
of mathematical logic from Russell to Tarski, 1900–1935,‖ in Leila Haaparanta (ed.), The Histo-
ry of Modern Logic (Oxford, 2009), 318-471, on 421. 
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In short, every proposition having a communicable significance must be true of both 
worlds or of neither: the only difference must lie in just that essence of individuality 
which always eludes words and baffles description, but which, for that very reason, is 
irrelevant to science. 

As Russell may have known, there was a growing structuralist tendency in con-
temporary philosophy. In his Substanzbegriff und Funktionsbegriff of 1910, the 
neo-Kantian philosopher Ernst Cassirer argued that in mathematics and in physics 
substances had gradually been replaced by functions or systems of relations. For 
instance, Cassirer regarded Richard Dedekind‘s new arithmetic as an attempt to 
identify the ―logical structure of the pure theory of numbers‖ or as ―the construc-
tion of a new ‗object‘ which in its structure is devoid of any arbitrariness.‖ He 
generally saw the new mathematics as the study of ―the structures of classes of re-
lations,‖ in agreement with what he had read in Russell‘s Principles of mathemat-
ics (1903). He rejected the empiricist view according to which concepts are gener-
ated by abstracting common properties from a class of (similar) objects, and 
instead recommended the formal strategy of ―investigating, in their specific rela-
tional structure [Relations-Struktur] the connections and relations [Zusammen-
hänge und Beziehungen] on which the systematic composition [Verknüpfung] [of 
the given] rests.‖13 

As can be seen from these citations, Cassirer abundantly used the world struc-
ture to refer to abstract systems of relations. It did not occur in Russell‘s Princi-
ples of 1903, although, as we just saw, Russell gave it its first formal definition in 
his Mathematical philosophy of 1919. There is no mention of Cassirer in the latter 
book; Russell may have just generalized the meaning of structure already found in 
group theory. 

Among the early readers of Russell‘s Mathematical philosophy was the astron-
omer Arthur Stanley Eddington, whom Paul Dirac once called ―the fountainhead 
of relativity in England.‖ In his Space, time and gravitation of 1920 – a wonder-
fully deep and yet non-technical exposition of general relativity – Eddington  
abundantly used the world ―structure‖ as an abstract, mathematical system of rela-
tions. As the source of this usage, he cited Russell and his aforementioned exploi-
tation of ―structure‖ to define the true object of science. In Eddington‘s eyes, rela-
tivity theory, when properly understood and developed, was all about structure: 

The relativity theory of physics reduces everything to relations; that is to say, it is 
structure, not material, which counts. The structure cannot be built up without material; 
but the nature of the material is of no importance. 
 
In regard to the nature of things, this knowledge [provided by the theory of relativity] is 
only an empty shell, |a form of symbols. It is knowledge of structural form, and not 
knowledge of content.   

                                                           
13 Ernst Cassirer, Substanzbegriff und Funktionsbegriff: Untersuchungen über die Grundfragen 
der Erkenntniskritik (Berlin, 1910), 37, 52, 48, 256; Russell, Principles of mathematics 
(Cambridge, 1903). 
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In Eddington‘s theory of the early1920s and in the associated philosophy, the 
basic relational structure was the differential manifold of spacetime, the attached 
tensors, and an affine connection. This structure expressed the necessity to map 
phenomena through arbitrary coordinates with no pre-established concrete mean-
ing, and the necessity to compare (through the connection) the local (affine) struc-
tures at different points of the manifold. Then it was the mind, in its predilection 
for permanence, that selected, among the tensors that could be derived from the 
connection, those able to represent metric properties and energetic properties. 
There were no pre-given rulers to define the metric, and no pre-given substance to 
define the energy. Everything boiled down to systems of relations properly filtered 
out by the mind:14 

Our whole theory has really been a discussion of the most general way in which 
permanent substance can be built up out of relations; and it is the mind which, by insisting 
on regarding only the things that are permanent, has actually imposed these laws on an 
indifferent world. Nature has had very little to do with the matter; she had to provide a 
basis –point-events; but practically anything would do for that purpose if the relations 
were of a reasonable degree of complexity. 

Among physicists, Eddington pioneered the structuralist use of ―structure,‖ 
even defining the ―world-structure‖ as the basic object of physics. In a moment we 
will see that he was not the first structuralist in physics, nor the first to derive the 
basic structure(s) of the world from a priori principles of intelligibility. He was 
peculiar, however, in his belief in the complete necessity of these principles. 
Whereas the structuralism of post-Kantian philosopher-scientists and neo-Kantian 
philosophers went along with relativized and empiricized versions of the constitu-
tive a priori, Eddington‘s served as a basis for a strictly rationalist foundation of  
physics or at least (in 1920) of the non-quantum part of it. 

In 1921, the Swiss mathematician and Esperantist René de Saussure (a brother 
of the linguist) published a volume entitled La structure de la réalité. His philoso-
pher colleague Charles Werner summarized his views as follows: 

By ―structure‖ of reality, M. de Saussure means what is left of things when they have 
been stripped of their proper qualities and of their activity, the rigid frame that supports all 
the rest, which could be called the skeleton of the real. And he defends the thesis that the 
structure of reality is of geometric, rather, meta-geometric nature. It is therefore by means 
of geometric schemes that he represents the structure of the principal elements of reality, 
from time and space to the intellect and soul, giving in the end the complete schemes of 

                                                           
14 Arthur Stanley Eddington, Space, time and gravitation: An outline of the general theory of 
relativity (Cambridge, 1920), 195, 197, 201; Paul Dirac, ―Recollections from an exciting era,‖ in 
Charles Weiner (ed.), History of twentieth century physics (New York, 1977), 109-146, on 115. 
Cf. Thomas Ryckman, The reign of relativity: Philosophy of physics 1915-1925 (Oxford, 2005), 
Chap. 7. Eddington saw himself as completing the structuralist move he detected in Hermann 
Weyl‘s Nahegeometrie (in which a connection was needed to compare lengths at different loca-
tions). However, Weyl rarely used the word ―structure‖ and did not care to define it or to com-
ment on it. In his Raum·Zeit·Materie (Berlin, 1918), one finds ―mathematische Struktur‖ (p. 17), 
―metrische Struktur‖ (p. 120), and a few more standard uses of Struktur, for instance for the at-
omistic structure of matter. 
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the structures of mind and matter. One important conclusion of his is that God, as a pure 
essence, has no structure and therefore does not belong to the world even though he is in 
contact with the world.  

As I have not seen the book, I cannot decide whether the author‘s ―structures‖ de-
rived from his interest in the grammatical structure of a universal language, from 
Russell‘s logical structures, or from Eddington‘s geometric world-structure. In any 
case, his sweeping structuralism is not likely to have had much influence, consid-
ering the rarity of his book. I mention it only as witness of the rise of the structural 
usage of ―structure‖ in the 1920s.15 

In 1928 the German-born philosopher Rudolf Carnap, then a member of the 
Vienna circle, published Der Logische Aufbau der Welt, in which he made Rus-
sell‘s ―structure‖ the cornerstone of a logicist foundation of all science. He intro-
duced the word and the concept as follows: 

A special kind of relational description will be called structural description 
[Strukturbeschreibung]. The latter leave unnamed not only the properties of the individual 
elements of the domain but also the relations that exist between these elements. In a 
structural description, only the ―structure‖ of the relations is given, that is, the collection 
of all their formal properties. 

A little further we read: 
[The structural description] is the highest degree of formalization and de-materialization . 
. . Our thesis that scientific propositions concern only structural properties would thus 
mean that scientific propositions deal with mere forms, without saying what the elements 
and the relations of these forms are.  

How could such abstract logicism extend to the science of concrete objects like 
persons or villages? Carnap replied: 

Here is the essential point: The science of the real [die Realwissenschaft] must admittedly 
be able to distinguish between [persons and villages]; it does this mainly through labeling 
[kennzeichnung] by means of other constructs [Gebilde], but in the end the labeling is 
done through mere structural description. 

How exactly Carnap meant to achieve a fully structural description and whether he 
succeeded in this task need not be considered here.16 

At any rate, ―structure‖ entered the manifesto of the Vienna circle, a short text 
written by Hans Hahn, Otto Neurath, and Carnap in preparation to the September 
1929 meeting of the Verein Ernst Mach in Prague:  

A scientific description can contain only the structure (order form [Ordnungsform]) of 
objects: not their ‗essence‘. What unites men in language are structural formulae 
[Strukturformeln]; in them the content of the common knowledge of men presents itself. 

                                                           
15 René de Saussure, La structure de la réalité (Neuchâtel et Genève, 1921); Charles Werner [re-
port of the 16th meeting of the Philosophes de la Suisse romande on 12 June, 1921], in Archives 
de psychologie, 18 (1921), 175-176, on 175. Two years earlier R. de Saussure had published La 
structure logique des mots dans les langues naturelles, considérée au point de vue de son appli-
cation au langues artificielles (Bern, 1919). 
16 Rudolf Carnap, Der Logische Aufbau der Welt (Hamburg, 1928), 13, 15 (his emphasis). 
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Subjectively experienced qualities - redness, pleasure - are as such only experiences, not 
knowledge; physical optics admits only what is in principle understandable by a blind 
man too. 

This statement followed a characterization of the circle‘s approach as empiricist, 
positivist, logicist (based on Logistik), universal (covering all sciences), and uni-
tary. It led to a general ―theory of constitution‖ (Konstitutionstheorie) in which 
structure was the central concept. The most cited influences were Ernst Mach and 
Ludwig Wittgenstein for the anti-metaphysical crusade; Russell and Whitehead 
for the new logicism; Mach, Helmholtz, Poincaré, and Duhem for structural, rela-
tion-based tendencies in mathematics and physics. With Russell‘s Mathematical 
philosophy, the manifesto probably was the most influential source for the new, 
structuralist meaning of the word ―structure.‖17 

Linguistics 

As was mentioned, the dictionary definitions of ―structure‖ have long included 
its metaphorical use in expressions such as ―the structure of a sentence.‖ The im-
plied structure is grammatical. Grammar being concerned with the rules of con-
struction of the words in a sentence independently of their meaning, it has the ab-
stractness required in structuralism. It may also have the required genericity, when 
it comes to the ideal of a universal grammar or to comparative grammar. Universal 
grammars have long been dreamt of, from the Grammaire générale de Port-Royal 
(1660) to Noam Chomsky‘s generative grammar. We have already encountered 
Robert Grassmann, who believed the ―philosophical grammar‖ of a Formenlehre 
could emerge from a comparative study of languages; and René de Saussure, who 
tried to identify the universal grammatical ―structures‖ of natural languages in or-
der to justify and improve artificial languages such as Esperanto. Generic gram-
matical structures also concerned the Scottish philosopher Adam Smith in his the-
ory of language formation (1767), and the poet-philosopher Friedrich Schlegel in 
his comparison of Sanskrit with other languages (1808). Schlegel abundantly used 
the word ―structure‖ and closely associated it with comparison, in analogy with 
comparative anatomy: 

The decisive point which will shed light on the whole topic is the internal structure of 
languages or the comparative grammar, which will give us entirely new insights into the 

                                                           
17 Wissenschaftliche Weltauffassung der Wiener Kreis (Vienna, 1929), 16. The historical reduc-
tion of geometry to Relationsstrukturen is described ibid. on 20. Luitzen Egbertus Jan 
Brouwer‘s, Die Struktur des Kontinuums, a lecture given in Vienna in 1928 and published in 
1930, is mentioned as the intuitionist option for the foundations of arithmetic, ibid. on 21. The 
communications at the Tagung für Erkenntnislehre der exakten Wissenschaften held in 
September 1929 in Prague also mentioned ―structure‖: Otto Neurath, ―Wege der 
wissenschaftlichen Weltauffassung,‖ Erkenntnis, 1 (1930), 106-125, on 119; Carnap, ―Bericht 
über Untersuchungen zur allgemeinen Axiomatik,‖ Erkenntnis, 1 (1930), 303-307, on 305. 
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genealogy of languages just as comparative anatomy has illuminated higher natural 
history.  

Schlegel‘s inspiration clearly came from Goethe, who based his anti-Newtonian 
morphological studies on comparative anatomy. Also Goethean was Schegel‘s dy-
namic understanding of structure in his genealogy of languages. His word choice, 
however, differed from Goethe‘s: what he called Structur could correspond to 
Goethe‘s Typus, Gestalt, or Bauplan. This difference is an evident consequence of 
the grammatical context.18 

In the years 1907-11 in Geneva, Ferdinand de Saussure taught a new linguistics 
based on studying the relations between linguistic signs. Saussure‘s signs implied 
both a phonic (or written) signifiant and a conceptual signifié; but they were di-
vorced from any concrete referent. He distinguished between langage, which is a 
complex, heteroclite faculty involving physical, sociological, and psychological 
components; and the langue, which is ―a whole in itself and a principle of classifi-
cation‖ and can be autonomously studied through the mutual relations and opposi-
tions in the system of signs. His motivation, the ideal of analyzing language syn-
chronically and independently of its concrete functions, had nothing to do with the 
life sciences or the social sciences, and the word structure did not occur in his 
writings, although one of his English translators (much) later rendered langue as 
―linguistic structure.‖19 

In contrast, in the late 1920s the Prague circle of linguistics defined la langue 
as ―a system of means of expression appropriate to an aim‖ or as a ―functional 
system.‖ The aim or function being relevant both to the synchronic and to the dia-
chronic study of the langue, the Prague circle rejected the Saussurian separation of 
these two aspects. They nonetheless accepted the priority of synchronic analysis, 
which they conceived in structural terms as Saussure recommended. Possibly as a 
consequence of the organicist connotation of the word ―function,‖ they abundantly 
used the words ―structure‖ and ―structural‖ to refer to the mutual relations of the 
elements of the langue. In the collectively written Thèses that introduced the first 
volume of their Mélanges linguistiques (1929), they promoted ―the structural 
comparison of related languages‖ and praised the comparative method for ―its 
                                                           
18 Antoine Arnauld et Claude Lancelot, Grammaire generale et raisonnée contenant les fonde-
mens de l’art de parler, expliquez d’une maniere claire et naturelle ; les raisons de ce qui est 
commun à toutes les langues, et des principales differences qui s’y rencontrent ; et plusieurs re-
marques nouvelles sur la langue françoise (Paris, 1660); Adam Smith, ―Considerations concer-
ning the first Formation languages,‖ appended to Theory of moral sentiments, 3rd ed. 
(Edinburgh, 1767); Friedrich Schlegel, Über die Sprache und Weisheit der Indier: ein Beitrag 
zur Begründung der Alerthumskunde (Heidelberg, 1808), 28. Cf. Stephen Land, ―Adam Smith‘s 
‗Considerations concerning the first formation of languages‘,‖ Journal of the history of ideas, 38 
(1977), 677-690. 
19 Ferdinand de Saussure, Cours de linguistique générale, ed. by Charles Bally and Albert 
Sechehaye  [from lectures given in 1906-1911] (Lausanne and Paris, 1916). The English transla-
tion is Roy Harris‘s (London: Duckworth, 1983).  Cf. Jean-Marie Benoist, The structural revolu-
tion (London, 1975); Thomas Pavel, The feud of language: A history of structuralist thought 
(Oxford, 1989). 
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ability to reveal the laws of structure of linguistic systems and of their evolution‖; 
they defined ―the structural principle of the phonological system‖ according to 
which ―the sensorial elements of the phonological elements are less essential than 
their mutual relations‖ and they characterized the phonological system by ―speci-
fying the relations between phonemes, namely, by drawing the scheme of struc-
ture of the given language‖; they emphasized the ―internal structure (reciprocal re-
lations of the elements)‖ in the classification of the kinds of denominations in a 
given language.20 

The Thèses of the Prague linguists were written as a contribution to the first 
congress of Slavic philologists held in Prague in October 1929. In September of 
the same year in Prague, the Verein Ernst Mach had held a Tagung für Erkennt-
nislehre der exakten Wissenschaften in connection with the simultaneous meetings 
of the German physical society and the German mathematical society. The Prague 
linguists are likely to have attended this event, for which the manifesto of the Vi-
enna circle was written. Possibly, they imitated the way ―structure‖ was used in 
this circle; their usage may also have derived from organicist analogies, as was 
just mentioned.21 

One member of the Prague linguistic circle, the Russian émigré Roman Osipo-
vich Jakobson called structuralism the tendency, in any mature science, to extract 
autonomous structures and investigate their internal dynamics:  

If we wanted to characterize briefly the kind of thinking currently governing science in its 
most varied manifestations, we could not find a more fitting expression than 
structuralism. Each set of phenomena handled by today‘s science is thought of not as a 
mechanical assemblage but rather as a structural unit, a system; and the fundamental task 
is to discover its intrinsic laws, both static and dynamic. What is at the center of scientific 
concerns today is not any external impulse or influence but rather the internal conditions 
for evolution; not genesis as a mechanical operation but function.  

Another member of the circle, the Russian prince Nikolai Sergeyevich 
Trubetzkoy, echoed this view in 1933:  

Today‘s phonology is characterized mainly by its structuralism and by its systematic 
universalism . . . The present period is characterized by the tendency of all scientific 
disciplines to replace atomism by structuralism and individualism by universalism (in the 
philosophical sense of these terms, of course). This tendency can be observed in physics, 
chemistry, biology, psychology, economic science, etc. Today‘s phonology is therefore 
not an isolated case. It belongs to a broader scientific movement.  

Trubetzkoy explicated the biological analogy that underlay the new phonology:   
To define a phoneme is to specify its place in the phonological system, which is possible 
only if we take into account the structure of this system . . . Phonology, universalist by 

                                                           
20 ―Thèses,‖ in Mélanges linguistiques dédiés au premier congrès des philosophes slaves, 1 
(1929), 6-29, on  9, 10, 11, 12. Cf. Émile Benveniste, ―«Structure» en linguistique,‖ in Roger 
Bastide (ed.), Sens et usages du terme structure dans le sciences humaines et sociales (The 
Hague, 1962), 31-39. 
21 On the two congresses, cf. Mélanges, ref. 20, on 5 (avant-propos); Wissenschaftliche Weltauf-
fassung, ref. 17, introduction. 
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nature, deals with the system as an organic whole, whose structure it studies . . . In 
applying the principles of phonology to many different languages in order to bring out 
their phonological systems and in studying the structure of these systems, one soon 
notices that certain combinations of correlations exist in the most diverse languages, 
whereas others never occur . . . A phonological system is not the mechanical sum of 
isolated phonemes but an organic whole of which the phonemes are members and whose 
structure is subjected to laws. 

The expression ―organic whole‖ reminds us of living organisms. This analogy had 
been popular in post-romantic linguistics in the nineteenth century, for instance in 
Wilhelm von Humboldt‘s Kawi Werk, and it had a Goethean flavor; it was foreign 
to the Geneva school, who favored a more mechanistic view of structure.22 

Anthropology 

Famously, Jakobson befriended Claude Lévi-Strauss at the École Libre des 
Hautes Études in New York during World War II. Inspired by the new phonology, 
young Lévi-Strauss developed his structuralist analysis of kinship, in which the 
correlations between kinship units played a role similar to the interrelations of 
phonemes in structural linguistics. He later extended the structuralist approach to a 
comparative study of myths, which was the cornerstone of his structural anthro-
pology. His variety of structuralism was extremely influential, in part due to the 
literary success of Tristes tropiques (1955).23 

Mathematics, again 

Structures also played a central role in the project of a few French mathemati-
cians launched in the mid-1930s under the fictitious authorship of Nicolas Bour-
baki. Their ambition was to reunify an increasingly diversified mathematics under 

                                                           
22 Roman Osipovich Jakobson, ―Romantické všeslovanství-nová slavistika‖ [Romantic pansla-
vism – new slavic studies], Čin, 1(1929), 10-12, cited in Patrick Sériot, Structure and the whole: 
East, west and non-Darwinian biology in the origins of structural linguistics (Boston, 2014), 
248; Nikolai Sergeyevich Trubetzkoy, ―La phonologie actuelle,‖ Psychologie du langage (Paris, 
1933), 227-246, on 233; Wilhelm von Humboldt, Über die Kawi–Sprache auf der Insel Java, 
nebst einer Einleitung über die Verschiedenheit des menschlichen Sprachbaues und ihren Ein-
fluss auf die geistige Entwickelung des Menschengeschlechts, 3 vols. (Berlin, 1836-39). Cf. Ben-
veniste, ref. 20, pp. 35-36. On the last point, cf. Sériot, ―L‘origine contradictoire de la notion de 
système : la genèse naturaliste du structuralisme pragois,‖ Cahiers de l’ILSL, 5 (1994), 19-56. 
23 Claude Lévi-Strauss, Les structures élémentaires de la parenté  (Paris, 1949); Tristes tro-
piques (Paris, 1955); Anthropologie structurale  (Paris, 1958). Cf. David Aubin, ―The withering 
immortality of Nicolas Bourbaki: A cultural connector at the confluence of mathematics, struc-
turalism, and the Oulipo in France,‖ Science in context, 10 (1997), 297-342, on 309. 
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the generic concept of structure, which they informally defined as a set equipped 
with relations (between the elements of the set) and axioms about the relations. 
The term ―structure‖ first occurred in discussions of the group in 1936: ―The ob-
ject of a mathematical theory is a structure organizing a set of elements.‖ Bourbaki 
later emphasized that the structures ―applied to sets of elements whose nature is 
not specified.‖ He liked to remind the reader that arithmetic numbers and opera-
tions applied to any objects and thus offered the prototype of a structure. As a par-
adigm of structure, he often cited group structure, which implies only one relation 
of composition between the elements of a set and three axioms for this relation.24 

When asked about the origin of the word choice ―structure,‖ André Weil (the 
initiator of Bourbaki) could not truly remember. He did not exclude an effect of 
familiarity with the linguistic concept of structure (he knew the structural linguist 
Émile Benveniste). It could also be that he extended a usage that already existed in 
group theory: as was mentioned, since the late nineteenth century additional axi-
oms were said to provide ―structure‖ to a group and ―isomorphism‖ were defined 
as structure-preserving transformations between two groups. Or it could be that he 
had read Russell and Carnap. The novelty in Bourbaki‘s program was not their no-
tion of structure per se but the idea of making it the foundation of a unified math-
ematics. His Éléments de mathématique implemented this program through the 
progressive construction of a hierarchy of structures in the most abstract possible 
way, any intuitive introduction of a given structure being regarded as interference 
with the purity and rigor of demonstration.25  

Bourbaki‘s structuralism sometimes interacted with structuralism in the human 
sciences. For instance, André Weil wrote a mathematical appendix to Lévi-
Strauss‘s Structures élémentaires de la parenté (1849). From the late 1940s, Jean 
Piaget drew on Bourbaki‘s structures to develop his cognitive psychology. Struc-
turalism prospered in many fields through the 1960s, and then started to decline 
under criticism for its alleged rigidity. Today it survives in attenuated forms in the 
human sciences; it remains foundational in mathematics; and it has a few avatars 
in the philosophy of science. The semantic approach to physical theories, for in-
stance, defines theories as classes of models or structures. The variety of this ap-
proach defended by Joseph Sneed and his disciples is called structuralist for its 
                                                           
24 Bourbaki discussion quoted in Liliane Beaulieu, Bourbaki: une histoire du groupe de mathé-
maticiens français et de ses travaux (1934-1944) (Ph.D. thesis, Université de Montréal, 1989), 
317; Nicolas Bourbaki, ―The architecture of mathematics,‖ The American mathematical monthly, 
57 (1950), 221-232, on 225-226. Cf. Aubin, ref. 23. Besides the informal idea of structure as a 
set with relations and axioms, Bourbaki had the ambition of a formal definition of structure, 
which appeared in 1957 only. Since, if we believe Leo Corry, this definition played little or no 
role in the other volumes of Bourbaki‘s treatise and in mathematics in general, it is not discussed 
here. Cf. Leo Corry, ―Nicolas Bourbaki and the concept of mathematical structure,‖ Synthese, 92 
(1992), 315-348. 
25 André Weil, Souvenirs d’apprentissage (Basel, 1991), 120. Cf. Aubin, ref. 23, 309 (Aubin also 
mentions the Front populaire‘s ―réforme des structures‖ as a possible source). Russell‘s defini-
tion of structure (adopted by Carnap) differs from Bourbaki‘s (a Russell structure is a class of 
equivalence of Bourbaki structures) and it derives from more primitive logical axioms. 
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structured set-theoretical framework and for its emphasis on intertheoretic rela-
tions. There are varieties of ―structural realism,‖ defended by John Worrall and 
James Ladyman for instance. All these authors use the word structure with its 
structuralist meaning as a self-contained system of relations.26 

 
From this brief survey of the emergence of new meanings and new employ-

ments of ―structure,‖ it should be clear that with rare exceptions the word structure 
was not used in its modern structuralist guise before the late nineteenth century. 
The first explicit definitions of structure as a self-contained system of relations 
appeared around 1920 and they seem to belong to Russell, to the Vienna circle, 
and to the Prague linguistic school. Structure and the associated concept then 
spread through other human sciences, with a culmination in the 1960s. It also 
served in mathematics as the foundation of the Bourbaki project in the 1930s. Alt-
hough there were later interconnections between the mathematical and human-
science varieties of structuralism, mathematical structuralism seems to have risen 
independently of structuralism in the human sciences. 

To which extend did the concept of autonomous relational structure precede its 
being called ―structure‖ in various sciences? Although the word was abundantly 
used in the life sciences for the structure of organisms and organs and although 
Buffon, Goethe, and Darwin had structuralist ideas, they did not convey them 
through the word ―structure.‖ In early studies of the grammar of languages, both 
the concept and the name naturally occurred at least since the eighteenth century, 
and the Romantic poet Schlegel married them. In early sociology, the ―structure‖ 
was often used by analogy between society and organism, but without the struc-
turalist meaning. The word implicitly conveyed structuralism when sociology, in 
de Greef‘s and Durkheim‘s approaches, became inherently structuralist. In general 
linguistics, the concept preceded the name since it inhabited Saussure‘s lectures, a 
few years before the Prague circle used the word. In anthropology, literary criti-
cism, and history, the concept and the name appeared in conjunction.27 In mathe-
matics, the concept was omnipresent since the origin of mathematics; the name 
entered group theory in the late nineteenth century; Russell gave the first formal 
definition of a mathematical structure in 1919, with philosophical consequences 
for Carnap and the Vienna circle; it became pervasive when Bourbaki decided to 

                                                           
26 Weil, in Lévi-Strauss, ref. 23 (1949), appendix; Jean Piaget, Introduction à l’épistémologie 
génétique, 3 vols. (Paris, 1950); Joseph Sneed, The logical structure of mathematical physics; 
JohnWorrall,  ―Structural realism: The best of both worlds?‖ Dialectica, 43 (1989), 99–124; 
James Ladyman, ―Structural realism,‖ in The Stanford encyclopedia of philosophy (Spring 2014 
Edition), Edward N. Zalta (ed.), URL = <http://plato.stanford.edu/archives/spr2014/entries/-
structural-realism/> . On Weil and Piaget, cf. Aubin, ref. 23, 302, 311, 317-320. 
27 The case of psychology is peculiar. In the nineteenth century, Wilhelm Wundt abundantly re-
ferred to ―mental structures‖ in his theories. This is why his approach is traditionally called struc-
turalist, even though it is not structuralist in the modern sense. In contrast, the Gestalt approach 
inaugurated in the 1890s by Christian von Ehrenfels is usually opposed to psychological struc-
turalism despite its structuralist flavor (emphasizing the holistic aspects of structure). 
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found la mathématique on the concept of structure. In physics, the name occurred 
as early as 1906 in Duhem‘s La théorie physique; Eddington promoted its Russel-
lian definition in 1920; it is commonly used for the mathematical structures em-
ployed in physical theories; and it is all over the structuralist variety of the seman-
tic approach in contemporary philosophy of physics. Did physics have a concept 
of abstract structure before it had the name? The following is an answer to this 
question. 

2. Structures in nineteenth-century physics 

In the early nineteenth century, the French astronomer Pierre-Simon de Laplace 
presided over the best mathematical physics of his time. In his grand-unified theo-
ry, the world was made of discrete point-like molecules interacting in pairs 
through central forces. The molecules belonged to ponderable matter or to one of 
the imponderable fluids associated with light, electricity, magnetism, and heat. 
Owing to similarities between interactions among molecules of different types, 
there were analogies between different sectors of the theory. For instance, the 
Poisson equation 

04  �' SUM  

between the potential M  and the density U applied equally well to gravitation, 
electricity, and magnetism. We could say that the same structure (what we would 
now call abstract potential theory) applied to three different domains of physics. In 
this statement, however, structure does not quite have its structuralist meaning, for 
the identity of structure remains tied to the uniform ontology of the theory: the 
structure is not thought independently of its object, and the nerve of theory con-
struction is not the structure itself, it is the ontology.28 

In the 1820s and 1830s, the Laplacian ontology of molecular fluids and matter 
gradually collapsed. Ethereal vibrations replaced the luminous fluid, molecular vi-
brations or agitation the caloric fluid, Amperean currents the magnetic fluids; and 
Michael Faraday rejected the electric fluids in favor of a pure field conception. 
The grand Laplacian unity was lost and was to be replaced by a more structural 
kind of unity.29 

                                                           
28 Cf. Robert Fox, ―The rise and fall of Laplacian physics,‖ HSPS , 4 (1974), 89-136; John Heil-
bron, Weighing imponderables and other quantitative science. Supt. to HSPS, 24:1 (Berkeley, 
1993). 
29 Cf., e.g., Peter Harman, Energy, force, and matter: The conceptual development of nineteenth 
century physics (Cambridge, 1982). 
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Maxwell 

The first major proponent of structural unity was James Clerk Maxwell. Ap-
proving Faraday‘s rejection of electric and magnetic fluids and taking his field 
conception seriously, Maxwell explained the behavior of Faraday‘s lines of force 
by analogy with the stationary flow of an incompressible fluid through a porous 
medium of variable viscous resistance. In this analogy, the electric field relation 

ED H , the magnetic field relation HB P , and the electrokinetic relation 
Ej V  were counterparts of the equilibrium relation fu k of the fluid, wherein 

u  denotes the velocity of the fluid, P�� f  the force density resulting from the 
pressure P, and u1�� k  the retarding viscous force of the porous medium. The in-
compressibility condition 0 �� u  (or its variant Z �� u  in the presence of a 
fluid source of density Z ) then yield the basic equations of electrostatics, magne-
tostatics, and stationary currents: U �� D , 0 �� B , 0 �� j . For instance, the 
first of these equations, together with the electric counterpart M�� E  of 

P�� f , yields the Poisson equation 04  �' SUM .30 
Again we could say that electrostatics, magnetostatics, and electrokinetics here 

share a common structure; and we could also say that this sharing is explained by 
the common picture of a resisted flow. Yet there is a major difference with the La-
placian situation. For Laplace, the shared picture of molecules interacting through 
central forces is an ontology: it purports to be a faithful representation of all mat-
ter. In Maxwell‘s case, the resisted-flow analogy is purely formal and does not at 
all indicate that something is truly flowing in the described phenomena. Maxwell 
insists on this point: 

By referring everything to the purely geometrical idea of the motion of an imaginary 
fluid, I hope to attain generality and precision, and to avoid the dangers arising from a 
premature theory professing to explain the cause of the phenomena. 

Maxwell regarded his ―illustrations‖ or ―physical analogies‖ as a via media be-
tween pure formalism and a preferred ―physical hypothesis‖: 

The first process . . . in the effectual study of [electrical] science, must be one of 
simplification to a form in which the mind can grasp them. The results of this 
simplification may take the form of a purely mathematical formula or of a physical 
hypothesis. In the first case we entirely lose sight of the phenomena to be explained; and 
though we may trace out the consequences of given laws, we can never obtain more 
extended views of the connexions of the subject. If, on the other hand, we adopt a 
physical hypothesis, we see the phenomena only through a medium, and are liable to that 
blindness to facts and rashness in assumption which a partial explanation encourages. We 
must therefore discover some method of investigation which allows the mind at every step 

                                                           
30 James Clerk Maxwell, ―On Faraday‘s lines of force,‖ Cambridge Philosophical Society, 
Transactions (1856), also in MSP 1: 155-229, Part I. Cf. Norton Wise, ―The mutual embrace of 
electricity and magnetism,‖ Science 203: 1310-1318; Darrigol, Electrodynamics from Ampère to 
Einstein (Oxford, 2000), 139-147. 
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to lay hold of a clear physical conception, without being committed to any theory founded 
on the physical science from which that conception is borrowed, so that it is neither drawn 
aside from the subject in pursuit of analytical subtleties, nor carried beyond the truth by a 
favorite hypothesis.—In order to obtain physical ideas without adopting a physical theory 
we must make ourselves familiar with the existence of physical analogies. 

Maxwell‘s idea of shared illustration or physical analogy comes close to the mod-
ern idea of shared structure and isomorphism inasmuch as it does not imply a 
shared ontology. However, Maxwell insistence on the merits of an intuitive pic-
ture does not square with the modernist idea of structure.31  

The circumstances of electromagnetic theory forced Maxwell to take a further 
step toward abstraction. His resisted-fluid picture only worked for electricity and 
magnetism taken separately and statically. For the electromagnetic interactions 
discovered by Christian Ørsted and Michael Faraday he did not have a picture; he 
only had Faraday‘s field-based rules. In order to express these rules mathematical-
ly, he relied on the formal distinction between ―force‖ and ―flux,‖ won by abstrac-
tion from the resisted-fluid analogy. The vectors E  and H are ―forces‖ because 
they are the counterparts of mechanical forces, and the vectors j , D , and B  are 
―fluxes‖ because they are the counterparts of liquid fluxes. From a formal point of 
view, the fluxes are used to form surface integrals, and the forces are used to form 
line integrals (defining a work). By the Thomson-Stokes theorem relating the inte-
gral of a vector on a circuit and the surface integral of its curl on a surface bound-
ed by the circuit, the curl of a force should be a flux. Maxwell used this rule as a 
constraint in building the electromagnetic equations. From Ampère‘s relations be-
tween electric current and magnetic force, he got 

jH  u� . 

From Faraday‘s rule of the cut lines of force he got 

tw
w

� u�
BE . 

In both cases, the curl of a force is equated to a flux. Maxwell further intro-
duced the force A  such that AB u� , which enabled him to rewrite the induc-
tion law as 

tw
w

� 
AE , 

in conformity with Faraday‘s intuition that the electromotive force resulted from 
the temporal variation of the ―electro-tonic state‖ of the medium.32 
                                                           
31 Maxwell, ref. 30, on 156, 159. Cf. Jordi Cat, ―On Understanding: Maxwell on the methods of 
illustration and scientific metaphor,‖ SHPMP, 32 (2001), 395-441. 
32 Maxwell, ref. 30, Part II. 
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Maxwell‘s distinction between force and flux was only a first example of what 
he called ―the mathematical classification of physical quantity.‖ His Treatise of 
1873 had a long ―Preliminary on the measurement of quantities,‖ in which he ar-
ranged physical quantities according to their dimension (Fourier), to their continu-
ous or discontinuous character, to the scalar/vector distinction (Hamilton), to the 
force/flux distinction he had himself invented, and to topological properties. While 
he was composing the treatise, he reflected on the merits of such classification. 
His thoughts can be found in the texts of two conferences he gave in 1870, one for 
the London Mathematical Society, the other for the British Association for the 
Advancement of Science.33 

In his address to the mathematicians, he emphasized the resulting economy of 
time: 

It is evident that all analogies of this kind depend on principles of a more fundamental 
nature; and that, if we had a true mathematical classification of quantities, we should be 
able at once to detect the analogy between any systems of quantities presented to us and 
other systems of quantities in known sciences, so that we should lose no time in availing 
ourselves of the mathematical labours of those who have already solved problems 
essentially the same. 

As examples of such classifications, he gave those detailed in the Treatise. He also 
introduced the terms convergence, curl, and concentration for the operators ��� , 
u�  and 2��  formed from the gradient operator � (nabla); and he drew field ar-

chetypes for which these quantities had a local extremum. In general, Maxwell did 
not introduce a symbol without accompanying it with a simple geometrical or me-
chanical illustration. While he emphasized the benefits that physics drew from the 
mathematical classification of quantities, he also reminded his audience that math-
ematics could benefit from imagined physical contents.34 

The symbiotic development of mathematics and physics is the central theme of 
Maxwell‘s address to the mathematical and physical sections of the British Asso-
ciation: 

If the skill of the mathematician has enabled the experimentalist to see that the quantities 
which he has measured are connected by necessary relations, the discoveries of physics 
have revealed to the mathematician new forms of quantities which he could never have 
imagined for himself. 

                                                           
33 Maxwell, A treatise on electricity and magnetism, 2 vols. (Cambridge, 1873), §§1-26. Cf. Pe-
ter Harman, ―Mathematics and reality in Maxwell‘s dynamical physics,‖ in Robert Kargon and 
Peter Achinstein (eds.), Kelvin’s Baltimore lectures and modern theoretical physics: Historical 
and philosophical perspectives, 267-297 (Cambridge, 1987); Darrigol, ―Models, structure, and 
generality in Clerk Maxwell‘s theory of  electromagnetism,‖ in Karine Chemla, Renaud Chorlay, 
and David Rabouin, The Oxford handbook of generality in mathematics and the sciences (Ox-
ford, 2016), 345-358. 
34 Maxwell, ―Remarks on the mathematical classification of mathematical quantities,‖ Mathe-
matical Society of London, Proceedings (1870), also in MSP 2, 257-266, on 258. 
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Maxwell meant that physics borrowed from mathematics the arithmetic needed for 
the measurement of quantities while the classification of the various kinds of 
quantities and the resulting mathematical constructs proceeded from physical ide-
as.35 

In structuralist terms, Maxwell regarded mathematics as a reservoir of struc-
tures constraining the relations between physical quantities, and physics as an in-
centive for the mathematician to invent new structures. He did not, however, wish 
the structures to be thought in a purely abstract way, and he rather had them be lo-
cally illustrated in a physical or geometrical manner.  

Let us return to the history of electromagnetism. Maxwell‘s structural approach 
of 1856, based on the distinction between flux and force, did not fully satisfy him. 
He wanted a physical mechanism to explain electromagnetic forces and the induc-
tion law. This he found in 1862, by assuming that the magnetic field corresponded 
to molecular vortices in a mechanical medium. This is the famous model later 
nicknamed ―Maxwell‘s honeycomb‖ by Duhem. Consistency requirements for the 
dynamics of this medium led Maxwell to the system 

U �� D , 0 �� B , 
tw

w
�u� 
DHj , 

tw
w

��� 
AE M , AB u� , 

and to the electromagnetic theory of light. He had no illusion about the reality of 
his mechanical model:  

The conception of a particle having its motion connected with that of a vortex by perfect 
rolling contact may appear somewhat awkward. I do not bring it forward as a mode of 
connexion existing in nature, or even as that which I would willingly assent to as an 
electrical hypothesis. It is, however, a mode of connexion which is mechanically 
conceivable, and easily investigated, and it serves to bring out the actual mechanical 
connexions between the known electro-magnetic phenomena; so that I venture to say that 
any one who understands the provisional and temporary character of this hypothesis, will 
find himself rather helped than hindered by it in his search after the true interpretation of 
the phenomena. 

As Maxwell more briefly explained in a contemporary letter to his friend Peter 
Guthrie Tait, ―The nature of this mechanism is to the true mechanism what an or-
rery is to the solar system.‖ In his Treatise of 1873, he underlined that an infinite 
number of distinct mechanisms were able to produce the same connections be-
tween two parts of a mechanical system.36 

                                                           
35 Maxwell, ―Address to the Mathematical and Physical Sections of the British Association,‖ 
British Association report, also in MSP 2, 215-229, on 218. 
36 Maxwell, ―On physical lines of force,‖ Philosophical magazine (1861-62), also in MSP 1, 
451-513, on 486; Duhem, ref. 4, on 134; Maxwell to Tait, 23 Dec. 1867, in Harman (ed.), The 
scientific letters and papers of James Clerk Maxwell, 3 vols. (Cambridge, 1990-2002), vol. 2, p. 
337; Maxwell, Treatise, ref. 33, §531. Cf. Daniel Siegel, Innovation in Maxwell’s electromagnet-
ic theory: Molecular vortices, displacement current, and light (Cambridge, 1991). 
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These remarks made it desirable to develop an alternative approach in which 
broader structural considerations determine the field equations. This Maxwell did 
in 1865 in his ―dynamical theory of the electromagnetic field.‖ There he simply 
assumed that the magnetic field was a hidden motion connected to the electric cur-
rents by some unknown mechanism. This assumption in itself requires the La-
grangian structure of the field equations: they can be derived by writing La-
grange‘s equations for a Lagrangian given by the magnetic energy expressed as a 
function of the currents (regarded as generalized velocities) and their positions. In 
particular, the induction law tw�w /ind AE  becomes Lagrange‘s equation for the 
generalized force indE  and the generalized momentum A . Maxwell thus imposed 
the Lagrangian structure on the electromagnetic field. The kind of structure here 
differs from the ones encountered in his classification of physical quantities, since 
it concerns the theory as a whole, and not how the components of a given formula 
fit together.37 

Again, the implied structure was not as abstract as it would be in a purely struc-
turalist approach. Whereas modern physicists content themselves with the formal 
expression of a Lagrangian, Maxwell and William Thomson wanted a concrete, 
physical interpretation of the quantities entering Lagrange‘s equations: they de-
fined the generalized forces through their work, and the generalized momenta 
through the impulsive forces needed to bring the system to a given state of motion. 
If, as Maxwell once proposed, the electromagnetic field theorist could be com-
pared to the bellman pulling the ropes of a belfry without knowing or seeing its 
mechanism, he could feel the Lagrangian structure through his muscles. Moreo-
ver, Maxwell did not regard the Lagrangian approach as the last word in the elec-
tromagnetic theory. He appreciated its solidity and its neutrality, but he still hoped 
that someday physicists would discover a plausible mechanism for electromagnet-
ic field processes.38 

To sum up, Maxwell had the idea of structures existing independently of any 
fixed, concrete substratum, and he used it to unify, construct, and consolidate his 
theories. But he had a natural dislike for purely abstract structures. He believed 
that at least for some type of minds, the association of a structure with a concrete 
picture could support and guide our thinking. In order to be fully alive in the world 
of theories, a structure needed the flesh of a concrete paradigm. 

                                                           
37 Maxwell, ―A dynamical theory of the electromagnetic field,‖ Royal Society of London, Philo-
sophical Transactions (1865), also in MSP 1, 586-597. Cf. Jed Buchwald, From Maxwell to mi-
crophysics: Aspects of microphysics in the last quarter of the nineteenth century (Chicago, 
1985), chap. 1. 
38 Maxwell, ―Thomson and Tait‘s Natural Philosophy,‖ Nature (1879), also in MSP 2: 776-785, 
on 783-784. On Thomson‘s conception, cf. Crosbie Smith and Norton Wise, Energy and empire: 
A biographical study of Lord Kelvin (Cambridge, 1989), 270-273, 390-395. 
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Helmholtz  

The great German polymath Hermann Helmholtz considered himself both an 
empiricist who sought to ground every science on experimental facts and a Kanti-
an who believed in a priori necessary conditions for any empirical knowledge. As 
a result, the secondary literature tends to be divided in two camps: those who see 
him as a demolisher of the Kantian system, and those who see him as an enemy of 
narrow empiricism. In reality, he all along believed experience to be the ultimate 
source of knowledge (so too did Immanuel Kant); and his philosophical position 
evolved from a loosely Kantian idealism to a moderate rationalism based on em-
pirically refutable but cognitively necessary structures. I will document this evolu-
tion firstly with regard to mechanical reduction, and secondly with regard to the 
status of geometry and numbers. 

When, in 1847, Helmholtz wrote his famous memoir ―On the conservation of 
force‖ (here meaning energy), he believed ―the comprehensibility of nature‖ to 
imply the reduction of every (physical) phenomenon to the action of pairs of mate-
rial points through central forces. The similarity of Helmholtz‘s deduction of this 
picture with the transcendental deduction operated by Kant in his Metaphysische 
Anfangsgründe der Naturwissenschaften (1786) has led some commentators to see 
the young Helmholtz as a follower of Kant‘s transcendental deduction of the prin-
ciples of Newtonian mechanics. The similarity is however imperfect and the result 
of the deduction coincided with the not quite defunct Laplacian foundations of 
physics, which owed nothing to Kant. Also, Helmholtz did not regard his deduc-
tion of the Laplacian scheme as the sole foundation of energy conservation. He be-
lieved he could derive the same scheme from a commonly accepted empirical fact: 
the impossibility of perpetual motion.39 

From the reduction of any closed physical system to material points and central 
forces acting in pairs, Helmholtz deduced the conservation of the sum of what we 
would now call the total kinetic energy of the material points and the total poten-
tial energy of the central forces. In domains of physics in which the desired reduc-
tion had already been done, for instance for gravitation, electrostatics, and magne-
tostatics, the corresponding formulae directly implied the conservation of energy 
as well as a macroscopic expression of the conserved energy as a function of 
measurable quantities. In domains for which such reduction was not yet available 
(for instance electromagnetism), Helmholtz nonetheless assumed its possibility 
and verified that the known macroscopic laws (the expression of electromagnetic 
forces and the law of electromagnetic induction) complied with energy conserva-

                                                           
39 Hermann Helmholtz, Über die Erhaltung der Kraft, eine physikalische Abhandlung (Berlin, 
1847), introduction. Cf. Fabio Bevilacqua, ―Helmholtz‘s Über die Erhaltung der Kraft: The 
emergence of a theoretical physicist,‖ in David Cahan (ed.), Hermann von Helmholtz and the 
foundations of nineteenth-century science (Berkeley, 1993), 291-333; Peter Heimann, 
―Helmholtz and Kant: The metaphysical foundations of Über die Erhaltung der Kraft,‖ SHPS, 5 
(1974), 235-238. 
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tion. In such cases, the energy principle played the role of a structural constraint 
on the form and interrelation of macroscopic laws, irrespective of any explicit me-
chanical reduction. 

In later writings on energy conservation and in his later contributions to theo-
retical physics, Helmholtz increasingly favored the macroscopic, phenomenal ap-
proach to energy conservation and rarely mentioned the ideal of reduction to cen-
tral forces acting in pairs. Around 1870, he based his electrodynamics on an 
extension of Franz Neumann‘s electrodynamic potential of a system of currents 
(their sign-reversed energy), which served to express electromagnetic forces and 
electromotive forces of induction through spatial and temporal variations of the 
potential. He still believed that thorough mechanical reduction remained possible, 
and he cited Maxwell‘s honeycomb of 1862 as positive evidence for this possibil-
ity (although he was even less inclined than Maxwell to take this model seriously). 
At the same time, he believed Neumann‘s potential to be sufficient for construc-
tive purposes.40 

Helmholtz also knew that Maxwell had succeeded in writing his field equations 
in Lagrangian form, thus establishing the possibility of a mechanical reduction 
without exhibiting them. In the 1880s he became convinced that the principle of 
least action, from which Lagrange‘s equations follow, should be made the basis of 
all physics. He first showed, in 1884, that the equations for the thermodynamics of 
reversible processes were analogous to Lagrange‘s equations for a certain kind of 
mechanical systems, which he called ―monocyclic systems.‖ Late in his life, in 
1892, he gave his own Hamiltonian formulation of the equations of electrodynam-
ics, and he extended this formulation to include the coupling of electromagnetic 
field with ionic vibrators and derive the anomalous dispersion of electromagnetic 
waves in the optical domain.41 

Helmholtz did not completely give up the idea of reduction to central forces 
acting in pair. He believed that at the most fundamental level of mechanical ex-
planation, the Lagrangian of the system should be composed of a purely kinetic 
part (the sum of the kinetic energies of material points) and a purely potential part 
depending on the spatial configuration only. In order to generate the more general 
forms of the Lagrangian needed in thermodynamics and electrodynamics, he in-
troduced hidden motions at the fundamental level and then eliminated the corre-
sponding coordinates to get the more general form of the effective Lagrangian in 

                                                           
40 Cf. Buchwald, ―Electrodynamics in context: object states, laboratory practice, and anti-
idealism,‖ in Cahan, ref. 39, 334-373; Darrigol, ―Helmholtz‘s electrodynamics and the compre-
hensibility of nature,‖ in Lorenz Krüger (ed.), Universalgenie Helmholtz. Rückblick nach 100 
Jahren (Berlin, 1994), 216-242. 
41 Helmholtz, ―Studien zur Statik monocyklischer Systeme,‖ BB (1884), also in HWA 3, 119-
202; ―Über die physikalische Bedeutung des Princips der kleinsten Wirkung,‖ Journal für die 
reine und angewandte Mathematik (1886), also in HWA 3, 203-248; ―Das Prinzip der kleinsten 
Wirkung in der Elektrodynamik,‖ Annalen der Physik (1892), also in HWA 3, 476, 504; 
―Elektromagnetische Theorie der Farbenzerstreuung,‖ BB (1992), also in HWA 3, 505-525. Cf. 
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terms of the empirically accessible coordinates. That said, all he needed to know 
from a constructive view point was the Lagrangian form of the equation of mo-
tion:42 

I believe the general validity of the principle of least action to be sufficiently established 
so that it can have a high value as a heuristic principle, as a leading thread in our striving 
to formulate the law of new classes of phenomena. In addition, this principle has the 
advantage of condensing, for the investigated class of phenomena, all the relevant 
conditions in just one formula, thus offering a complete overview of everything essential. 

Helmholtz regarded his last theory of anomalous dispersion as a glaring example 
of this heuristic power of the principle of least action:43 

Instead of starting with Maxwell‘s equations, I have preferred to integrate the additional 
interactions [caused by the ionic vibrators] in the form of the principle of least action that 
I developed for electrodynamics, because this prevents us from overlooking necessary 
counter-actions in the rather intricate play of forces and because this significantly 
diminishes the number of independent assumptions of dubious validity. 

When, in the few weeks separating Heinrich Hertz‘s death from his own, Helm-
holtz had to comment on Hertz‘s attempt to found all physics on the motion of 
connected mechanical systems involving hidden masses, he politely distanced 
himself from such constructive projects:44 

English physicists like Lord Kelvin in his theory of vortex atoms and Maxwell in his 
assumption of a system of cells with rotating content . . . have obviously been more 
satisfied with such explanation as with the mere general representation of the facts and 
their laws that is given by the systems of differential equation of physics. I must admit 
that I have so far preferred the latter form of representation and have thus felt I was on a 
firmer footing. Yet I would not emit any fundamental objection to the way of physicists as 
prominent as the three named ones [Hertz, Kelvin, and Maxwell]. 

To sum up, Helmholtz moved from a post-Laplacian reductionist ideal to a 
principle-based ideal in which the Lagrangian structure was required for any phys-
ical theory. Even though he still cared to show that sufficiently general forms of 
the Lagrangian were compatible with the possibility of the former kind of reduc-
tion, he strongly believed that the construction of physical theories should directly 
be based on the principle of least action. This evolution of Helmholtz‘s theoretical 
endeavors resembles Maxwell‘s move from the honeycomb model of the electro-
magnetic field to the Lagrangian form of the field equation. However, Helmholtz 
extracted the structural essence of the principle of least action better than Maxwell 
had done, because he did not try to concretize the various terms of Lagrange‘s 
equations and because he insisted on the sharing of the Lagrangian structure by all 
the major theories of physics. For example, he showed that Lagrange‘s equations 
implied similar reciprocity relations in various domains including acoustics, op-
                                                           
42 Helmholtz, ref. 41, HWA 3, 210. 
43 Helmholtz, ref. 41, HWA 3, 508. 
44 Helmholtz, ―Vorwort,‖ in Heinrich Hertz, Die Prinzipien der Mechanik in neuem 
Zusammenhange dargestellt (Leipzig, 1894), vii-xxii, on xxi. 
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tics, thermodynamics, and thermoelectricity. He praised the inventor of the princi-
ple of least action, Pierre Louis de Maupertuis, for having anticipated this general-
ity, although he of course rejected Maupertuis‘s theological motivations and 
praised Joseph Louis Lagrange and William Rowan Hamilton for giving formally 
complete and metaphysically neutral expressions of the principle.45 

Structuralist tendencies can also be found in Helmholtz‘s reflections on the 
foundation of geometry. In the late 1860s, after encountering color space and vis-
ual space in his physiological optics, he tried to determine the empirical facts un-
derlying ordinary geometry. The usual axiomatic, synthetic approach dealt with 
ideal figures instead of concrete objects and could easily be contaminated by unre-
liable intuitions. In order to avoid this pitfall, Helmholtz opted for an analytic ap-
proach in which the points of space were given in a continuous, differentiable 
manifold of three dimensions. Like Bernhard Riemann, who had introduced this 
concept in his own reflections on the foundation of geometry, Helmholtz regarded 
the manifold as a generic structure shared by different kinds of space including the 
space of color, visual space, ordinary space, or the space of sounds. His aim was 
to find an empirical justification for the additional structure provided by the Eu-
clidean metric on the manifold. For this purpose, he observed that the measure-
ment of (ordinary) space depended on the existence of freely mobile, rigid bodies. 
In modern terms, he assumed the existence of a continuous group of displace-
ments of rigid bodies with the proper number of degrees of freedom. Focusing on 
the algebra of infinitesimal displacements (now called the Lie algebra of the 
group), he found that the only meaningful choice was the one that left a positive 
definite quadratic form of the coordinate differentials invariant. In other words, 
space necessarily had the local Euclidean structure of a Riemannian manifold. As 
Helmholtz assumed the free mobility of finite rigid bodies, the Riemann curvature 
of this manifold had to be a constant. As he also required space to be infinite and 
as he originally overlooked the possibility of negative curvature, he concluded that 
Euclidean geometry resulted from the empirical fact (Thatsache) of the existence 
of freely mobile rigid bodies. He soon modified this conclusion when mathemati-
cal readers informed him of the case of constant-negative curvature, which is a 
model of Lobachevskian geometry. In Helmholtz‘s final statement, the existence 
of freely mobile rigid bodies leaves us the choice among all geometries of con-
stant curvature (Euclidean, spherical, or Lobachevskian). Only experience can de-
cide between these various options.46 

Helmholtz scholars disagree on the precise status of the hypothesis of freely 
mobile rigid bodies. Some see it as purely empirical, and others as a Kantian con-
                                                           
45 Helmholtz, ref. 41, HWA 3, 209. 
46 Helmholtz, ―Über die Thatsächlichen Grundlagen der Geometrie,‖ Naturhistorisch-
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stitutive principle. I think it is something in-between, namely, a basic condition for 
the comprehensibility of nature (the measurability of space). This condition pre-
cedes any notion of space and yet does not necessarily apply to natural phenome-
na: only experience can tell us to which extent (at which scales) space is principal-
ly measurable. What matters for our present purpose is not so much the precise 
status of the premises but the hierarchy of structures that Helmholtz implicitly in-
troduces: firstly a bare manifold, secondly a fibered manifold with a local Lie 
Group structure, thirdly the subcase in which the Lie Group is Euclidean, and 
fourthly the sub-subcase of constant curvature. Independently of Sophus Lie‘s 
contemporary researches, Helmholtz had the basic idea of a Lie algebra and its 
exponentiation. But he did not quite see it as a universal group structure. The 
structural way of thinking is more apparent when he sees the subclass of Riemann-
ian geometries of constant curvature as the generic concept of space in which 
physicists must select a special value of the curvature to get the physical space. 
That said, in Helmholtz‘s reflections on geometry the extraction of mathematical 
structures was only an implicit byproduct, whereas it came first and foremost in 
Riemann‘s and Lie‘s studies of the space problem.47 

Having unveiled the ―empirical fact‖ from which the axioms of geometry de-
rive, Helmholtz tried to do the same for arithmetic in his ―Zählen und Messen‖ 
(counting and measuring) of 1887. By analogy with Kant‘s association of numbers 
with the internal intuition of time, Helmholtz  introduced ordinal numbers through 
an empirical fact of internal perception: our ability to order successive events. In 
his definition, ordinal numbers are arbitrary signs whose purpose is to fix in our 
memory the temporal order of acts of consciousness. Helmholtz then defines the 
addition ba �  inductively through 1)()1( �� �� baba , knowing from 
Hermann Grassmann that the axioms of arithmetic (transitivity of equality, associ-
ativity and commutativity of addition, and compatibility of addition with equality) 
follow from this definition.48 

For the sake of the history of structuralism in mathematics, it should be noted 
that Hermann Grassmann and his brother Robert strongly rejected any empirical 
definition of number or mathematical concepts in general. Their definition of 
quantity was purely formal: 

A quantity [Gröse] is everything that is or can be the object [Gegenstand] of thinking, in 
so far as it has only one, and not several values. The connection [Knüpfung] of two 
quantities is every placing together or binding of these quantities that is accessible to 
human thought, in so far as it has only one, and not several values. 
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This definition could apply to any object of thought and encompassed all mathe-
matics as well as logic. This is why Hermann identified mathematics with a 
Formenlehre, and Robert called the entire realm of exact thought a Grösenlehre 
[sic] in homage to Leibniz‘s Sciencia de magnitudine. The Grasmanns‘ mathemat-
ics was as structural as Bourbaki‘s would later be, except that the combination of 
symbolic quantities, not the concept of set was the foundation of all mathematical 
constructs. Helmholtz lost this structural or formal purity by appealing to facts of 
consciousness.49 

Having defined ordinal numbers (Zahlen), Helmholtz uses them to define the 
cardinal number (Anzahl) of a set of stable objects by counting. When the count-
ing is applied to objects similar in some respect (for instance all of the same 
mass), the result is a concrete number (benannte Zahl). Lastly, Helmholtz defines 
a physical quantity and its measurement through an operation of comparison (call 
it the concrete equality) and an operation of composition (call it a concrete addi-
tion). For instance, masses can be compared through a balance, and they can be 
added by mere aggregation. For the quantity to be measurable, the concrete equali-
ty and the concrete addition must satisfy the same axioms as the corresponding ax-
ioms of arithmetic. Further assuming the divisibility of quantities and the Archi-
medean property (implicitly), Helmholtz defines the measure of the quantity as the 
concrete number of units it contains, plus the number of subunits contained in the 
residue, and so forth. The result of measurement thus is a fractional or decimal 
number, with a number of decimals depending on the desired precision.50 

Helmholtz did not try to construct a mathematically precise concept of quanti-
ty, as Poincaré and Otto Hölder would later do. It remains true, however, that he 
conceived general structural requirements applying to any physical quantity, partly 
reflecting the axioms of arithmetic, partly formalizing the idea of successive ap-
proximation. In his view the general idea of measurement, together with the con-
cept of number, induced a formal quantitative structure, just as the idea of space 
measurement induced the structure of Riemannian (constant-curvature) geometry. 
Helmholtz was intensely aware of the structural character of his concept of quanti-
ty. This is seen in his concluding statement, in which he summarizes the succes-
sive abstractions that enable us to extract numbers from a physical system:51 

When we form the concept of a class, we resume in it everything that is alike in 
the objects which belong to this class. When we conceive a physical relation 
[physisches Verhältnis] as a concrete number, we have also removed from the 
concept of the units of the class every difference that belongs to them in reality. 
Units are objects which we consider only as elements of their class, and the 
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expediency of which only depends on there being such exemplars. In the quantities that 
are built from them, there remains only the most accidental of differences, that of number 
[Anzahl]. 

Helmholtz‘s quantitative structure is inherently physico-mathematical: it im-
plies arithmetic on the mathematical side, and the possibility of measurement on 
the physical side. This raises the question of the relationship between mathematics 
and physics. In Maxwell‘s view, the mathematicians‘ arithmetic help physicists 
structure the physical world, and the physicists suggest new kinds of mathematical 
quantities to the mathematicians. In the Grassmann brothers‘ view, mathematics is 
strictly autonomous and should never owe anything to physics. Its structural quali-
ty derives from the total lack of concrete reference. In the empiricist view of the 
mathematician Paul du Bois-Reymond, whom Helmholtz praised in his essay, 
mathematics is essentially generated by abstraction from the physical world. Its 
structural quality results from the process of abstraction through which similar re-
lations are observed in different sets of objects. In Helmholtz‘s view, mathemati-
cal axioms have an empirical origin, both for geometry and for arithmetic (though 
not necessarily for all mathematics): they reflect our ability to measure and to 
count. Yet they cannot be seen as merely resulting from a process of abstraction 
from the concrete world; they reflect an ideal of the comprehensibility of the 
world. This ideal shares the a priori character of Kant‘s transcendental apparatus; 
but it has neither its rigidity nor its apodictic truth. The extent to which the struc-
tures apply to the physical world is a question that only experience can decide: for 
instance the transitivity of equality is a first test for the possibility of a quantity. 
There is no expectation that quantitative structure should automatically apply to 
the entire world of experience. Structure is the formal expression of a tentative 
form of comprehensibility. 

Poincaré 

In the first course he gave from the Sorbonne chair of Physique mathématique 
et calcul des probabilités in 1887-88, Henri Poincaré expounded no less than five 
optical theories based on an elastic ether. He justified this pedagogically odd 
choice as follows: 

The theories proposed to explain optical phenomena by the vibrations of an elastic 
medium are very numerous and equally plausible. It would be dangerous to confine 
oneself to one of them; one would thus be prone to a blind and therefore misleading 
confidence in this theory. 

Poincaré then showed that the received optical theories could be made to share the 
same system of equations, with proper adjustment of the boundary conditions and 
proper redefinition of the local displacement of the ether. For instance, the dis-
placement in Augustin Fresnel‘s theory should be the curl of the displacement in 
James MacCullagh‘s theory. What most mattered to Poincaré was the shared 
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structure thus exhibited. The multiplicity of the ether theories reflected their reli-
ance on arbitrary conventions and indifferent hypotheses. Even the ether, Poincaré 
told his Sorbonne students, might someday disappear from physics. Yet he did not 
want to teach the structure without its ethereal flesh. For the sake of ―clarity,‖ he 
told his students, ―it would always be useful to study a doctrine that relates the 
equations of a theory to each other.‖ Poincaré‘s attitude was here similar to Max-
well‘s: illustrations according to Maxwell could not be taken too seriously because 
the same illustration applied to different categories of phenomena; and the com-
peting ether theories taught by Poincaré could not be taken too seriously because 
several different theories could represent the same set of phenomena. For both 
thinkers, structure was most important but it was most vividly seen through a 
pseudo-concrete realization.52 

Poincaré‘s next course of lectures dealt with Maxwell‘s electromagnetic theory. 
The most striking aspect of this theory, in Poincaré‘s opinion, was its ability to do 
without a specific model of the ether:  

To demonstrate the possibility of a mechanical explanation of electricity, we need not 
preoccupy ourselves with finding this explanation itself; it suffices us to know the 
expression of the two functions T and U that are the two parts of energy, to form with 
these two functions the equations of Lagrange and then to compare these equations with 
the experimental laws. 

On the one hand, Poincaré thought time was not ripe for physicists to abandon the 
quest for a specific mechanical explanation: 

A day will come perhaps when physicists will not interest themselves in these questions, 
inaccessible to positive methods, and will abandon them to the metaphysicians. This day 
has not yet arrived; man does not resign himself so easily to be forever ignorant of the 
foundation of things. 

On the other hand, he emphasized the success of Maxwell‘s Lagrangian, structural 
approach:53 

What is essential, that is to say, what must remain common to all theories, is made 
prominent; all that would only be suitable to a particular theory is nearly always passed 
over in silence. Thus the reader finds himself in the presence of a form almost devoid of 
matter, which he is at first tempted to take for a fugitive shadow not to be grasped. But the 
efforts to which he is thus condemned force him to think and he ends up seeing what was 
often rather artificial in the theoretic constructs he used to admire. 

Like Helmholtz, Poincaré soon came to regard organizing principles such as 
the energy principle and the principle of least action as highly efficient tools for 
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criticizing and constructing theories. In his Saint-Louis address of 1904 he distin-
guished between two kinds of physics: the old Laplacian physics of central forces, 
and the new ―physics of principles‖ of which Clausius‘s and Thomson‘s thermo-
dynamics and Maxwell‘s dynamical theory of the electromagnetic field were the 
canonical examples. By that time he believed the physics of principles to be win-
ning, although the principles themselves seemed in danger. In particular, the rela-
tivity principle, which he had introduced in the electrodynamics of moving bodies, 
did not square well with even the best electromagnetic theories of the time (Lo-
rentz‘s and Larmor‘s). The Palermo memoir he wrote in the following year was an 
attempt to solve this crisis. After a few corrections, he could prove that the Max-
well-Lorentz equations for the electromagnetic field and the motion of electrons 
were strictly invariant by what he called the ―Lorentz group.‖ He used this invari-
ance to explain the lack of effect of a uniform translational motion of the system 
with respect to the ether, in harmony with the principle of relativity. He further re-
quired this principle and the attached Lorentz-group symmetry to apply to other 
kinds of forces, gravitational forces in particular. The relativity principle and the 
Lorentz group thus had a highly structuring power, although Poincaré shied away 
from redefining space and time on the basis of this group structure.54 

The latter remark brings us to Poincaré‘s idea of the role of groups at the inter-
faces between mathematics, geometry, and physics. In his philosophy, the group 
structure expresses our inborn ability to conceive the composition of operations of 
the same kind: ―The general concept of group preexists in our minds, at least po-
tentially. It is imposed on us not as a form of our sensibility, but as a form of our 
understanding.‖ This Kantian form plays a central role in organizing our perceptu-
al experience, and therefore should pervade any physical theory. In particular, our 
concept of space derives from our ability to combine and compensate displace-
ments of objects and displacements of our body according to a Lie-group struc-
ture.55  

Unlike Helmholtz, Poincaré did not regard the group of displacements as de-
ducible from geometric experience. In his view the definition of the class of rigid 
bodies was necessarily conventional, and the same geometrical experience could 
be described by means of different groups as long as the mechanical laws ruling 
the deformation of a concrete body during its displacements were adjusted to the 
choice of the group. The Euclidean group recommended itself for its simplicity, its 
practical convenience, and its historical dominance; even if our concrete geodesy 
someday happened to detect apparent violations of Euclidean properties, we 
would be wise to interpret these violations by physical deformations of the geo-
desic devices. Poincaré held a similar conventionalism with regard to kinematics: 
                                                           
54 Poincaré, ―L‘état actuel de la physique mathématique‖ [Saint-Louis lecture], Bulletin des 
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in his opinion, the Galilean group had to remain the basis of our definition of 
space and time despite its incompatibility with natural conventions of optical 
measurements, and despite its differing from the invariance group of the funda-
mental equations of physics.56 

For mechanics and other physical theories, Poincaré‘s conventionalism was 
less extreme than in geometry, because it was only in the case of geometry that the 
theories implied in the conventions of measurement (mechanics and optics) had an 
external origin. For other physical theories, the basic principles and structures had 
strong inductive grounding. At any rate, the group structure had to pervade physi-
cal theory according to Poincaré. The same group could cover the entire domain of 
physical experience and structure every fundamental theory at a given stage of 
physics. This was the case of the Euclidean group in pre-relativistic physics, and 
of the Lorentz group in relativistic physics. For Poincaré, mathematical physics 
was all about uniform, homogenous behavior in which phenomena could be re-
garded as combinations of similar (infinitesimal) elementary phenomena. It there-
fore was the realm of group theory.57 

In arguing the necessity of group structure in theoretical physics, Poincaré ele-
vated Helmholtz‘s earlier reflections on the foundations of geometry to a higher 
philosophico-mathematical plane. Similarly, his discussion of number and quanti-
ty had strong affinities with Helmholtz‘s ―Zählen und Messen.‖ Like Helmholtz, 
Poincaré assumed the existence of a successor 1�a  for any number a; he defined 
the addition ba �  inductively through 1)()1( �� �� baba ; and he derived its 
commutativity and associativity also by induction. Whereas Helmholtz cared to 
justify the existence of successors by internal experience, Poincaré rather regarded 
it as an innate mental faculty of which we become aware through experience. 
What mattered most to him was the resulting possibility of mathematical induc-
tion, in which he saw the source of any generality in mathematics. Induction was 
―the prototype of the synthetic a priori judgment‖ or ―the affirmation of the power 
of the mind which knows itself capable of conceiving the indefinite repetition of 
the same act as soon as this act is once possible.‖ The group structure, of which 
arithmetic gives us a first infinite example, proceeded from the same kind of in-
ductive generalization.58 

Poincaré then introduced the idea of a (measurable) continuum in a manner 
similar to Helmholtz‘s definition of measurable quantities, but with different in-
tentions. Whereas Helmholtz meant to specify the conditions under which a quan-
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titative structure derived from concrete equality and concrete addition, Poincaré 
wanted to construct the mathematical continuum. In the latter view, idealized 
measurement provides the mathematician with the ―occasion‖ to build the contin-
uum in a rigorous, arithmetic-based manner, for instance through Dedekind‘s cuts: 
―The mathematical continuum . . . has been created from bits and pieces by our 
minds, but it is experience that has provided the occasion.‖59 

In general, for Poincaré experience provides the occasion to develop the math-
ematical notions of number and continuum. However, mathematical rigor is in-
compatible with the vagueness of experience. Mathematics must be grounded on a 
priori faculties of the mind such as the possibility of indefinitely combining simi-
lar objects (of thought). Experience is the occasion, and the mind is the architect. 
In this view, much of our mathematics is motivated by proto-quantitative aspects 
of experience. The generic character of these aspects implies the structural charac-
ter of the resulting mathematical constructs. In turn, the empirical motivation of 
these constructs explains the success of mathematics when applied to the physical 
world. What remains unpredictable is the extent of this success. Structures moti-
vated by grossly quantitative experience need not apply to finer experimentation. 
It all depends on how much homogeneity and self-similarity there truly is in the 
world: 

For this [group composition], all the operations must be alike. In the opposite case, it 
would evidently be necessary to resign ourselves to doing them effectively one after 
another, and mathematics would become useless. It is then thanks to the approximate 
homogeneity of the matter studied by physicists, that mathematical physics could be born. 
In the biological sciences, we no longer find these conditions: homogeneity, relative 
independence of remote parts, simplicity of the elementary fact; and this is why naturalists 
are obliged to resort to other methods of generalization. 

Poincaré‘s position is again similar to Helmholtz‘s: The (quantitative) comprehen-
sibility of nature implies its subsumption under certain mathematical structures; 
but only experience can tell us how far the subsumption can be pushed. The main 
ways in which Poincaré still departs from Helmholtz are his higher insistence on 
rigorous, autonomous mathematical constructs and his amplification of the con-
ventional elements of any application of a mathematical structure to the physical 
world.60 

Conventionalism easily degenerates into nominalism, which is the doctrine that 
scientific concepts are but names arbitrarily imposed on an inherently amorphous 
nature. In this view, promoted at the turn of the century by Édouard Le Roy in the 
Revue de métaphysique et de morale, science does not tell us anything about na-
ture; it is only a rule of action. Poincaré soon replied to Le Roy in the same journal 
in 1902. In the contemporary foreword to La science et l’hypothèse, he noted: 

Some people have been struck by this character of free convention recognizable in certain 
fundamental principles of the sciences. They have wished to generalize beyond measure, 
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and, at the same time, they have forgotten that liberty is not license. Thus they have 
reached what is called nominalism, and have asked themselves if the savant is not the 
dupe of his own definitions and if the world he thinks he discovers is not simply created 
by his own caprice. Under these conditions science would be certain, but deprived of 
significance.  

Against this view, Poincaré argued that despite all conventions, despite indifferent 
hypotheses, and despite all what today‘s philosophers of science would call sur-
plus content, physical theories contained relations that reflected genuine empirical 
regularities and survived replacement by better theories:61 

If this were so [as imagined by the nominalists], science would be powerless. Now every 
day we see it work under our very eyes. That could not be if it taught us nothing of reality. 
Still, the things themselves are not what it can reach, as the naive dogmatists think, but 
only the relations between things. Outside of these relations there is no knowable reality. 
 
Without doubt, at first blush, the theories seem to us fragile, and the history of science 
proves to us how ephemeral they are; yet they do not entirely perish, and of each of them 
something remains. It is this something we must seek to disentangle, since there and there 
alone is the veritable reality.  

The undying content of theories, their real import, is what Poincaré called the 
rapports vrais (true relations or ratios). It is not easy to see precisely what he 
meant by this phrase nor what kind of realism he thus expressed. What is certain is 
that he had in mind relations independent of the more contingent elements of 
physical theory, in one word: a structure. What is also certain is that the qualifica-
tion ―true‖ meant conformity with the external, to us given world. But where 
should we locate the rapports vrais in a given theory? Should we identify them 
with the mathematical structure shared by all the formulations of a given theory, 
for instance the shared systems of equations in the various optical theories availa-
ble in the 1880s? Even though Poincaré occasionally suggested so much,62 this 
does not work too well, for at least two reasons. Firstly, the mathematical struc-
ture, no matter how much we have stripped it from all surplus content, does not 
connect to the empirical world without arbitrary conventions. A change of conven-
tion may imply a change of mathematical structure, just as in the case of geometry 
a different convention of space measurement leads to a different group of dis-
placements. Secondly, even supplemented with the necessary conventions of 
measurement, the mathematical structure cannot possibly be an exact reflection of 
nature because the experimental predictions of the theory can have only approxi-
mate validity. At best we know that to some approximation the structure correctly 
represents the phenomena. The precise delimitation of the domain of validity must 
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await the availability of a more fundamental theory (for instance, we only know 
the domain of validity of rays optics from the deeper theory of wave optics). Once 
a deeper theory is known and used to assess the domain of the original theory, we 
are free to use the structure of either theory within this domain. This is one more 
symptom of underdetermination of the mathematical structure.  

Poincaré does not fully address these difficulties. We can only imagine possible 
answers, based on hints found here and there in his texts. The first difficulty can 
be avoided by associating the rapports vrais to a doublet including the mathemati-
cal structure and the conventions of measurement. As long as the empirical conse-
quences are well defined and as long as they are experimentally verified, the dou-
blet is true to the real world and it will retain its value in the future evolution of 
physics. To preserve the structuralist flavor of the rapports, it might be better to 
associate them with the class of all such doublets that have the same empirical 
content. This is pretty much what Poincaré is doing when he considers a variety of 
ether theories that all lead to the same empirical predictions, or when he tells us 
that the same physical geometry can be described by different groups with proper 
adaptation of the conventions of measurement. This view presupposes the exist-
ence of a level of convention-free empirical facts for which the comparison of 
empirical predictions is unambiguous. This is why, in his reply to Le Roy, Poinca-
ré distinguished between the ―crude facts‖ of observation and the more economi-
cally expressed but convention-dependent ―scientific facts.‖63 

As for the approximate character of the rapports vrais, it is a problem only for 
those who expect physical theories to give perfectly accurate predictions in per-
fectly well-circumscribed domains. In real life, the predictions are approximate 
and the frontiers of the domain of application are blurred. We may still define the 
rapports vrais of a theory by a triplet including the mathematical structure, the 
conventions of measurement, and an estimate of the range of validity of its predic-
tions. As was mentioned, this estimate can only be known a posteriori, when a 
deeper theory is known. There is no reason to assume that Poincaré meant the 
rapports vrais to be defined in a non-retrospective manner. On the contrary, he of-
ten used this expression to suggest that a theory anticipated structural features of a 
later improved theory. For instance, at the turn of the century he tells us that Lo-
rentz‘s electromagnetic theory is ―the one which best explains the known facts, the 
one which illuminates the greatest number of rapports vrais, the one of which 
most traces will be found in the final construction.‖64 

If we neglect these subtleties, we find in Poincaré an amplification and an ex-
tension of the structural tendency introduced by the two physicists he most ad-
mired: Maxwell and Helmholtz. For Poincaré physical theories imply generic 
mathematical structures such as arithmetic, the continuum, and groups structure 

                                                           
63 Poincaré, ref. 61. The distinction is rough, and it was duly criticized in Duhem , ref. 4, on 242-
247. A modular view of the comparison between theories would here be more adequate: cf. 
Darrigol, ―The modular structure of physical theories,‖ Synthese, 162 (2008), 195-223. 
64 Poincaré, ref. 55, on 205. 



37 

created by the human mind in order to capture the regularity of phenomena. Be-
sides these structures of global cognitive significance, there also are special struc-
tures attached to specific theories. These may be defined synchronically as sys-
tems of relations shared by empirically equivalent theories and independent of the 
superfluous imagery they often carry with; they may also be defined diachronical-
ly as the undying structural core of successful theories. Ironically but predictably, 
the thinker who most insisted on the necessary conventional elements of any theo-
ry is also the one who most insisted on invariant, objective structures in physical 
theory. 

Duhem 

Pierre Duhem introduces his La théorie physique, son objet et sa structure 
(1906) with an analogy between theory and instrument. In order to know how to 
use an instrument properly, Duhem tells us, we pull it apart and analyze the vari-
ous parts and their configuration. He goes on: 

I have applied a similar analysis to physical theory. I have first tried to determine its 
object in a precise manner. Then, knowing the aim of Theory, I have examined its 
structure; I have successively studied the mechanism of each of the operations through 
which it is constituted; I have indicated how each of them contributes to the object of the 
Theory.  

Further in his book, Duhem defines theory as follows: 
A physical theory is . . . a system of mathematical propositions, deduced from a small 
number of principles whose purpose is to represent as completely and exactly as possible 
a set of experimental laws. 

The mathematical propositions are relations between a small number of magni-
tudes [grandeurs] represented by (real) numbers and associated with simple prop-
erties of the systems under consideration. The principles are themselves hypothet-
ical propositions, or relations between magnitudes, from which all other 
propositions of the theory can be deduced by strictly logico-mathematical means.65 

For Duhem, there are two kinds of grandeurs: the genuine quantities for which 
a concrete equality and a concrete addition can be exhibited in Helmholtz‘s man-
ner, and the qualities for which a concrete ordering exists but no concrete addition 
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exists. For instance, temperature is a quality because we can determine whether a 
body is warmer than another but we cannot add temperature differences in any 
concrete manner. As long as the concrete ordering satisfies the axioms of a rela-
tion of partial order, we may still associate a real number with a quality, except 
that this number depends on a specific, arbitrary scale. This is what is concretely 
achieved by a thermometer. Unlike Helmholtz and more like Ernst Mach, Duhem 
criticized the Cartesian tendency to reduce every quality to a quantity, and rec-
ommended, for the best economy of representation, to preserve a small number of 
qualities in the set of primitive magnitudes of the theory.66 

The principles of the theory are, taken separately, purely mathematical rela-
tions. They are neither consequences of higher metaphysical theory, nor direct ex-
pressions of experimental laws. In the first case, one would fall into the historical-
ly frequent error of confusing a representation with an explanation; in the second 
case, one would be a naive empiricist unable to reach a sufficient level of general-
ization. In both cases, dogmatism would settle in. Duhem also disliked the British 
indulgence in mechanical illustrations. He understood that for Thomson, Maxwell 
and their followers the illustrations were just illustrations and did not carry any 
metaphysical weight, but he considered them as superfluous and even harmful in 
the process of theory of construction. He compared the evolution of physics in the 
previous centuries to a rising tide on an inclined shore: the water front oscillates 
and yet keeps progressing on average. The oscillations are the effect of perishable 
metaphysical assumptions or unnecessary illustrations; the net progress is what 
would be left to physicists, if they were as sober as wished by Duhem.67 

Duhem accompanies his reflections on the nature of theory with reflections on 
the nature of experimentation. He understands that even simple experiments of 
physics require, in the statement of their results, a considerable theoretical equip-
ment. For instance, the measurement of an electric current through a galvanometer 
appeals to the laws of electromagnetism and mechanics. Moreover, Duhem argues 
that the different principles of a theory cannot be tested separately and that only 
the complete theory with all its principles and deductions, has a well-defined em-
pirical content. He is therefore very far from giving to the theoretical magnitudes 
and their mutual relations a direct empirical significance. On the contrary, he in-
sists that any powerful theory has to introduce magnitudes and relations that have 
no empirical counterpart.68 

In order to get a more precise idea of Duhem‘s concept of physical theory, one 
must examine his own theoretical production, especially his Traité d’énergétique 
of 1911, since he himself regarded La théorie physique as a kind of introduction to 
this treatise.69 Thermodynamics and thermochemistry being his main domains of 
interest, he wanted a theory encompassing these two fields as well as transport 
                                                           
66 Duhem, ref. 4, Part 2, Chap. 1. 
67 Duhem, ref. 4, Part 1; p. 58 (tide). 
68 Duhem, ref. 4, Part 2, chaps. 4, 6; p. 340 (theoretical magnitudes and relations). 
69 Duhem, Traité d’énergétique ou de thermodynamique générale (Paris, 1911), 3n. 



39 

phenomena and mechanics (he left the more difficult case of electrodynamics for 
future developments). His basic strategy was firstly to identify the simple magni-
tudes of the theory at a macroscopic level (position, pressure, temperature, etc. for 
each infinitesimal element of each simple substance regarded as a continuum), 
secondly to impose kinematic constraints, thirdly to define the energy variation 
during virtual changes of states compatible with constraints, and lastly to derive 
the statics and dynamics of the system from principles regulating virtual and real 
changes. This works a little like Jean le Rond d‘Alembert‘s foundation of mechan-
ics on the principle of virtual works and on d‘Alembert‘s principle, except that the 
evolution of systems now includes non-mechanical variables. Duhem defined state 
and motion in a neo-Aristotelian manner, as a set of independent magnitudes and 
their time-derivatives, and advised physicists against attempts to reduce any 
change of state to the mechanical motion of invisible entities.70 

With this brief survey of Duhem‘s conception of physical theory, we may now 
decide how much what he calls the ―structure‖ of a physical theory reflects a 
structuralist view. Firstly, his theory rests on two basic mathematical structures, 
metric structure (for quantities) and ordinal structure (for qualities), both leading 
to the representation of physical magnitudes by numbers. Implicitly, he associates 
two symmetries with these two structures: symmetry through changes of the basic 
units (dimensional invariance) for the quantities, and symmetry through changes 
of scale for the qualities. Secondly, Duhem has a highly abstract conception of 
theory and its principles. To a concrete physical system he associates ―an abstract 
mathematical scheme,‖ and he opposes the intimate structure of concrete bodies, 
which eludes us, to the ―structure of the mathematical scheme,‖ which is the sole 
object of our reasoning and which is perfectly known to us since it is a mental 
construct.71 He rejects mechanical explanation; he advises against mechanical il-
lustration; he asserts the impossibility of direct empirical interpretations of most 
propositions of a theory; and he sees beauty in the purely algebraic character of 
the relations between the various propositions of the theory. Thirdly, Duhem notes 
the important role of analogy in theoretical construction, to be regarded as useful 
transport of structure and not to be confused with illustration.72 Fourthly, Duhem 
illustrates the global interconnection of theoretical propositions by comparing 
physical theory to an organism:73 

Physical science is a system that must be considered as a whole; it is an organism of 
which a given part cannot function without implying the most remote parts in various 
degrees. 
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73 Duhem, ref. 69, on 308. 



40  

Fifthly, Duhem integrates several theories, including (macro-)mechanics, thermo-
dynamics, transport theory, and thermochemistry, in a single, homogenous theo-
retical structure based on formal rules for the energy variations under virtual 
changes of state.  

To some extent, Duhem structuralism reminds us of Maxwell‘s and Helm-
holtz‘s. He shares their emphasis on numerical structure and on analogies. His jus-
tification of the numerical structure and his ambition to embrace all physics (of his 
time at least) in a general frame also recalls Helmholtz, who was the physicist Du-
hem most admired. However, Duhem‘s structuralism seems more strict and rigid 
than that of his forerunners. He evacuates Maxwell‘s illustrations; he avoids 
Helmholtz‘s mechanical reduction even in its most abstract form; he relegates the 
atomic constitution of matter, which both Maxwell and Helmholtz defended, to 
the rank of metaphysical speculation. Whereas Maxwell, Helmholtz, and Poincaré 
sought a fruitfully destabilizing interplay between micro- and macro-structures, 
Duhem sought maximal stability in purely macroscopic structures. To be true, 
Duhem was too good a historian not to see that theoretical structures could under-
go radical changes in the evolution of physics; however, in the physics of his time 
he did not see any reason to alter the basic outlook inherited from (macroscopic) 
rational mechanics and thermodynamics. Even though he had a sophisticated un-
derstanding of the relation between theory and experiment, he did not anticipate 
that the constructions he deemed superfluous (atomistic theories) or against com-
monsense (relativity theory) could turn out to be more adequate representations of 
the empirical world. 

3. Conclusions 

In the first section of this essay, we found that at least in several cases, mathe-
matics and linguistics for instance, structuralist approaches preceded their being 
characterized in terms of abstract ―structures.‖ This is especially evident in the 
case of mathematics, for which the concern with abstract relational structures ex-
isted since Greek antiquity and yet was not named so until Cassirer and Russell 
promoted a modern definition of ―structure‖ in the 1910s. The quest for abstract 
generality being often regarded as inherent in the definition of mathematics, the 
ancient origins of mathematical structuralism can hardly surprise us. In physics, 
the concreteness and complexity of the objects of study seem to contradict abstract 
generality. The ideal of a universally quantitative and mathematical physics, de-
spite its Cartesian roots, was not commonly accepted until the late eighteenth cen-
tury, and its first implementation was more constructive than structural. Yet, in the 
early twentieth century, Cassirer regarded the evolution of physics in the past cen-
tury as the gradual demise of substance(s) in favor of relational ―structures.‖ 

The second section of this essay confirms Cassirer‘s insight in the case of four 
luminaries of nineteenth-century and early twentieth-century physics: Maxwell, 
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Helmholtz, Poincaré, and Duhem. In his electromagnetic theory, Maxwell relied 
on two kinds of structures, a classification of physico-mathematical quantities ac-
cording to their combinational properties, and the Lagrangian structure for the 
fundamental equations of the theory. The modern name ―structure‖ is here justi-
fied since Maxwell provided relational definitions and proceeded from them in a 
combinatorial or algebraic manner, and since his structures went along with a no-
tion of isomorphism. In the classification case, the structure was shared by differ-
ent sectors of the electromagnetic theory, in the Lagrangian case it was shared by 
any possible mechanical model of the theory. That said, Maxwell and most of his 
British colleagues had a strong dislike for purely abstract structure and believed in 
the cognitive and heuristic importance of concrete models or ―illustrations‖ for the 
structures they encountered. Maxwell‘s structuralism was a pragmatic reaction to 
a frustrated mechanism. Not knowing how to build a simple, complete mechanical 
model of the electromagnetic field, he understood the merit of structures express-
ing the possibility of a mechanical model without a specific model to be known. 

Helmholtz similarly opted for a compromise between mechanical reduction and 
pragmatic efficiency in theoretical construction. In his later years, he considered 
that the Lagrangian or Hamiltonian structure best served this purpose, not only for 
electromagnetism but also for all the principal theories of physics. However, he 
departed from Maxwell in the way he justified this structure. Whereas Maxwell 
adduced the possibility of a clock-like mechanism with contact action only, Helm-
holtz adduced the possibility of a reduction to central forces acting on pairs of ma-
terial points. The latter picture was a remnant of the young Helmholtz‘s Kantian 
expression of the comprehensibility of nature. In later years, Helmholtz privileged 
a more empiricist view of the comprehensibility of nature, based on the possibility 
of counting and measuring objects. This possibility generated the quantitative 
structure of physics in general, as well as the locally Euclidean structure of ge-
ometry understood as the art of measuring space. Helmholtz‘s structuralism was 
more pronounced than Maxwell, for he preferred bare structures to the British il-
lustrated structures, and because his structures were more universal than Max-
well‘s. 

Poincaré admired both Maxwell‘s and Helmholtz‘s variety of structuralism. 
With Maxwell‘s he shared the interest in illustrated structures. For ―clarity‖ and 
for the sake of mathematical imagination, he liked to see a structure through a 
model, no matter how superfluous, arbitrary, and unrealistic the model might be. 
He nonetheless understood the merits of ―the physics of principles‖ in which gen-
eral principles such as the energy principle, the principle of least action, or the rel-
ativity principle imposed a structure on all the fundamental theories of physics. He 
developed Helmholtz‘s implicit association of mathematical group structure with 
conditions of measurability. More broadly, he traced mathematical physics and its 
pervasive reliance on Lie groups to an assumed uniformity of the physical word. 
The relevant groups were largely conventional for geometry, less so for complete 
physical theories. In any case, the true undying content of a theory, what he called 
the ―rapports vrais,‖ was not the mathematical (group) structure itself but the con-
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junction of this structure with conventions of measurements and an (a posteriori) 
estimate of the domain of validity. The rapports vrais thus expressed an elusive 
form of structural realism in which no mathematical straightjacket could capture 
the truth of a theory.   

Duhem shared with Helmholtz and Poincaré the idea of a quantitative structure 
associated with the measurement or the ordering of magnitudes. The main differ-
ence was his inclusion, among the simple magnitudes of the theory, of ―qualities‖ 
that had an ordinal structure only. The intensity of a quality could still be ex-
pressed by number in a given scale, so that Duhem‘s theory remained expressible 
in terms of relations between numbers representing the various magnitudes, all de-
rivable from a small number of principles of the same kind. Thus defined, the the-
ory was a purely symbolic structure, devoid of ontological import and not to be di-
rectly related to sensorial observation. The symbolic structure could only be tested 
as a whole, because the interpretation of any experiment generally implied the en-
tire structure. The magnitudes never had direct sensorial meaning: they could be 
related to experiments only through the relational structure to which they be-
longed. Unlike Maxwell, Helmholtz, and Poincaré, Duhem rejected even the most 
moderate, structural kind of mechanical reductionism and resurrected the Aristote-
lian qualities in a move away from mechanism. He believed he could embrace all 
the physics of his time in an energeticist framework, in analogy with the structures 
of d‘Alembert‘s dynamics and of macroscopic thermodynamics.  

Maxwell, Helmholtz, Poincaré, and Duhem all were structuralists in their ap-
peal to abstract, universal, relational structures and they all agreed that these struc-
tures were essentially mathematical and partly dictated by the demands of meas-
urement. Yet they disagreed on the choice of the global structure: whereas 
Maxwell, Helmholtz, and Poincaré required the Lagrangian structure, Duhem had 
his own energeticist structure. Our four luminaries also disagreed on the origin 
and motivation of the structures. For Maxwell, these were abstracted from the pure 
mechanism expressed in the British ―matter and motion‖ program. For Helmholtz, 
they had Kantian origins in the reducibility to centers of forces and in constitutive 
principles of measurability. For Poincaré, they were in part the product of broad 
inductions from experience, in part the expression of the mind‘s innate capacity to 
express regularities. For Duhem, they partly derived from arithmetic and geomet-
ric ―commonsense,‖ but they also resulted from a long series of trials and errors 
with the aim of a ―natural classification‖ in mind.  

The structuralism of our four theorists also differed in the amount of freedom 
they allowed in the construction of theories. While Maxwell never departed from 
mechanical reducibility, he and his British colleagues felt free to choose the kind 
and level of the basic mechanical entities: they could be macroscopic bodies, in-
visible atoms, a perfect ethereal liquid, a hidden mechanism, and a few other fig-
ments of the Victorian imagination. Helmholtz favored a more sober version of 
the same openness: he required the Hamiltonian structure of all major theories and 
at the same time he ardently supported invisible entities such as molecules, atoms, 
ions, and the ether as long as some empirical laws seemed to require their exist-
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ence. Poincaré was a pluralist who defended the competitive exploration of multi-
ple, mutually incompatible world pictures and theories. His conventionalism natu-
rally accommodated such multiplicity, and his structuralism allowed communica-
tion between the multiple options. Unlike his predecessors (Ludwig Boltzmann 
excepted), he admitted that mechanical reducibility might not extend to the small-
est scales and he easily accommodated quantum discontinuity in the last years of 
his life. Duhem completely rejected mechanical reducibility, since he did not tol-
erate the atomistic assumptions needed to conciliate thermodynamic irreversibility 
with mechanism. This anti-mechanism did not make him more open to theoretical 
change. He meant his energetics to be the most stable possible frame for contem-
porary physics. He believed that his economic, commonsense, anti-metaphysical 
approach would spare physicists the backwards oscillations in the rising tide of 
progress; and he did not perceive any credible threat to his program in the con-
temporary rise of a new physics of atoms, electrons, radiations, quanta, and rela-
tivity. 

According to the anti-structuralist reaction of the 1970s, structuralism should 
be condemned or at least deeply altered in order to accommodate historical 
change; structure being essentially a synchronic concept, derived from the com-
parison of simultaneously existing systems. It is not clear that this criticism fairly 
applies even to the varieties of structuralism that prospered since Jakobson em-
ployed the word in 1929. For instance, the structuralism of the Prague circle of 
linguistics was explicitly a reaction to the purely synchronic character of the struc-
tures of the Geneva school. For them, both the definition and the evolution of 
structure depended on the functions of language and therefore could not be treated 
separately.74 Now, if we look at the given examples of proto-structuralism in nine-
teenth and early twentieth-century physics, we do find some rigidity: Maxwell and 
Helmholtz hoped that the Lagrangian and metric structures would forever con-
strain the laws of physics; and Duhem meant his energetics to stay. They were 
right in some sense, since today‘s physicists still require the Lagrangian structure 
at a formal (pre-quantization) level of their most fundamental theories and since 
the modern theory of out-of-equilibrium processes share many features of Du-
hem‘s theory.75 They were wrong in another sense: the metric structure and La-
grange‘s equations of motion are no longer believed to apply to the most funda-
mental processes in nature; and Duhem‘s energetics completely ignores any 
microphysics.  

We may advantageously follow Poincaré‘s hints for conciliating the perma-
nence and the displacement of structures. As long as a given structure serves to 
express rapports vrais in an approximate manner in a given domain of experience, 
this structure should subsist in superseding theories at least in an asymptotic or re-
gional manner: it should remain valid in some limit or in some sub-domain of the 

                                                           
74 In his structuralist psychology, Jean Piaget similarly insisted in the ability of structures to 
transform themselves: cf. Jean Piaget, Le structuralisme (Paris, 1968). 
75 Cf. Maugin, ref. 70. 
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superseding theories. This constraint, which has been called a correspondence 
principle after Niels Bohr, played an essential role in the construction of the theo-
ries that displaced the great theories of the nineteenth century, namely, relativity 
theory and quantum mechanics. So did too the group-theoretical symmetry con-
siderations emphasized by Poincaré. The structuralism of nineteenth-century phys-
ics not only helped construct its main theories, but it also prepared the construc-
tion of future theories. 

This importance of structures in constructing empirically effective theories may 
seem at odd with the definition given at the beginning of this essay. If a structure 
is a self-contained system or relations, how could it serve to construct anything?  
If the relations connect abstract terms, how could the structure tell us anything 
about the empirical world? Let us first address this second difficulty. The ab-
stractness of a relational structure means only that its definition does not depend 
on the nature of the terms connected by the relations; it does not mean that the 
structure cannot be applied to or controlled by empirical phenomena. On the con-
trary, with the exception of mathematics, structuralism usually goes along with 
stronger empiricism, because the relations of the structure are believed to be more 
empirically significant than ontological assumptions about the terms. In the case 
of physics, much of the structure results from demands of measurability and uni-
formity, regarded as preconditions for the success of a quantitative science. When 
it does not, as is the case for the Lagrangian structure, it represents a move away 
from an empirically uncontrollable submechanics of the universe and toward a 
more direct expression of empirical phenomena. More broadly, structuralism dis-
solves our naive belief in substances devoid of empirical significance, as empha-
sized by Cassirer and by Gaston Bachelard.76 

How exactly do structures connect to empirical phenomena? They do not do so 
by direct empirical interpretation of some of the terms of the relational structure, 
as logical positivists would have it. They do so through pre-interpreted substruc-
tures that enable us to imagine models of concrete experiments. In general, physi-
cal theories have a modular structure, which is the name I give to a second-order 
structure ruling the articulation of theoretical modules or substructures within and 
between theories. The modular structure evolves in the course of the life of theo-
ries, and it plays an essential role in the construction of new theories. In particular, 
this concept explains the constructive power of structures: even though they are in 
a sense self-contained, they can enjoy modular connections with other structures. 
The construction game is then seen as an art of combining, embedding, and graft-
ing partial structures.77 

                                                           
76 See Cassirer, ref. 13; Gaston Bachelard, La formation de l’esprit scientifique (Paris, 1938). 
77 Cf. Darrigol, ref. 63, and João Principe‘s contribution to this volume. 
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