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POINTWISE CONVERGENCE OF NONCOMMUTATIVE FOURIER
SERIES

GUIXIANG HONG, SIMENG WANG AND XUMIN WANG

ABSTRACT. This paper is devoted to the study of pointwise convergence of Fourier series
for non-abelian compact groups, group von Neumann algebras and quantum groups. It is
well-known that a number of approximation properties of groups can be interpreted as sum-
mation methods and mean convergence of the associated noncommutative Fourier series.
Based on this framework, this work studies the refined counterpart of pointwise convergence
of these Fourier series. As a key ingredient, we develop a noncommutative bootstrap method
and establish a general criterion of maximal inequalities for approximative identities of non-
commutative Fourier multipliers. Based on this criterion, we prove that for any countable
discrete amenable group, there exists a sequence of finitely supported positive definite func-
tions tending to 1 pointwise, so that the associated Fourier multipliers on noncommutative
Ly-spaces satisfy the pointwise convergence for all p > 1. In a similar fashion, we also obtain
results for a large subclass of groups (as well as quantum groups) with the Haagerup property
and the weak amenability. We also consider the analogues of Fejér means and Bochner-Riesz
means in the noncommutative setting. Our approach heavily relies on the noncommutative
ergodic theory in conjunction with abstract constructions of Markov semigroups, inspired by
quantum probability and geometric group theory. Even back to the Fourier analysis on Eu-
clidean spaces and non-abelian compact groups, our results are novel and yield new insights
and problems. On the other hand, we obtain as a byproduct the dimension free bounds of
the noncommutative Hardy-Littlewood maximal inequalities associated with convex bodies.
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1. INTRODUCTION AND MAIN RESULTS

The study of convergence of Fourier series goes back to the very beginning of Fourier
analysis. Recall that for an integrable function f on the unit circle T, the Dirichlet summation
method is defined as

N
(Dnf)(z)= Y fk)z*, z€T, NeN,
k=—N

where f denotes the Fourier transform of f. This summation method is quite intuitive, but
very intricate to deal with. Indeed, the mean convergence of these sums is equivalent to
the boundedness of the Hilbert transform, which is a typical example of Calderén-Zgymund
singular integral operators; the corresponding pointwise convergence problem is much more
complicated and was solved by Carleson and Hunt, which is now well-known as the Carleson-
Hunt theorem. In order to study these Dirichlet means and their higher-dimensional version,
there have appeared numerous related problems together with other summation methods,
which have always been motivating the development of harmonic analysis. For instance, as
averages of Dirichlet means, the Fejér means stand out

N
(Fnf)(z)= > <1 - ‘J’ff‘) f(k)2*, zeT, NeN.
k=—N

It is well-known that Fj defines a positive and contractive operator on L,(T), and Fy f
converges almost everywhere to f for all 1 < p < oo (see e.g. |Gra08|). In the case of higher
dimensions, the ball multiplier problem was solved negatively by Fefferman [Fef71]; and people
considered instead the Bochner-Riesz means which can be viewed as fractional averages of
ball multipliers. However, that whether the Bochner-Riesz means with critical index still have
the desired mapping properties remains one of the famous open problems in three and higher
dimensions, which is closely related to many other open problems in harmonic analysis, PDEs,
additive combinatorics, number theory etc (see e.g. [KT02, Tao99b, Tao99a, Tao04| and the
references therein). These problems have been stimulating the further development of analysis
and beyond.

In recent decades, similar topics have been fruitfully developed in the setting of operator
algebras and geometric group theory. The study was initiated in the groundbreaking work of
Haagerup [Haa79|, motivated by the approximation properties of group von Neumann algebras.
Indeed, let I' be a countable discrete group with left regular representation A : I' — B(¢2(T"))
given by A(g)dp, = dgn, where the 6,’s form the unit vector basis of o(I"). The corresponding
group von Neumann algebra VN(T') is defined to be the weak operator closure of the linear
span of \(T"). For f € VN(T') we set 7(f) = (0, fd.) where e denotes the identity of I'. Then
7 is a faithful normal tracial state on V. N(I'). Any such f admits a formal Fourier series

> f@Ag) with  fg) =7(fMg ™).

gerl’
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The convergence and summation methods of these Fourier series at the operator algebraic level
(i.e. at the Loo(VN(I')) level) are deeply linked with the geometric and analytic properties of
I', and in the noncommutative setting they are usually interpreted as various approzimation
properties for groups (see e.g. [BO08, CCJ101]). More precisely, for a function m : ' — C we
may formally define the corresponding Fourier multiplier by

(1.1) T > F(9Mg) = > m(9)f(9)A(g).

gel’ gel

We may consider among others the following approximate properties:

(1) T is amenable if there exists a family of finitely supported functions (my)nen on I' so
that T, defines a unital completely positive map on VN(I') and T}, f converges to
f in the w*-topology for all f € VN(T') (equivalently, my converges pointwise to 1).

(2) T has the Haagerup property if there exists a family of cp-functions (my)yen on T’
so that T,,, defines a unital completely positive map on VN(I') and my converges
pointwise to 1.

(3) T'is weakly amenable if there exists a family of finitely supported functions (my)nyen on
I" so that T}, defines a completely bounded map on VN(I') with supy || Ty |l < 00
and mpy converges pointwise to 1.

If we take I' = Z (in this case VN(Z) = Ly(T)) and mn(k) = (1 — |k|/N)4, then T),,
recovers the Fejér means Fy and obviously satisfies the above conditions. These approximation
properties play an essential role in the modern theory of von Neumann algebras, as well as
in geometric group theory. For example, the work of Cowling-Haagerup [CH89] on the weak
amenability solves the isomorphism problems of various group von Neumann algebras; the
Haagerup property and its opposite Kazhdan property (T) are amongst the central tools in
Popa’s deformation /rigidity theory [Pop07]; also, the weak amenability is a key ingredient
in the modern approach to the strong solidity and uniqueness of Cartan subalgebras [OP10,
CS13, PV14].

Despite the remarkable progress in this field, it is worthy mentioning that only the con-
vergence of T, f in the w*-topology was studied in the aforementioned work. A standard
argument also yields the convergence in norm in the corresponding noncommutative L,-spaces
L,(VN()) for 1 <p < co. On the other hand, the analogue of almost everywhere convergence
in the noncommutative setting was introduced by Lance in his study of noncommutative er-
godic theory [Lan76]; this type of convergence is usually called the almost uniform convergence
(abbreviated as a.u. convergence; see Section 2.2). Keeping in mind the aforementioned im-
pressive results already obtained from the mean convergence, it is natural to develop a refined
theory of pointwise convergence of noncommutative Fourier series, and to seek applications in
geometric group theory, operator algebras and harmonic analysis. More precisely, it is known
that for the previous maps T),, and for f € L,(VN(I")), there exists a subsequence (Nj)p
(possibly depending on f and p) such that Ty, f converges a.u. to f. From the viewpoint of
analysis, the following problem naturally arises: can we choose Ny to be independent of f, or
even can we choose Ny to be k7 If G is abelian, this is exactly the classical pointwise conver-
gence problem. As mentioned previously, the study of the pointwise convergence problem is
much more difficult than the mean convergence problem as in the case of Dirichlet means; it
still remains one of the major subjects of harmonic analysis nowadays, for instance the study of
Bochner-Riesz means and maximal Schrodinger operators, see e.g. [Tao02, LS15, DZ19, LW19|
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and the references therein. So the above problem should be regarded as one of the initial steps
to develop Fourier analysis on noncommutative L,-spaces.

However, compared to the classical setting, the pointwise convergence problem on non-
commutative L,-spaces remains essentially unexplored, up to sporadic contributions [JX07,
CXY13]. The reason for this lack of development might be explained by numerous difficul-
ties one may encounter when dealing with maximal inequalities for noncommutative Fourier
multipliers. Indeed, in the commutative setting, the pointwise convergence problem almost
amounts to the validity of maximal inequalities [Ste61], and the arguments for maximal in-
equalities depend in their turn on the explicit expressions or the pointwise estimates of the
kernels. However, the kernels of noncommutative Fourier multipliers are only formal elements
in a noncommutative Li-space, which are in general no longer related to classical functions and
cannot be pointwisely comparable, so the usual methods for classical maximal inequalities do
not apply to the noncommutative setting any more. Although the notion of noncommutative
maximal inequality has been formulated successfully thanks to the theory of vector-valued non-
commutative L, spaces [Pis98, Jun02|, the approaches to these inequalities are very limited,
except the noncommutative Doob inequality in martingale theory [Jun02| and its analogue
in ergodic theory [JX07, HLW20|, where some additional nice properties of the underlying
operators are available.

In this paper we would like to provide a new approach to the maximal inequalities and
pointwise convergence theorems for noncommutative Fourier series. To our best knowledge,
the current trend of investigation on noncommutative Fourier multipliers mainly relies on var-
ious transference methods and quantum probability theory (see e.g. [NR11, CXY13, JMP14,
JMP18]). The method presented in this paper is completely independent of all these pre-
ceding works, so is entirely new. The strategy turns out to be efficient in a very general
setting; roughly speaking, it allows us to deal with all Fourier-like structures including quan-
tum groups, twisted crossed products and free Gaussian systems. In many cases, we may
give an explicit answer to the pointwise convergence problem raised previously. Back to the
classical setting, this approach also yields new results, insights and problems.

In the following part of this section we will present some of our main results.

Criteria for maximal inequalities of Fourier multipliers. Our key technical theorem
gives a criterion for maximal inequalities of noncommutative Fourier multipliers. This criterion
only focuses on the regularity and decay information of symbols of multipliers in terms of length
functions. Hence it is relatively easy to verify. As mentioned previously, the theorem can be
extended to all Fourier-like expansions in general von Neumann algebras. For simplicity we
only present the results for group von Neumann algebras VN (I") as illustration, and we refer
to Theorem 4.2, Theorem 4.3 and Theorem 4.18 for a complete statement.

Let T" be a discrete group and let ¢ : I' — [0,00) be a conditionally negative definite
function on it. We consider a family of real valued unital positive definite functions (1m;);er., -
It is known that the associated operators (15, )icr, defined as in (1.1) extend to contractive
maps on L,(VN(I)) for all 1 < p < oo (see Section 4 for more details). In this framework we
present the following result. We refer to Section 2 for the notions of noncommutative L,-spaces
L,(VN(T)) and noncommutative maximal norms || sup;’ zy||, for (z,)n C L,(VN(L)).
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Theorem 1.1. Let I',¢ and (T)n,)icr, be as above. Assume that there exist o, > 0 and
n € Ny such that for allg €I’ and 1 < k < n we have

£(g)”
t

k
[L=mi(g)l < B=—, Imu(g)| < B d*my(g) 1

t
< B
e || <
then for all 1 + % < p < oo there exists a constant ¢ such that for all f € L,(VN(T)),

I s%p TTon, fllp < cllfllp and T, f — f au. ast — oo,
teER4

and for all 1 < p < oo there exists a constant ¢ such that for all f € L,(VN(T)),

|sup T, v fllp < cll £l and To.nf— f au as N — oo,
NeN 2

Similar results hold for uniformly bounded (but not necessarily positive) Fourier multipliers
(T)y,) if we restrict ourselves to the case p > 2. The study of Theorem 1.1 relies on the analysis
of lacunary subsequences (Tm2 ~)Nen. This type of lacunarity seems to be insufficient in the
further study of abstract analysis on groups. The theorem below is more suitable for the
abstract setting, which applies to other sequences without being of the form (Tmzw) NeN in
Theorem 1.1 and will play a prominent role in the remaining part of this work.

Theorem 1.2. Let T' and ¢ be as above. Let (my)nen be a sequence of real valued unital
positive definite functions. If there exist a, 3 > 0 such that for all g € T,
(g) 2N
1-— < < fB——

then for all 1 < p < oo there exists a constant ¢ > 0 such that for all f € L,(VN(I)),

||]S\,[u1§+TmeHp << fllp and Tonf— f au. as N — oc.
€

The main idea of the proof will be to compare the Fourier multipliers with certain quantum
Markov semigroups, and then apply the ergodic theory of the latter developed by [JXO07].
This is first loosely inspired by the study of variational inequalities (in particular the compar-
ison between averaging operators and martingales in [CDHX17, DHL17, HM17]), and then
by Bourgain’s approach to the dimension-free bounds of Hardy-Littlewood maximal inequal-
ities [Bou86a, Bou86b, Bou87, DGM18|. Bourgain’s work is based on a careful study of the
L, (¢s)-norm estimate of differences between ball averaging operators and Poisson semigroups
on Euclidean spaces. In this paper we will develop similar techniques for noncommutative
Fourier multipliers and abstract quantum Markov semigroups. This method based on ergodic
theory seems to be new even for the study of pointwise convergence of commutative Fourier
multipliers; see in particular Corollaries 1.7 and 1.8.

As a key point of the proof, we will develop a bootstrap argument in the noncommutative
setting for the first time. The so-called bootstrap methods have had a deep impact on classical
harmonic analysis since the original work |[NSW78|; see e.g. |[DRAF86, Car86, BMSW18|.
Though not explicitly mentioned in the original papers, the aforementioned work by Bourgain
[Bou86a, Bou86b, Bou87| can be essentially compared with the previous ones and recognized
with hindsight as a certain bootstrap argument with independent techniques. Motivated by
Bourgain’s method, we will develop a bootstrap argument based on the almost orthogonality
principle: deducing the desired Lj-estimates for p < 2 from the Lg-estimates by a delicate
study of suitable decompositions of (Iiny f =T _, v2f)n and certain differences of (Tpny f)n-
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It is relevant to remark that there is no straightforward way to extend the classical bootstrap
arguments directly to the noncommutative setting. In particular, as a noncommutative variant
of the vector-valued Ly-space L,(€; ¢2) for the study of noncommutative square functions, the
space L,(M;l5") (to be defined in Subsection 3) does not coincide with the interpolation
space of the form (L,(M; ¥4, ), L,(M; £y, ))e unless the underlying von Neumann algebra M is
commutative, but the corresponding interpolation method for the commutative case plays a
key role in realizing classical bootstrap arguments; also, as a fundamental tool, the Littlewood-
Paley-Stein square function estimate of sharp growth order for p < 2 is itself a quite involved
topic in noncommutative analysis. Our proof is consequently more intricate than the classical
ones, and involves more modern techniques or ideas from operator space theory, maximal
inequalities and noncommutative square function estimates.

Approximation properties, pointwise convergence of Fourier series and explicit
examples. Based on the preceding theorems, we may provide answers to the noncommutative
pointwise convergence problems for a wide class of Fourier multipliers on quantum groups.
Again we only present here the particular case of group von Neumann algebras for simplicity;
the general version for quantum groups can be found in Thereom 5.9 and Corollary 5.11. We
refer to Section 5 for the notion of groups with the ACPAP, which form a large subclass of
groups with the Haagerup property and the weak amenability.

Theorem 1.3. (1) Any countable discrete amenable group I' admits a sequence of finitely
supported unital positive definite functions (mn)nen so that Ty, f converges to f a.u. for all
feL,(VNT)) with1 <p < oco.

More generally, for any sequence of finitely supported unital positive definite functions
(mn)nen on I' pointwise converging to 1, there exists a subsequence (mn,)ken such that
Ty, | converges to f a.u. for all f € L,(VN(I)) with 1 < p < 0.

(2) Any countable discrete group T' with the ACPAP admits a sequence of completely con-
tractive Fourier multipliers (Tp, )Nen on VN(T') so that my are finitely supported and Ty, f
converges to f a.u. for all f € L,(VN(I')) with 2 <p < oo.

Our approach to the above theorem differs greatly from usual strategies in the study of
pointwise convergence problems. The key idea is to construct an abstract Markov semi-
group whose symbols are sufficiently close to (my)y so that Theorem 1.2 becomes applicable.
In hindsight, the construction is essentially inspired by geometric group theory and oper-
ator algebras; in particular we would like to mention several related works in this setting
[JM04, CS15, DFSW16, CS17|, where an interplay between Fourier multipliers, approxima-
tion properties and abstract Markov semigroups has been highlighted. Our method applies to
quite general classes of Fourier multipliers as soon as the symbols satisfy a suitable conver-
gence rate. Together with the comments after Theorem 1.2, our approach might be viewed
as an application of ergodic theory of genuinely abstract semigroups to pointwise convergence
problems, which is novel even in the classical setting (see Theorem 1.6 and Corollary 1.8).

Our method is also useful for the study of pointwise convergence of Dirichlet means in
the noncommutative setting. Taking an increasing sequence (Kn)yen of finite subsets of
', one may consider the partial sums Dnf = >  p f(9)A(g) for f € VN(I). As in the
classical case, in general f cannot be approximated by Dy f in the uniform norm || ||o even
for elements f in the reduced C*-algebra C(I") generated by A(I'). On the other hand, the
problem of convergence of Dy f in L,-norms in the noncommutative setting is also very subtle
(see e.g. [JNRX04, BF06]). In [BC09, BC12, CWW15], the uniform convergence of (Dy)nen
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on some smooth dense subalgebras of C(I") was studied. However, if we replace the uniform
convergence by the almost uniform one and choose appropriately the family (Kn)yen, it
seems that the result can be largely improved; in particular we may obtain the almost uniform
convergence for more general measurable operators contained in La(V N(I")). The proof will
be given in the general setting of quantum groups in Proposition 5.12.

Theorem 1.4. Any countable discrete group I' with the ACPAP admits an increasing sequence
(KN)Nen of finite subsets of T' such that the series deKN f(g)A(g) converges a.u. to f as N
tends to infinity for all f € Ly(VN(T)).

As in the classical setting, it would be interesting to deal with more explicit examples of
Fourier multipliers. Apart from the above abstract result, our method is also useful for the
study of concrete multipliers in the noncommutative setting.

Example 1.5. i) Generalized Fejér means: We may introduce the following analogue of Fejér
means on non-abelian discrete amenable groups. Let (Kn)nen be a Folner sequence, that is,
K C T are subsets so that

Iy *1ry(9) _ KN NgKN]|
| K| | K|

my(g) = —1, as N — oo,

where | K| denotes the cardinality of K. Then myy is finitely supported and the associated
multiplier 7}, , is unital completely positive with my finitely supported. And there is a
subsequence (Ng)ken such that

Ty, [ — fau feL,(VNT))

for all 1 < p < oo. For instance if I' is a group of polynomial growth with finite generating
set S, we may take K = SV. If moreover I is a 2-step nilpotent group and p > 3/2, we may
take N; = j. We refer to Section 6.1 for more details.

ii) Noncommutative Bochner-Riesz means: Let I' be a hyperbolic group so that the word
length function | | is conditionally negative definite. For example we may take I' to be a
non-abelian free group or a hyperbolic Coxeter group. The following Bochner-Riesz means
are introduced in [MdIS17]: for a fixed § > 1 we take

5 AW
BYf= ), Nz ) T, feL(VNT)).

geT:|g|<N

We have Bf\, f — f almost uniformly for all 2 < p < co. We refer to Section 6.3.1 for more
details.

iii) Smooth positive definite radial kernels on free groups: Let IF be a non-abelian free group.
As before, | | denotes its natural word length function. Let v be an arbitrary positive Borel
measure supported on [—1,1] with v([—1,1]) = 1 and write dvy(z) = dv(tx) for all t > 0. For
any t > 0, set

0o

mi(g) = / 29 dyy(z — e :
R

Then for all 1 < p < oo and all f € L,(VN(F)),

T, f — fau ast — oo.
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The proof can be founded in Section 6.3.2. Note that if v is the Dirac measure on 0, then
this statement amounts to the almost uniform convergence of Poisson semigroups on VN ()
proved in [JXO07].

Applications to classical analysis on compact groups. As mentioned previously, we will
indeed establish Theorem 1.3 in the general setting of Woronowicz’s compact quantum groups.
As a particular case our result applies to Fourier series of non-abelian compact groups. Recall
that for a compact group G, any function f € L,(G) admits a Fourier series

fl@)y~ Y dim(m)Te(f(m)r(x)), =€G with f(r)= /G f(@)m(zY)da,

welrr(G)

where Irr(G) denotes the collection of equivalence classes of irreducible unitary representations
of GG. The study of pointwise summability of above Fourier series is much more intricate than
the abelian case. To our best knowledge, the pointwise convergence theorems in this setting
were studied for differentiable or continuous functions in [HC66, Sug71, Hual8|, and for some
p-integrable functions on compact Lie groups for example in [Cle74, ST78]. However, from
the viewpoint of amenable quantum groups, our approach easily establishes the following
pointwise convergence theorem for general p-integral functions. The summation method does
not rely on the Lie algebraic structure, which is a novel aspect compared to previous works;
moreover it can be extended to the general setting of compact quantum groups.

Theorem 1.6. Let G be a compact second countable group. There exists a sequence of finitely
supported functions my : Irr(G) — R so that

(Fxf)(z):= > my(r)dim(r)Tr(f(m)m(2)), = €G,f € LyG)

welrr(GQ)

defines unital positive operators on L,(G) and
lim Fnf=fae, feLy(G)
N—oo

forall1 < p < oo.
Moreover, there exists an increasing sequence of finite subsets K C Irr(G) such that for

all f € La(G) we have
flx)= lim Y dim(m)Tx(f(m)r(2)), ae z€G.

N—oo
TeEKN

The functions mpy can be explicitly determined by the representation theory of G. More
details and examples will be given in Section 6.2. Note that though the above result is stated
in a totally classical setting, the role of noncommutative analysis on quantum groups is still
non-avoidable in the proof.

The classical Euclidean setting. In the classical Euclidean setting, our approach provides
the following new type of approximate identities. We refer to Section 6.4 for more details.

Corollary 1.7. Let B be a symmetric convex body in R® with volume 1. Let ® be the inverse
Fourier transform of the convolution 1 x 15, where 1 denotes the characteristic function of
B, and let ®; = t=2®(t~1.) for t > 0. Then we have

lim ® = f a.e. L,(RY
lim txf=[fae, feLy(RY
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with 3/2 < p < o0, and
lim &y x f = f ae., f&L,(RY
J—00

with 1 < p < 00.

These approximate identities might be regarded as generalized Fejér means; in particular,
if B is the unit cube, the convergence of (®; x f);~o also holds for 1 < p < oo and we recover
the classical Fejér means. We can alternatively deal with the problem by using classical
estimate of ® if the boundary of B satisfies some smooth conditions (see Remark ??), but
our approach based on Theorem 1.1 seems more efficient for general convex bodies without
smooth boundaries. To our knowledge, these approximate identities have not yet been widely
studied by harmonic analysts. However, from the viewpoint of geometric theory of amenable
groups, they arise very naturally when we study Fplner sets in R? other than cubes, such as
balls and rectangles. It seems that one needs more efforts and new tools to obtain further
results, which suggests new challenges to classical harmonic analysts and (convex) geometers.
We will give the proof and mention a few problems in Section 6.4.

On the other hand, Theorem 1.3 (1) and Theorem 1.4 indeed provide the following general
abstract answers to the classical pointwise convergence problems. Indeed, if we take I' = Z,
then L,(V N(T)) coincides with L,(T%) and the theorems amount to the following facts:

Corollary 1.8. (1) Let (®Pn)nen C Li(T%) be an arbitrary sequence of positive trigonometric
polynomials with limy || @y * f — f||l1 = 0 for all f € Li(T%). Then there exists a subsequence
(Ni)ken such that for all 1 < p < oo and all f € L,(T%), we have

lim &N, x f = f a.e.
k—o00

(2) There exists a subsequence (Ni)gen such that

Z F(5)e2mion)
JELZEN/ |1 [P+ +]jal2 <Ny
converges a.e. to f as k tends to infinity for all f € Lo(T9).

From the proof of Theorem 1.4, the number N} in the above assertion (2) can be actually
chosen to be 2¥, which partially recovers [CRAFV88, Theorem BJ; while the problem whether
Ni can be equal to k, was solved by Carleson when d = 1 - known as the Carleson theorem -
and is still a well-known open problem in classical harmonic analysis for d > 2.

Note that when reduced to this classical setting, our method is still novel, which unavoid-
ably involves the ergodic theory and the bootstrap method in Theorem 1.2 as well as the
aforementioned genuinely abstract Markov semigroups.

Dimension free bounds of noncommutative Hardy-Littlewood maximal inequali-
ties. We remark that Theorem 1.1 also implies as a byproduct the dimension free bounds
of noncommutative Hardy-Littlewood maximal operators. The noncommutative version of
Hardy-Littlewood maximal inequalities was studied in [Mei07| for balls respect to Euclidean
metrics and in [HLW20| for general doubling metric spaces. The dimension free bounds in this
noncommutative setting were studied by the first author in [Hon20] for Euclidean balls; be-
cause of various difficulties in noncommutative analysis as mentioned before, the general case
for convex bodies remained unexplored before our work. Our following result establishes the
desired maximal inequalities for general convex bodies in R? with dimension free estimates.
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Theorem 1.9. Let B be a symmitric convex body in R and N a semifinite von Neumman

algebra. Define ®, : Ly(R% Ly(N)) — Ly(R% L,(N)) by

&, (f)(x) = M(lB) /B f(x — ry)dy

Then there exist constants C, > 0 independent of d and B such that the following holds:
(1) For any 1 < p < oo,

Hslellzﬁ‘sz(f)ﬂp < Cpllfllpy  f € Lp(R%: Ly(N)).
J

(2) For any 3 < p < oo,

Isup T @, (f)llp < Collfllps  f € Lp(RY Lp(N).

reRy
(3) If B is the £4-ball {(x;)%_, : S0, ;|9 < 1} with q € 2N, then for any 1 < p < oo,

|| sup +q’r(f)”p < Gyl fllps f€ Lp(Rd§ Ly(N)).

reRy

Before ending the introduction, we would like to mention the following order estimate for
square function inequalities, which is of independent interest. This order of constants (p—1)~°
is of crucial use in the proof of Theorem 1.1. The following remarkable result is established
in [JLMXO06] without specifying the order of the constants. Our proof is based on a slight
adaption of the arguments in [JLMXO06|, which will be given in Section 3.

Theorem 1.10. Let M be a finite von Neumann algebra. Let (P;)ier, be the subordinate
Poisson semigroup of a semigroup (St)ier, of unital completely positive trace preserving and
symmetric operators on M. Then there exists an absolute positive constant ¢ such that for all
1 <p<2andx e L,(M) we have

1nf{H / [tOP;(x 2dt 1

where the infimum runs over all x.,x, € Lp(./\/l) such that * = x. + x,.

dt. 1
7

l\.’)

H |(tOP(2"))*|”

} < c(p— 1) Izl

p

The rest of the paper is divided as follows. In Section 2 we will recall the background and
prove some preliminary results on noncommutative vector-valued L,-spaces and pointwise
convergences. Section 3 is devoted to the proof of square function estimates in Theorem 1.10.
In Section 4 we will establish the key criterion for maximal inequalities of Fourier multipliers,
i.e., Theorem 1.1. Lastly, in Section 5 we will prove Theorem 1.3 and in Section 6 we will
establish various examples of maximal inequalities and pointwise convergence theorems of
noncommutative Fourier multipliers, including Theorem 1.6 and Theorem 1.9.

Notation: In all what follows, we write X <Y if X < CY for an absolute constant C > 0,
and X Sq .. Y if X < CY for a constant C' > 0 depending only on the parameters indicated.
Also, we write X <Y if C7'Y < X < CY for an absolute constant C' > 0.



POINTWISE CONVERGENCE OF NONCOMMUTATIVE FOURIER SERIES 11

2. PRELIMINARIES

Let M denote a semifinite von Neumann algebra equipped with a normal semifinite faithful
trace 7. Let Sy denote the set of all x € M such that 7(suppx) < oo, where suppz
denotes the support projection of z. Let Sy be the linear span of Spyq. Then Sy is a
w*-dense x-subalgebra of M. Given 1 < p < oo, we define

lzllp = [r(=)P)7P, 2 € Su,

where |z| = (2*2)"/? is the modulus of 2. Then (Su, || - ||p) is a normed space, whose
completion is the noncommutative Ly-space associated with (M, ), denoted by L,(M, T) or
simply by L,(M). As usual, we set Loo(M,T) = M equipped with the operator norm. Let
Lo(M) denote the space of all closed densely defined operators on H measurable with respect
to (M, 7), where H is the Hilbert space on which M acts. Then the elements of L, (M) can be
viewed as closed densely defined operators on H. A more general notion of Haagerup L,-spaces
on arbitrary von Neumann algebras can be found in Section 4.5.2. We refer to [PX03| for more
information on noncommutative L,-spaces. We say that a map T : L,(M, 1) = L,(M, 1) is
n-positive (resp. n-bounded) for some n € N if T'®idyy, extends to a positive (resp. bounded)
map on L,(M ® M, T® Tr), where M,, denotes the algebra of all n x n complex matrices and
Tr denotes the usual trace on it, and we say that T' is completely positive (resp. completely
bounded) if it is n-positive (resp. m-bounded) for all n € N. We will denote by ||T|| the
supremum of the norms of T'® idps,, on L,(M ® M, T ® Tr) over all n € N.

2.1. Noncommutative /,-valued L,-spaces. In classical analysis, the pointwise proper-
ties of measurable functions are often studied by estimating the norms of maximal functions of
the form || sup,, | fn|||,. However, these maximal norms in the noncommutative setting require
a specific definition, since sup,, |x,| does not make sense for a sequence (z,), of operators.
This difficulty is overcome by considering the spaces L, (M; ), which are the noncommu-
tative analogs of the usual Bochner spaces Lj(X; /). These spaces were first introduced by
Pisier [Pis98| for injective von Neumann algebras and then extended to general von Neumann
algebras by Junge [Jun02|. See also [JX07, Section 2| for more details.

Given 1 < p < oo, we define L,(M; ) to be the space of all sequences & = (z,)nen in
L,(M) which admit a factorization of the following form: there exist a,b € Lop(M) and a
bounded sequence y = (y,) C M such that

Ty = aynb, n € N.

The norm of z in L,(M;{s,) is given by

lellz vty = inf {Ha\bp sup uyumubuap}
neN

where the infimum runs over all factorizations of x as above. We will adpot the convention
that the norm [|z]|1 (a0, 18 denoted by || sup;; ., [|p. As an intuitive description, it is worth
remarking that a selfadjoint sequence (zy,)nen of L,(M) belongs to L,(M; ) if and only if
there exists a positive element a € L,(M) such that —a < x,, < a for any n € N. In this case,
we have

(2.1) [supT @n |, = inf{||all, : a € Ly(M) 4+, —a <z, < a,¥n € N}.
neN
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The subspace L,(M, ¢p) of L,(M; ) is defined as the space of all family (z,,)peny C Lp(M)
such that there are a,b € La,(M) and (y,) C M verifying

Ty = aypb  and lynllco = 0.

lim
n—oo
It is easy to check that L,(M,c) is a closed subspace of L,(M; ). It is indeed the closure
of the subspace of all finitely supported sequences.

On the other hand, we may also consider the space L,(M;/(5) for 2 < p < oo. This
space Ly(M;£S,) is defined to be the family of all sequences (zy,)nen C Lp(M) which admits
a € Ly(M) and (yn) C Loo(M) such that

Tn =ypa and  sup||ynlle < 00.
neN

[ (@)l 2, (A:ec,) is then defined to be the infimum of {sup,,cy [yl lallp} over all factorization
of (r,) as above. It is easy to check that || ||z (e ) is @ norm, which makes Lj,(M;(5,) a
Banach space. Moreover, (z,,) € L,(M;£5,) iff (z)20) € Lp/a(M; lo). Indeed, we have

* 1/2
(2.2) l@a) e, = N@mel2 e
We define similarly the subspace Ly, (M;c§) of L,(M;l5,).

We define the space L,(M; 0L,) = {(xy) : (z}) € Lp(M;l5)} for 2 < p < oo with the norm
(@)L, Mser ) = (@) (A, y- The following interpolation theorem was firsted studied by
Pisier in [Pis96] and then generalized by Junge and Parcet in [JP10].

Lemma 2.1 ([JP10, Theorem A|). For any 2 < p < oo, we have isometrically
Ly(M; ls) = (Lp(MQEgo)aLp(M§€go))1/2'

Another Banach space L,(M;/;) is also defined in [Jun02|. Given 1 < p < 0o, a sequence

x = (zp)nen belongs to L,(M; ;) if there are ugy,, gy, € Lop(M) such that

Ty = Zuznvkn, n>0

k>0
and
1/2 1/2
[(@n)nllL,(AM;ep) = inf Z Upp Uk Z VkenVkn < 0.
k,n>0 » k,n>0 »

Specially, for a positive sequence = = (x,), we have
12|y i) = 1Dzl
n>0

The following proposition will be useful in this paper.
Proposition 2.2 ([JX07, JP10]). Let 1 < p,p’ < oo and 1/p+1/p' = 1.

(1) Ly(M; L) is the dual space of Ly (M; 1) when p' # oco. The duality bracket is given
by

(@,y) =Y T(@tm), € Ly(Miloo), y € Ly(M;hy).

n>0
In particular for any positive sequence (y)n in Ly(M;ls), we have

Isup™anly = sup{> _ 7(xn¥n) : yn € LH(M) and || Y ynlly < 1},
n

n
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(2) Each element in the unit ball of Ly(M;lss) (Tesp. Lp(M;€1)) is a sum of sizteen (resp.
eight) positive elements in the same ball.

(3) Let 1 <py <p<p1 <ooand0< O <1 be such that % = 1p;09 + p%. Then the following
complex interpolation holds: we have isometrically

Lp(M;log) = (Lpy (M o), Ly, (M;EOO))Q :
Similar complex interpolations also hold for L,(M;£5,) with 2 < p < oo.

We remark that we may define the spaces Ly(M;loo(I)), Ly(M;co(I)) and L, (M; 5 (1)),
L,(M;c§(I)) for any uncountable index set I in the same way. The above properties still hold
for these spaces. We will simply denote the spaces by the same notation Ly,(M;{x), Ly,(M; cp)
and so on if no confusion can occur.

Remark 2.3. It is known that a family (z;)icr C Ly(M) belongs to L,(M; ls) if and only if

sup Sup+ T; < o0,
JCI finite "' ieJ p
and in this case
(2.3) supt z;|| = sup ||sup™a;
i€l p J finite ' i€J p

Similar observations hold for L,(M;¢5)). As a conseqeunce, for any 1 < p < oo and any
(z¢)ter, € Lp(M; L) such that the map ¢ — z; from Ry to L,(M) is continuous, we have

[(zt)tery L, (Mite) = Nim, [(Tas)jezll L, (Mits)-

To see this, we note that [[(z¢)ier, || 1, (M;te) = Hmsup, 1+ [[(74i)jezll L, (M;en); thus by (2.3)
it suffices to show that ||(zt, )1<k<nllL,(M;te0) 18 dominated by liminf, 1+ [[(245)jezll L, (Moo
for any (finitely many) elements ¢1, . .., t,. This is obvious since for any € > 0, by continuity we
may find a scalar ag € Ry sufficiently close to 1 such that for all1 < k < n, ||z, — % lp <e/n

with some ji € Z and H(xag)jezuLp(M;Zm) <liminf,_i+ [|(245)jezll L, (M;o) + €5 Which implis
Iz )1<kznll, (i) < )1kl (i) + >y, - @i llp
1<k<n
< hafg%glf [(%ai)jezll L, (Miese) T 26
Similarly, for 2 < p < oo, we have
(@) eery | Mses,) = lim, [(zas)jezll L (Mmiee,)-

2.2. Maximal inequalities and pointwise convergence. The standard tool in the study
of pointwise convergence is the following type of mazimal inequalities.

Definition 2.4. Let 1 < p < co. Consider a family of maps ®,, : L,(M) — Lo(M) forn € N.
(1) We say that (®,,)nen is of strong type (p,p) with constant C' if

||Sg§+¢n($)|!p < Cllzllp, — z € Ly(M).
n

(2) We say that (®y,)nen is of weak type (p,p) (p < oo) with constant C if for any z € L,(M)
and any a > 0 there is a projection e € M such that

p
le®n()elloo <o neN and r(eb) < [c”l’”] ,
(0%
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(3) We say that (®y,)nen is of restricted weak type (p,p) (p < oo) with constant C' if for any
projection f € M and any a > 0, there is a projection e € M such that

lle®n(flelloo <a meN and T(GJ‘) < <C> 7(f).

o
It is easy to see that for any 1 < p < o0,
strong type (p,p) = weak type (p,p) = restricted weak type (p,p).
Here is a simple but useful proposition.
Proposition 2.5. Let (®,,)nen be a sequence of positive linear maps on Ly(M). Then
1@ Ly (M o) = Ly(M: o) | = (@) s Lp(M) = Ly(M: €)1
Proof. By setting x,, = x, it is obvious to see that
1 @a)a s Ly(M) = Ly(M; )]l < (@) Ly(M: bo) = Lp(Ms o).

For the inverse direction, we consider positive elements first. Let (xy,), € Ly(M;l)y. For
any € > 0, by (2.1), we can find an element a € L,(M) such that,

0<a,<a Yn and |all, < |sup™an|, +e.
neN

By linearity and positivity of (®,,),, we have 0 < ®,xz,, < ®,a. Therefore
[sup™ @y, || < [lsup™ Ppall < [[(Pn)n : Lp(M) = Lp(M; loo) [ ([5upF 2l + €)-
n n n

Thus, by arbitrariness of ¢ and Proposition 2.2 (2), we get
[(@n)n = Lp(M; log) = Lp(M; Loo)|| < 16[[(Pn)n = Lp(M) — Lp(M; Loo) ||
(|

The Marcinkiewicz interpolation theorem plays an important role in the study of maximal
inequalities. Its analogue for the noncommutative setting was first established by Junge and
Xu in [JX07], and then was generalized in [BCO17| and [Dirl5|. We present Dirksen’s version
here.

Theorem 2.6 (|Dirl5, Corollary 5.3]). Let 1 < p <r < g < oco. Let (Pp)nen be a family of
positive linear maps from Ly,(M) + Lq(M) into Lo(M). If (®r)nen is of restricted weak type
(p,p) and of strong type (q,q) with constants Cp, and Cy, then it is of strong type (r,r) with
constant

C, <

~

rp rq 2
max{C,, C, + .
(€ O+ T

We need an appropriate analogue for the noncommutative setting of the usual almost ev-
erywhere convergence. This is the notion of almost uniform convergence introduced by Lance

[Lan76].

Definition 2.7. Let z,,x € Lo(M). (zp)nen is said to converge almost uniformly (a.u. in
short) to z if for any € > 0 there is a projection e € M such that

r

r(et) <e and  lim ||(z, — 2)e|0 = 0.
n—oQ
(Zn)nen is said to converge bilaterally almost uniformly (b.a.u. in short) to x if for any € > 0
there is a projection e € M such that

r(et) <e and  lim |e(x, — z)elloc = 0.
n—oo
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It is obvious that the a.u. convergence implies the b.a.u. convergence, so we will be mainly
interested in the former. Note that in the commutative case, both notions are equivalent to the
usual almost everywhere convergence in terms of Egorov’s Theorem in the case of probability
space.

It is nowadays a standard method of deducing pointwise convergence from maximal inequal-
ities. We will use the following facts.

Lemma 2.8 ([DJ04]). (1) If a family (x;)icr belongs to L,(M,co) with some 1 < p < oo,
then z; conveges b.a.u. to 0.

(2) If a family (x;)icr belongs to Ly(M,cf) with some 2 < p < 0o, then x; conveges a.u. to
0.

Proposition 2.9. (1) Let 1 < p < oo and (P,)nen be a sequence of positive linear maps on
Ly,(M). Assume that (®p)nen is of weak type (p,p). If (Ppx)nen converges a.u. to 0 for all
elements x in a dense subspace of Ly(M), then (®px)pen converges a.u. for all x € Ly(M).

(2) Let 1 < p < 0o and (Pp)nen be a sequence of linear maps on Ly(M). Assume that
(Pr)nen satisfies the following one sided weak type (p,p) mazimal inequalities, i.e. there
exists C > 0 such that for any v € Ly(M) and o > 0 there exists a projection e € M such
that

p
(2.4) 1o (2)elloo <@, nEN  and T(GL)S{CH@“HP]_

(0%

If (®pz)nen converges a.u. to O for all elements x in a dense subspace of L,(M), then
(Ppx)nen converges a.u. for all x € L,(M).

Proof. The assertion (1) is given by [CL16, Theorem 3.1].

The second part is standard and is implicitly established in the proof of [JX07, Remark
6.5] and [CXY13, Theorem 5.1] for which we provide a brief argument for the convenience
of the reader. Let z € L,(M) and € > 0. For any m > 1, take y,, € Ly(M) such that
|2 —ymllp < 272™/PC~1e/P and (®,ypm)n converges a.u. to 0 as n — oo. Denote 2, = & — Y.
By the estimation of one side weak type (p,p), we may find a projection e,, € M such that

p
sup B menll <2 and e < [oLnle) <o
n

We may also find a projection f,, € M such that
T(fw) <27 and  lm [|®n(ym) fimllec = 0.
Let e = A,,,(em A fm). Then
T(eh) <) (rlem) +7(fm)) <e
m>1

and for any m > 1,

limsup || Py (2)elloo < Lim (@0 (ym) finll + [ lzm)ll) < 27772,

n—oo

which means that lim, o ||®n(2)e|lcc = 0. Therefore, ®,(z) converge a.u. to 0. O

We recall the following well-known fact, which is of essential use for our arguments. The
following maximal inequalities and the a.u. convergence on dense subspaces are given in
[JX07], and the a.u. convergence on Ly-spaces then follows from Proposition 2.9 (1). We
recall that a map T is said to be symmetric if 7(T(x)*y) = 7(«*T (y)) for any z,y € Sx.
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Proposition 2.10. Let (S¢)icr, be a semigroup of unital completely positive trace preserving
and symmetric maps on M. We have

1CSe@)ellz, (M) < pllzllps @€ Lp(M), 1 <p < oo,

and

1CSe@))ellz, (mes) < Veplzllp, @€ Lp(M), 2 <p <o,
where ¢, < Cp?(p—1)~2 with C an absolute constant. Moreover, (Si(z)): converges a.u. to
ast — 0 for all x € Ly(M) with 1 < p < oo.

3. NONCOMMUTATIVE HILBERT SPACE VALUED L,-SPACES AND SQUARE FUNCTION
ESTIMATES

In this section we will collect some preliminary results on noncommutative square functions,
which are among the essential tools in this paper. Some of the results proved in this section
might be folkloric for experts, but we include them here for the convenience of the reader.

The noncommutative Hilbert space valued L-spaces provide a suitable framework for study-
ing square functions in the noncommutative setting. In this paper we will only use the following
concrete representations of these spaces; for a more general description we refer to the papers
[LPP9I1, LP86, JLMXO06].

First, for a finite sequence (zy,), C Ly(M), we define

1/2 1
H(xn)HLp(M;Zg) = (Z «T;%n) ) ||(37n)HLp(M;£§) = <Z mnx;kz>

P P
We alert the reader that the two norms above are not comparable at all if p # 2. Let L,(M; (5)
(resp. Lp(M;l5) ) be the completion of the space of all finite sequences in L,(M) with respect
to || [z, mies) (resp. || ||z, (mep))- The space Ly(M;€57) is defined in the following way. If
2 < p < oo, we set

/2

Lyp(M;€57) = Lp(M; £3) N Ly(M; £3)
equipped with the norm
@)l L, (miegry = max{|| (zn)ll 2, (Mie), [[(@n) |, (Mie5) }-
If1<p<2, we set
Lp(M; 657) = Lp(M; £3) + Lp(M; &)
equipped with the norm
(@)l L, (miesry = IE{[(yn )l L, (aie5) + 110l Lyt

where the infimum runs over all decompositions x,, = yn + 2, in L,(M).
Second, for the Borel measure space (R \ {0}, %), we may consider the norms

o gp\1/? o qp\1/?
</o ‘””’twtt> o Mz g = </0 ”””"tt>
p p

We refer to [JLMXO06, Section 6.A] for the rigorous meaning of the integral appeared in the
above norm. Then we may define the spaces L, (M; Lg(%)), Ly(M; Lg(%)) and L, (M; LgT(%))
in a similar way.

We recall the following basic properties.

Izl i)y
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Proposition 3.1. (1) (Duality) Let 1 < p < oo and p' such that 1/p' +1/p = 1. Then
(Lp(M;63))" = Ly (M; by),  (Lp(M;€3))" = Ly (M;£5),  (Lp(M;€57))" = Ly (M; £5).
The duality bracket is given by
((@n)ns (Yn)n) = ZT($nyn)a (@n)n C Lp(M), (yn)n C Ly (M).

n

(2) (Complex interpolation [Pis82]) Let 1 < p,qg < 0o and 0 < 6 < 1. Let 1 = 1779 +
Then we have the isomorphism with absolute constants

(Lp(M; £57), Lg(M; 457))g = L (M; £57).
Similar complex interpolations also hold for L,(M;€5) and Ly,(M;€5).

QD

A sequence of independent random variables (e,) on a probalility space (€, P) is called
a Rademarcher sequence if P(e, = 1) = P(e, = —1) = % for any n > 1. The following
noncommutative Khintchine inequalities are well-known.

Proposition 3.2 ([LP86, LPP91, Pis98]). Let (e5,) be a Rademarcher sequence on a probability
space (2, P). Let 1 <p < 0o and (z,,) be a sequence in L,(M;L5").
(1) If 1 < p < 2, then there exists an absolute constant ¢ > 0 such that

cll(@n)nllz, miesy < 1> enmnllz @iz, < I@ndnllz, (misry:

n
(2) If 2 < p < o0, then there exists an absolute constant ¢ > 0 such that
(@n)nllz, viesy < 1 enmnllz, @iz, vy < ev/Bl@n)nlln, e
n

The following proposition will be useful for our further studies.

Proposition 3.3. Let (zy)nen € Lp(M;ls). Then there exists an absolute constant ¢ > 0
such that for any 1 < p < oo,

[(@n)nllL,Mito) < 1(@n)nllL, (e
and for any 2 < p < o0,

[(zn)nll, e ) < N (@n)nllz, (i)

Proof. We start with the proof of the first inequality. It is trivial for the case p = oco:

1/2
H(xn)nHLoo(M;Zoo) = sup [|Zn oo < (Z x;xn> < ||(xn)n||Loo(M;é§T)‘
n
n
(o.¢]

Recall that by the Holder inequality (see also [Jun02, Lemma 3.5]), for any 1 < p < oo and
for any sequence (z,), in Ly(M;{1),

| annp < H(xn)nHLp(M;el)-
n

On the other hand, for any 1 < p < oo, by the definition of || ||z (ae,), one can easily get
l(enzn)ll L, rse) = (@)l L, M0y With €, € {£1}. Now we set (en)n to be a Rademarcher
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sequence on a probability space (€2, P). It is folkloric that

@)z ey = I Enzn) | ey < 1D Ennll Lo Lo (M)

n
2_enle)
o0

< sup [(en(W)Zn)nll Lo (Mier) = H(xn)nHLoo(M;zl)-

< ZgnanLm(Q iLoo(M)) SUP

n

Let (yn)n € L1(M; ). By duality and the above inequality we have

Zn 7(TnYn)

(@)l Loo (M)

TeRN —-su;>{|, () e.Loo<AA,el>}

< sup { H(Z" 7(Znyn) :(zp) € Ll(M;EST)}

ﬂfn)”Lm(M;egr)
< [ (wn )l 2y (M5e57) -

By interpolation we immediately get the first inequality in the lemma.

The above arguments tell that || |z, ree) < I [z, miegr) for 1 < p < co. As before, by
a duality argument we indeed get || ||z, (rien) < I Iz, (m5es) < Il Iz, (Mier)- Therefore, we
obtain the second inequality:

l@a)lyomes) = D@henly”, vy < N@naa)l? e
1/2
= (Z z, & e1,n> <Z Tp ® em)
n n Ly /2 (M®B(f2))
*11/2 1/2
< <Z Ty ® €n,1> (Z Ty & 6n,1>
" Lp(M®B(£2)) n Lp(M®B(£2))

= ||@nll L, (Mie5)-
O

In the noncommutative setting usually we do not have the analogue of the complex interpo-
lation (Ly(44,), Lp(4gy))e = Lp(¢5") with 1/2 = (1—0)/q1 +6/q2, which is an essential obstruc-
tion to generalize many classical methods on maximal inequalities in [Bou86a, Bou87, Car86].
Nevertheless, we still have the following weaker property, which will be enough for our pur-
pose in this paper. More precisely, we will compare the norms of positive symmetric maps on
L,(M;5") with those on L S2 (M l). Note that if T is a symmetric and selfadjoint map

on M (by selfadjointness we mean that T(xz*) =T(x)* for all z € M), then

(3.1) T(T(2)y) = 7([T(@")]"y) = 7((2")"T(y)) = 7(=T(y)) =,y € Sm.

Therefore, T' equals its predual operator on Li(M). In particular, T' extends to Lj(M)
with the same norm, and by interpolation it also extends to a bounded map on L,(M) with
1 < p < oo. In this context we state the following property (note that a positive map is
automatically selfajoint).
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Lemma 3.4. Let (®;); be a sequence of unital positive and symmetric maps on M. Denote
O (x); = (Pjzj);. Let1<p<2 Then

I+ Ly(M; £5) = Ly(M; )] < 201® < Lo (M oc) = Lz (M; ) [V,

Similar inequalities hold for the spaces Ly,(M;€5) and Ly,(M;ly) if (®;); is a sequence of
unital 2-positive maps.

Proof. Since ®; are unital positive maps, by Kadison’s Cauchy-Schwarz inequality [Kad52],
for any selfadjoint element x; € L,(M), we have
2 2
Dj(z5)” < ®j(a5).
Assume that (z;); € Ly (M;£5") is a sequence of selfadjoint elements. Then the conjugate
index p’ is greater than 2 and
1/2 1/2

1(®525)5ll L, (Mmiegry = Z(‘I’jxa‘)2 < Z‘I)j@?) = H(‘Pj(wi))

J

H1/2
J Lp’/Z(M%l)

p/

192 Ly jo(M; &1) = Loy jo (M IV (2);5]1 1 (st -

IN

For general (x;); € Ly (M;£5"), we may decompose it into two sequence of selfadjoint elements.
Note that [|(z;);llz,, (viesry = 1@)illL,, (miesr) for p’ > 2. Therefore,

@ Ly (M;€57) = Ly (M £57)]] < 2[|® + Ly jo(M; £1) — Ly jo(M; £1)[|/2
As explained in (3.1), the dual operator of ® equals itself and we obtain
19 Ly(M; £57) = Ly(M: 57| 2@ 2 L p (Mihoo) = Lo (M boo)l|',

as desired.

For the spaces L,(M;¢5) and L,(M;¢5), similar arguments still work for non selfadjoint
elements (z;) if the maps ®; are 2-positive, since in this case we can use the following Cauchy-
Schwarz inequality |®;(z;)[*> < ®;(|z;]?) (see e.g. [Pau02, Proposition 3.3]). O

The square function estimates for noncommutative diffusion semigroups has been estab-
lished in [JLMXO06]. In this section we will slightly adapt the arguments of [JLMXO06] so
as to obtain a refined version of this result for our further purpose. Throughout this sub-
section, (St)ier, always denotes a semigroup of unital completely positive trace preserving
and symmetric maps on M with the negative infinitesimal generator A. Let (P;) denote the
subordinate Poisson semigroup of (S;), i.e. the negative generator of P; is —(—A)Y/2.

For notatlonal simplicity, the vector-valued spaces Ly(M; L§(R; %)), L,(M; Ly (R; %)) and

L,(M; Lg (R; %)) are denoted respectively by Lp(LC(dtt)), Lp(L’"(Cit)) and L (LCT(dtt)) in this
section.

To state our theorem, we recall the dilation property. Let (M,7),(N,7') be two von
Neumann algebra where 7 and 7/ are normal faithful semifinite traces. If 7: (M, 7) = (N, 7')
is a normal unital faithful trace preserving #-representation, then it (uniquely) extends to an
isometry from L,(M) into L,(N) for any 1 < p < co. We call the adjoint E: N — M of
the embedding L (M) < Li(N) induced by 7 the conditional expectation associated with .
Moreover E: NV — M is unital and completely positive.
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Definition 3.5. Let T: M — M be a bounded operator. We say that T satisfies Rota’s
dilation property if there exist a von Neumann algebra A equipped with a normal semifinite
faithful trace, a normal unital faithful *-representation 7: M — A which preserves traces,
and a decreasing sequence (N, )m>1 of von Neumann subalgebras of A such that

(3.2) T" =EoE,on, m>1,

where E,,: N — N,, C N is the canonical conditional expectation onto N,,, and where
E: N — M is the conditional expectation associated with 7.

We recall the following typical examples of operators with Rota’s dilation property.

Lemma 3.6. (1) ([JRS14, Dabl0]) If M is a finite von Neumann algebra and T is a normal
faithful state on M, then for all t € Ry, the operator Sy satisfies Rota’s dilation property.

(2) ([SteT0]) If M is a commutative von Neumann algebra and L is another semifinite von
Neumann algebra, then for allt € Ry, the operator Sy ®@1d, on ML satisfies Rota’s dialtion
property.

We aim to prove the following square function estimates, which are essentially established
in [JLMXO06, JW17], without specifying the order (p — 1)7%. However, we will see that the
methods in [JLMXO06], together with the sharp constants of various martingale inequalities,
are enough to obtain this order. The outline of our proof is slightly different from that of
[JLMXO06], but all the ingredients are already available in the latter.

Proposition 3.7. Assume that for all t € ]R_,_, the operator Sy satisfies Rota’s dilation prop-
erty. Then for all 1 <p < 2 and x € Ly( we have

(3.3) inf{H(/ |to, Py (¢ 2‘”% 2 di
0

1
2
~)

H |(t0: Pe(z"))*|

} < c(p— 1)~ |zl

p

where the infimum runs over all z.,x, € Ly(M) such that x = z. + x,, and ¢ > 0 is an
absolute constant.

Remark 3.8. When the underlying von Neumann algebra is commutative, it is known from
Stein [Ste70] that the optimal order here is (p —1)~!. In the noncommutative case, we believe
that the order (p — 1)7% is not optimal. However, this order is sufficient for our purpose in
the sequel.

Our study of the semigroup (F;); is based on the analysis of the ergodic averages as follows:

1 t
= / Sydu.
tJo

We will need the following claim.
Lemma 3.9. For any y € L,(M),
H(tapty)tHLp(Lg(%)) < CH(taMty)tHLp(Lg(%)y

where c > 0 is an absolute constant. The inequality remains true if we replace the norm of
Ly(L5(%)) by Ly(L5(%)) or Ly(L§ (4)).
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Proof. This claim is well known to experts. We only give a sketch of its arguments. Set
o(s) = ﬁ% Using integration by parts we have

1 [ s *°
P = 752/0 @(ﬁ)(a(sMs))ds = —/0 5@ (8) My24ds.
Therefore
o0 o0
(3.4) topP, = 2/0 2520/ (8)OM24ds = 2/0 50’ (s) (250 M,z2,)ds

which yields the claim by noting that ||-|| Lp(L5(42)) is a norm and s¢’(s) is absolutely integrable.
t
U

We need the following auxiliary result.

Proposition 3.10. Assume that for all t € Ry, the operator S; satisfies Rota’s dialtion
property. Then for 1 <p <2 and x € L,(M), we have

(3.5) H(taRf(f'?))t>0||Lp(L§r(%)) <clp— 1)_2”95Hpa
where ¢ > 0 is an absolute constant.

Proof. This result has been essentially obtained in [JLMXO06|, together with the optimal es-
timates for martingale inequalities in [Ran02, JX05|. Indeed, let (E,)n,eny be a monotone
sequence of conditional expectations on M and z, = E,+1(z) — E,(z) be a sequence of
martingale differences with « € L,(M). By the estimate for noncommutative martingale
transform in [Ran02, Theorem 4.3] and the Khintchine inequality in Lemma 3.2, we have

C
l@n)nenllzyes) < =7 Il

and by the noncommutative Stein inequality [JX05, Theorem 8] we have for any sequence
(yn)neN C Lp(M)a

C
H(Enyn)nENHLp(égT) < ﬁ“(yn)nENHLp(Zgr) 1<p<y

where ¢ > 0 is an absolute constant. Then tracing the order in the proof of [JLMX06, Corollary
10.9], we obtain that for all £ > 0,

/

e C
H(\/mDm(x))mzlﬂLp(zgr) < m”ﬂ\pa

where ¢ > 0 is an absolute constant, and where
1 m
Dy =pr — Py and pp, = ma1 kZOSke-

By a standard discretization argument (see e.g. [JLMXO06, Lemma 10.11]), we get the following
inequality

H(taMtw)tHLp(Lgr(%)) < C/(p - 1)_2Hpr'

Then the desired result follows from Lemma 3.9. OJ
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Estimate (3.5) is weaker than (3.3). The remaining task for proving Proposition 3.7 is to

show
p }

o0
(3.6) inf {H(/ AP, (2°
0
< (p— 1)~ (t0Py(a >>t>o||L )

where the infimum runs over all decompositions z = x4+ 2" in Ly(M). This inequality is
essentially proved in [JLMX06, Theorem 7.8]; the order (p — 1)~ is not stated there, but it
follows from a careful computation on all the related constants appearing in the argument
therein. For the convenience of the reader, we will recall some parts of the proof and clarify
all the constants in the proof which are concerned with the precise order.

For notational simplicity, we say that a family F C B(L,(M)) is Col-bounded (resp. Row-
bounded) if there is a constant C such that for any sequence (1}), C F, we have

B.7) N(Tw)x = Lp(M;£3) = Ly(M; 63)|| < C (resp. [[(Th)w = Lp(M; £p) = Lp(M; )] < C),

and the least constant C' will be denoted by Col(F) (resp. Row(F)).
We quote a useful result from [CdPSWO00, Lemma 3.2] (see also [JLMX06, Lemma 4.2]).

Lemma 3.11. Let F C B(Lpy(M)) be a Col-bounded (resp. Row-bounded) collection with
Col(F) = M (resp. Row(F) = M ). Then the closure of the complex absolute convex hull of

F in the strong operator topology is also Col-bounded (resp. Row-bounded) with the constant
Col(F) <2M (resp. Row(F) <2M ).

thl th

-)

to
[ I

H (O, (a"))"

For any 6 € (0,7), we let
Yo ={z€C":|Arg(2)| < 0}.

Without the concrete order of growth of the constant on p, the following lemma is contained
in [JLMX06, Theorem 5.6]. Note that the present area C\X,, in the following lemma is

contained in the optimal area C\X,,, described in [JLMX06, Theorem 5.6|.

Lemma 3.12. Let 1 < p < 2. Let (S¢)r be a semigroup of unital completely positive trace
preserving and symmetric maps. Let A be the negative infinitesimal generator of (St)¢. Then

the set F, = {z(z — A)~!1 : 2 € C\%,,} C B(Lp(M)) with v, = % is Col-bouneded and
Row-bounded with constants

Col(Fp) <clp—1)"2 and Row(F,) <clp—1)72
where ¢ is an absolute constant.

Proof. Let s1,--- , s, be some nonnegative real numbers. For any z € C* with 0 < Arg(z) < 7,
we define a map U(z) with

U(2) : La(M; 05) O Ly(M; 65) — Lo(M; 65) + Ly (M; €5)
(@r)k = (Sesi (Tk) k-

Note that for any x € La(M), the function z — U(z)z is continuous and bounded in the area
{z € C*: 0 < Arg(z) < m/2} by |[JLMXO06, Proposition 5.4 and Lemma 3.1|. This U(z) is
well defined. On the one hand, for any ¢ > 0, we have

|U(te'2) : La(M;£5) — Lo(M; £5)] < 1.
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On the other hand, by duality and Lemma 3.4 and Proposition 2.10, we may find an absolute
constant ¢ such that for any ¢t > 0, 2 < ¢ < o0,

[U(1) : Lg(M;63) = Le(M; 63) || = [|U(1) : L_a (M:63) = L_a (M 65)]]
<IU(@) Loy (Msboo) = L_a (M beo)[/?
< cq.

Let p’ = -E= be the conjugate number of p. We fix 8, = 5y Let g = p’(::;%;) =2(p' - 1)
26p _ 1

and a = = = ik These numbers satisfy I_To‘ +3 = ]%. By complex interpolation, we know

that
Ly (M; £3) = [Lqg(M; £5), Ly(M; £5)]a-
By the ‘sectorial’ form of Stein’s interpolation principle (see for instance |[JLMX06, Lemma
5.3]), we have
|U (9 Ly (M; £5) — Ly (M; £5)]| < (eq)' ™ < cq.

Thus,

” (Sskeiﬁp (xk))kHLp/ (M;L5) < CqH (.Tk) ”Lp/(./\/l;fg) .
Similarly, we have

10Sge=i80 ()il L, (mies) < call (i)l (vses)-
Namely, (S,).con 5y is Col-bounded with constant cq. Then we get that the set

{SZ : Lp/(./\/l) — Lp/(./\/l) VA E/gp}

is also Col-bounded. Indeed, by a standard argument (see e.g. [Wei0l, Proposition 2.8]), we
see that any S, with z € X3 can be approximated by convex combinations of {S,:z¢€ 8ng}.
Therefore, by Lemma 3.11 we get that

—2
Col({S : Ly(M) = Ly(M) :z € Xg,}) < 2¢q = 2cp’(7rpl%) <2c(p—-1)""
T—PPp
By duality, we have
(3.8) Row ({S. : Lp(M) = Ly(M): 2 € 85 }) <2c(p—1)"".
Setwp:%—g andup:(pjii;)w. Then 0 < § — v, < By < I%: 5 — wp. By the Laplace

formula, we have that for any z € C\X o,

(z— A= —/ ' Sydt.
0

Denote ng = {u=te’ : t € R }. By [JLMXO06, Proposition 5.4 and Lemma 3.1], u + S,, is
analytic on the area Z%,wp. Note that Fg’p - Z%,wp. Then by the Cauchy theorem, we have
that for any z € C\X s,

(3.9) 2(z—A)7L = —/ 2e"* Sydt = —/ ze"* Sydu.
0 ri
ya
Note that for any z € C with v, < Arg(z) < /2, we have
Re(uz) = |z|t cos(Arg(z) + Bp) = —|z|tsin(Arg(z) — 7/2p),
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and hence,
o) . Supuefzg ||SUH
/ |ze“* Sydu|| < sup I|Sull reTts(ABG)=T/2) gy < P g
s, uel'y 0 sin(vp — m/2p)

Hence, (3.9) holds for any z € C\X,,. Note that m@% Slsince 0 <y —7/2p < 5. By

Lemma 3.11 and (3.8), we get

ze'"du
F+

Bp
-1 -1

< (-1 )

~ sin(vp, —7w/2p) ~ v, —7/2p

A similar proof shows that

Row (Fp) <2 -Row({S, : Ly(M) — Ly(M) : z € ¥g, })

Sp-17%
Col(Fp) S (p—1)7%
Now let us prove the desired proposition.

Proof of (3.6) and Proposition 3.7. Set F(z) = ze~%, G(z) = 4F(z) and G(z) = G(z). Let
B = —(—A)'/? be the negative infinitesimal generator of (P;);. We have

0
F(tB)x = tBe By = —to (Pi(x)).
Let w, = % — 5, Vp = (p44-p)7r and §, = 3p8t)1)7r. These numbers satisfy w, < v, < §, < 5.

Note that (P;);cr, is again a semigroup of unital completely positive trace preserving and
symmetric maps. By [JLMX06, Corollary 11.2|, B : L,(M) — L,(M) admits a bounded
H>(%¢,) functional calculus. By [JLMXO06, Theorem 7.6 (1)], B satisfies the dual square
function estimate (S%), since G € Hg®(Z¢,). Note that F' € H§®(X¢,) and I GHFt)4 =1.
By the proof of [JLMX06, Theorem 7.8|, we get that

(3.10)

dt

th 1 7)%
t

N

inf{H(/Ooo tOP, (2

H (0P, ("))

} < 20||(taPt(x))t>0||Lp(Lgr(%))

p

where the infimun runs over all decompos1t10ns of x = z°+a” in Ly(M) and C = max{||T¢||, | 7>},
with T, and 7T, being defined as

T.s (5P = L(15(5)

(xe)e — (/OOO F(sB)G(tB)a:t%)S

and
T, : Lp(Lg(%)) — Lp(LE(%))

(200 ( /0 - F(sB)G(tB)mt%)
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Let v, < v < &,. Denote
—te, teR_,
t) = .
K {te_”, t € Ry,
and let Iy, = {fy(t) : t e R} C C. Set

dt

L)) Lz

2)
BOU =B )
teR

T‘I:‘ : LP(LS(Rv

'_)
(Zt)ter < o
Denote K, = fFv |F'(2)] }%| and Ky = fFA, |G(2)] ’%‘ By the proof of [JLMX06, Theo-
rem 4.14], we have

ITell < K1 K| Toll.
And the proof of [JLMX06, Proposition 4.4| shows that

[Te|l < Col(O)
where O = {ﬁ [ ;@ (f5 () — B)tdu(t) : I C R,0 < p(l) < oo}. Moreover, by Lemma 3.11,
Col(0) < 2Col({z(z — B) ' : z € T, }).
Since v > v, by Lemma 3.12,
Col({z(z—B) t:ze,)) S (p—1)"2
On the other hand,

K :/ |F(2)| @ :2/00|te—i76—t(cos('y)—isin('y))|dt :2/00 e—tcos(fy)dts 1 ’
r, z 0 t 0 cos(7)
and Ky = 4K;. Note that v < ¢, = Bp;;)l)w and 0 < § — &, < 5. We have
1 1
< - <(p-17L
cos(y) ~ sin(§ —&p) ( )
Therefore,
I < (p -1~
Similarly,

TS (= 1)~
Thus C' < (p—1)~* and we obtain (3.6). As mentioned previously, this implies Proposition 3.7.
The proof is complete. U

4. PROOF OF THEOREM 1.1 AND THEOREM 1.2

This section is devoted to the study of general criteria for maximal inequalities and pointwise
convergences given by Theorem 1.1. Our argument does not essentially rely on the group
theoretic structure. Note that there are a number of typical structures with Fourier-like
expansions in noncommutative analysis, which are not given by group algebras. Hence instead
of the framework in Theorem 1.1, we would like to state and prove results in a quite general
setting.

To proceed with our study, we will only require the following simple framework. In the
sequel, we fix a von Neumann algebra M equipped with a normal semifinite faithful trace 7,
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and an isometric isomorphism of Hilbert spaces U : La(M) — La(Q2, u; H) for some distin-
guished regular Borel measure space (€2, u) and Hilbert space H. Assume additionally that
U~Y(C.(Q; H)) is a dense subspace in L,(M) for all 1 < p < oo (for p = oo we refer to
the w*-density), where C.(92; H) denotes the space of H-valued continuous functions with
compact supports. Given a measurable function m € Ly (£2;C), we denote by T, the linear
operator on Ly(M) determined by

(4.1) Tt La(M) = Lo(M), U(Tpz)=mU(z), x € La(M).

We call m the symbol of T,,. The operator T, is obviously a generalization of a classical
Fourier multiplier. Moreover, for a discrete group I', taking

M=VN(), (Q,pun)=(,counting measure), H =C, U:A(g)— g,
the above framework coincides with that considered in Theorem 1.1.

Example 4.1. Apart from group von Neumann algebras, this framework applies to various
typical models in the study of noncommutative analysis. As an illustration we recall briefly
some of them.

(1) Twisted crossed product ([BC09, BC12|): Let I' be a discrete group with a twisted
dynamical system X on a von Neumann algebra N’ C B(La(N)). Then we may consider the
von Neumann algebra M generated by the associated regular covariant representation of I'
and the natural representation of N on ¢5(T'; La(N)). Each z € M admits a Fourier series
> ger 2(9)As(g) with @(g) € N. Take Q =T, H = Ly(N) and U : x — #. It is easy to see
that for any m € £ (T"), the multiplier in (4.1) is given by

T : Y #(9)As(9) = Y m(9)#(9)As(9),

ger gel

which is the usual Fourier multiplier considered in [BC09|. As a particular case, this also
coincides with the Fourier multipliers on quantum tori studied by [CXY13|.

(2) Rigid C*-tensor category (|[PV15, AALW18]): Let C be a rigid C*-tensor category, A(C)
its Fourier algebra and M the von Neumann algebra generated by the image of the left regular
representation of C[C]. Set (2, 1) = (Irr(C), d) where d denotes the intrinsic dimension, and
set U : Lay(M) — £2(2) by U(a) = 64 for a € Irr(C). Then for any m € lo(Q2), it is easy
to check that T}, is the dual map of the multiplication operator 6 — m# for 8 € A(C), which
gives the Fourier multiplier studied in [PV15, AALW18].

(3) Clifford algebras, free semicircular systems and g-deformations: Let M =T';(H) be a
g-deformed von Neumann algebra in the sense of Bozejko and Speicher [BS91, BS94|. The case
q = 0 corresponds to Voiculescu’s free Gaussian von Neumann algebra and the case ¢ = —1 to
the usual Clifford algebras. We choose the canonical orthonormal basis of Ly(M) with index
set © according to the Fock representation @@, H®", and denote by U the corresponding
isomorphism. We view m : N — C naturally as a function on §2 by setting the value m(n)
on indexes of basis in H®™. Then for any such m, the operator T}, coincides with the radial
Fourier multiplier studied in [JLMXO06, Section 9].

(4) Quantum Euclidean spaces [GPJP20]: Let M = Rg be the quantum Euclidean space
associated with an antisymmetric n x n-matrix ©. Take Q = R™ and let U : Lo(Rg) — Lo(R™)
be the canonical isomorphism. Then the operator T,, coincides with a usual quantum Fourier
multiplier on Rg.



POINTWISE CONVERGENCE OF NONCOMMUTATIVE FOURIER SERIES 27

(5) The framework also applies to non-abelian compact groups, compact quantum groups
and von Neumann algebras of locally compact groups, where we may take U to be the usual
Fourier transform. We will discuss some of them in more details in the next sections.

Our criterion is based on comparisons with symbols of a symmetric Markov semigroup. To
state our results, we fix a semigroup (S;):cr, of unital completely positive trace preserving
and symmetric maps on M of the form

Si =T, : Ly(M) = Lo(M), U(Siz) = e O (Uz), xe Ly(M),

for a distinguished continuous function ¢ : @ — [0,00). We will also consider the subordinate
Poisson semigroup (P;); of (St)¢, that is,
Pi=T .s:La(M)—= Ly(M), U(Pax)=e VO (Uz), z€ Ly(M).

We will consider the family of operators (15, ) nen (resp. (Tpn,)icr, ) induced by a sequence
of measurable functions (my)nen (resp. (m¢)ier, ) on €. Recall that we are interested in the
following types of conditions for the symbols (my)nyen (resp. (my)ier, ) in Theorem 1.1:

(A1) There exist o > 0 and 8 > 0 such that for all N € N and almost all w € €, we have

U(w)” 2N

(4.2 1 ma()] < 85 ()| < Ay

(A2) There exist « > 0, 8 > 0 and n € N4 such that ¢ — my(w) is piecewise n-differentiable
for almost all w € 2, and for all 1 < k <7, all t € R, and almost all w € ) we have

g(w)a t dkmt(w) 1

Intuitively, (A1) is motivated by considering the subsequence (mon)yen of (m¢)ier, in
(A2), but the present form in (A1) is slightly more general. Indeed we will see in Section 5
other abstract and important constructions of symbols satisfying (A1) but without being of
the aforementioned form (mon)yen.

(4.3) 1 —my(w)| < B

We split our study into two parts. The first part mainly deals with the Lo-theory of the
above multipliers. Note that (A1) (resp. (A2)) implies that (my)nen (vesp. (m¢)r,) is
uniformly bounded with respect to the || ||o-norm: for any N € N and almost all w € Q,

|my (w)| < min{|my(w)| + 1,]1 —my(w)| +1} < B+ 1.

Similar arguments hold for (m;);cr, . This implies that the operators (T, ) ven and (T, )ter.,
are uniformly bounded on Lo(M). In this section we will always assume that the operators
(Try )Nen and (T, )ier, extend to uniformly bounded maps on M and for notational conve-
nience we set
Y = [Ty : M = M|, (resp. 5 = [Ton, : M — M]).

Then by complex interpolation they also extend to uniformly bounded maps on L, (M) for
all 2 < p < co. In this setting we have the following result. A more precise estimate on the
endpoint case p = 2 can be found in Subsection 4.1.

Theorem 4.2. Let (Try)nen and (T, )icr, be the uniformly bounded maps on M given
above.

(1) If (mn )N satisfies (A1), then for any 2 < p < oo there exists a constant ¢ > 0 depending
only on p, o, B and v, such that for all x € L,(M),

[(Tnn )N Ly Mitse) < cllzllp, and  Tpyxr — 2 au. as N — .
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(2) If (my); satisfies (A2), then for any 2 < p < oo there exists a constant ¢ > 0 depending
only on p, o, B and vy, such that for all x € L,(M),

(T, )t 2y Mitoo) < cllzllps and T,z — x a.u. ast — oo.

In order to obtain similar results for general p > 1, we need to assume the positivity of
the maps (T, )veny and (T, )ter, - Note that if the maps extend to positive and symmetric
contractions on M, then by the argument before Lemma 3.4, they also extend to contractions
on L,(M) for all 1 < p < oco. In this framework we have the following results.

Theorem 4.3. Assume that the operators (Tiny)nen and (T, )ier, extend to positive and
symmetric contractions on M. Assume additionally that for all t € Ry, the operator Sy
satisfies Rota’s dialtion property.

(1) If (mn)N satisfies (A1), then for any 1 < p < oo there is a constant ¢ > 0 depending
only on p,a, B such that for all x € Ly(M),

[Ty )Nl Ly (M) < cllzllp and Tyt — ¢ a.u. as N — oo.

(2) If (my)¢ satisfies (A2), then for any 1+ % < p < oo there is a constant ¢ > 0 depending
only on p, o, B,n such that for all x € L,(M)

(T, )l Ly (M) < cllllp and  Tp,x — x a.u. ast — oo.

The above theorems recover Theorem 1.1 and Theorem 1.2. Indeed, if M is a finite von
Neumann algebra, the additional assumption on Rota’s dilation property is fulfilled by Lemma
3.6 (1). Note that for any positive definite function m on T', the associated map T, on
VN(I') is completely positive (see e.g. [BO08, Theorem 2.5.11]). Also, by the Schoenberg
theorem, for any conditionally negative definite function ¢ : I' — [0, 00), the associated map
Ag) — e M9 \(g) forms a semigroup of unital completely positive trace preserving and
symmetric maps on VN(I'). On the other hand, for any function m : I' = C with m(e) = 1,
the map T, is T-preserving; if T,,, is unital positive on VN(I'), then it extends to positive
contractions to L,(VN(T)) for all 1 < p < oo (see e.g. [JX07, Lemma 1.1]). Moreover, if m
is real-valued, then one may easily check that T,, is a symmetric map. So the assumptions of
Theorem 1.1 coincide with those of the above theorems.

Before starting the proof, we give several remarks on the statement of the above theorems.

Remark 4.4. Instead of continuous families (m;);cr, in (A2), we may also consider maximal
inequalities of families (my)yen with suitable conditions on their differences, which we will
frequently use in further discussions. Let (my)nen be a family of measurable functions on
Q2 satisfying the following assumption: there exist o > 0 and § > 0 such that for almost all
w € ) we have

Uw)®
N

Then for any 2 < p < 00, there exists a constant ¢ > 0 depending only on p, «, 8 and =y, such
that for all x € L,(M), we have

(4.4) 1 —my(w)| <

)] € By Imvee) = ma ()] < A

[Ty )Nl L, (Mie) < cllzllps and Tpr — x au. as N — o0.

If moreover the operators (T),, )nen extend to positive and symmetric contractions on M,
then the assertion holds for all 3/2 < p < oo as well.
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This follows immediately from the previous theorems since (4.4) leads to a special case of
(A2). Indeed, for 0 <t <1, set my =mg=0. For t > 1, we write t = N; + r, with N; € N
and 0 < ry < 1, and we define

my = (1 —ry)mpy, + remy,+1.

It is obvious that (m);ecr, satisfies (A2) with n = 1.

One may also study more general conditions associated with higher order differences, which
might be parallel to the case n > 1 in (A2). However the computation seems to be much
more intricate and we would like to leave it to the reader.

Remark 4.5. The statement in (A1) and (A2) can be flexibly adjusted, which we will
frequently use in further discussions:

(1) For o > 1 and for the maps (T, )nen and (Thy, )ier, given in Theorem 4.2 or Theo-
rem 4.3, we will indeed establish the corresponding maximal inequalities under the following
weaker conditions (4.5) or (4.6). Indeed, for & > 1, (A1) implies that for almost all w € £ we
have

(w) N/
(4.5) L =mnW)Sp onzas Imn(@)] Se W)
To see this, recall that we have |my(w)| < 4+ 1, so we see that
1 1 1 1 12N/
(B+ 1) my (W) < ((B+1) " my (@)= < (6+1) aﬂam-
Similarly, using |1 — my(w)| < 84 1 and repeating the above argument, we see that
l(w)
1= ()| S5 s
In the same way, (A2) implies
(w) th/e dmy(w) 1
(4.6 1=l Soo e i) S e | | < Ao

On the other hand, the proof of the above theorems for the case of 0 < a < 1 can be always
reduced to that of o > 1. To see this it suffices to take /= (¢*for 0 < a < 1 and consider
the new semigroup of unital completely positive trace preserving and symmetric maps given
by S, = T _.; (see [Yos95]); if the multipliers satisfy (A1) or (A2) with respect to ¢ for
0 < a < 1, then they also satisfy the same condition with respect to { for o = 1.

(2) Theorem 4.2 (1) and Theorem 4.3 (1) still hold with the index set N replaced by Z in
(A1). This can be seen from their proofs; alternatively, we may deduce this easily from a
standard re-indexation argument. Indeed, let (my)nez be a sequence of measurable functions
on () satisfying (4.2) for all N € Z. Take Ny € Z and write m; = mn,4; for j € N. Then
(4.2) implies that for all j € N and almost all w € €,

~ 2No (W) - 27
1=y < 655 ) < B

Note that £ = 2No/ay yields again a semigroup of unital completely positive trace preserving
and symmetric maps S't(NO) :=T,_,z. Then applying Theorem 4.2 (1) or Theorem 4.3 (1) to m
and £, we see that () jen = (mn)N>N, satisfies the corresponding maximal inequality with
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constant independent of ¢ and Np. Thus the similar maximal inequalities and a.u. convergence
still hold for (my)nez.

Remark 4.6. The completely bounded version of the above two theorems holds true as well.
In other words, if N is another semifinite von Neumann algebra and if we replace T),,, by
Ty @ 1dpy, Ty, by T, ® Idys and M by M = MQN, then the above two theorems still
hold true. Indeed, it suffices to consider a larger Hilbert space H=H® L, (N) and apply the
above theorems to M and H.

The following result on mean convergences is an easy consequence of our assumptions.

Proposition 4.7. Let (T )N, (T, )t and 1 < p < 0o be given as in Theorem 4.2 or Theorem
4.3 which satisfy (A1) or (A2) correspondingly.

(1) The family (T, )t is strongly continuous on L,(M), i.e., for any x € L,(M) the function
t — T,z is continuous from Ry to Ly(M).

(2) We have

]\}1_13100 [Tnyz —zllp =0, tlggo [T,z —zlp =0, x € Ly(M).

Proof. Let x € U7Y(C.(Q; H)) and E = supp(U(x)) C Q. By the Hélder inequality, for any
to > 0and 2 < p < o0,

2 _
1Tt — Ty @llp < 1 Tongs — Tong, @132 T — Togy ]| 2527

2 _
< (me = meg) L2737 [l]| 527

By the continuity of m; and the compactness of F, the above quantity tends to 0 as t — to.
Similar arguments work for p < 2 by using the Holder inequality with endpoints p = 1,2.
Similarly, by the continuity of ¢ and the compactness of F, we have

]\}iinoo [Tmyz —z|p =0, tlgglo [T, — ]| = 0.

For general elements z € L,(M), it suffices to note that the operators (T, )n and (Tp,):
extend to uniformly bounded operators on L,(M). Thus the desired results follow from a
standard density argument. O

Now we are ready to proceed with the proof of the previous theorems.

4.1. Lo-estimates under lacunary conditions.

Proposition 4.8. Let (mn)nez C Loo(2). Assume that there exist a function f: Q — [0, 00)
and a positive number a > 1 such that for almost all w € 2,

a f(w)
(@ + f(w))*

2
a
[Ty o)vezl ooy S By 7l @ € La(M).

(4.7) Imy (W) < B

Then,
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Proof. We have

H(Tme)N”%Q(M;EST) =T (Z Tme|2>

NEeZ
=Y W TanllZ, ) = Y ImnU @17, 0
Nez NezZ
= [ 3 Imn (@) Us)@) Frda(e)
¥ Nez
<Y ImNPle@ 102y = 11D I Pl 12017, a0
Nez Nez
However, by (4.7) we see that for almost all w € Q with f(w) > 0,
2N 2 2
2 2 @ 2 f(w) < p2_ @
Z\mN(wﬂ = Z B f(w)2+ Z B 2N ~5a2_1’
Nez N<log, f(w) N2>log, f(w)
while my(w) = 0 if f(w) =0 by (4.7). Thus we obtain the desired inequality. O

Below we show a more precise Ls-estimate.

Lemma 4.9. Assume that t — my(w) is differentiable for almost all w € Q. Choose an
arbitrary measurable function f : Q — [0,00). For j € Z, define

omy(w)
ot

a; = sup sup |my(w)| » bj = sup sup t- ‘
b\ z2< i <oi b\ z2< ) <oi

Assume
1/2, 1/2 | ,1/2
K:Zaj/ (aj/ +bj/ ) < 0.
JEZ
Then for x € Lay(M), we have the following mazimal inequalities
I(Tm2)el Lamisto) S Kzl and [Ty )il Lomtiee,) S Kllzl2-

Proof. We prove the second assertion first. Let {1;};cz be a partition of unity of R satisfying

d mi=1,  suppn; C (27227, 0<n; <1 and |nj| <C27.
j

Define my j(w) = mt(w)nj(%w)) € Lo(Q2). For notational simplicity, denote by T} ; the
operators with symbols my ;; that is,

U(Tijx) =my;U(z), x€ La(M).

Then we have

(4.8) H(Tonp)ell orses,y = || | D Teg < T2l o (atsee, )
JEZ tll Ly (Msee,) JEZL
From now on we fix an arbitrary j € Z. In the sequel of this proof we denote

Uk(z)(w) = U(@)(w) - Lpr-2 op41)(f(w)), w€Q and xp =U"(Uk(x)), € L2(M).



POINTWISE CONVERGENCE OF NONCOMMUTATIVE FOURIER SERIES 32

Since suppn; C [2/72,27], for v € Z and t € [2¥,2°T!) we have
fw) fw)

mej (W)U (2)(w) = me(w)n; (= =)U(2)(w) = me(w)n; (=) Vo (2) (@)
We may rewrite the above equality as
Tijo =Ty jTus,  t€[27,2°Th).

Choose an integer A; such that % <A < 2(%7?17]) and we divide the interval [2Y, 2“*1]

into A; parts:
2" =0 <m <72 <ya; =207 with g — e =2 A7

For any t € [2¥,2°%1), there exists 0 < k(t) < A; — 1 such that t € Vi), Ye(r)+1)- By the
convexity of the operator square function, we have

T j@ots]? = U (my jUpsj(2))]?

N t Omss._;
=\U / < 7]> Uptj(z)ds + Meyey:d Up+(2)
VE(t) s

0Ty (xo+s) |”
0s

2

t

<2t - Vk(t))/
Vi(t)

<2 (2” / ®+1
B A Vk(t)

A1 QU [Vkt1
<23 (5 /
Tk

ds + 2’T’7k(t)7j (%;4-;’)‘2

OT j(x0i) |?
0s

ds + |Twc(t)7j(%+j)|2>

Ts' v+7 2
Osj(Tots) ds+rT%,j<xv+j>\2>

Js
2U+1 2vtt 6T (.’E +7
We denote
gutl 2" 9T (1
y’U e A / 87]6(8U+.7 d$+2 Z | »yk] $U+J
] v
Then
4.9 T; j Ly4j 2 < Yy.
JLv+j
Similarly, we have
v Ai—1
. gutl 2oy /9 (Zots) *|2 J .
(TP <=2 [ | (P2 P2 3 1o
J o2 k=0

Let us estimate the quantities ||y,||1 and [|y,|1. We have
Aj—1

ds +2 ) || Ty j(zoss)3,
2 k=0

2'u+1

Qutl OTs (2pri) ||
ol = vl = 2= [ | g
j v

O0s
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v Ai—1
gl 27 /9T (o) \ " 2 . 2
it =ty =2 [ (PR | sz X It B
7 g2 2 k=0

Hence, |lys|l1 = ||y, |l1- Note that

[ (*5) e 2 (e (X)) " ds
_/jvﬂ anfgs(w) o (f(:})) . (f(:))) fic;) - ma(w) 2d8

gu+l b p 2 ' .
S/ <] + ‘]D ds (since suppn; C [2772,29])
v s s
1
~ 2U+1 (b +a’]) .
By the Fubini theorem, we have
2v+1 Qutl 8Ts i 2 2v+1 Qutl B ) 2
»J (JJ +J) ds = Ms,j Uv—l—j(m) ds
A] 2V 88 2 A] 2V 88 Lo(S:H)
gu+l AR Oms (W) 2
- ( Lo (D) s ) s e Paute
MH Wk
N A] J
and

2
w (L)) st Pt

Aj—1 Aj—1
22 ITstenslf= 3 [ )
k=0 =

< 2A 5|z o-5113-

2 |

Therefore,

(bj +a;)?
Il =l 5 (P22 4 A2 ) s
J

Recall that (4.9) asserts that |1} jzvi;|* < yo <> uez Yu- SO

<1

UEZ

(4.10)  (Tei®)ell ooy = (| Tej@ors )l L1 Mibos

1/2 1/2
< (Znyuul)

1 UEZ

< @ <(b+AfJ)+A ) ||xw||2> .

[2j+u—2’ 2j+u+1] _ U?:0[2j+“+l_2, 2j+u+l—1]'

=

Note that

33
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We have
2
Slleusilh= 3 [ [0@)) - Lpnapioa(f@)] dutw)

uEZ UEZ

S|

2
= U@
1=0
where the last equality holds since

Z ]].[2j+u+l—272j+u+l—1](f(W)) =1.

UEZ

2

U(@)(w) S Uitz s (F@))| dp(e)

UEZ

Thus,

> lzussl3 < 33
UEZ

Recall that a’aﬂ <A; < W Together with (4.10), we have
J J

1/2
1/2 1/2
(T g)ill yanses, ) < aff 2 (ag + by) 12 (Z ||$u+j||§> S 0 %(a; + b)) 2|zl
u€EZ

By (4.8), the proof is complete for the second maximal inequality.
Similarly, we have

(T, ) el o imser ) S Kllzl2-

Let us recall Lemma 2.1 which shows that the space Lo(M; ) is the complex interpolation
space of La(M;05,) and La(M; €L,). Therefore we have

[(Tm,) © L2a(M) = La(M; Loo) |
< |[(Tmy) + La(M) = Lo(M; )M |[(Ton,)  La(M) = Lo(M; )|
<K.
O

4.2. Proof of Theorem 4.2. Now we are ready to conclude Theorem 4.2.
First assume that (my)nen satisfies (A1). Set Ty, = Ty — Py-n/e with the symbol

B/
¢N =my —e 2V/2« By Remark 4.5 (1) and (A1), we can easily see that

_7\%@/(;) < l(w)

(4.11) [en()l < 1 =my(W)[+[1—e [ 5s Smps
_ A/t(w) oN/2a
(4.12) [N (W)| < Imy (W) + e 22 | $p ——,
t(w)
N/2a _ /
Therefore, |pn(w)| < 2—“‘”)2. By Proposition 3.3, Proposition 4.8 and Proposition
<2N/2a+\/g(7)>

2.2 (3), we get for any 2 < p < oo and = € L,(M),

[(Ton (@))N Ly Mitoo) Sapp 12l and  [[(Toy ()N L, (Miee) Sasrp 12]p-
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Applying Proposition 2.10, we also get the strong type (p, p) estimate for T,,,,, with a constant

¢ depending only on «, 3,7, p.
S/
Assume that (m;);cr, satisfies (A2). Again set Ty, = Trn, — Py-1/0 With ¢y = my—e ¢1/72.

We have the following estimates similar to (4.11) and (4.12): for almost all w € Q

() ()}

a¢t( ) f(w) _\/ﬁ(Ta) < 1
‘ |—B7 ; (Oétl/2ae t/2 )NCM,,B ;

Applying Lemma 4.9, we get
Jsup™ Tyl < Kllals € La(M),

where
K Zap Z(g—ljl/%(g—ljl/%é + 1))1/2 Sap L.
JEZL
By Proposition 2.2 (3), for any 2 < p < oo, (T}, )ier, is of strong type (p,p) with constant c
depending only on «, 3,7, p. Similarly, for any 2 < p < oo, we have

(4-13) ||(T¢t($))teR+HLp(M;£go) Sa,ﬁ,%p ||5BHP x € LP(M)'

Therefore, we conclude the strong type (p,p) estimate for (T,,,); thanks to Proposition 2.10.

Now the desired a.u. convergence follows immediately from the above maximal inequalities
by an argument in [HLW20|. For instance, we consider the symbols (m;);cr, satisfying (A2).
Let 7 € U7Y(C.(Q; H)) and set E = supp U(z). Note that E is a compact set. We consider
the maps Ty, = Tpp, —id with ¢y = m; — 1. As the proof of Proposition 4.7, by (A2), we have

et |37
2 2 Loo(E 2 _
1Ty, 2llp < 29 =P (my — D172 2057 121 5527 Sary T”||x||2/puxu;o2/p.

By the continuity of £ and the compactnesss of E, we have

: > P < , °°||€allE||2m(E) o P2
(4.14) i | Tl Sas Jim | = el e
—2
< 1°LE7 gy ll=l3 )15 0
1m =
T Moo M

Thus, as M tends to oo,

e ]
t>M

As a result, for any z € U Y(C.(S%; H)), Ty, (x) converges a.u. to 0 as t — oo according
to [JX07, Lemma 6.2]. Moreover, (4.13) obviously yields that (Ty,)icr, satisfies the one-
sided weak type (p,p) maximal inequality for p > 2 as in Proposition 2.9 (2). Note that the

p/2 >
< / | T2t — 0.
p/2 M
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subordinate Poisson semigroup (F;); is of weak type (p,p) for all p > 1 by [JX07, Remark
4.7]. Hence for any p > 2, z € L,(M), we find a projection e € M such that

supllePi(a" el S0 and () S oo} = ool

However, since P; is completely positive, we can use Cauchy-Schwarz inequality to get

sup | Pi(w)el|oc = lePy(a)* Py(x)el2? < Sup lePy(a*)el3? < o

So (P;); also satisfies the one-sided weak type (p, p) maximal inequality for p > 2. Thus (T),, )+
also satisfies the same inequality and by Proposition 2.9 (2), we see that Ty, (z) = T)n, (v) —
converges a.u. to 0 as t — oo for all x € L,(M). The case of (A1) can be dealt with similarly.
Thus the proof of Theorem 4.2 is complete.

4.3. Proof of Theorem 4.3 (1). In this subsection we study the maximal inequalitities for
1 < p < 2 in Theorem 4.3 (1). To approach this we need to develop several interpolation
methods.

Lemma 4.10. Let (®;) ez be a sequence of uniformly bounded linear maps on M and write

v = sup; [|[®; : M — M| < oo. Let1 < p<gq<2and® € (0,1) be determined by

% = 1770 + g. Assume that there exist ci,ca > 0 such that for any s € Ny, there is a

decomposition of maps ®; = <I>§-S’1) —|—<I>§S’2) where (@gs’l))j extends to a family of maps of weak
type (p,p) with constant Cp, < ?cr and (@;S’Q))j extends to a family of maps of weak type

(2,2) with constant Cy < s~ =0¢y. Then for any x € Spq and X > 0, there exists a projection
e € M such that

_ q
n o (Nl 015
sup [le®j(@)ellc <A and  T(eT) Sy (e + ¢3) — |-
j

In particular, (®;) ez is of restricted weak type (q,q) with constant
241
Cq Sy (] +c3) /e,
Proof. Let x € Spqy. Consider a positive integer s € N . By the weak type estimates of
(@;S’l))j and (CI)gs’Q))j, for any A > 0, we take two projections ej, es € M, such that

(s.1) . olzlp )"
sup [le1®; 7 (z)erfloo <A and  7(er) < {as 3 ,
J

2
sup |20 (2)eaf|oc <A and  7(ez) < (6289_1\\90)\“2) .
J

Set e = e1 A ea. Since ®; = @gs’l) + @58’2) we have,
lle®j(x)elloo < 2N,  jEZ,

and

p 2
T(et) < 7ef +ez) < <C159H$)\”p> + <C289_1”aj\’2> -

We consider xf = 21l () oo)(7) and ) = 21}y 5 (2). Applying the above arguments to xf\-,
we can find a projection e € M such that

le®j(z3)elloo <27, jEZ
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and

1 2
(4.15) T(GJ‘) < < 9|33§\||p> + <62891||$;\\||2>

Since x = x) + l‘i and ) < \-1, for any j € Z, we have

le(@s2)elloo < lle(®;(@2))elloc + le(@; (@d)elloo < (v +2)A

Note that for 1 < p < 2,

Hinoe) @) (oo (1)
(tn(A,oo)(t))P:( ) ) | 020 I

1 (zx)?
Therefore we have (3:)\ P < AR

< 5% and

lesllp _ 13
AP T )2

Hence, we can choose s to be an integer satisfying

<Ap||x§u§>2"?
5 =< ,
H%\ Hp

and by (4.15) we have

p q—2
T(eJ_) Sla (AZH%L\Hz) p=p) Hxx p + [ e <)‘Z||33§H2) 2= <H$>\ ”2>
(4.16) 22|z (15 A 22|z (15 A

—q[,.L([(1=0)qy[,.L |0
S (e + A a1y (15"

Since 0 < :):f\- < z, the above inequality yields

1-601,.110\ ¢
) S (G + ) (W)

In order to obtain the restricted weak type (g, q) estimate, it suffices to take x = f in the
above inequality for an arbitrary projection f € Syqy. Then

(P (1=0)/pr( £210/2
(e 5, <c€+c%>< ) ) = (¢} + B (f),

which implies that (®;),cz is of restricted weak type (¢, q) with constant
Cy Sy ( + )1
O

Lemma 4.11. Assume that for all t € Ry, the operator Sy satisfies Rota’s dialtion property.
Let se N, a > 0,5 € Z and define A( ) Py (j126)/a — Py—(j—25)/a. Then for any 1 <p < 2,

1AL )l Ly rtesy Sa s =D Nzl @€ Ly(M).

a?]
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Proof. We may write

9—(i—2s)/a P
AY g /2 ( S P )) dt,  x € Ly(M).

—(+25)/a ot

Let @ = x1 + x5 for 1,29 € Ly,(M). By the convexity of the operator square function,
o—(i—25)/ 2
1 0
— =Vt Py(x ) dt
/2—(j+2s)/a Vit < ot Ha)
9-(i-25)/a 2 9—(i+28)/a
0 dt
S / ‘ < Pt(l‘l)) dt / —_
9—(i+28)/x ot 9-(-28)/a t
G—it2s P 2
< t|| =P, dt
~a S (/&j2s ‘<6t t($1)> ) )

where & = 21/, Therefore,

Ajml =

1/2
| (a801) lne = ||| X 18057
j=—00
[e%e} a—J+2s 8 2 1/2
Vil [ | Gne)| o
P
1/2
[e’s) 2s—1 G Itk+1 2
<
Sa Vs Z Z /—]+k < Pt(x1)> dt
j=—00 k=—2s
P
0o P 2 1/2
o P,
<a S (/0 t‘<8t t($1)> dt)
P
Similarly,
0o o %2 1/2
AL )y any Sor s ( [ |5 dt)
0
P
On the other hand,
1AL )L, (wiegry < EIAS 2051 L, (mies) + 1A 22)5]1 L, (wtieg)

where the infimum runs over all 1,22 € L,(M) such that © = z1 + z2. Then the conclusion
follows from Proposition 3.7. O

Now, let us prove Theorem 4.3 (1).

Proof. The case p > 2 has been already treated by Theorem 4.2. In this proof, we focus on
the case 1 < p < 2.



POINTWISE CONVERGENCE OF NONCOMMUTATIVE FOURIER SERIES 39
Fix a finite index set J C Z. Denote
A(p,00) = [(Tin;)jes + Lp(M;log) = Lp(M; leo) |,
A, 1) = [(Tn;)jes + Lp(M; 1) — Lp(M;4),
A(p,2) = [[(Tm)jes + Lp(M:€57) — Lp(M: £57)].

Since J is finite, all these quantities are well-defined and finite. Because the operators (Tp,; )je.s
are positive maps, by Proposition 2.5 we have

(4.17) 1(Tm;)jes + Lp(M) = Lp(M; Lo || < Alp, 00).

Let 1 < p < 2. It is sufficient to show that A(p,o0) is dominated by a positive constant
independent of J.
Consider 1 < ¢; < g2 < 2 and let 6 € (0,1) be the number satisfying q% = 1q;10 + %. For

s € N; we write sop = [(1 — €)alog, s|] + 1. Denote by A( o) = o—(i+2s0)/2a — Py—(j—259)/2a
the difference introduced in Lemma 4.11 asociated with sg and 2a.. By Proposition 3.3 and
Lemma 4.11, we have

Jsup™ T, (A5 )r < Alar DI (A7) v

Sa Alq1,2)s0(q1 — 1) 702 g, -

By Proposition 2.10 and Lemma 4.11 |, we have
Jsup ™ Sy (A0 S a1 = 1721 (A57) sy
Sa s0(q1 — 1) 7% |2lg,

[40)

We set Ty, = Tin; — So—jsa With ¢; =mj —e 27/~ Hence,

Isup* Ty, (A 2) g, Sa Alar,2) (a1 — 1) sol|2]|g,
Jje

Let us assume (1 —6)alogy s > 1 first. Note that for any s > 0 and § > 0, we have logy s < %.
Therefore we get that
0
so < 2(1 —6f)alogy s S o« g <o (@2 —q1) 718,

If (1 —0)alogys < 1, then s =1 < 5 < (g — q1)~'s?. Hence,
(4.18) Isup* Ty, (A 2) g, Sa Ala1,2)(@ — 1) (g2 — a1) 7’|l
J

Let w € Q and let

) o () (w)
6,7 (w) = exp <—2@+20>/2Q) - oxp (‘Wso)/za
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((w)
AP | T5(-250)/2a

When 27 > /(w)®, by the above inequality we have |1 — 5§5) (W)] Za 2_“’0/"‘(%)1/2 , and as

be the symbol of Ag-s). Note that

] {(w)
— P\ TG res0)/2a

0(w) 9(i—2s0)/2cx
~Y 9(j4+2s0) /20 aw)

11— 0¥ (w)] < +

the computation in (4.11) we have |¢;(w)| Sg 55‘;2 In particular,
1/2 il 1/2
. _ <(9) < —s0/« é(w) < —s0/ 2 (w)
6,0 =8N Sap 2 (370)  Sas 7 Graras )

When 2/ < {(w)?®, similarly we have |1 — (8)( )| <o 2*50/“(%)1/2, and as the computation
in (4.12) we have |¢;(w)| Sp é . Therefore

. < e oila 1/2 ) e 2j/a€(w) 1/2
|65 (w)(1 = 6,7 ()| Says 2 W) See? @i 1 ow)2)

By Proposition 4.8, we have

(4.19) !!$2§+T¢j(1 — A)ally Sap 27/ 2ll2 Sap 57 o
J

Thus by (4.18), (4.19) and Lemma 4.10, we see that (T}, );e is of restricted weak type (g2, q2)
with constant

(4.20)
Cl, Sap ((Alq,2) (@ — 1) (e —a) )" +1) 7 Sap Ala,2)(@a — 1) (@2 —aq1) ™!

Set D = sup; ,<o(u — 1)??A(u, 00) < 0o. Choose an index 1 < r < 2 such that

1/Q2

(r —1)22A(r, 00) > g

We apply the restricted weak type estimate of (Ty;); in (4.20) to the particular case ¢ =

$(r+1) and g2 = q1 + (r — q1)/2. Note that by Proposition 2.10, the semigroup (S¢); is of
strong type (g2, g2) with constant ¢(ga — 1)72. Recall that Ty =Ty, + So-ija, thus (Tin;)jes
is also of restricted weak type (g2, ¢2) with constant

Cpo Sos A@,2)(@1 — 1) (@2 —q1) '+ (g2 —1)72

A a1 1/2 -9
<
~ao, (2 T ; OO) (T 1) .

The last inequality above follows from Lemma 3.4 and the values of g1 and g2. Because (T3, );

is of strong type (0o, 00) and of restricted weak type of (g2, q2), applying Theorem 2.6 we have

T
LRl @ e M),

(4.21) |[sup™ T, || < max{Cy,, 1}(
jeJ ! r
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By (4.17), this means that A(r,00) < Cy, (r — 1)72. Therefore,
D
(4.22) (r—1)"22 < A(r,00) Sap A5, 00)Y2(r — 1)1
2 ’ 2—q
) Sap 1if Qzlql > 2 by Theorem 4.2. Without loss of generality we
(4.22) yields

2—q1
_ 1/2
D 22
(r— 1)—225 Sa,8 ((2 zlql - 1> D) (r—1)~H1

Recall that ¢; = 1(r +1). We have

Recall that A(5%

D <ap 1.

In other words, (p — 1)?2A(p,0) Sap 1 for any 1 < p < 2. In particular, this estimate is
independent of the finite index set J. So we obtain the desired maximal inequality according
to Remark 2.3.

Note that 7;,,;z converges a.u. to z as j — oo for z € Ly(M) by Theorem 4.2 and that
Ly(M)NL,(M) is dense in Ly(M). Applying Proposition 2.9 (1), we get the a.u. convergence
of (Trn;x); for x € Ly(M). O

4.4. Proof of Theorem 4.3 (2). Our idea is reducing the desired maximal inequalities to
those for lacunary subsequences already studied in the preceding subsection.
Lemma 4.12. Assume that the family (mq)er, satisfies (A2). Then for any 1 < q <2 and

q+ qq(21+%)n < p <2, we have

(T )ter = Lp(M) = Lp(M; Loo)l| Spinpg S 1Ty )jez = Lg(M) = Lag(M; L) |1

[\GI[Sa

provided that the right hand side is finite, where 0 is determined by 1% = % +

Proof. Our proof is based on the estimate of multi-order differences of (m;);. For notational
simplicity we denote these differences as follows: we start with setting the first order differences
of the following form

d)F} =Myy—s-1, =My, sENTER,,
and define the higher order ones inductively by

QJZ)FLS%M’ wés;,ii’ '1 e 1] ,(/)FLSQ’M ’svil]’ S1y-++5 8y € Na te R+’ 2 S v S .

We denote by W£51’82""’ sol = Tw[smz ,,,,, s») the associated multipliers for 1 < v < 7.
t

We will estimate the maximal norms of (75, ); by using those of (\Ifgsl’SQ""’s”])t. To see this,
note that by Proposition 4.7, (T, (z)): is strongly continuous on L,(M) for all 1 < p < occ.
We consider the dyadic approximations with increasing index sets I, = {2//%° : j € Z} for
s € N. By Remark 2.3, we have for z € L,(M),

Isup T,z = lim IISup Tl
teRy el

< Hsup Tnyllp + Z (H sup” T, 2|l — Hsup Tmthp) :

s—0 tels41
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Note that we have the bijection J : Iy — Is11\Is, 20/2° 1y 9(2j+1)/2° 225%23'/25 and
Isy1 = I, U J(Is). Hence for

= T, tel
;=
myiy® € J() ’
we have || sup;relS+1 yell = || sup;re]s Tn,z||. Then applying the triangle inequality, we get

| sup™ Th, x|l — Hsup+Tmf:er < Hsup+\I/[S] (x)]]p-
telsi1 tels tels

In other words, we obtain

| sup * Tz < ||sup+Tmtx||p+Zusupw[ (@) l-
tE + s= O te[s

Applying the above arguments to maps of the form \Il,[fs] in place of T;,,, we see that for each
S1 Z 17

s1—1
[ sup * @ (@) < supt T @) + Y [l sup T @)
tels, telp a0 t€lsy
Hence,
oo s1—1
| sup o,z < Hsup+Tm zp + Z HSMP*‘II[S1 Mo+ > > HSUP“IISI’S2 (@)]lp-
s1=0 s1=1s2=0
Repeating this process 7 times, we get
|| sup * T, |
teR
oo s1—1
(123)  <loup*T, x||p+§jusup+\p[5” Mot 32> llsup™w v @), +
s1=0 s1=1s9=0 te
+ > supte @y ST sup T ).

tely

§1>82>>8p—1 §1>82>+>8y tels,

It remains to study the maximal norms of (\11[81’82""’8“]) on the right hand side of the

above inequality. To this end we need to estimate the derivative akw[‘“’”’ ’S“]( ) by virtue
of Lemma 4.9. More precisely, we will show that for any 1 < v <,

51,52,...,S — 2k 2 v
(4'24) ‘8f (@bi 1,52,s v])’ 55 9 (s1+s2 +sv)( ‘:k U) 0<k< n—ov.

Let us prove this inequality by induction. For notational simplicity we write p, = 22 "

Note that 1 < p, < 2 and that applying the mean value theorem to the function x — 2%, we
get that for any 1 <v <nand k > 0,

(4.25) ph—1 < k275,
Consider first v = 1. Forany 0 < k <n—1,

0F i (@) = 10Fmps(w) — O ()] = | ok (@) ympre — OFme(w)
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(w)|'}/:p1t’ N W. Hence

1
0F 0 (@)1 S5 (o = 1) g o) hmpus = ().
By the mean value theorem and (A2),
pit —t
0811 () =t — D (@)| < (o1t — 1) sup 05 mn (@) S5 Pt
t<y<pit t
Therefore, according to (4.25), we have
1 P1 — 1
Aapls] 1
b @)l S5 (0 = 1) o + 2
R2-s 9.
ST T T
_a k+1
Sp2

So (4.24) holds for v = 1. Assume that (4.24) holds for some 1 < v <7 — 1 and consider the
case of v + 1. For any 0 < k <17 — (v+ 1), arguing as above, we have

(OF ozl ()] = ol (S (W)) |yt — OF (2 (W)

2k + 2
<5 (b, — 1)2- (st BR £ 20

(perlt)k
+ (o1t —t)  sup  |ORFI(plesl ()|
t<y<pv+1t
2k 4+ 2 4 2v)"
 (posat — t)2-(ertszis) 2
<s 9—(s14s2:+s041) (2(k + 1+ 0))" )

So (4.24) is proved. In particular, setting & = 0 and k = 1 respectively, we get for any
I1<v<n

(4'26) ‘KZJ[SLSQ’M’S”}(W)‘ gﬂﬂ? 2*(51+82"-+5v)7
and for any 1 <wv <n-—1,
51,52, ,8 _ 1
(4.27) ’8 w[ bEB ”}(w)) 5,8,77 9—(s14s2 +8'u)¥.
This also yields
‘8 ¢[sl,sz, : sn] ‘ ‘3 w [s1,82, 85— 1] ‘ ‘a 7/1[517827 . Sn_l](w)
1
(428) 5,3,77 2—(81—1—52-}—-..4_5,’]71);.

On the other hand, by definition

(4.29) ozl S () (g
e€{0,1}v
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where € = (€1, -+ ,&y) € {0,1}V and p® = pi'p5?---p5». Recall that s1 < s9 < ---s, and
Sy > v, we have
—sp—1 —Sv ... —syp+tv—2 —spy—1+4v
1<p€§22 +27Sv 4427 S0t <22 +<2'

By (A2),

et W) < S @) <Y B <o f,

a7
ee{0,1}v ee{0,1}v (w) E( )
(51,82, 5] lw)® _ oy ot )O‘
v @[ X B-mpu) < Y B <28
ec{0,1}v e€{0,1}¥ P
Thus, setting
a§517527"‘7sv] .— sup Sup ‘w[81,827 e ](w>) ,
b 22 M%<y
and
bg‘SI’S%"’S”] ;= sup sup ‘3 P SU](w)‘ ;
b \2i—2cHe) g;
together with (4.26) and (4.27), we have for 1 <v <n —1,
ags1,52,...7sv} Sﬁ,n min{27(51+52+...+su)7 2*‘.7“}7 b551,527..4,sv} Sﬁﬂ] 27(31+32+---+sv)'
Then by Lemma 4.9, for 1 < v <n — 1, we have
(4.30) sup® @y ey < Kl g,
teRy
with
Klsts2,s0] — Z((I‘E-SLS%".’Sv])1/2(a‘£-81782"“’sv] + b£§1,827"'78v})1/2
JEZ
<8 Z g~ (s1+s24ts0)/2 Z 9—lil/2 | . 9g—(sitsat-+s0)/2

l71<s1+s24++50 lj]>s1482-+80
S1+ S+ -+ 58y
~Bm 2(s1+s2++sv)

Similarly, for v = 7, by (4.26) and (4.28),

(4.31) H sup+ \I,£31752»"' 7377}37”2 S K[Sl,sz,'" 18n] ||x||27
t€R+

with

K ls1.52,5n)] s 3(13—1;32“'4- s 27 .
9(s1+s2 +sp—1)+3
In the following we consider the case 1 < ¢ < 2. Denote

Aq = S (T )jez + Lg(M) = Lg(M; Loo) ||

For 1 <wv <n—1, by (4.29) we have

(4.32) Isup @Sy < S lsupt T, ., ally < 2°Ag ]2
tely 66{0,1}U tely
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For v = 1, we decompose

25m1—1 25m—1
s (25M)j+1
L, ={2"":jezy= |J {2 = :jezy= | 2571,
=0 =0

By (4.29) and the triangle inequality, we have

(4.33) |sup* @)y < 37 supt T2l
t€ls, cc{0.1}7 tels,
2°n—1

<Y XN st Tl

56{071}77 =0 tEQWIU

251 -1
<Y hwtT el
ec{0,1}7 =0 telo 2T pey

Sn AqQS"HxHq-

Now the conclusion follows easily from the complex interpolation. Let 1 < p < 2 and
0 <0 <1 with 1% = % + g. By (4.30), (4.32) and interpolation, we see that for v <n —1,

Iup ™ 0y Sy AT (o1 sy ) 270
0

By (4.31), (4.33) and interpolation, for v =7,

|| iu?+ \Ij£817827-.-75'q} (x)”p gﬂm A;_62(1_6)Sn (31 4 Sg - 4 317)9 2—9(81+82...+%’7)Hx||p.
€lsy

We apply the above estimate to (4.23). Note that when v <n —1,

Z (s1+ 82+ sv)" 9—0(s1+s2:+sv)

§1>82>>8y
o0
<p Z Z 9—0(s1+s2-+50)/2 <y Z 9—052/29—0(s2+-+s0)/2
S22 >y s1=s2+1 §3>-->8y
— — . v 2 _ _1 " 2
<y Z 9=bsag—0(sat+s0)/2 <) <, 22 (0=1)50/2 < 1.
83> >8y 5950

Applying the similar computation to v = 7, we have

Yo 2D (s sy tsy)’ 901t +3) < > 2o (s, 4 1)P2- (1= 2)0sn
81>82>-->58y sp>0
Thus the above quantity is finite if (1 —6) < (n — %)0, ie. 0> 2172ﬁ’ which requires that

q+ qq_(21;q2)77 < p < 2. Therefore, together with (4.23), if ¢ + qq_(21;q2)77 <p<2,

—0
Isup™ T, 2llp Spn0 Ay~ llllp.
teRy

The proof is complete. O]
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Proof of Theorem 4.3 (2). For any 1 < § <2 and j € Z, set t; = 2/5. (A2) implies that

(W) _ lw)® 2
oig =P—g - and ‘mtﬂ'(”)‘gwﬁ(w)a'

By Thereom 4.3 (1) and Remark 4.5 (2), for any 1 < ¢ < 2, we have

11— my, ()] < B

sup |‘SUP+Tmtj33||q SJOc,,B,q,n ||~T||q

1<6<2  jeZ
Note that g+ qqullg)?? tends to 1+ % as ¢ — 1. Hence, by Lemma 4.12, for any 1+ ﬁ <p<2,
we get
Isup™ Tz llp Sapipm 12 llp-
teRy
The a.u. convergence is proved similarly as in (1). O

4.5. The case of operator-valued multipliers and nontracial states. Based on the
previous arguments, we may extend our results to the setting of operator-valued multipliers
and Haagerup’s nontracial Ly,-spaces. This will be particularly essential for our further study
of multipliers on quantum groups in the next section. All the previous arguments for p > 2
can be transfered without difficulty into this new setting, and we will leave the details to
interesting readers. However, the previous proof for the case p < 2 does not continue to hold
for Haagerup’s L,-spaces. Based on Haagerup’s reduction method, we will rather use our
previous results for the tracial setting to deduce the desired properties for the nontracial ones.

4.5.1. Operator-valued multipliers in the tracial setting. Let us first begin with the operator-
valued multipliers on tracial von Neumann algebras. Let R be a von Neumann algebra
equipped with a semifinite normal trace. Assume that there is an isometric isomorphism

U: Ly(R) — P H;
i€l
where [ is an index set and H; is a Hilbert space for each ¢ € I. For any bounded sequence
m := (m(i));er with m(i) € B(H;), we can define an operator-valued multiplier on R:
Ty : La(R) — La(R)
(4.34) x> U (m(@)(Ux)(3));e; -
Note that if H; = C for all ¢ € I, then this goes back to our first setting in (4.1) with Q =TI

equipped the counting measure. Proposition 4.8 can be adapted to this new setting.

Proposition 4.13. Let (1), )nez be a sequence of operator-valued multipliers as above. As-
sume that there exist a function f: I — [0,00) and a positive number a > 1 such that

a” f(w)
4.35 ‘ VS B~
Then,
2
a
(Tmyv)Nezll Lywriegy < By 21 [E41P
Proof. Repeat the proof of Proposition 4.8. O

Using Proposition 4.13, Lemma 4.10, Lemma 3.4 and Lemma 4.11, we may deduce the
following result. The proof is the same as that of Theorem 4.2 and Theorem 4.3 (for (A1)).
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Theorem 4.14. Let ¢ := ({(i))ier be a sequence with (i) € B(H;). Assume that (T,—u)ier,
is a semigroup of unital completely positive trace-preserving symmetric maps on R. For any
N e N, let my := (mn(i))icr be a sequence with my (i) € B(H;). Assume that (T, )NeN
extends to a family of bounded maps on R with v := supy ||Tmy : R = R| < co. Assume
that there exist a > 0 and B > 0 such that for all i € I we have

, , 1@ B m, , 2N
(4.36) lidm, =mu()pm) < B2 Imn@llse) < B
2 O,
(1) For all 2 < p < oo there is a constant ¢ > 0 depending only on p,a, B, such that for
all x € Ly(R), we have

[(Tony )Nl Ly (Ritse) < cllzllp, and Topy® — 2 a.u. as N — oo.

(2) Assume additionally that the operators (I, )Nen extend to positive symmetric con-
tractions on R and that S, satisfies Rota’s dialtion property for all t € Ry. Then for any
1 < p < o0, there is a constant ¢ depending only on p, o, 5 such that for all x € Ly(R),

[(Trn )N L, (Ritse) < cllllp and Top® — x a.u. as N — oo.

4.5.2. Operator-valued multipliers on Haagerup noncommutative L, spaces. Let M be a von
Neumann algebra acting on a Hilbert space H. Let ¢ be a fixed normal semifinite faithful
state on M. Let 0 = (0¢); = (0f) be the modular automorphism group with respect to .
Let Ly(M, ¢) be the Haagerup noncommutative L,-spaces associated with (M, ¢). In the
following discussions we will not need the detailed information of these spaces, and we refer
to [Ter81, PX03, HJX10] for a detailed presentation. We merely remind the reader that the
elements in L,(M, ¢) can be realized as densely defined closed operators on Ly(R; H) and
that Lo (M, ) coincides with M for a certain suitable representation M on Lo(R; H). If
N is a von Neumann subalgebra of M, then the associated Haagerup Ly-space Ly,(N, ¢|n)
can be naturally embedded as a subspace of L,(M, ¢) which preserves positivity. There is a
distinguished positive element D, € L1(M, ¢), usually called the density operator associated

with ¢, such that D}D/%MD}D/ZP is dense in L,(M,p) (see e.g. [JX03, Lemma 1.1]). The
space L,(M, ¢) isometrically coincides with the usual tracial noncommutative Lj,-space used
previously if M is tracial. Indeed, if M is equipped with a normal faithful tracial state 7 with
¢ = 7(-p) for some p € Lo(M,7), then for any z € M,

(4.37) 1D 2P 2D || 1, Ay = [T (0" P! 2P)P)]P,

which coincides with the norm of p'/?Pzp!/?! in the tracial L,-space L,(M, ) in the sense
of Section 2. In the sequel we will not distinguish the Haagerup L,-spaces and the tracial
Ly-spaces introduced in Section 2 if ¢ is tracial.

In this subsection we set I' = |J,,~, 27"Z, which is regarded as a discrete subgroup of R.
We consider the crossed procuct R = M x, I'. Recall that R is the von Neumann subalgebra
generated by 7(M) and idg @A(T') in B(¢2(R; H)), where m : M — B({3(T; H)) is the -
representation given by m(z) = Y ,.p 0_¢(x) ® e ¢ and X is the left regular representation of I
on lo(I"). We will identify M with 7(M) and denote x x A(t) = 7(z)(idg ®A(t)) for z € M
and t € I'. We have

(@ > A1) - (y X Als)) = (zou(y)) 3 At + 5)
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for any z,y € M, t,s € I'. Let 1r be the usual trace on VN (I') given by mr(\(¢)) = d;=¢. The
dual state @ on R is defined by

(4.38) oz x A(t)) = e(x)mr(A(t)) reM, tel.
We set
ar, = —i2"Log(A(27%)) and 7, = Hle )
with Log the principal branch of the logarithm so that 0 < Im(Log(z)) < 2w. We denote by

R the centralizer of 7, in R. We will use the following two theorems to reduce our problem
to the tracial case studied previously.

Theorem 4.15 (|[HJX10, Theorem 2.1, Example 5.8, Remark 6.1]). (1) For each k > 1, the
subalgebra Ry, is finite and 71 is a normal faithful tracial state on Ry;

(2) {Ri}r>1 is an increasing sequence of von Neumann subalgebras such that Ug>1Ry is
w*-dense in R;

(3) for every k € N, there exists a normal conditional expectation Ey from R onto Ry such
that

@OE]C:(TO\ and UfOEk:EkOO’f teR.

For each 1 < p < oo and any k € N, the map
1/2 1/2 1/2 1/2

EP (DY*xD)*) = DY*Ei(x)DY*, z€R

extends to a conditional expectation from Ly(R,®) onto Ly(Ry, @|r,), and
im Bz — 21, mp =0, @€ Ly(R, ).
Theorem 4.16 ([HJX10, Theorem 4.1, Proposition 4.3 and Theorem 5.1|). Assume that
T: M — M is a completely bounded normal map such that
(4.39) Toor=o0¢0T, t e R.
Then T admits a unique completely bounded normal extension T on R such that
Tl = 1Tl and  T(xx A(g)) = T(z) x Ag), z€M,geTl.

Moreover, T satisfies the following properties:

(1) of o T =Too?,t €R;

(2) T o Eg(z) = By, 0 T(x) for all x € R, where (Ey,)j, are conditional expectations given in
Theorem 4.15.

Assume in addition that T is completely positive and p-preserving. Then T is also positive
and Ty o T = Tk, @O T = @ where Ty is the trace given in Theorem 4.15. Moreover, the map

~ 1/2 1/2 1/2p5 1/2
T® : DY*xDY* s DY*T(2)DJ™, zeR
extends to a positive bounded maps on L,(R,P) for all 1 < p < oco.

Convention. In the sequel, for a given map T': M — M, we will denote, by the same
symbol T, all the maps T® and their extensions to the L,-spaces in the above setting,
whenever no confusion can occur.
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Let H, be the GNS completion of M with respect to ¢ (we make the convention that
||x||%{w = p(z*x) for x € M). Note that z — nglo/ ? yields an isometric isomorphism from H,
to La(M, ). Assume that there is an isometric isomorphism

(4.40) U:H,—~PH,
i€l
where I is an index set and H; is a Hilbert space for each i € I. Let m := (m(i)); be a
bounded sequence with m(:) € B(H;). As in (4.34), we may define the multiplier
(4.41) Twm:Hy — Hy, U(Tpx) = (m(i)(Ux)(3))ier, x € Hy.

Applying the reduction theorems quoted above, we obtain the maximal inequalities for the
nontracial setting. The a.u. convergence can be adapted in the setting of Haagerup’s L,-
spaces, usually called Jajte’s (bilaterally) almost sure (b.a.s. and a.s. for short) convergence
[Jaj91], for which we also refer to [JX07, Section 7.4].

Definition 4.17. (1) Let z,,2 € L,(M,¢) with 1 < p < co. The sequence (z,) is said to
converge almost surely (a.s. in short) to x if for every € > 0 there is a projection e € M and
a family (a, %) C M such that

1 .
plet)<e and z,—x= ZamkDpv nh_{rgo I Z (anre) |oc =0,
k>1 k>1

where the two series converge in norm in L,(M, ¢) and M, respectively.

(2) Let @y, € Ly(M, @) with 1 < p < co. The sequence (z,) is said to converge bilateral
almost surely (b.a.s. in short) to x if for every € > 0 there is a projection e € M and a family
(@) C M such that

a 1
plety<e and 1z, —x=D2» Z SN DETR lim || Z (eanke) oo =0,

n—oo
k>1 k>1

where the two series converge in norm in Ly,(M, ¢) and M, respectively.

As we mentioned at the beginning of this subsection, the space L,(M,¢) isometrically
coincides with the tracial noncommutative L,-space if the state ¢ is tracial. In this case, one
can easily verify that Jajte’s a.s. (resp. b.a.s) convergence recovers Lance’s a.u. (resp. b.a.u.)
convergence defined in Definition 2.7.

We keep the notation introduced previously in this subsection. The following is our main
result in this subsection, which generalizes the results for (A1) in Theorem 4.2 and Theorem
4.3. Those for (A2) can be dealt with in a similar manner, and we leave the details to
interesting readers.

Theorem 4.18. Let ¢ := ({(i))icr be a sequence with (i) € B(H;) and write Sy = T, for
t € Ry.. For any N € N, let my := (mn(?))ier be a bounded sequence with my (i) € B(H;).
Assume that the following conditions hold:

(i) (St)icr, ewtends to a semigroup of unital completely positive p-preserving maps on M
and for anyt € Ry, r € R,

S;o 0, =008, o(Si(z)*y) = e(x*S(y)) x,y € M.
(i) (Trmy)Nen extends to a family of selfadjoint maps on M with
v i=sup||Tmy : M — M| < oco.
N
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(iii) There exist « > 0 and B > 0 such that for all i € I we have

1461, o
(4.42) lida, =mn (@) |5y < B—35 2 llmn (@)l < Ao
[ (Z)HBH)

Then there is a constant ¢ > 0 depending only on p,«, B,y such that for all 2 < p < oo,
(4.43) [(Tn )Nl LMty S ellzlly 2 € Lp(M, ).
and Tyyx — x a.s. (resp. b.a.s.) as N — oo for all x € L,(M) with 2 < p < oo (resp.

p=2).
If in addition the maps (T ) Nen are unital completely positive, symmetric and @-preserving
on M and commute with the modular automorphism group o, i.e.

Ty 00 =0p 0T, reR,N eN,

then the above mazimal inequality (4.43) also holds for all 1 < p < oo and Ty, yx — x b.a.s.
as N — oo for all x € L,(M).

The proof of (4.43) for the case of p > 2 is a mutatis mutandis copy of the arguments in
previous subsections. It suffices to note that the proof of Proposition 4.8 and Proposition 4.13
remains valid in the setting of Haagerup’s L,-spaces if T}, is selfadjoint on M. We leave
the details to interesting readers. The reason why the previous arguments do not adapt to
the case of p < 2 is that the weak interpolation (Theorem 2.6) fails for Haagerup’s Ly-spaces.
So we will provide a proof for this case using the reduction theorems. On the other hand, we
will only prove the maximal inequalities. The implication from maximal inequalities to a.s.
(resp. b.a.s.) convergences, in particular the analogue of Proposition 2.9 (2), remains valid
on L,(M, o) if we replace the one sided weak type inequality (2.4) by the strong type one on
Ly(M;5,) for p > 2 (resp. on L,(M;ly) for 1 < p < 2) by using [JX07, Lemma 7.10].

Proof of (4.43) for 1 < p < 2 and completely positive T, , . The operator U in (4.40) induces
an isometry on Lo(Ry, 7x) given by
Un: Lo(Rimi) — @ies Hi® La(VN(T), 1r(e% )
rxAg) = U(z) @ Ag)-
(

Indeed, Uy is an isometry since for any finite sum Z xg X A(g) € R, we have
HUk(Z Tg X )\(g))H@iez H;®@Lo (VN (D), (e=% -))
g

= ng(xéxh)nﬂ "% X(h—g)) Zgo o—g(zyxn))mr(e” " A(h — g))

— ng (x mh X A((h—g)e _ak = | ng X A( )HLQ(Rkﬁk)'

g

Take the Hilbert subspaces H, C H; ® Lo(VN(T), r(e~% -)) so that ran(Uy,) = P, H.. Then
U Lo(Ri, ) — €D, H, becomes an isometric isomorphism. For any x X Ag) € Rk, the
element (T, x) % )\( ) = mN(:B x A(g)) also belongs to Ry, since TmN oEy =E;o TmN by
Theorem 4.16. So Uk((TmN ) X A(g)) is well-defined and moreover, by (iii), we have

Ur((Ty ) % A(9)) = U(Tny (2)) @ Mg) = (mU(2)) @ A(g) = (m @ id)Tx(x x Ag))-
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In particular my (i) ® id sends H] into H], and me|Rk is an operator-valued multiplier
in the sense of (4.34) (recall that (Rg, ) is tracial). It is straightforward to verify that
fm ~ R, is unital completely positive 7-preserving on Ry, and therefore it extends to a positive
contraction on Ly(Rg, 7). Similarly, the extension S, = T\efté also gives rise to a semigroup
of unital completely positive maps on R. It is easy to check that §t is symmetric relative to
©. The restriction §t|7gk is Ti-preserving and symmetric relative to 7 since

Si((w % A(g))e™™) = (Suw) x Ag)e™™ = (Si(x x Ag)))e ™
for all x € M and g € I'. Thus applying Theorem 4.14 to me|Rk7 we obtain

(4.44) HSljlvar Loy (@) Ly (Rpr) < @, mem)y @ € Lp(Re, k),

where c is a constant only depending on «, 3, p
In the following we consider x € L, (M, tp)+ Since Ly(M, ¢) can be naturally embedded
into Ly(R,p), we regard x as an element in L,(R, ) By Theorem 4.16, we see that

TmN oE, =E;o0 TmN and hence Téf}v E(p) IE( ) T ) . By Theorem 4.15, we have
lim T8 (B (2)) = lim EP/(T) (2) =T, (x) in Ly(R.).

k—o0

Thus for any M > 0,

(p)
(4.45) 11{{)10!!13%13 T8 EP (@)L, R iz, = | Sup+M T, @)l (r.5)-

Without loss of generality, we assume that = = D(lﬁ/ 2p yD(lz/ P with some y € Ry. By the
correspondence in (4.37), we get

O~ Ok
| sup™ T2 EP (@)1, Ry gy = Il U7 €2 Doy (Br(1))e ||, Ry m)-
1I<N<M 1I<N<M

Note that eﬂ belongs to the subalgebra generated by 1 x A(I"). For any element of the form
z =3 ger#(9) ¥ A(g) in Ry, we have

€5 Ty (2)e3 = 3 Ty (2(9)) % (€3 A(g)e?
gel

So the previous equality reads

-~ Ak Ak
I sup® T8 ED @)l mapin,) = [ 88" T 2 ErW)e )z, e

Together with (4.44), (4.45) and (4.37) we obtain

; o il 1/2p
| supt TP (@), (rp) < Jim HeZPEk( e || L, (Rime) —klggoHDg Ex()DZ " |, (R 217,

1<SN<M
T (p) .

= lim 1B, (@)1, (R 21, = 121, (R,5)-

The proof is complete. -

Remark 4.19. Lance’s notion of a.u. convergence still makes sense for p = oo in the nontracial
setting. The above theorem also implies that T}, o — x a.u. as N — oo for all z € M,
according to [JX07, Lemma 7.13].
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5. PROOF OF THEOREM 1.3

This section will be devoted to the proof of Theorem 1.3. In other words, we will construct
Fourier multipliers satisfying the pointwise convergence for groups with suitable approximation
properties. As in the previous section, only the framework of the form (4.1) (or the form
(4.34)) is involved in the essential part of our arguments. Since the approximation properties
of discrete quantum groups have drawn wide interest in recent years, we would like to present
the work in a more general setting, that is, Woronowicz’s compact quantum groups.

We refer to [Wor87, Wor98, Tim08| for a complete description of compact quantum groups.
In this paper, it suffices to recall that each compact quantum group G is an object cor-
responding to a distinguished von Neumann algebra denoted by L. (G), a unital normal
s-homomorphism A : Lo(G) = Loo(G)®Loo(G) (usually called the comultiplication), and
a normal faithful state h : Loo(G) — C (usually called the Haar state) with the following
properties. First, the Haar state h is invariant in the sense that

(h®id) o A(z) = h(z)l = (Id ®h) o A(z), z € Loo(G).

Second, a unitary n X n matrix u = (uij)zjzl with coefficients w;; € Loo(G) is called an
n-dimensional unitary representation of G if for any 1 < i, 5 < n we have

n
A(uu) = Z Uik Q Uk
k=1

We denote by Irr(G) the collection of unitary equivalence classes of irreducible representations
of G, and we fix a representative u(™ on a Hilbert space H, for each class 7 € Irr(G) and
denote by d its dimension. In particular, we denote by 1 € Irr(G) the trivial representation,
i.e. u! = 1g with dimension 1. Then the space
™ T)\dr
Pol(G) = span{uz(-j) (™ = (ul(-j))m:l,w € Irr(G)}
is a w*-dense *-subalgebra of Loo(G). We denote by L,(G) the Haagerup noncommutative
L,-spaces associated with (L (G), h). Last, there is a linear antihomomorphism S on Pol(G),
called the antipode of G, determined by
S(ugr)) = (ugf))* melr(G),1 <i,j <d.
The antipode S has the polar decomposition S = RoT_;;5 = 7_;;5 © R where R is a *-
antiautomorphism on Lo (G) and (7¢)ier is a one-parameter group of x-automorphisms on
Pol(G) (called the scaling group). There exists a distinguished sequence of strictly positive
matrices Qr € B(H,) with 7 € Irr(G) implementing the scaling group (7¢);er and the modular
automorphism group (o¢)ier with respect to h on Loo(G), and indeed for all z € C we have
(see for instance the computations in [Wanl7, Section 2.1.2 and Section 3|),

(5.1) (. @id)(u™) = Q¥u™Q; =, (0, ®id)(u™) = Q¥u™ QL.

We say that G is of Kac type if Qr = idy, for all 7 € Irr(G). In other words, G is of Kac
type if and only if the Haar state h is tracial.

Denote by /o (G) = @D rer(c) B(Hr) the direct sum of von Neumann algebras B(Hr) and

~ ~

cc(G) be the finite direct sum in @, ¢y B(Hxr), i.e. m € cc(G) if there are only finite

many 7 such that m(mw) # 0. The notation G used above in fact corresponds to the dual
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discrete quantum group of G (see e.g. [VD98]|). We will not involve the detailed quantum
group structure of G. For a linear functional ¢ on Pol(G), we define the Fourier transform by

Flp)m) = (p@id)((™)),  mel(G).
This induces the Fourier transform F : Pol(G) — CC(@), given by

F(a)(r) = (h(-x) ®id) ((w))*) € B(H,), = elr(G).

Note that F : Pol(G) — cC(G) is bijective. Obviously there exists a Hilbert space completion
of cc(@), denoted by EQ(G) such that F extends to an isometric isomorphism F : Hj, — (2 (G)
where Hj, denotes the GNS completion of Lo (G) with respect to h as in Section 4.5.2 (see
e.g. [PW90] and [Wanl7, Proposition 3.2]), more precisely,

(5.2) haz'z) = Y Tr(Qr)Tr(Qr(F(z)(m)* Fla)(n)), =€ Hy,

welrr(G)

where Tr denotes the usual (unnormalized) trace on matrices. Then F is consistent with our
framework in Section 4.5.2. For a symbol m = (m(n)), € Eoo(@), we can define a multiplier
T, by (4.41), i.e.

Tp(x) = F Y(m - F(x)), =€ Pol(G),
which extends to a bounded map on Hj. This coincides with the multipliers considered in

[JNR0O9, Daw12, Wanl17|. By (5.1) and the definition of T}, we have (see e.g. [Wanl7, Lemma
3.6])

(5.3) o0 Tmoo_p =Tgirpmg-ir, 1TER, where Q= &rQx.

Remark 5.1. Let I' be a discrete group. We may define a comultiplication A on the group
von Neumann algebra VN(I') by

A(A(9) =Ag) ®A(g), geTl.

The triple (VN(T'), A, 7) carries a compact quantum group structure G satisfying the afor-
mentioned properties, where we take Lo(G) = VN(T') and h = 7. In this case we usually
denote G =T. We remark that in our language of quantum groups, I' coincides with the dual
discrete quantum group G. The set of unitrary equivalence classes of irreducible representa-
tions Irr(G) can be indexed by I, so that for every g € I' the associated representation is of
dimension 1 and is given by u9) = A(g) € VN(I'). Therefore, the set I defined above becomes
I', and the Fourier transform sends A(g) to d,. Hence, for any m € (. (I'), the associated
multiplier is

T : Mg) = m(g)Mg), ge€T.

This notion coincides with the usual one on groups mentioned in the introduction.

A straightforward computation shows the following proposition (see for instance [Wanl7,
Section 3]).

Proposition 5.2. Let S be the antipode and ® be a functional on Pol(G).
(1) F(®o S~ )(7r) (® @id)(u™).
(2) F(®* o S~ (7)) = (F(® )(7r))’k where ®*(x) = ®(x*) for any x € Pol(G).
(3) F((id@®)A(x)) = F(® o S7H) - F(x).
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Remark 5.3. Let ® be a functional on Pol(G) such that F(® o S~!) = m. In other words,
by Proposition 5.2 (1),

By Proposition 5.2 (3), we have
(5.4) Ton(z) = F H (F(®0 S Flz)) = (Id®@P)A(z).

Therefore, we have the following properties.
(1) T}, is a unital completely positive map on Pol(G) if and only if ® is a state on Pol(G).
(2) Ty, is selfadjoint if and only if ®* = &. Moreover m(m)* = m(n) if and only if ®*oS = &.
(3) We have

Im(m) | B = |u@m(m)| e ye ) = H [Z uﬁ;?@(u,i?)]
k 1| Loo (G)®B(Hy)

N H [Tm(u’(;r))}ij

< HTchb-
Loo(G)®B(Hr)

In view of our study in Section 4.5.2, it is essential to consider the case where T},, commutes
with the modular automorphism group o.

Proposition 5.4. Let ® be a functional on Pol(G) with ®* = & and p(7) = [<I>(ugr))}” for
7 € Irr(G). Then the element

a

m(r) = m o [ QUE(mQTdr, where ¢(x) = [1(® + @ o B)(ul)]:;

a—oo 2a | ij

is well-defined in B(Hy), and satisfies:
(i) m(m) is a selfadjoint matriz for any © € Irr(G);
(i) for any t € R, o4 0 Ty, = Ty 0 0y

(ili) |lm(m)l g, < el s, and |lida, —m(7)| g, < 1w, —o(T)| B, for any
7 € Irr(G);
(iv) If T, is unital completely positive on Pol(G), so is Tp,.

Proof. The construction is implicitly given in the proof of [CS15, Lemma 5.2] and [DFSW16,
Proposition 7.17].
The element m is well-defined by the ergodic theorem since B(H;) is finite-dimensional.

Note that there is a *-antiautomorphism R of £5(G) with B2 = id such that (R ® R)U = U
where U = @ﬂelrr(G)u(“) is regarded as an element in Lo (G)®0s0(G) (see [Kus01, Proposition
7.2]), and therefore for any functional T on Ly (G), the following inequality holds
||(T oR® id)(U) - 1gm(@)‘|gm(@) < H(T ® R)(U) - R(lgw(@))ugw(@)
<[[(T@id)(U) =1, gl @)
and
I e R@i)(V)],_g < (T &id)(U)],_):
In particular, for 7 € Irr(G), taking T(uz(ja)) = (5a7r(I>(u§;r)) for all @ € Irr(G), we get

12 Ba,y < (Tl B
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@(ug;r)), ifa=mx
51']'7 if()é#ﬂ'

, we get

and taking T(ugm)) = {

lider, —3() 5y < lida, ()5, ™€ Ir(G).

Then (iii) follows from the definition of m. Also, by Remark 5.3 we see that Tjz is unital
completely positive if T}, is. So in the following part we will assume without loss of generality
that ¢ = @ and & = ® o R. By (5.3) we have

1 a
(5.5) T, = lim — / oro0T,00_ydr,
a—oo 2a J_,

so we established the assertions (ii) and (iv). We consider

a—o0 2a

U(z) = lim — / " o(r(2))dr, @ € Pol(G).

Then by (5.1),
mi) = Jim o= [ QremQzar = tm o [ QFl@ @ ia)@)Q;dr

a—o0 2a —a a—oo 2a |

— lim — / (@ 07 @id) (W™ dr = (T @ id)(u™).

a—oo 2a J_,

Note that W is invariant under 7 according to the ergodic theorem. Recall that ® o R = .
So we have ¥ o .S = ¥. By Proposition 5.2 and & = ®*, we get

m(m) = F(¥ o §~)(m) = (F(V)(m)" = (F(¥o s H)(m))" =m(n)"
So we obtain (i). 0

We recall the following approximation properties of quantum groups introduced by De
Commer, Freslon and Yamashita in [DCFY14]. For simplicity of exposition, we always assume
in this paper that Irr(G) is countable. The general cases can be dealt with by considering the
collection of all finitely generated quantum subgroups of G.

Definition 5.5. Let G be a compact quantum group. G is said to have the almost completely
positive approzimation property (ACPAP for short) if there are two sequences (¢s)sen C Eoo(@)
and (Vg )ren C CC(@) such that

(1) for any s,k € N, Ty, is a unital completely positive map on L (G);

(2) for any 7 € Irr(G), we have

Jim [lider, —ps(m)llp(r,) =0 and lim |[idg, —dk(m) g, = 0;

(3) for any s € N and € > 0, there is a k = k(s, ) such that ||Ty, — T, | < €.
Moreover, if for any k& € N we may directly choose T}, to be unital completely positive,

then G is said to be amenable (or to have the completely positive approximation property).

For notational convenience and without loss of generality, in the sequel we will always set
wo(m) = o(m) = d1(m). Note that ¢s(1) = 1 for all s, therefore we will always assume that
Yr(1) =1 for all k.
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Remark 5.6. Assume that G has the ACPAP. Then we may indeed find two sequences
(ps)seN C loo(G), (Vr)ken C co(G) satisfying (1)-(3) in Definition 5.5 such that the following
assertions also hold:

(4) Ty, is selfadjoint for all k € N;

(5) @s and vy are selfadjoint matrices for all s, k € N;

(6) forany t e R, s e N, k€ N, o, 0Ty, :/7\})5 oo; and JtOT% =Ty, 0 0y

Indeed, for any sequences (¢s)sen C Yoo(G), (Vr)ken C co(G) satisfying (1)-(3) in Def-
inition 5.5, by Remark 5.3 we see that the map x — (Ty,(z*))* is a multiplier associ-
ated with the matrices iy (7) = [\I’};(u(ﬂ))]ij, where W is the functional on Pol(G) so that

ij
Wi(u])) = v(m)ij. Then Ty, =, is selfadjoint. Note that limy o [|ids, —t% (7)o = 0

is equivalent to limy_, oo ‘I/k(ugr)) — 0;; pointwisely. Thus (¢, + sz)/2 satisfies (2). Since the

operators T, are positive, Ty, (x) = (T, (z*))*. Thus ((¢y + ¥r)/2)s satisfies (3). Therefore
we may always assume that Ty, is selfadjoint, which means that W), = ¥} by Remark 5.3 (2).

We construct two new sequences (¢))sen C loo(G), (¥).)ken C c(G) by the formulas given in
Proposition 5.4, then they immediately satisfy (3) by (5.5). It is easy to see that (¢)sen and

(¢, )ken satisfy (1) (2) (4) (5) (6).

Remark 5.7. If G is of Kac type, the multipliers 7}, and Ty, can be taken central by a
simple averaging argument, that is, ¢s(7) and ¥ () belong to Cidy, for all w € Pol(G). We
refer to [KR99, Bral7] for details.

Lemma 5.8. For any s € Ni, @5 = (0s(p))per with ps(p) € B(H,), where (H,), are Hilbert
spaces and I is an infinite countable set. Let (Es)s>1 be an increasing sequence of finite
subsets of I with Us>1Es = I. If lims 00 [[ps(p) — idp, ||B(Hp) =0 for any p € I, then there
is a subsequence (s, )n>1 of N such that

(5.6) lida, —s,.,, (P B, < 27v, pekEs,.

Proof. We will construct a sequence (s, )nen by induction. First we let s = 1. Assume that
(sj)j-vzo has already been defined. For any p € E;,, we can find an s, (p) > s, large enough,
such that for any s > s, (p),

lidg, —¢s(p) | B, <27V,
Since E;  is a finite set, we can set s, = max{s,,,(p) : p € Es_ }. Therefore the proof is

complete. O

Then we may construct the semigroups and multipliers satisfying the assumptions of The-
orem 4.18.

Theorem 5.9. Assume that G has the ACPAP and let (ps)sen and (Yg)ken be the corre-
sponding sequences satisfying (1)-(6) in Definition 5.5 and Remark 5.6. Let (ks)sen, be an
increasing subsequence of N such that || Ty, — Ty, |l < 25% Let ko = s0 = 0 and (sy)Nen,
be a subsequence of N such that (5.6) holds with Eg = U;_,supp ¢y,. Define

tm) =S V2 (idn, —ps, ().
Jj=0

Then the following assertions hold.
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(1) £(1) =0 and for any ™ # 1,
J ()
1e(m) | e,y = V2
where J(m) :=min{j € N: 7 € Es }.
(2) S :x v FL (e*w(”)}"(ac)) is a semigroup of unital completely positive h-preserving
maps on Loo(G) and for anyt >0, r € R,

Stoor, =0,08 and h(Si(x)*y) = h(xz*S:(y)), z,y € Loo(G).

(3) Denote my = 1, . Then (mn)nen satisfies

| 1) I, o
lid, ~mn(@lpea) £ ——g s Imv@ ) S o 7€ n(6),
1) B,

In particular, for any 2 < p < 00,

||]Svlé%+Tme”p Sp 1zllps z € Ly(G).

For all x € L,(G) with 2 < p < 0o (resp. p = 2), Ty (x) converges a.s. (resp. b.a.s.) to x
as N — oo. N

Moreover, if G is amenable, then the above results hold for all 1 < p < oo (with the b.a.s.
convergence for p < 2). If G is of Kac type, all the convergences above are a.u.

Proof. By Remark 5.6 and (5.3), we have {(7)Qr = Qr{(m) for any 7 € Irr(G) and S; 0 0, =
or0 Sy forany t € Ry, r € R.

Recall that for any N, T,,, is unital and in particular ¢, (1) = 1. As a consequence we
get £(1) = 0. In the following we consider 7 # 1 and estimate the quantity |[{(7)| p(#,)-
Recall that kg = sop = 0 and @o(7) = Yo(7) = d1(7), so Ey = {1}, which implies J(7) > 1 if
m # 1. By the definition of J, we have m € E5;  C E,; , if j > J(m) + 1. Recall that T, is
unital completely positive and hence |l¢s(7)|p(a,) < 1 by Remark 5.3. Therefore, by (5.6),
we have

J(m) .
16| By < V2 ||idg, s, (M)l B,y + Z V2 |lida, —ps, ()| B(H)
=0 2+
J(m) . .
< NG Z NGRS < \/§J(7r).
Jj=0 j>J(m)+1

For j < J(m) — 1, we have m ¢ Es,; and hence wksj (m) = 0. We also have idy, —ps,(7) > 0
for all j since ps(7) is selfadjoint and ||ps(7)||p(a,) < 1 as mentioned previously. Also by
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Remark 5.3, we have [|ps(m) — ¥, (m) | B(r,) < (1T — Ty, lleb < QTIH So

J(m)—1 ) ]
sy =11 D V2 (idn, =5, () + D V2 (idu, =5, () B2

Jj=0 j=J(m)
J(m)—1 )

> | Z vex (idm, —¢s; (7)) [l Ba,)
=0
J(m)—1 )

=1 Y0 V2 (ida, =y () + 00, () s
=0

J 1

(m)—
i (. 1 J(m)
7=0

Y

Hence ¢ is well defined and (1) is verified.
Recall that (1) = 0. Therefore Sy(1) = e #(1)1 = 1. On the other hand, recall that ()
is selfadjoint, which means that ¢(7) is also selfadjoint. Thus by (5.2),

(5.7) AS)y) = > (@) Tr (Qr (¢ "™ F(@)(m)) Fly)(m))

w€lrr(G)

= > (@) T (Qr (F(a)(m)" e O F(y)(m))
welrr(G)

= h(a"Si(y).

In particular,
h(Si(x)) = h(Si(1)x) = h(z).

Now let us verify the complete positivity of S;. We define the functionals €, L and &5 on
Pol(G) by

) =0y, L) =tm)y, @s(ul) = ps(m)y.

ij
Note that € is a *-homomorphism on Pol(G), usually called the counit. By Remark 5.3, @
are states and

L:Z\/ﬁj (e — @)
j=0

with the convergence understood pointwise on Pol(G). In particular

L(a*a) = — Z \/ijfbsj(a*a) <0, a€kere.
J=0

This means that L is a generating functional in the sense of [DFSW16] and there is a state p

with ,ut(uz(;-r)) = (e7#(™),; for all t and m by [DFSW16, Lemma 7.14 and Equality (7.4)]. So
by Remark 5.3, S; = T, is completely positive.
We take my = %N~ (If G is amenable, we take my = wksN = psy.) If m =1, then for

any N € N, 1 —mp(1) = 0 since kasN is unital. Note that sy > N. If 1 < J(7w) < N —1,
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ie. m€ Fgy ,, then
lda, —mn (M) e,y < [lida, =@sn (Tl Ba,) + l@sn (7) = 1/JksN (™l B(#2)

2
If J(m) > N, then

v Ny

lidg, —mn ()| g, <1< 270"

< < Ry
On the other hand,
Imn (m) |3z, < Lo (J(m) < 2V < ST B, ()
B(Hx)

A computation similar to (5.7) yields that the map T5,, is symmetric and h-preserving for
any N. Applying Theorem 4.14 and Theorem 4.18, we obtain the desired maximal inequalities
and pointwise convergences ]

Remark 5.10. The above proof indeed shows that Theorem 5.9 also holds for any subsequence
(sy)nNen, satisfying

(5.8) lid, —¢sy, (Dlsa,) <27O7N,  pe By,

where (Ejs)s are determined increasing finite sets and J(p) = min{j € N : p € E,;}. This
more general formulation will be useful in the next section.

In particular, we obtain Theorem 1.3 in the general setting of quantum groups.

Corollary 5.11. (1) Assume that G has the ACPAP. Then G admits a sequence of completely
contractive Fourier multipliers (T ) Nen on Loo(G) so that my are finitely supported and for
any 2 < p < o0,
Isup ™ Ty 2llp Sp ll2lps z € Ly(G),
NeN

and T,z converges to x a.s. as N — oo for all x € Ly(G) with 2 < p < oo and Ty
converges to x b.a.s. (a u. if G is of Kac type) as N — oo for all z € Ly(G).

(2) Assume that G is amenable. Then G admits a sequence of unital completely positive
Fourier multipliers (T, y)nen on Loo(G) such that my are finitely supported and for any
l<p<oo

Isup ™ Ty zllp Sp [1]ps z € Ly(G),
NeN

and Tz converges to x a.s. as N — oo for all x € Ly(G) with 2 < p < oo and Ty

converges to x b.a.s. (a.u. if G is of Kac type) as N — oo for all x € Ly(G) with 1 < p < 2.
Moreover, we have the following a.s. convergence of Fourier series of Dirichlet type on

Ly(G). Let p,r be the projection from Pol(G) onto {ugr) 11 <i,j <dr}. It is easy to see that

pr can be extended to an orthogonal projection on Lo(G).

Proposition 5.12. Let G be a discrete quantum group having the ACPAP. Then there exists

an increasing sequence of finite subsets (Ky)n C Irv(G) such that the maps x +— Y e\ pr(®)
is of strong type (2,2). Moreover, for all x € La(G),

Z pr(x) = 2 b.a.s. (a.u. if G is of Kac type)) as N — 0.
TeEKN
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Proof. Let €, (ks)s, (sN)n, (Es)s be given by Theorem 5.9. We show that Ky = E;, sat-
isfies this proposition. Let N € N and Dy = Ty Ky be the multiplier associated with the

characteristic function
id H, if me Ky;
]lKN (ﬂ-) = { ’

0, otherwise.

Define
o(m)1/2

on () =N, (m) — e 2V,
For any m € Ky, i.e. J(m) < N, we have
o (g < VMG I 2
N\T)I|B(Hx) ~ )
i RN N e 12, )2

where the last inequality follows from the fact that % < 1. Also, for any 7 ¢ Ky, i.e.
J(m) > N, we have

on(@lo < — 20 1l 2
N B(Hr) ~ 1/2 1/2 :
1o,y <WMHW>MM>
As mentioned previously, Proposition 4.8 remains valid for the nontracial setting. Together
with Proposition 3.3, we get

I(Ton (@)N Loty S llll2s and  [(Toy (2))N | o@iee) S Izl @ € La(G).

Recall that by the choice of (Fy)s, for any finite subset F' C Irr(G) there exists M > 1 with
F C Ky for all N > M. Hence for any x € Pol(G), there is an index M large enough such
that for any N > M, we have Dy(x) = x, and in particular Dy(x) — x a.s. Then arguing
as in Subsection 4.2, by Proposition 2.9 (2) (or its nontracial analogue for La(G; /) and
Lo(G; £S,) mentioned after Theorem 4.18) and the density of Pol(G), we obtain the desired
pointwise convergence of Dy (z) for any = € Ly(G) as N — oo. O

Note that we also have the corresponding a.u. convergence on L. (G) in all the previous
results by Remark 4.19.

6. MORE CONCRETE EXAMPLES

In this last section, we apply our theorems to various explicit examples of multipliers on
noncommutative L,-spaces.

6.1. Generalized Fejér means on non-abelian groups and quantum groups.

6.1.1. Case of nilpotent groups and amenable groups. Let I' be a discrete amenable group. Let
(Kn)Nen be a Fglner sequence of T', that is

. |[KnNgKn|
1 —_— =1 T
Nos K]  9€

For convenience we set Ky = {e}. We define a sequence of multipliers (my)nyen by
|K NNgK N’
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We remark that if I' = Z? and Ky = [-N, N|¢ N Z%, then

d
il
my (k1, k2, ka) = H(l -
Pl 2N +1

M —on 2w (Ki),

which gives the usual Fejér means on the d-dimensional tori. As a result, we regard the
multipliers (7,,, )n as a noncommutative analogue of Fejér means.

It is easy to see that my is finitely supported, indeed suppmy = Ky - K;,l. By the Fglner
condition, we have my — 1 pointwise. For any g € I', we have

1k, g, )

|Kn |12 | Ky|1/2 6(1)
As a consequence my is positive definite and therefore T, is unital completely positive on
VN(T) for all N € N (see e.g. [BO08, Theorem 2.5.11]). Note that T}, is also 7-preserving.

In particular, by Theorem 5.9, there exists a subsequence (V) jen, such that for all 1 < p < oo
and all z € L,(VN(I)),

mn(g) = (A\g)

Hsup+TmNj:UHp Sp llzllp  and Ty, @ = a.u. as j — 00.
JEN

In the following, we would like to give a refined study in the case of nilpotent groups. First
we consider a 2-step (or 1-step) nilpotent group I' generated by a finite set S. We assume that

e€ S and S = S! Due to [Sto98], we have the following estimates:

(6.2) BINT< SN[ <BN? and  BTINTT < |SMASNTY < gNIT
where d > 1 is called the degree of I', and 8 < oo is a positive constant depending only on I'
and S.

For an element g € T', denote by |g| the word length of g with respect to the generator
set S, i.e. |g| = min{k : g € S*}. Let (my)n be a sequence of symbols given by (6.1) with
Ky =SV, By (6.2), we have

N+lgl .d—1
lgSM\SN| _ |SNFlah\ 5N D i1t 9
6.3 1— = < < < Bl

In particular, this shows that (S™V)y is a Fglner sequence. On the other hand,

gel.

N
(6.4) Imn(9)] < T an(lg]) < 27, gel.

lg]

Set J(g) =min{j e N: g € §¥"'} ie. J(g) is the unique integer with 27(9) < |g| < 27(@)+1,
We have

1 —my;(g)] < ﬂ’;‘ < 23279)=3,
This shows that the subsequence (27) jen satisfies the inequality in Remark 5.10. Define
J
Ug) = V2|1 —my(g)l
Jj=0

By Theorem 5.9, for any g # e,

J(9)
Ug) =v2"" = /g,

and (S¢)ier, : A(g) — e t9) \(g) is a semigroup of unital completely positive trace preserving
and symmetric maps. We remark that there are other natural choices of conditionally negative
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definite functions with polynomial growth (see e.g. [CS16]), but our above construction is self-
contained and useful for the further purpose. Moreover, for any t € R, S; satisfies Rota’s
dilation property according to Lemma 3.6. Inequalities (6.3) and (6.4) can be written as

2
WEnd ()] S By

[1—mn(9)| S B

Moreover,
]].5N * ]].3N (g)
mn(g) = W
By (6.2), we obtain

Imn+1(9) — mn(9)]

~ | o L (D swos(679) = T (3 s () s (a72)

vyel vyel’

1 _ _ _

< [N > gy (M[Lgn(g™y) = Lgn (g7 N+ Y [Lsn1(y) = Lgn ()] Lgve1 (g~ ')
yel yel’
1 1 .
+ S5~ SN] Z]ISN(’Y)]ISN(Q 7)
yerl’

N+1\ oN

< 3|5 \ST o 1

B :
‘SN+1| ~ N +1
Therefore my satisfies (4.4). Applying Theorem 4.3, we have the following corollary.

Corollary 6.1. Let T be a 2-step (or 1-step) nilpotent group generated by a finite symmetric
set S. Define my(g) = %. Then

(1) (Tom,; )jen s of strong type (p,p) for all 1 < p < co. Moreover, for any x € L,(VN(I'))
with 1 < p < o0, Ty, (x) converges a.u. to x as j — oo.

(2) (Thny ) Nen s of strong type (p,p) for all % < p < o0. Moreover, for any x € Ly(VN(T"))
with 3/2 < p < 00, Tiny (x) converges a.u. to x as N — 0o.

Let us give some remarks on the case of general groups with polynomial growth. Indeed, it
is conjectured in [Brel4| that (6.2) remains true for general groups with polynomial growth.
If the conjecture has a positive answer, then the above corollary still holds in this general
setting by the same arguments. Moreover a partial result was given in [BLD13] for a general
r-step nilpotent group I' generated by a finite set .S. It asserts that

(6.5) ﬁ_lNd_l < ’SN\SN_l‘ < BNd—%’

where ( is a constant depending only on I' and S. Therefore, as in the arguments for the case
of 2-step nilpotent groups, we have
SN+lgh\ gN
1-my(g) < Bl g 5 0

3r

Let k = k(r) be the minimum integer with k > 3I. Then N;(r) = 28+ % gatisfies
Lemma 5.8. Indeed, let J(g) = min{j € N: g € En )}, i.e. 2Nj(5)1(r) <|[g| < 2Nyg)(r).
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Then for any g € En; (), i.e. J(g) < J,

2k+k2+~~-k‘7(9) 2k+k2+--~kJ(9>

SJB 1 2 j+1
) Qk(k—i—k +---kI+1)

9
_ <A <A
11 N1 (r) 1B N, () z ~ 23%(k+k2+~~kj+l

< o~ (RWOH4kI*Y) < god(9)=i
Therefore, by Theorem 5.9 and Remark 5.10, we get a conditionally negative definite function
£ on T' such that

U(9)* 2
2] a‘nd |mNJ‘+1(7‘) (g)‘ S ﬁé(g)2 .

‘1 - mNj+1(T)(g)| S /8

By Theorem 4.3 (1), we have

Corollary 6.2. Let I' be a r-step nilpotent group gemerated by a finite symmetric set of ele-

ments S. Let my, k(r) and N;(r) be defined above. Then for all 1 < p < oo, (TmNj<T) )jen is

of strong type (p,p) and for any x € Ly(VN(L)) with 1 < p < 00, Ty (,(x) converges a.u.
J

to x as j — 0.

6.1.2. Case of amenable discrete quantum groups. Let G be a compact quantum group of Kac
type. As before, we assume that Irr(G) is countable for convenience. We keep the notation
introduced in Section 5. We may study the Fglner sequences and the corresponding multipliers
in this quantum setting as follows.

Recall that for any a, 8 € Irr(G) we have the decomposition

w9 B = Dreter(@) N u,

(a)u(ﬁ)), . d
ij Ukl ikl A1
Ngﬁ € N. We have the following Frobenius reciprocity law (see [Wor87|, [Kye08, Example

2.3])

where u(® X 4P refers to the tensor product representation of the form (u

(6.6) N

— nyo — N8
as = Ny = Ny

for all a, 8,7 € Irr(G). We write v C af if Ngﬂ > 0. Denote by T the equivalent class of the
representation ((ug))*)w The weighted cardinality of a finite subset F' C Irr(G) is defined to

be
|F|w = Z dzw

aceF

where we recall that d, denotes the dimension of the representation «. On the other hand,
for a finite subset F' C Irr(G) and a representation € Irr(G), the boundary of F related to w
is defined by

O F ={a € F:3p € F°such that 5 C ar} U{f € F°: Ja € F such that o C fr}.

Kyed [Kye08|] proved that there exists a sequence of finite subsets (K, )neny C Irr(G) such that
for any m € Irr(G),

’awKn|w

(6.7) Kol

—0 as n— oo,
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as soon as G is coamenable. Note that the coamenability of G is nothing but a property
equivalent to the amenability of the discrete quantum group G (see e.g. [Bral7]). The above
sequence (K, )nep is called a Folner sequence. We associate a sequence of multipliers

Za,ﬁeKn Ngﬁdadﬂ
dW(deKn d?) 7

It is easy to see that if G =T for a discrete group I, then the above function coincides with
the symbol introduced in (6.1).

(6.8) on(m) = 7 € Irr(G).

Lemma 6.3. (1) The maps T, are unital completely positive on Loo(G) for all n € N.
(2) The functions p, converge to 1 pointwise.

Proof. (1) It is obvious that ¢, (1) = 1 and therefore T}, is unital.
Denote by x(m) = >, ul; € Pol(G) the character of m. We have for any «, 8 € Irr(G),

h(x(B)x(@) =bagl,  x(a)*=x(a) and x(a = > N
~velrr(G)
We write
Poly(G) = span{x(m) : 7 € Irr(G) }

and let Ag be the w*-closure of Poly(G) in Loo(G). Let E : Loo(G) — Ap be the canonical
conditional expectation preserving the Haar state h. Recall that we have assumed that G is
of Kac type. It is well-known that the conditional expectation E can be given by the following
explicit formula (see e.g. the proof of [Wanl7, Lemma 6.3])

0ij
= d—Jx(ﬂ), 7 € Irr(G).
Set

o= ’1/2 > dax(a) € Pol(G)o.
acK,

Then, we have

Ty, (z) = (h@id) [(xp, @ 1) - [E®@id) 0 A(z)] - (xn @ 1)], = € Loo(G).
Indeed, by linearity and normality, we only need to check the equality for the case x = ug)
In this case we see that

(h@id) [ @ 1) [E@id)o Au)] - (@ 1)]
 Yaper, dads - h (x(@)x(m)x(B)) ()
B dﬂ"Kn’w u”

B
_ > o ek, dadsNax e

d7T|K77«’w ZJ
=T, (u7).

Since E and A are completely positive, so is T, .
(2) The support of ¢, is given by

(6.9) Ay, = {7 € Irr(G) : Ja, f € K,, such that 7 C af}.
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We denote OF = {a € K, : V 8 € K&, Nir = 0} C K. Note that Nir = NZ; and that
a € ©F implies 3 e e, Nirdg = dadx by the choice of Nix. Then

8
Zaeeg da (ZBeKn Na”dﬁ) Zaee)g dz, _ 19%]w

Spn(ﬂ') > = — )
dr(Peer, 47) Yeer, i [ Knlw
Therefore,
|~ pn(r) < H{a € K, : 35 € K, such that 8 C an}|y < 107 (K )|
| K | K|
By the Fglner condition (6.7), ¢, — 1 pointwise. =

Therefore, by Theorem 5.9 we get the following result.

Corollary 6.4. Assume that G is of Kac type and that G is amenable. Let (Ky)nen C Irr(G)
be a Folner sequence and @, be the symbols given by (6.8). Then there is a subsequence (n;)jen
such that (T%J_ )j is of strong type (p,p) for any 1 < p < co. Moreover for all x € L,(G) with

1<p<oo, Ty, (x) converges a.u. to x as j — 00.

6.2. Convergence of Fourier series of L,-functions on compact groups. We would
like to emphasize in this subsection that our work indeed brings new ideas to the analysis on
classical compact groups. Recall that for a compact second countable group G, any function
f € Ly(G) admits a Fourier series

f@)~ > dTr(f(r)n(z)), z€G with f(r) = /G f(@)m(z ") da

welrr(G)

where Irr(G) denotes the collection of equivalence classes of irreducible unitary representations
of G, and d, denotes the dimension of m. The pointwise analysis on these Fourier series is
much subtler than the abelian case. A particular difficulty is the lack of obvious order and
summation methods on Irr(G) which is suitable for the study of Fourier series. However, from
the viewpoint of quantum group theory, the set Irr(G) is nothing but the underlying object
of an amenable discrete quantum group. So the difficulty can be overcome by transferring the
method on discrete amenable groups and its quantum counterpart. The spirit is also partially
inspired by the recent work [Hual6].

More precisely, the compact group G trivially gives rise to a compact quantum group.
Indeed, it suffices to take the triple (Loo(G), Ag, [) where we define for all f € Loo(G),

Ac(f)(g,h) = f(gh), g,heG.

Then G is amenable since Loo(G) is a commutative von Neumann algebra (see e.g. [Bral7]).
As a result, all arguments in Section 6.1.2 work on G. In particular, there always exists an
increasing sequence (K, ), C Irr(G) determined by the representation theory of G, such that
the following finitely supported symbols

0 (71') _ Za,BGKn Ngﬁdadﬁ
! dr(Peer, 47)

7 € Irr(G)
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converge to 1 pointwise, where NZp is the unique number in the decomposition of the tensor

product representation @ X g = @Brenr(G)Nazm- Moreover

Tof = Y depn(mTe(f(m)w(x), z€G,feLyG)
melrr(Q)

defines a unital completely positive map on L,(G). We may choose a subsequence (n;);
inductively by the algorithm in Lemma 5.8. Set m; = ¢,,. We may rewrite Corollary 5.11
and Proposition 5.12 in this setting as follows.

Corollary 6.5. (1) Let 1 < p < co. There exists a constant ¢ > 0 such that
| sup T, flllp < el fllps € Lp(G).

J

For all f € L,(G),
f(z) = lim Z demj(m)Tr(f(m)n(2)), ae z€G.
Jj—o0
welrr(G)
(2) For all f € L2(G),
f(z) = ]1520 Z deTe(f(m)m(x)), a.e z€G.

TI'EKnj

As an illustration, we consider a concrete example. Let N > 2 and denote by SU(N)
the N x N special unitary group. The irreducible representations of SU(N) can be labeled
by N — 1 non-negative integers, and we write set-theoretically Irr(SU(N)) = NV¥=1. The
representation theory of SU(N) can be computed in terms of operations on Young diagrams,
which yields the following fact.

Proposition 6.6 (Appendix). Let K,, = {0,1,2,--- ,n}N¥~1 c N¥=1, Set
Za,,BEKn Nggdadﬁ

n = , = (t1,--- ,tn— e NV-1,
#u(m) dr (D ek, d%) m=(h N-1)
Then -
s 1
— <np ——1 — <A ——
1-on(m)] Sx o and [onsa(m) = on(m)] Sy —

where |r| = max{t; : 1 <i < N —1}.

As in Section 6.1.1, applying Theorem 5.9 to the subsequence (y,;); we obtain a function ¢
on NV~1 such that (7,-«); is a semigroup of unital completely positive trace-preserving and
symmetric maps, and for any = # (0,0, --- ,0),

() < \/i‘](ﬂ) = /|7

where J(m) =min{j € N: 7 € Ay;} (A, is given by (6.9)). Then combined with Theorem 4.3
and the proof of Proposition 5.12, the above proposition yields the following corollary.

Corollary 6.7. Let K, = {0,1,2,--- ,n}¥ =1 ¢ N¥=1. Define
2apek, Nopdads

Son(ﬂ') = s S NNil.
dr(Peer, 2)
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(1) Let 1 < p < oco. There exists a constant ¢ > 0 such that
[sup | Ty, flllp < cllfllp, | € Lp(G).
J
For all f € L,(G),
flo)=Tim > depy (M) Te(f(m)m(g), ae. g€G.
j—00

welrr(G)

For all f € Ly(G),
flg) = lim > dTr(f(m)7(g)), ae geG.
j—00

7T€K2j
(2) Let 3/2 < p < oo. There exists a constant ¢ > 0 such that
[sup [T, flllp < cllfllp, € Lp(G).
n

For all f € L,(G),
f(g) = lim dnpn(m)Tx(f()n(9)), ae g€G.

n—o00
melrr(G)

6.3. Smooth radial multipliers on some hyperbolic groups.

6.3.1. Bochner-Riesz means and finitely supported completely bounded multipliers. In this sub-
section we briefly discuss a noncommutative analogue of Bochner-Riesz means for the setting
of hyperbolic groups. We refer to [GdIH90, Gro87| for a complete description of hyperbolic
groups. We merely remind that all hyperbolic groups are weakly amenable and the completely
bounded radial Fourier multipliers have been characterized in [Oza08, MdlS17|. In particular,
we denote by | | the usual word length function on a hyperbolic group I', then the Fourier
multipliers

0
g1*\" .
Ba- ¥ (1-%) s, «evim
gel:lg|<N
define a family of completely bounded maps on VN(I') with supy || B[l < oo as soon as
0 > 1 (see [MdIS17, Example 3.4]). Let

s gl
bv(g) = (1 = 5) Lp,n(lgl)

be the corresponding symbols of the maps B?V. It is easy to check that

N 1

L@l < <X, — by (9)| < e el
1-bn(gl < e a9l < o’ by1(9) —On(9)l ey g

for some constant ¢ > 0. We are interested in the case where the word length function | | is
conditionally negative definite. This is the case if I is a non-abelian free group or a hyperbolic

Coxeter group. Applying Theorem 4.2, we obtain the following corollary.

Corollary 6.8. Let I' and B?V be as above with § > 1. Assume additionally that the word
length function | | is conditionally negative definite. Let 2 < p < oo. Then there exists a
constant ¢ such that

H;lé%JrB?v(ﬂf)llp <clzllp,  x e Lp(VN(T)),
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and for any x € L,(VN(T)), B (x) converges a.u. to x as N — oo.

Remark 6.9. Arguing as in Step 2 of the proof of [CXY13, Theorem 6.2, we see that for all
6 > 0, there exists a constant C' > 0 such that

Isup ™ BYy(2)]l2 < C([[sup* By ()l|2 + llllz), @ € La(VN(D)).
NeN NeN

Thus the results in the above corollary also hold for the case 4 > 0 and p = 2. We will
systematically study the Bochner-Riesz means in a subsequent paper.

Remark 6.10. The pointwise convergence of the above multipliers for 1 < p < 2 seems more
delicate. However, we can still construct some finitely supported multipliers satisfying the
pointwise convergence in this case. For any n € N, we define a multiplier p, on VN(T") by

po(z) = > #(@Ag), =€ VN(),
lgl=n
which is the projection onto the subspace span{\(g) : |g| = n}. Ozawa |Oza08| showed that
these operators satisfy the following estimate
(6.10) lpn : VN(T') - VND)|| < B(n+1)

where 3 is a positive constant independent of n. For any N € N, we set

lgl

mn(g) =L ny(lgl)e™ v,  gel.

On the other hand, for any ¢ € Ry, denote S : A(g) = e~19I\(g). By assumption (S)icr, is
a semigroup of unital completely positive trace preserving and symmetric maps. We write

o
_lgl _ldl _r
e N _mN(g) :]1[N2+1,oo)(‘g‘)€ No= Z € Nﬂ\g\:r'
r=N2+1
Hence, by the estimate (6.10), we have
IS Ty sVNE) S VD Y leFpl£s Y e )8
r=N2+1 r=N2+1

By duality and interpolation, for any 1 < p < oo, we have

1815~ T Lp(VN(D) = Ly(VNID)]| £ B

By Proposition 2.10, Sy is of strong type (p, p) for any 1 < p < oo. Hence for any selfadjoint
element x € L (VN( )) with 1 < p < o0,

Isup ™ Ty () lp < [Isup ™Sy (@)l + [I5up ™ (S1/n — Ty ) (@) lp
NeN NeN NeN

1
Sa lzlp + Z m”ﬂff\\p
N>0

Se lzp-
Similarly, for any 2 < p < oo, we have
[(Tony @) N Ly (miee,) Sop 1210

Then by Proposition 2.9 it is easy to check that T),,x converges a.u. to x as N — oo
for x € L,(VN(I')) with 2 < p < oo and converges b.a.u. for 1 < p < 2. Note that we
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may also obtain the weak type (1,1) estimate and b.a.u. convergence on Li(VN(I")) for
multipliers A(g) = Ty nj(lg])e™V 9I/N \(g) by the same argument, since the subordinated
Poisson semigroup A(g) — eft\/@)\(g) is of weak type (1,1) according to [JX07, Remark 4.7].

The above arguments work for all groups with the rapid decay property with respect to a
conditionally negative definite length function.

6.3.2. Smooth positive definite radial kernels on free groups. Using our main result, we may
provide a wide class of completely positive smooth multipliers on free groups satisfying the
pointwise convergence apart from Poisson semigroups. To this end we will need the following
characterization of radial positive definite functions on free groups. In the following F; will
denote the free group with d generators (2 < d < o0).

Theorem 6.11 ([HK15, Theorem 1.1] and [Ver20, Theorem 1.2|). Let v be a positive Borel
measure on [—1,1]. Define a function ¢ on N by

1
o(k) = / aFdv(z), ke N.
-1

Then o(g) := (|g|) is a positive definite function on Fs, where | | is the word length function.

Then we get the following proposition. Note that if v is the Dirac measure on 0 in this
proposition, then this statement amounts to the almost uniform convergence of Poisson semi-

groups on VN (F;) proved in [JXO07].

Proposition 6.12. Let v be an arbitrary positive Borel measure supported on [—1,1] with
v([—1,1]) = 1 and write dv(x) = dv(tz) for allt > 0. For any t > 0, set

ma(g) _/Rxlgldut(x—e

where | | is the usual word length function. Then there exist an absolute positive number to > 0
and a constant ¢ > 0 such that for all 1 <p < oo and all z € L,(VN(Fy)),

_2
t

)7 gEFd,

(T, ) eto || L, (Mitns) < cllzllp and  Tp,x — ¢ a.u. ast — oo.

Proof. Using integration by substitution with y = t(x — 67%), we have

me(g) = /Ra:mdyt(a: - e_%) = /_11 (% + 6_%>|g| dv(y).

By some fundamental analysis, we can find a number tg large enough such that for any ¢ > g,

2 1 _4 1 2
et—;Zet and E—i—e t < e 3t
Then for any t > tg,
1 ] 2|g] t
(6.11) i< (1+e) <o ¥ g L
g
1 lgl gl
1 —mi(g)] <1 - (—t+e—3> < (1—6—4%) <";'.
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i By a straightforward computation,

Set f(t) =% +e”

1
0] S0 e

(6.12)

Recall the Faa di Bruno formula:
d’U
@F(f(l‘)) = > FUPr@) - I 120
PeP(v) BeP

where & (v) is the set of all partitions of {1,---,v}, B € P means that B is a block of the
partition P, and |B| denotes the size of the block B and |P| means the number of blocks.

Similar as (6.11), | f(¢)| < e, Then using the Faa di Bruno formula and (6.12), we see that
for any v > 1 and y € [—1,1],

TEvet)'= Y k- kPR T 00

dtv .
PeZ(v),|P|<min{v,k} BeP
2(k \P\) 1
Sv Z k(k—=1)-(k—[P[+1)e” 'HW
PeZ(v),|P|<min{v,k} BeP
- I’ 1
<o > k(k—1)- (k—|P)| +1)<k_ B P

PeZ(v), |P|<min{v k}

1
Z Q‘P‘ tv N” T}'

PE@

Therefore, (m¢)¢>t, satisfies (4.3) in (A2).

Note that Fg is a subgroup of Foo, and v4(- — e~*/?) is supported in [—1, 1] for large ¢t > 0.
So my is positive definite on Fy by Theorem 6.11 for ¢ > tg. Also, for any t > to T, (1) = 1
since v([—1,1]) = 1. Thus for any t > tg, T),, is unital completely positive and it extends
to a contraction on L,(VN(Fg)). Moreover, the natural length function | | is conditionally
negative definite. On the other hand, for all 1 < p < oo we can always find a positive integer 7
depending on p such that 1+ % < p. Then the proof is complete by applying Theorem 4.3. [J

We remark that the totally same argument applies to many other examples of groups acting
on homogeneous trees.

6.4. Results and problems on Euclidean spaces. As we mentioned in Subsection 6.1.1,
the definition of the symbol given by (6.1), though motivated by the geometric group theory,
coincides with the Fejér means in R. From a geometric viewpoint, even in the Euclidean spaces
R? it is still natural to consider other Fglner sets besides cubes, such as balls and rectangles. In
particular, we obtain new interesting Fourier multipliers on classical Euclidean spaces, which
might be regarded as generalized Fejér means.

More precisely, let B be a symmetric convex body in R¢ such that the interior contains 0.
We define the functions ¢; associated with B as

(B N (§ + Byt))
1(By) ’

(6.13) ei(§) =
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where By = {¢ € R? : ¢/t € B} and pu is Lebesgue measure. Then T,, defines a completely
positive Fourier multiplier on L,-spaces. Let ® be the inverse Fourier transform of the convo-
lution p(B) 11 g * 1, then for all t > 0,
Tp f = ® % f, where &, =t 9®(t™1.).

The following corollary is obtained similarly using the arguments in Section 6.1.1.
Corollary 6.13. Let B and (¢1): be as above.

(1) (T, )jez is of strong type (p,p) for any 1 < p < oo, and for any f € L,(RY) with
1 <p<oo, Ty, (f) converges a.e. to f as j — oo.

(2) (T,,)e>0 is of strong type (p,p) for any % < p < oo, and for any f € L,(R?) with
3/2 <p< oo, T, (f) converges a.e. to f ast — oo.
Proof. For any non-zero vector & € R? there is a unique positive number |¢|gp such that

¢/|€|p € OB since B is convex and its interior contains 0. We make the convention that
|0|g = 0. Note that u(B;) = t?u(B). We have

#Biriels\Be) _ (t+1ls)? —t* _ [¢]m
w(B) td ~E Ty

1—¢(§) <
Also, we have

Opr 1 (15, ¥ 150, (O Lpx15(O) o o L p(Bn) —p(B) _ 1
gt h=0h w(Biin) w(By) h—0 h wu(By) t
Then the remaining arguments are similar to those for nilpotent groups in Section 6.1.1. We
skip it here. O

Remark 6.14. Let A be a semifinite von Neumann algebra. As in Section 6.5, we may
consider the noncommutative maximal inequalities and the a.u. convergence for the sequence
of multipliers (T}, ® ide(N))t on Ly(R% Ly(N)) with symbols () given by (6.13). These
properties indeed follow from Remark 4.6, and the above corollary still holds for (7}, ®idp, ()t
in this noncommutative setting thanks to Lemma 3.6 (2).

The main problem left open at this stage is the following;:

Problem 6.15. Let B and (¢;); be as above. Do we have
Fsup [T (Hllleree < Call flhs - f € L1 (RY)

with a constant Cy depending only on d and B?

Remark 6.16. (1) The answer is well-known to be affirmative if B is a cube (where T,
becomes the classical Fejér mean). See for example [Gra08, Section 3.3.2].

(2) If the boundary of B is sufficiently smooth and has everywhere non-vanishing Gaussian
curvature, the answer is still affirmative. To see this, it suffices to note that ® = (]@)2, and
there is a constant C' > 0 with

(6.14) L5 < CA+[g)~D/2 ceRre

See for instance [Ste93)].
(3) For general symmetric convex bodies, the best estimate is due to the work [BHIO3|:
there is a constant C' > 0 with

/ T5(r6) e < Cr (@)
Sd—l



POINTWISE CONVERGENCE OF NONCOMMUTATIVE FOURIER SERIES 72

for large 7 where S9! is the unit sphere in R?. This estimate has important applications
in the study of distributions of lattice points in convex domains and the Falconer distance
problem etc. Compared with (6.14), this estimate is the spherical average of ®. Can we get
the desired maximal inequality by using this spherical average?

A positive answer to Problem 6.15 would yield the strong type (p, p) estimate for T, for all
p > 1 by interpolation. Recall that the constant C), for the strong type (p,p) estimate can be
taken to be independent of d in Theorem 1.9. So it is natural to raise the following question
in the present setting:

Problem 6.17. Consider the best constant C), 4 > 0 with
500 [Ty (Dl < Coallfllye 1 € L(®Y.

What is the dependence of C), 4 on d? When can we choose C), 4 independent of d?

6.5. Dimension free bounds of noncommutative Hardy-Littlewood maximal oper-
ators. Our results in particular apply to the problem of dimension free estimates for Hardy-
Littlewood maximal operators. Let B be a symmetric convex body in R%. We consider the
associated averages

i (f)(z / f(x dy, feL,(RY, 2Ry t>0.

Let NV be a semifinite von Neumann algebra equipped with a normal semifinite trace v
and L,(R% L,(N)) be the Bochner L,(N)-valued L,-spaces. Recall that we may view the
space Lp(Rd; L,(N)) as a noncommutative L,-space associated with the von Neumann algebra
Loo(RHRN: for any 1 < p < oo,

LP(L“(Rd)®N’/®V) = Lp(Rd§Lp(N))-

We could then extend Bourgain’s results for the corresponding Hardy-Littlewood maximal
operators on noncommutative Ly-spaces Ly,(R%; L,(N)).

Proof of Theorem 1.9. Without loss of generality, we assume p(B) = 1. Let
my(€) = t'Tp-15(6) = Tp(E/1)

be the Fourier transform of the kernel of the above operator ®;. Then we may view ®; as the
Fourier multiplier so that 5;]‘ = my f .

Since the bound of a maximal operator is invariant under invertible linear transforms, thus
by a transform, we can assume that B is in the isotropic position with isotropic constant L =
L(B) (see Lemma 2 in [Bou86a]) and 1 5 satisfies the following estimates (see the computations
in Section 4 of [Bou86a]): there exists a constant ¢ independent of d and B such that

156 < 1-1p(E)| <cLle]  [(VIp(€),8)]<¢,  EeRY

|€|L
On the other hand, setting { = £/t = (&/t)ld:l, we have
d
d d—~,. ¢ olp(¢ 1, —~
@mt(f) = £]1B(C) = e ot 3Cl ; 8l]lB ¥<V]IB(C)7C>-
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Therefore, (my); satisfies (A2) with n = 1. Then, applying Theorem 4.3, Remark 4.5 (2),
Remark 4.6, and Lemma 3.6 (2) to the modified Poisson semigroup (P;r)ier, on R?, we
immediately get the desired assertions (1) and (2) of Theorem 1.9.

We use the similar arguments for higher derivatives:

2 CE0g 0 (Loag oip(C G 9 G olp(C
dtQ“B@—Hat'ag(Hat' o Z e (28T

d d
- 2 [ @ s+ Y Gind, @s(0) ]
=1

l1,la=1

and

3
O (15(0)

d d d
ZClal (]IB(C)) +2 Z CllClQallah (]IB(C)) + Z <l1 glzclsahalzalg (1B<<>)
=1

l1,l2=1 l1,l2,l3=1
Repeating this process, we get

v v d

S0 =23 e Y @ @andy - | (15(0)

k=1 Il =1

where ¢, are constants only depending on k. Recall that

—

0, - O 1 p(C) = ((—QWi)kﬂﬁllﬂflg - 'xlk]lB) (€)-

Then
dv 1 | <& d —~
dtvmt(ﬁ)‘ =% dile Do Gl Gond, 9,150
k= lda =1
1 v d —~
Sv > GG, ((QWi)kmhf%"'l‘lk]lB(UC)> (©)

l1,la- =1

S| [ e Lates).

r\/U

>
>

In particular, if B is the £,-ball with ¢ € 2N, the computations in [Bou87| assert that for any
k > 0 there exists a constant ¢} independent of d such that

< ¢

/ e 2miz.0) (z, Y"1 p(z)dx
Rd

Hence for {4-ball with ¢ € 2N, (my)cr, satisfies (A2) for any n > 0. For any 1 < p < 2,
choosing an 7 large enough (depending on p) and applying Theorem 4.3 (2), Remark 4.6 and
Lemma 3.6 (2), we obtain Theorem 1.9 (3). O
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Remark 6.18. At the moment of writing, it seems that our approach is not enough to
establish dimension free bounds for other ¢,-balls with ¢ € [1,00] \ 2N and new ideas are
certainly required. The corresponding results in the classical setting are given by Miiller
[Miil90] (for ¢ € [1,00) \ 2N) and Bourgain |Boul4| (for ¢ = o0). From Theorem 1.9, it is
naturally conjectured that the noncommutative analogues of their results should still hold.

APPENDIX: FOLNER SEQUENCES IN THE DUAL OF SU(N)

We will prove Proposition 6.6 in this section.

Fisrt, we recall briefly the representation theory of SU(N). For more details, we refer
to [Jon98, Chapter 8]. The irreducible representations of SU(N) can be labeled by N — 1
non-negative integers, and we write set-theoretically Irr(SU(N)) = N¥~1. And moreover, the
decomposition of tensor products into irreducible representations can be described by Young
diagrams. Young diagrams consist of boxes: we stick some boxes together so that the number
of boxes in each consecutive row (from top to bottom) and each consecutive column (from left
to right) does not increase.

Each irreducible representation u(*1:t2tN-1) corresponds to a Young diagrams of the fol-
lowing form:

tN—1 tN_2 to t1
— — N

n

Let a, 8 € Irr(SU(N)). The family of irreducible subrepresentations of the tensor product
a X B corresponds to all the Young diagrams appeared after the following operations. We
denote by X, and Xpg the corresponding Young diagrams of o and 5. We are going to
decompose the tensor product of Young diagrams X, X Xg:

‘ Q1|Q1]|@Q1 Q1‘
X |Q2|Q2|Q2
Qs

The prescription goes like this:
(R1) Start by filling the boxes in the top row of X3 with labels ‘Q1’ and the boxes in the
second row with labels ‘Qg and etc (see the above ﬁgure

(R2) Add boxes |Q , - etc from Xz to X, in order according

to the following rules:

(a) Each time we add a box from to X3 to X, such that the augmented X, diagram
must be again a Young diagram which has at most IV rows.

(b) Boxes with the same label, e.g. 1, must not appear in the same column.

(c) At any given box position, define n; to be the number of Q1’s above and to the right of
it. Define no for Q2 in the similar way, etc. Then we must have n; > ng > ng etc.
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(R3) If two diagrams of the same shape are produced by this process, they are counted as
different only if the labels are differently distributed.
(R4) Cancel columns with N boxes.

For each m € Irr(SU(N)), we denote by X, its corresponding Young diagram. If in the
decomposition of X, X Xg there are at most N different operations of the above form yielding
X, then the multiplicity N;rﬁ equals to V.

Moreover, for an irreducible representation w2 *N-1)  the dimension is given by the
following formula

(A1)
d(ti,te, -+ ,tn—1) = (t1+1)(ta+1) - (tn—1+ 1)

t t t t tN— tN—
.<1+1-;2>(1+ 2‘;3)”'<1+N2‘;N1)

t t t t t t tn_ tn_ tn_
'<1+ 1+ 2+3><1+ 2 + 3+4>'”<1+N3+N2+N1)

3 3 3

t1+ta+-+itn1
(1
(1+ N -1

).
We have the following fact.

Lemma A.1. Let N > 2. Set K, = {0,1,2,--- ,n}N~! C Irr(SU(N)). Then (K,)nen
satisfies the following conditions.

(1) We have

2_ 2_
(n+ D)V 2 <N |Busilo Sy (n+ DY 72 where  Epyy = Kpyi\ K.

(2) For any t,n € N and any a € K, € Ky, all the irreducible subrepresentations of a X
are contained in the finite set K, (n_1), i€ Ng,, =014f B & Ky (n—1)t-

Proof. We write m = (t1,t9,--- ,ty_1) € N¥71 The conjugate representation is given by
T=(tn-1,tN-2, " ,t1)
(1) Denote
N-1 NV - 1)
J’:{L:(ll’l%...,l DENY VIS N-1L1<l <j(N—j), Y 1= }
7=0

Then we may write

de =) Ci(ty + D) (ta + 1) (ty_q + 1)V,
ey

for some constants C] depending only on N, and

=Y Gt + )" (b + 1)ty + 1)
leJ
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with some constants C; depending only on N and

N-1
J=1Q (l1,la, - ,In-1) e NVLV 2 < <25(N —35), ) I;=N(N-1)
7=0

Denote '
Egz—f—l = {(k1>k2a ce >kN—1) € Kpq1: ]€j =n-++ 1}.

By definition, E,11 C U Ef] +1- Therefore,

’En—i—l’w: Z di

kEE?

n+1
= 3 S Gk D (ke 1) (0 2) - (g 1)
keEi L led
3 o D+ 2 4 2 D (g 2 (g 2ot
leJ
= cpmn+ )N 2 = @(n +2)V 2,
led

where 0 = (0,0,---,0). Note that dﬁ is a constant depending only on N. Thus,

N—-1
(n—|—2) -2 N2 +1|w < |Bnlw < Z |En+1|w SN (n+2)
7j=1

(2) This follows directly from the rules of decomposition of tensor product of Young dia-
grams.

O
Proposition A.2 (Proposition 6.6). Let (Ky), and m = (t1,--- ,tn—1) be as above. Set

o () — ity Nagtadls
! dﬂ(Z&gKn d?)

Then

n+1’
where || = max{t; : 1 <i < N —1}.
Proof. Let Ey = Ey\Eg_ for all k > 1. Denote t = |r|, i.e. m € E;. Let n > 1. Define
LK, = {a € K, : 38 € K¢, such that 8 C ar},

02K, = {8 € K¢ : 3a € K,,, such that o C Br}.
Assume first n — (N — 1)t > 0. By Lemma A.1 (2), we know that if a € K,,_(y_1y, all the

irreducible subrepresentations of a X 7 belong to K,, which implies 1K, N Ky (v—1)¢ = 0.
Therefore

n

(A2) [0 Knlw < U veiyss Brlo Sy Y. (e + DV Sy t(n+ )N 2
k=n—(N-1)t+1
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On the other hand, if n — (N — 1)t < 0, then
0L Kl < | Knlw Sy (n+ DNV 71 Sy t(n+ 1)V
Also by Lemma A.1 (2), we have 92K, C Ky (N—1)¢\ K. Therefore,

n+(N-1)t
N— 2_ 2_
02K, < [UZT Y Bl S Y (kDY Sy t(n+ YR,
k=n-+1

Moreover, we have |Kplw = S |Eilw =n (n + 1)™ 1 and by Lemma A.1 (1) we have
N1 <y |Kplw <y n™N° L. Therefore we obtain
|07 Ko | < t(n+1)N2_2 < t
‘Kn|w ~N (n+ 1)N2_1 ~Nop 41

Note that for any o € K,\0LK,, we have a K 7 = @5€KnN57rB. In particular, we see that
ZﬁeKn NZzds = drde and
>ack, Galdads — 3 gek, Nzzds)
dﬂ"Kn|w
. ZaEQ}TKn do(dadr — ZBeKn Ngﬁdﬁ) 10
dT(‘Kn|w

_ 10K <t

T | Kplw Y n+1
For the second inequality, by Lemma A.1 (3) we have

[ns1(m) — n(m)| = (1 = pn(m)) = (1 = oni1(m))]
B

ZaeKn da (Z,BEK;+1 Naﬂiﬁ) ZaeKn+1 do (Z,BEK;_H Naﬁﬁdﬁ)

d7r|Kn’w dﬂ‘Kn+1|w

Brtily (Sock, do (Soers,, Nords))
dw‘Kn|w’Kn+1’w

. ZO{GKn da, (ZBEKTﬁ Ngﬂd6> - ZaeKnH da (ZBGK;H Naﬁﬂdﬁ)
d7'r|Kn+1|w

1 —p(m) =

| Entilw (Xack, dadadr)
o d7r|Kn|w|Kn+1|w

e B
n ZﬁGEn-H dﬁ (ZaEKn N,dea) - ZaEEn-H do‘ (ZﬁGKfL_H NCWdﬂ)

d7r|Kn+1 ’w
‘En%-l‘w (ZaEKn dadadW) 4 ZﬁeEn+1 dﬁdﬁdf + ZaeEnH dadadr
- dﬂ"Kn|w|Kn+1|w dﬂ'|Kn+1|w

[Entilw 1
| K1 |w n+1

<3
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