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Implementing self-* autonomic properties in self-coordinated 

manufacturing processes for the Industry 4.0 context 

Industry 4.0 requires high levels of autonomy in order to guarantee the 

manufacturing processes to achieve production goals. For this, it is needed high 

levels of coordination, cooperation, and collaboration, such that the manufacturing 

process’ actors can communicate and interoperate. A previous paper proposed 

three autonomic cycles of data analytics tasks for self-coordination in 

manufacturing processes. In this paper, we implement one of these autonomic 

cycles, allowing self-supervising of the coordination process. This autonomic cycle 

is designed using the MIDANO’s methodology, and implemented and tested using 

an experimental tool that was developed to replay the production process event 

logs, in order to detect failures and invoke the autonomic cycle for self-healing 

when needed. 

Keywords: Industry 4.0; self-supervising; autonomic computing; process mining; 

self-coordination. 

1. Introduction 

The concept of “Industry 4.0” is projected to bring a variety of benefits to the business, 

such as product customization, efficiency, productivity, quality, among others (Birkel et 

al., 2019; Oesterreich & Teuteberg, 2016).  Lu (2017) affirms that the principles of 

industry 4.0 are interoperability, virtualization, decentralization, real-time capability, 

service orientation, and modularity. In that sense, Pedone & Mezgár (2018) sustains that 

the interoperability of actors allows increasing the flexibility and adaptability of 

manufacturing systems. Consequently, (Liao et al., 2017) says that in Industry 4.0, the 

interoperability principle permits the actors of the manufacturing process to exchange 

information. Particularly, the actors that take place in manufacturing processes has been 

defined in (Sanchez et al., 2019a, 2019b) as: 

• People: Humans behind a human-machine interface (HMI), a wearable device, or 

social networks (Flemisch et al. 2012). Generally, in Industry 4.0, people are not 



directly immersed in the production line, due to the risk that manufacturing 

operation can represent for their life (Dencker et al., 2009; Gaham et al., 2015). 

However, people are expected to collaborate, using an HMI, with other actors, in 

order to improve the production efficiency, enabling factories to become more 

agile and more competitive (Dencker et al., 2009; Gaham et al., 2015). Besides, 

human monitoring will always be essential due to other actors are not able to deal 

with all possible manufacturing scenarios (Pacaux-Lemoine et al., 2017; Romero 

et al., 2016). 

• Data: Databases, unstructured data, or raw data produced by things, services, or 

humans. 

• Things: It represents anything with connectivity capabilities, like sensors, 

actuators, smartphones, smart vehicles, computers, robots, among others (Xu et 

al. 2014). 

• Services: It means anything that can be accessed using a service interface, like a 

Database (DBaaS), Knowledge (KaaS), Software (SaaS), Business Processes 

(BPaaS), among others. (Lee et al., 2015; Vizcarrondo et al. 2017). 

Consequently, Leżański (2017) affirms that the conjunction of hardware devices, 

information technologies, and the control theory, allows increasing the autonomy of 

automated mechanical systems. Moreover, in the Industry 4.0 context, the organizations 

must have the autonomy to schedule tasks for maintenance, failure prediction, 

reconfiguration, and adapt themselves to new requirements and unexpected changes in 

the manufacturing processes (Li et al., 2017; Santos et al., 2017). 

In past researches, we proposed to use autonomic computing in combination with 

the information and communication paradigms to deal with the integrability and 

interoperability challenges in Industry 4.0 (Sanchez et al., 2019b). This combination of 



technologies will allow incrementally, adding self-* properties, such as self-connection, 

self-communication, self-coordination, self-cooperation, and self-collaboration (Sanchez 

et al., 2019b). Like autonomy and autonomic concepts give the impression of having the 

same meaning, it is appropriate to clarify these terms. An autonomous system/process 

refers to a system/process that can be executed from start to finish without human 

intervention (Collier, 2002; Truszkowski et al., 2010). On the other hand, the autonomic 

term is derived from autonomous, and it relates to a metaphor-based on biology, 

specifically, to the ability of the Autonomous Nervous System to reflex reactions 

involuntarily (Morris, 1982; Sterritt & Hinchey, 2005; Truszkowski et al., 2010). 

Consequently, Truszkowski et al. (2010) affirm that autonomy means self-

governance/self-direction, but autonomic is a specialized form of autonomy for self-

management (that means, self-heal, self-protect, self-configure, self-optimize, self-* of 

the process). 

Notably, in previous researches (Sanchez et al., 2019a, 2019b), we have proposed 

an approach to solve the Industry 4.0 integrability and interoperability challenges 

incrementally using a stack of five levels, called the 5C stack levels. In this approach, we 

must start solving the challenges at the level of Connection, next at the Communication 

level, and finally, once that actors can adequately connect and communicate, we can solve 

challenges at the levels of Coordination, Cooperation, and Collaboration, depending on 

the actors and system needs. In this way, we can group challenges and deal with them at 

the proper level. The 5C levels were defined in (Sanchez et al., 2019a, 2019b) as: 

• Connection: links the actors to the network, which means that the actors can 

contact each other (Kumar et al., 2020). The connection is essential to allow 

communication. 



• Communication: lets actors exchange messages, establish a conversation, and 

interact with other actors (Liu et al., 2014; S.-W. Yang & Chen, 2013). Also, 

communication means that actors can understand each other. Connection and 

Communication are essentials to achieve interoperability of the system, as well as 

to allow more elaborated processes like coordination, cooperation, and 

collaboration. 

• Coordination: is an activity carried out by a central actor (or orchestrator) that 

allows coherently to harmonizing the execution of the tasks of a system (intra-

systems integration or vertical integration) (Pietrewicz, 2019; Suali et al., 2017). 

In terms of services, coordination is closely related to the concept of intra-system 

orchestration (internal to a business process or system) (Haupert et al. 2017). 

• Cooperation: According to (Berdal et al., 2019; Pacaux-Lemoine et al., 2017), 

cooperation consists of a negotiation process that allows achieving agreements to 

the actors of the same system (intra-system integration or vertical integration), or 

the entities of two or more systems (inter-systems integration or horizontal 

integration), for the execution of their tasks, in order to accomplish individual 

objectives. Cooperation is related to inter-system orchestration (Haupert et al. 

2017). 

• Collaboration: refers to actors of two or more systems (inter-system) that work 

together in order to achieve a common goal that participants would not be able to 

accomplish alone (Dencker et al., 2009; Wang et al., 2017). Collaboration is 

related to inter-system choreography (interactions between autonomous 

processes) (Haupert et al. 2017). Collaboration does not rely on a central 

coordinator. 



Consequently, the Autonomic computing is a paradigm that allows creating 

flexible, scalable, and adaptive systems (IBM, 2004; Lalanda et al., 2013; Parashar & 

Hariri, 2005; Sterritt & Hinchey, 2005; Vizcarrondo et al., 2012). Those systems can 

change their behaviors, according to their needs, through self-awareness and self-

reference, by using introspection (the system’s ability to monitor and reason about its 

internal status (Vizcarrondo et al., 2017)) and intersection (the program's ability to change 

its execution state (Vizcarrondo et al., 2017))) mechanisms, in order to reason and make 

decisions. Based on this idea, Sanchez, Exposito, & Aguilar (2019a) proposed a 

framework for autonomous integration of actors in manufacturing processes, in the 

context of Industry 4.0. This framework combines the Internet of Everything (IoE) 

(Martino et al., 2018; L. T. Yang et al., 2017) as an integration layer, and the Autonomic 

computing and Everything Mining as a reflective layer, in order to promote the autonomic 

process of self-coordination, self-cooperation and self-collaboration. 

The same work proposes three autonomic cycles of data analytics tasks to promote 

the self-coordination of actors in manufacturing processes. The main idea is that the 

product being manufactured can coordinate its production, giving instructions to other 

actors on how coordinately to produce itself. An autonomic cycle of data analytics tasks 

is defined as a set of data analytics tasks that interoperate together, in order to achieve the 

objectives that satisfy the needs of the managed resources (Aguilar et al., 2017b, 2017c, 

2016). These tasks have different roles in the cycle: Observing the process, analyzing and 

interpreting what happens in it, and making decisions that allow reaching the objective 

for which the cycle was designed. In this sense, each autonomic cycle in (Sanchez et al., 

2019a) has a different goal regarding the autonomic coordination process for 

manufacturing, which are: self-configuration of the manufacturing process (create a plan 

for autonomous coordination of actors), self-supervising of the manufacturing process 



(detect system failures) and self-healing of the manufacturing process (auto repair the 

system). 

On the other hand, an autonomous supervisory system in Industry 4.0 context is a 

system that can perform acquisition of data, context-aware data analysis, and evaluation 

based on both real-time and historical data (Derboul et al., 2018; Tiboni et al., 2019; Y. 

Xu et al., 2017). These data analysis tasks produce information that can be used to gain 

the capabilities of self-awareness and self-maintenance (Lee et al., 2015), which 

contributes considerably to the resilience, automation, and productivity of manufacturing 

processes, because it is possible to make predictive decisions about machinery failures 

and machinery deterioration trends (Dinardo et al., 2018; Lee et al., 2014). Xu et al. 

(2017) establish the importance of having the right diagnostic approach to guarantee the 

safe operation of the equipment. Furthermore, Leżański (2017) affirms that the automatic 

supervision of manufacturing processes belongs to the most advanced features of the 

autonomy of a machine-based system. Besides, other authors insist that the automated 

supervision of machine-based systems has become a necessity (Cao et al., 2019), due that 

a supervisory system can increase their autonomy. 

Based on the previous ideas, this paper presents the implementation of a self-

supervising autonomic cycle for manufacturing (Sanchez et al., 2019a), in a coordination 

context. Our self-supervising autonomic cycle is a supervisory system that uses the 

Autonomic computing paradigm and Everything-mining techniques in order to get useful 

information oriented to detect and manage system failures. This autonomic cycle of self-

supervising has the next features: 

• It uses two everything-mining techniques: process mining and big data mining.  

• The process-mining gets useful insights from the manufacturing process in a 

variety of forms. Firstly, it discovers the manufacturing process flows (Petri net 



or process graph). This graph is used later to show the process behavior 

graphically so that the people actor can supervise and control the manufacturing 

process. However, in this research work, we do not cope with people changing the 

system behavior, because the primary goal of this research is to provide a self-

supervisory system, as a first step to enable autonomic coordination in 

manufacturing systems. Other useful information provided by the Process mining 

is the bottlenecks found in the process (actors that probably present issues), and 

the historical performance of the whole manufacturing process (globally) and 

actors (individually). This information is crucial in order to detect future failures 

in the execution of the actor’s tasks. 

• The data mining builds a predictive model that is used to detect if a product will 

fail or not the quality control test. This model will allow the system to reconfigure 

itself in order to avoid or repair the failures. 

• The everything-mining paradigm gathers the information that is needed by the 

self-supervisory system to make decisions. 

• The concept of an autonomic cycle using everything-mining techniques has not 

been used in the past to build a supervisory system for the Industry 4.0 context.  

This paper is organized as follows: Section 2 presents the related works, Section 3 details 

the functional and technical aspects of our proposed architecture, as well as the design of 

the autonomic cycle for self-supervising. Section 4 shows a case study and the 

instantiation of the autonomic cycle of self-supervising in it. Section 5, exposes the 

results, finishing with some conclusions in Section 6. 



2. Related Works 

This section presents related researches in the field of supervisory systems regarding the 

Industry 4.0 context. Particularly, Xu et al. (2017) developed a Fault Diagnosis System 

using the Industrial Big Data concept (Obitko & Jirkovský, 2015). In the first place, they 

have made a classification of fault diagnosis systems by dividing them into three types. 

• Knowledge-driven models: is applyied to system with a small number of inputs 

and outputs, easy to model, but only for specific type of failures.  

• Data-driven models: this model can increase the diagnostic accuracy and the 

degree of automation using data mining in historical data.  

• Value-driven models: similar to data-driven, but this type of fault diagnosis 

systems use big data and big data analytical methods, to detect particular values 

that are not easily detected by traditional methods.  

In the second place, they introduce a new concept, called Device 

Electrocardiogram (DEKG), which consists of visualizing every event and motion of the 

equipment. Moreover, it can monitor the status of operations through the changes in the 

DEKG, and predict downtimes, in order to provide predictive and proactive maintenance. 

The architecture of a DEKG fault diagnosis system consists of 4 layers: equipment, data 

acquisition, processing, and application. The Equipment Layer is the physical layer, 

where all the equipment is deployed. The Data Acquisition layer gathers and formats 

massive data from the equipment layer. The data collected in the Data Acquisition layer 

are transferred to the Processing layer, where various fault diagnosis methods based on 

big data are used to perform degradation assessment and predictions. Finally, the result 

of the analysis is sent to the Application layer, where it is used to predict, to generate 

warning messages, and to optimize the system. 



Leżański (2017) develops an architecture of a supervisory system for 

manufacturing processes in Industry 4.0. Leżański describes the method that a 

supervisory system must follow for failure detection. The first stage is the sensor stage, 

in which the data are collected using sensors and send to the next stage. The Signal 

Processing stage is where the data is processed. The next stage includes feature extraction 

and selection using Artificial Intelligence methods, find the features that allow the 

development of the different knowledge models. Those models are used in the Fault 

detection & the classification stage for failure detection. Finally, in the control strategy 

stage, a decision-making process takes place, to restore the process to a normal 

operational state. The architecture proposed by Leżański has five components. The first 

component groups the two first stages of the supervisory method described previously, 

and the second component is grouping the last three stages. An adapter is used between 

the first and second components, to transform the data collected from sensors to the data 

format used by the second component. Moreover, the output of the second component is 

transmitted to the client applications, which require specific functionalities of the system. 

Silva et al. (2018) create an Intelligent Data Analysis and Real-Time Supervision 

(IDARTS) framework, with the primary goal of performing data analysis and real-time 

supervision for manufacturing environments. IDARTS combines distributed data 

acquisition, machine learning, and run-time reasoning, to assist in fields like predictive 

maintenance, and quality control. IDARTS was conceived thinking in three principles: 

the integration of physical and software elements (Thought the application of Cyber-

Physical Production Systems (Rojas et al., 2017), abbreviated as CPPS, the data exchange 

between heterogeneous components (using a common data representation and an 

exchange format to ensure interoperability), and the knowledge management and data 

analysis (by employing advanced data analysis and knowledge management methods on 



semantically enriched data acquired by the consists Production System). The IDARTS 

framework is comprised of various modular components. The CPPS is dealing with all 

the activities related to the acquisition and processing of production data. The CPPS 

interacts with the Real-time Data Analysis (RDA) component, which is in charge of 

analysing data during the system’s execution, with the purpose of providing relevant 

information. Finally, the knowledge management component entails the higher-level data 

analysis and the knowledge generation using the historical data as data source aimed to 

provide feedback and updates to the previous modules. The IDARTS paper does not show 

results about the fault detection system. 

Tiboni et al. (2019) present a modular architecture for a supervised, fully 

integrated, and monitored system. The proposed approach is based on commercial 

devices and an Industrial Internet of Things (Elattar et al., 2017; Haupert et al., 2017; L. 

Xu et al., 2014) network. The authors do not give a detailed explanation about how to 

transform a plant into a fully supervised and monitored system, neither about their system 

architecture. Moreover, they have detailed devices that can be used to enable smart 

factory technologies. 

Furthermore, Derboul et al. (2018) present a study of the impact of a SCADA 

(Zhou et al., 2017) system on the performance of production processes. The results of this 

study confirm the positive and direct impact of having industrial supervision in the 

performance of a production system. The study was conducted in a company in which the 

usage of the SCADA systems has allowed them to increase their profits, reduce costs, etc. 

This study is specific to the company that they have studied, which means that this study 

cannot be generalized to other cases or sectors.  

Reis and Gins (2017) provided a study of the evolution of Industrial Process 

Monitoring (IPM). They conclude that metrics like process-oriented targets (production 



throughput, selectivity, product quality) and reliability metrics (service time, down-time, 

the time between failures, failure rate) have a crucial impact on the global performance 

of the company, and should not be handled separately. Moreover, they argue that with 

Prognosis, the IPM will acquire a predictive capability that allows better management of 

manufacturing processes. 

Mangal and Kumar (2016) created a predictive model in the Bosch production 

line using Big Data Analytics methods to detect what parts are most likely to fail the 

quality control test. Moreover, they have made an essential analysis of the Bosch 

Production line datasets, getting useful insights like revealing the anonymized time 

period, which was encoded by Bosch in a different time unit. Those perceptions are 

relatively crucial for our research in order to apply the Everything-mining techniques and 

to build the self-supervisory system correctly. 

Cao et al. (2019), has proposed an ontology that formalizes the domain knowledge 

associated with condition monitoring tasks of manufacturing processes. This ontology 

can be used in an intelligent condition monitoring system to perform fault prognostics 

tasks in manufacturing processes. This ontology approach is focused not only on 

incorporating the knowledge about the prognostic’s tasks, but also including the 

knowledge needed for characterizing the manufacturing actors that are being monitored. 

The ontology consists of three modules: the Manufacturing module, the Context module, 

and the Condition Monitoring module.  The Manufacturing module represents the domain 

according to three elements: Product, Process, and Resources. Product and Process are 

actors involved in the manufacturing process, but the Resources describes the knowledge 

about the resources used to manufacture a product, and how the Process used them for 

that purpose. The context module is used to describe the current state of an entity 

(location, time, activity, and others). The Condition Monitoring module represents the 



essential knowledge needed to describe the machinery operation conditions. A reasoning 

mechanism used over this ontology allows performing machinery state identification and 

error detection. 

On this part of the paper, we are going to use the next set of criteria to compare 

our approach to the previous works (see Table I): 

(1) The number of everything-mining techniques used: This element indicates the 

number of different mining techniques used to build the supervisory system. It is 

supposed that each mining technique exploits a different data source to generate 

a different knowledge, which means that it must be able to detect more different 

failures. 

(2) The type of supervisory system that was built (a. Knowledge-Driven, b. Data-

driven, c. Value-Driven), based on the classification proposed by Y. Xu et al. 

(2017). 

(3) They use process mining techniques: process mining can exploit an event log, 

which is essential for the manufacturing processes in order to get useful insights 

from the system. Explicitly, the process mining technique can be used off-line to 

create a precise representation of the real manufacturing process (model). This 

process model can be fed with new data after each execution of the manufacturing 

process. 

(4) Studied Actors (a. Things, b. Data, c. Services, and d. People): This element 

indicates the data of the actors that the mining techniques will use. If more actors 

are studied, then more information and knowledge can be extracted from the 

system. For the extraction of data from the authors, different mining techniques 

can be used. For example, a thing minings technique can be considered to analyze 

the data directly associated with devices (like DEKG). Sentiment analysis and 



social networks mining are a kind of people mining due that we can get insights 

about people's feels, and how that feels can influence their work, cause 

occupational accidents, among other aspects. Service mining can be used to 

discover new services. Finally, all mining techniques applied to databases, 

unstructured data, or raw data not associated directly with a specific actor, are 

considered as data or semantic mining. 

(5) Scalability: Indicates if the supervisory system supports the future inclusion of 

new mining-techniques or self-* properties. This statement means that the system 

accepts the inclusion of new models created using other mining techniques, 

without rewriting all the supervisory system or add it new self-* properties. 

(6) The autonomy of the supervisory system: This criterion indicates the level of 

independence (None, Low, Medium, High, Fully autonomous) of the supervisory 

system. It means how much the supervisory system can act without human 

participation. 

According to the results shown in Table I, the supervisory systems build in 

previous researches, still have many issues and need many improvements. For instance, 

they only use one type of mining technique, mostly data mining techniques. It means that 

they are not considering useful information that can be found in processes/services, 

people, and things. Moreover, neither previous research works considered process mining 

to analyze the process flow in order to improve its autonomy. Regarding the scalability 

of the system to allow the inclusion of new self-* properties and mining techniques, most 

of the works are not able to include those capabilities easily; it means that the scalability 

of those supervisory systems is not good enough in this sense.  Concerning the autonomy 

of the supervisory system, they still need much work oriented to turn-on autonomy in the 

manufacturing process. 



TABLE I. Related works’ characteristics  

 Criteria 

Research 1 2 3 4 5 6 

(Leżański, 2017) 1 c No b No Low 

(Y. Xu et al., 2017) 1 c No a No Medium 

(Tiboni et al., 2019) 0 n/a No n/a No Low 

(Derboul et al., 2018) 0 a No b No Low 

(Cao et al., 2019) 1 b No a, c Yes Medium 

(Silva et al., 2018) 1 c No b Yes High 

(Reis & Gins, 2017) 0 n/a No n/a n/a None 

(Mangal & Kumar, 2016) 1 c No b No None 

Our approach several b Yes a, b, c, d Yes High 

 

In that sense, this work proposes an autonomic cycle for self-supervising, oriented 

to enable self-coordination in manufacturing processes. It is one of the three autonomic 

cycles that provide the self-coordination capability to the system. The other two cycles 

allow self-planning and self-healing features (Sanchez et al., 2019a). Therefore, the 

previous statement demonstrates the scalability of this system in terms of the inclusion of 

new autonomous capabilities. Also, our autonomic cycle of self-supervising uses two 

everything mining techniques (process mining and data mining), which generate different 

knowledge about the system. 

Additionally, the related works remark deficiencies and future works regarding 

the autonomous supervisory systems for Industry 4.0. For instance: 

• Tiboni et al. (2019) say that the description of the supervisory system’s 

implementation using artificial intelligence tools in a whole plant is a missing 

work. Our paper describes how to combine different artificial intelligence 

techniques and paradigms, in order to implement a self-supervisory system in a 

production plant. 

• Xu et al. (2017) indicate that it would be valuable to fuse different diagnostic 

methods to make maintenance decisions automatically. Our proposed self-

supervising autonomic cycle combines two different everything-mining 



techniques for failure detection and prediction. Besides, one of the everything-

mining techniques is a log-based process mining, which, according to the 

literature review, is a technique that has not been studied to build supervisory 

systems in the Industry 4.0 context. Moreover, the self-supervisory system 

implemented in this paper can autonomously make decisions and start the self-

repairing mechanisms when a failure is detected or predicted.  

• Derboul (2018) suggests that the generalization of the results to other cases is still 

missing work. In that sense, the present paper describes, not only how our 

architecture extends the existing reference architectures for Industry 4.0, but also, 

it shows models, diagrams, and algorithms that could be used to generalize and 

reproduce the present research. 

3. Our Architecture 

3.1. Proposed Autonomic Integration framework (AIFI 4.0) 

In previous research (Sanchez et al., 2019a), we have proposed a framework based on the 

Autonomic Computing paradigm (Lalanda et al., 2013; Parashar & Hariri, 2005; 

Vizcarrondo et al., 2012), the Internet of Everything (IoE),  and the Everything-mining 

(X mining) as crucial elements, to guarantee the autonomy, integrability, and 

interoperability of the actors involved in manufacturing processes by enabling self-* 

properties in the system regarding the Industry 4.0 context (Burns et al., 2019; Liao et al., 

2017).  

Fig. 1 shows the architecture of the proposed framework, which is called AIFI 

4.0. AIFI is composed of three layers. The Physical layer corresponds to the 

manufacturing process itself, where all the actors are involved (Sanchez et al., 2019a). 



From the previous paragraph, it can be seen that the actors of the manufacturing 

process are directly related to the actors of the IoE paradigm. Because of that, the 

Integration Layer is centered on IoE as integration media. IoE guarantees the connectivity 

of the actors. Besides, the main point of this layer is the integrability of actors in the 

manufacturing process by allowing them to connect and to communicate. This business 

process is deployed as a service (BPaaS) in the integration platform. The Integration 

Layer enhances the technical interoperability by defining the infrastructure and protocols 

necessary for the communication of the actors. Some previous works in this domain are 

(Burns et al., 2019; Liao et al., 2017; Liu et al., 2014; Sanchez et al., 2018a, 2018b). 

 

Figure 1. Autonomic Integration framework for Industry 4.0 

 

The Reflective Layer uses the Autonomic Computing paradigm, with the primary 

goal of enhancing the interoperability of actors, so that they can exchange information 

and use it for self-organization, by enabling self-coordination, self-cooperation, and self-

collaboration processes, as autonomic cycles of data analytics tasks. This layer is 



responsible for preparing all the knowledge bases needed to allow the functional and 

semantic interoperability in the system. This interoperability problem has been studied in 

previous researches (Aguilar et al., 2017d; Burns et al., 2019; Kalatzis et al., 2019; Liao 

et al., 2017; Obitko & Jirkovský, 2015; Pedone & Mezgár, 2018; Sanchez et al., 2019a; 

Vizcarrondo et al., 2017). Moreover, this layer allows the deployment of any self-* 

properties into the system to gain adaptability and autonomy capabilities to the 

manufacturing process. The autonomic features described previously are designed as 

autonomic cycles of data analytics tasks. In our case, the Managed Resource is the 

Business Process because it is the element that needs improving its autonomy. 

Consequently, each autonomic cycle requires the utilization of Everything-mining 

techniques, applied to the data sources linked to the production process. The main X-

mining techniques are data mining (big data analysis, unstructured data mining, etc.), 

things mining (Devices mining, etc.), people mining (social network analysis, sentiment 

analysis, among others), and service mining (process mining, service mining, etc.). These 

mining techniques create the knowledge base needed by the autonomic cycles to 

understand the system and to make decisions that might autonomously impact the entire 

process. Consequently, the X-mining techniques discover useful information (from the 

actors) for the self-coordination, self-cooperation, and self-collaboration processes, to get 

an understanding (semantic) about the process to establish a plan defining 

how/when/where the actors must interact oriented to self-organize themselves and to 

guarantee an efficient achievement of their individual and collective goals (Sanchez et 

al., 2019a, 2019b). 

In that sense, an autonomic manager that allows self-coordination in 

manufacturing processes regarding the Industry 4.0 context was proposed by Sanchez et 

al. (2019a). This autonomic manager comprises three autonomic cycles of data analytics 



tasks; they were named ACCI40-*. The first autonomic cycle (ACCI40-1) can build a 

coordination plan for the production process (self-configuration), based on the production 

goals and the current context (availability of the entities, their characteristics, etc.). The 

outcome of this autonomic cycle is the prescriptive model of the coordination plan. 

The second autonomic cycle (ACCI40-2) is in charge of the supervision of the 

execution of the previous plan, to detect failures (self-supervising), and ensure that the 

plan is being executed correctly. The outcome of this cycle is a system's diagnostic model. 

The last autonomic cycle (ACCI40-3) is responsible for the reconfiguration of the 

coordination plan (self-healing) when the ACCI40-2 detects an abnormal situation. 

ACCI40-3 generates a prescriptive model for the reconfiguration of the current 

coordinated process.  

These three autonomic cycles allow the next self-* properties: self-configuration, 

self-supervising, and self-healing, for the coordination of actors in the manufacturing 

process, in order to properly reach the production goals. However, this paper is focused 

on describing how to use the everything-mining and autonomic computing to enable the 

self-supervising autonomic cycle in a manufacturing process in the Industry 4.0. This 

work corresponds to the third layer (coordination) of the 5C integration stack. 

3.2. Design of the Autonomic cycle of self-supervising 

In this sub-section, we detail the design of the ACCI40-2 (The self-supervising autonomic 

cycle). This autonomic cycle was designed following MIDANO’s methodology (Aguilar 

et al., 2017a; Pacheco et al., 2014; Rangel et al., 2013). MIDANO is a methodology used 

for developing data analytics tasks and consists of three phases (see Fig. 2). 

Phase 1: The main goal of this phase is knowing the organization, its processes, 

the experts, among other aspects, such that the goals of the data analytics tasks in the 



organization can be set. Moreover, in this phase, the specification of the autonomic cycles 

for data analysis will be made. 

 

Figure 2. MIDANO’s methodology (Aguilar et al., 2017a; Pacheco et al., 2014; Rangel 

et al., 2013). 

Phase 2: This phase is based on an ETL process (Extraction, Transformation, and 

Load), whose purpose is extracting, transforming and loading the data that will be used 

by the data analytics tasks. A Minable View (MV) is created for this purpose, which 

contains all the useful variables to achieve the goals of the autonomic cycles.  

Phase 3: In this phase, all the data analytics tasks of the autonomic cycle are 

implemented. These tasks allow creating the required knowledge models, such as 

predictive models, descriptive models, etc. This phase ends with the implementation of a 

prototype of the autonomic cycle.  

Mainly, in this paper, we are centered on the autonomic cycle for self-supervising 

(ACCI40-2). This autonomic cycle consists of three data analytics tasks, which are 

detailed below: 

3.2.1. Task 1: Build/update a model of the production process based on historical 

data. 

The characteristics of this task are listed in Table II. This task uses a Process Mining 

technique to create a model that allows identifying the desired patterns for fault detection. 

Essentially, this task allows discovering useful information like the production’s flow, 

problematic stations (bottlenecks), the historical processing time on average for each 



station, as well as the global performance of the whole manufacturing process (throughput 

time). The model created by this task contains all this information, and it is used by Task 

2 and 3 for failure detection. 

TABLE II. Data Analytics Task 1 Characteristics 

Task Name 
Build/update a model of the production process based on 

historical data 

Task Description 
Create/update the manufacturing process model, which give us 

useful information that can be used to detect failures 

Data source Historical data gathered by sensors. 

Data analytics task type Association 

Data analytics technique Process Mining 

Type of knowledge 

model 

Descriptive model 

Related Data analytics 

tasks 

Task 3 

Autonomic cycle task 

type 

Analysis 

3.2.2. Task 2: Build a predictive model for the quality control test based on 

historical data. 

This data analytics task is focused on failures that are detected using a predictive model 

based on data about the quality control test results obtained from each product. The 

predictive model is created using a machine learning technique applied to the quality 

control test results of the products. This model detects failures before each product enters 

in the manufacturing line, and allows repairing the system in order to avoid that failure. 

The characteristics of this task are shown in Table III. 

3.2.3. Task 3: Determine how the coordination plan is currently executing. 

This task uses the current manufacturing events as input in order to detect failures in the 

global performance of the manufacturing process. The failure detection is made based on 

the models created in previous tasks. Firstly, the process model created in Task 1 will 

help in detecting stations’ failures (determine actors that do not guarantee the 

manufacturing process), as well as failures in the global performance of the production 



process. Secondly, the model created in Task 2 is essential to detect whether or not a 

product will pass the quality control test before starting its production. When this task 

detects an anomaly, the autonomic cycle of self-healing is invoked, in order to repair the 

system. The characteristics of this task are shown in Table IV.  

TABLE III. Data Analytics Task 2 Characteristics 

Task Name Build a predictive model based on historical data 

Task Description 
Create a predictive model for failure detection using the quality 

control test result. 

Data source Historical data containing the quality control test result. 

Data analytics task type Classification 

Data analytics technique Neural networks 

Type of knowledge 

model 

Classification model 

Related Data analytics 

tasks 

Task 3 

Autonomic cycle task 

type 

Analysis 

 

TABLE IV. Data Analytics Task 3 Characteristics 

Task Name 
Determine which actors do not guarantee the manufacturing 

process. 

Task Description 
Detect failures using models created in other data analytics 

tasks. 

Data source 
Manufacturing events gathered in the current execution of the 

manufacturing process. 

Data analytics task type Classification 

Data analytics technique Process mining and data mining 

Type of knowledge 

model 

Classification model 

Related Data analytics 

tasks 

Task 1 and Task 2 

Autonomic cycle task 

type 

Decision-making 

Fig. 4 shows the component diagram of the autonomic cycle for the self-

supervising prototype. The Business Process is the component that is supervised. The 

Predictive model is the output of Task 2, while the Process model is the output of Task 1. 

Finally, the diagnostic module characterizes Task 3. The Business process provides the 

categorical, numeric, and date features required by the Predictive model, in order to make 

the quality control test prediction. Similarly, the event log required by the Process model 



to detect failures is provided by the Business Process. The diagnostic module uses the 

event log, the process graph (provided by the Process model), the result from the 

Predictive model, and the result from the Process model, in order to determine the status 

of the manufacturing process (decision-making), and invoke the autonomic cycle for self-

healing when needed.  

 

Figure 4. Autonomic cycle of self-configuring (component diagram). 

4. Case Study 

4.1. Description of the Bosch Production line dataset. 

The dataset used in this research for experimentation corresponds to a  manufacturing 

process of auto parts in the Bosch Industry (Kaggle, 2016). Bosch is an enterprise that 

manufactures parts for car-engines, and it is mainly focused on spark plugs. The 

manufacturing process is driven by a production line with different stations that are in 

charge of assembly, test, etc., each product. 

According to (Mangal & Kumar, 2016; Singla & Agrawal, 2016), the Bosch 

production line training dataset contains 1,183,747 samples (it means, auto parts 

produced). Moreover, the dataset comprises three types of features: 968 numerical 

features, 2140 categorical features, 1156 date-stamps, and a label indicating if the part is 

good or bad (the quality control result). However, this data is completely anonymized, 



that means that we do not have information about the type of product that is being 

manufactured, or the goal of each station in the production line, neither if the station 

corresponds to a device, a person or a service. Nevertheless, (Mangal & Kumar, 2016; 

Singla & Agrawal, 2016) say that there exist 51 stations distributed among four 

production lines. 

Furthermore, like the data is anonymized, the features are labeled following a 

convention that tells the production line, the station on the line, and a feature number. 

E.g., L0_S2_F35 is a feature measured on line 0, station 2, and feature number 35 

(Mangal & Kumar, 2016; Singla & Agrawal, 2016). Besides, each date column ends in a 

number that corresponds to the feature. E.g., the value L3_S51_D4259 is the time at 

which L3_S51_F4259 was taken (Mangal & Kumar, 2016; Singla & Agrawal, 2016). 

Finally, it is essential to remark that the data is highly unbalanced; it means that there are 

6,879 positive cases (failures) and 1,176,868 negative cases (success). 

The Bosch production line also includes a test dataset with 1,183,748 samples. 

Moreover, this dataset does not contain information about the result of the quality control 

process. Additionally, the test dataset follows the same conventions as the training 

dataset.  

One crucial point to consider regarding the Bosch Production Line dataset is that 

it is completely anonymized, which means that the type of contextual information 

included in the dataset and the type of actors that take part in the manufacturing process 

are unknown. In that sense, the Everything-mining paradigm is essential to the objective 

of determining what mining technique will fit the best to extract the information needed 

by the autonomic cycles, and allow the self-supervising of the manufacturing process. 



4.2. Implementation of the autonomic cycle of self-supervising 

In this sub-section, it is detailed the implementation of the autonomic cycle 

described in Section III. The macro algorithm followed to implement this autonomic 

cycle, as well as the technological tool used, are shown in Table V. 

TABLE V. Macro-Algorithms to Implement the Self-Supervising Autonomic Cycle 

Data Analytics Task Macro-algorithm Tools 

Task 1 

1. Extract the manufacturing process event logs 

from the Bosch training dataset. 

2. Apply the process mining algorithm 

3. Create a manufacturing process model. 

Python pandas, 

CSV, DateTime, 

and Numpy, 

Celonis (Celonis 

SE, 2019). 

Task 2 

1. Make the appropriate transformations to the 

Bosch training dataset. 

2. Analyze the training dataset. 

3. Select the machine learning technique that 

best fits the data. 

4. Train the predictive model using the Bosch 

dataset. 

5. Verify the model. 

Python pandas, 

Numpy and 

Keras. 

Task 3 

1. Extract the event logs from the test dataset. 

2. Run each test event log in the process model 

and look for failures in the performance of the 

production process. 

3. Run each test event log in the process model 

and look for failures in the stations of the 

manufacturing process. 

4. Run each test event log in the predictive model, 

and make predictions about the quality control 

test of each product. 

5. If a failure is detected, invoke the autonomic 

process for self-healing. 

Python (Python 

TM, 2019) 

pandas and 

Numpy, C++. 

 

To implement Task 1 was necessary to transform the Bosch dataset into an event 

log due that the Process mining algorithm requires the data in the format shown in Fig. 5.  

 

Figure 5. Event logs format required for process mining.  

 

Where: 

• Case ID: This is an identifier for the auto-part that is being produced.  



• Activity: Represent the stations that constitute the production lines, in which the 

auto-parts are processed.  

• Timestamp: It is a date that indicates when a station starts the processing of the 

auto-part (see Fig. 3). In the Bosch dataset, the format of that value is a decimal 

number, and it does not correspond to the required format of date, as shown in 

Fig. 5. 

• Resource: This is an optional parameter that represents a feature, or a resource 

used in the station that is currently processing the auto-part. This value is not 

considered in our case. 

Consequently, the Bosch manufacturing dataset was transformed to fit the format 

in Fig 5 (the Python algorithm used, can be found in (Sanchez et al., 2019c)). This format 

lets us create a minable view that can be used as data-source for Task 1. The resulting 

minable view is shown in Fig. 6. The significant central transformation made during this 

step concerns the date on which each product was processed for each station. Bosch 

anonymized this value as a decimal number in an unknown format. However, Mangal and 

Kumar (2016) have deduced, after analyzing the correlation of the data, that 0.01 units of 

this value are equivalent to 6 mins.   

 
Figure 6. Event logs produced after transforming the Bosch dataset. 

 

Once the data is in the correct format, we proceed to apply the process mining 

technique using the Celonis tool (Celonis SE, 2019). This step comprises uploading the 



training event logs to Celonis, set the parameters, and start the process mining algorithm. 

Celonis processes the data and returns the discovered process graph.  

Using the knowledge discovered by Celonis, we have built a model of the Bosch 

manufacturing process, that can be used as a knowledge base for decision-making, in 

order to detect failures in future production events (events from the test dataset) of the 

manufacturing process. Firstly, we proceeded to extract the information from Celonis and 

saved it into three CSV files that contain the connection between stations and the stations’ 

processing time. Secondly, it was created a Python script that takes these three files as 

input and generates a single file with all the process model information (this code is 

available at (Sanchez et al., 2019c)). The information saved to this model is shown in Fig. 

7.  

 

Figure 7. Bosch production line process model. 

 

As can be seen, it contains the manufacturing process name, the actors (for 

example, L0_S0 represents the stations number 0 of the production line number 0), the 

avg. production time, the total number of cases uses to build the model, the connections 

among actors (for example, L0_S1=L0_S2;2.0;339345 represents a transition from 

station number 1 to station number 2 in the production line 0), as well as the processing 



time of each station (for example, in the transition L0_S1=L0_S2;2.0;339345; the value 

2.0 represents the processing time in average of the products, and the value 339345 

indicates the number of products used to get that value). 

At this point, we can build a process model using a process mining technique. An 

essential characteristic of our framework is that it allows the model to be validated by an 

expert, which can also incorporate adjustments or make suggestions oriented to improve 

the information contained in the models. 

The second model (Task 2), is a predictive model that was built to detect if an 

auto-part will fail the quality control test. The predictive model is the second model that 

Task 3 uses for the decision-making process. This model can be built because the training 

data contains a column that indicates whether an auto-part fails or pass the quality control 

test. This classification model can predict both results, positive and false quality control 

test results, with a high level of confidence. In this way, a Python script was used to train 

the predictive model using different algorithms. Primarily, we used five different 

classifiers and selected the one that gave us the best results. Those classifiers are: 

• Linear Discriminant Analysis (LDA). It is a commonly used technique for data 

classification, which is typically employed for dimensionality reduction and 

pattern identification (Tharwat et al., 2017).  

• Balanced Random Forest (BRF). Classical Random Forest is an ensemble of 

decision trees used for data classification (Pal, 2005). This paper uses a variation 

of the classical Random Forest Algorithm, which can deal with imbalanced 

classes (Lemaitre et al., 2014b; O’Brien & Ishwaran, 2019). 

• Balanced Bagging (B-B). Bagging consists of an ensemble of classifiers that build 

several estimators on different subsets of data randomly selected (Breiman, 1996; 

Buitinck et al., 2013; Pedregosa et al., 2011). A Balanced Bagging classifier adds 



an extra step oriented to adequately balance the training dataset (Lemaitre et al., 

2014a). 

The training dataset comprises 400,000 entries of a total of 1,183,748. Another 100,000 

entries are used as the testing set. To validate the classification models, we have used 

some metrics commonly used for this kind of machine learning models, such as precision, 

recall, f1-score, accuracy, Matthew's correlation coefficient (MCC), and the Receiver 

operating characteristic (ROC) curves (Singh et al., 2009; Wardhani et al., 2019). Table 

VI shows a summary of those metrics. 

TABLE VI. Result of metrics used to evaluate the classifiers. 

Classifier Class Precision Recall Accuracy F1-Score MCC 

B-RF 
Pass 100.00% 99.99% 99.99% 100.00% 

0.9941 
Fail 98.83% 100.00% 100.00% 99.41% 

B-B 
Pass 100.00% 99.99% 99.99% 100.00% 

0.9957 
Fail 99.16% 100.00% 100.00% 99.58% 

LDA 
Pass 99.31% 99.54% 99.54% 99.42% 

0.17977 
Fail 21.92% 15.69% 15.69% 18.29% 

 

From the previous table, it can be noticed that the Balanced Random Forest 

algorithm shows good results predicting whether each auto-part passes or fails the quality 

control test. Besides, the B-RF MCC is 0.9941, which means that this classifier is good 

predicting both classes (pass and fail). The Balanced Bagging classifier presents similar 

metric values to the B-RF classifier, which indicates that both are good at predicting 

positive and negative values. However, the B-B MCC is a little higher than the B-RF 

MCC, which could indicate that the B-B classifier is better than B-RF. 

Finally, the LDA classifier predicts if an auto-parts pass the quality control test 

with an f1-score of 99.42%, but the f1-score for auto-parts that fails the quality control 

test is 18.29%. Consequently, the MCC for this classifier is 0.17977, which confirms that 

this classifier is not good at predicting both classes. 



Basically, from the previous discussion, it is clear that the B-RF and B-B 

classifiers present the best classification rate for both classes (pass and fail). To decide 

which of these two classifiers will be used by the autonomic cycle, it is needed to use 

another technique to measure the predictive performance of these classifiers. In this sense, 

Fig. 8 presents the ROC curves for both classifiers. 

 

Figure 8. Comparison of B-RF and B-B classifiers using the ROC curves. 

 

The B-RF classifier ROC curve shows that this classifier does not always separate 

the classes correctly with an Area Under the Curve (AUC) of 0.9969. However, regarding 

the B-B classifier, the ROC curve shows that it does a perfect class separation with an 

AUC of 1.0. The previous statement confirms that the B-B classifiers present the best 

results for this dataset. 

In general, if this model gets a false positive (an auto-part that fails the quality 

control test, but the predictor says it passes), the self-healing autonomic cycle does not be 

activated, which means that the self-supervisory system does not comply its design goal. 

If the predictor gets a false negative (an auto-part that passes the quality control test, but 

the predictor says it will fail), then the production process is reconfigured incorrectly. 

However, this issue can be rechecked by the self-healing autonomic cycle, in which case 



the operator must be involved in order to make the correct decision. The lowest those 

situations happen, the best the supervisory system works. 

Task 3 uses all the data analytics models created in Tasks 1 and 2, in order to 

detect and predict failures. The prototype of the autonomic cycle for self-supervising was 

created as a Qt application (The-Qt-Company, 2019). Fig. 9 describes how the people 

actor can interact with this prototype. 

 

Figure 9. Use case of the people actor. 

The Data Scientist is in charge of creating the everything-mining models by 

applying different mining techniques. For this particular research, the Data scientist 

generates a process model and a predictive model applying process mining and data 

mining techniques. The manufacturing process expert must validate the models created 

by the data scientist to guarantee that they represent the real process. Once the everything-

mining models are validated, the operator can use them in the autonomic cycle. One time 

the autonomic cycle is personalized to the supervised process, the operator can see all the 

details about the events of failures and quality control test predictions detected. 



 

Figure 10. Autonomic cycle of self-supervising (sequence diagram). 

 

Notably, this application uses the predictive model in order to predict quality 

control test failures and detects station performance failures and global performance 

failures. Thus, it supports two Everything-mining techniques, process mining and big data 

mining. Fig. 10 shows, more specifically, the functionality of the autonomic cycle of self-

supervising.  

Previous to the start of the manufacturing process, Task 1 (message 1) and Task 

2 (message 2) are invoked, in order to create or update the process and predictive models, 

using the historical data of the Business process. When the manufacturing process starts, 

the Process model component subscribes to the Message queue to get informed about 

each event that happens during the manufacturing process (message 4). In the same way, 

the Predictive model subscribes to the Message queue to get informed about the data 



required to make quality control test predictions (message 4). At the same time, the 

Process model sends the process graph to the diagnostic module (message 3), so that it 

can be aware of the current production process layout.  

While the manufacturing process is running, the Business process sends data to 

the Message queue regularly (message 6). The Message queue module transforms and 

sends the data to the corresponding data analytics model. The process model receives the 

data as event logs (message 11), but the predictive model receives it as features (message 

8). The process and predictive models process the corresponding data and emit the result 

to the Diagnostic module (messages 9, 10, 12, and 13). The Diagnostics module sends the 

results to Task 3 (message 14), in order to determine how the coordination plan is 

currently executing. If any failure is detected, then it is informed to the operator so that 

he/she can be aware of the system events and maybe, can make future decisions if that is 

required (message 15). Next, the autonomic cycle of self-healing is invoked (message 16) 

in order to repair the manufacturing process. Consequently, the Message Queue element 

is a component that resides in the communication layer supported by IoE, which allows 

the integration of the Business Process with the autonomic cycles. 

As can be seen, the operator is not involved in the decision-making process 

because this step corresponds only to the failure detection phase. However, in future 

researches, during the implementation of the self-healing autonomic cycle, the people 

actor must play a role more active, as suggested by Flemisch et al. (2012). In such a case, 

the self-healing process will suggest the operator some fixes, and he/she will decide which 

of the suggestions fit the best to the current failure or propose a different solution. 

Moreover, the system can learn from the operator, in order to improve its 

recommendations (also, it is a topic of future researches). 



 

Figure 11. Self-supervising autonomic cycle prototype. 

 

Fig 11 shows a screenshot of the prototype of the self-supervisory system. This 

prototype allows the operator to define the models must be used for failure detection and 

prediction (in our case, the process and predictive models), and to connect with the testing 

data, in order to replay each event of the manufacturing process and use our autonomic 

cycle for failure detection. The prototype allows the operator starting, stopping, pausing, 

restarting, and accelerating the test of the manufacturing process. Besides, this prototype 

diagnoses the system (predicts quality control test results and detect performance issues) 

and invokes the autonomic cycle autonomously for self-repairing when it is required. In 

this way, it implements our autonomic cycle of self-supervising. 

5. Results and discussion 

5.1. Results 

In this subsection, we will discuss the result obtained in each phase of the supervisory 

system implementation.  



5.1.1. Task 1 

The process mining applied to the Bosch dataset allows us to build a process model for 

failure detection based on the following information. 

 

Figure 12. Min and max number of cases produced daily. 

 

In the first place, 1779 parts are produced daily on average. Moreover, 833 parts 

are the minimum number of parts produced daily, and 3060 is the maximum (see Fig. 12). 

Another essential metric regarding the global performance of the manufacturing process 

is the average Throughput time (see Fig. 13), it indicates that each product is produced in 

environ 107 hours. It means that if during the production process execution, it is detected 

that this value is much higher than 107, then it represents a failure in the general 

performance of the production process. 

 
Figure 13. Throughput time. 



 

Figure 14. Stations with bottlenecks. 

In Fig. 14, stations that present bottleneck are shown. E.g., station 24 can take 

until nine days processing one auto-part before passing it to station 26, affecting 10% of 

all the auto-parts produced. Similarly, the transition from station 26 to station 29 takes 

three days, which affects 19% of all the manufactured auto-parts. In general, the more 

significant bottlenecks are in transitions S24 to S26, S26 to S29, S10 to S29, S11 to S29, 

S9 to S29, and S24 to S24. This information is essential to detect failures in the execution 

of the manufacturing process actor’s tasks, and let us know what stations need special 

attention. 

 

 

Figure 15. Stations workload. 



Likewise, Fig. 15 shows the stations’ workload. In this case, we can see that the 

station with the highest workload is station 37, with 1981 cases by day on average. 

Moreover, station 32 is the station with the lowest workload, only 42 cases by day. This 

statement confirms the insights that Mangal and Kumar (Mangal & Kumar, 2016) 

discover about station 32: “station 32 has the highest error rate. Also, station 32 does not 

process many products. Hence its impact on the production yield is minimal”. 

 

Figure 16. Bosch manufacturing process’ flow. 

 



Regarding the Bosch manufacturing process, Fig. 16 shows the layout of this 

production process, as well as the connections among actors. Each rounded rectangle 

represents one actor (a Bosch station). Lines represent transitions or paths (edges). This 

graph contains useful information about the stations' processing time (avg. time that each 

station takes to process an auto-part). This information is essential to detect failures at the 

stations' levels. Moreover, the prototype application uses this graph in order to know how 

each product is moving thought the production process. 

From Fig. 16 can be deduced that although there are four production lines, they 

are not independent of each other.  

5.1.2. Task 2 

When a product is entering the manufacturing process, the predictive model is used to 

make quality control test predictions. Consequently, this prototype outputs information 

about failure prediction and detection in a dashboard, so that the operator can check what 

is happening in the manufacturing process (see Fig 17). The red circle represents the auto-

parts being manufactured, and its movement thought the production line.  

 

Figure 17. Bosch manufacturing process. 



5.1.3. Task 3. 

In essence, the autonomic cycle is continuously checking the performance of each station. 

If this performance is degraded respect to the value indicated by the process model, then 

the autonomic cycle of self-healing is launched. Similarly, when an auto-part finishes its 

production, this prototype compares the throughput time defined in the process model 

with the current throughput time, and if it is more significant respect to the time defined 

in the model, then the self-healing automatic cycle is launched. Fig. 18 shows the control 

messages about the failures and quality control test predictions. 

 

Figure 18. Self-supervision dashboard. 

 

For instance, Fig. 18 shows failures and predictions. The first four message shows 

that some auto-part will fail the quality control test. Each message happens at different 

times of the day (during the execution of the manufacturing process), and it also shows 

that the autonomic cycle of self-healing was started. Similarly, messages 5 and 7-9, 

indicates that some stations are presenting failures because their performance was 

degraded, and the self-healing autonomic cycle was invoked. 

We have measured the time (average) that this supervisory system takes to make 

a decision. It means, the average time that this supervisory system uses to predict if a 

product will fail or not the quality control test (performance of the classification model), 

as well as the time that the supervisory system employs to detect whether a station is 

working correctly or not (performance of the process mining model). Fig. 19 shows that 

those times have a low rate. It means that the supervisory system can quickly detect or 



predict failures, which also is a desired characteristic in systems that require real-time 

processing (Lu, 2017). 

 

Figure 19. Average time for failure and predictions. 

 

Another important aspect of this supervisory system is that it can be generalized 

to other systems, by using the generic design presented in Section 2. However, the 

everything mining models must be appropriately built to represent the manufacturing 

process being studied. Essentially, our architecture can be used to promote self-* 

capabilities to any system. In part, due to the scalability of our system, and because this 

system is compatible with other reference architectures for Industry 4.0, like RAMI 4.0 

(Pisching et al., 2018; Platform Industry 4.0, 2018), as is shown in Fig. 20. 

 

Figure 20. Compatibility AIFI and RAMI 4.0 
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AIFI 4.0 promotes the inclusion of self-* capabilities, like self-management, self-

supervising, self-repairing, self-healing, etc. into RAMI 4.0, to promote the self-

coordination, self-cooperation, and self-collaboration processes. Besides, the AIFI 

reflective layer brings support to the Information, Functional, and Business layers of 

RAMI. It means that the RAMI 4.0 layers use the knowledge and self-* properties 

deployed in AIFI, to endow autonomy in the manufacturing process. Moreover, The AIFI 

Physical and Integration layers are compatible with the Asset, Integration, and 

Communication layers of RAMI, respectively. 

5.2. Verification of the quality criteria in our approach 

In this subsection, a comparison with previous researches is made using the quality 

criteria defined in Section 2. 

Concerning the Number of Everything-mining techniques used by the supervisory 

system, our self-supervising autonomic cycle uses two Everything-mining techniques. 

Properly, it has used process mining and data mining in order to create a process model 

and a predictive model that help in getting a diagnosis of the current status of the 

manufacturing process, and in initiating the corresponding autonomic cycle of self-

healing if needed. 

Regarding the type of supervisory system that was built (classification made by 

Xu et al. (2017)), our self-supervisory system is a value-driven supervisory system 

because it can detect failures that are not easily detected by traditional methods. In that 

sense, the supervisory system built on this research was tested with an anonymized 

dataset, but even when the dataset is anonymized, Tasks 1 and 2 of the autonomic cycle 

were able to get useful information to diagnose the manufacturing process, make quality 

control test predictions, and detect performance failures. 



About the use of any event-log Process-mining feature, our research is focused on 

the use of the process mining technique, which gave us many insights about the 

manufacturing process, still when the dataset is anonymized. Notably, the process mining 

technique allows: 

• Discovering the manufacturing process’ layout. 

• Discovering problematic stations and statistical data, like the throughput time and 

the average process time of each station, which was useful for failure detection.  

• Detecting the relationship between actors and production lines. Besides, it 

detected that the production lines are not independent and that Line 0 consists of 

two sub-lines.  

This information is not easy to get using other data analytics techniques. This 

statement also proves that this supervisory system is a value-driven supervisory 

system. 

Relating to the Studied Actors, the architecture used in this research considers all 

the actors that can be involved in manufacturing processes. However, in this case study, 

we have worked with two actors: 

• The Process actor was used in Task 1 to extract information about the 

manufacturing process, discover actors, relationships, production, and processing 

times, among others. 

• The Data actor was used in Task 1 and Task 2. Task 1 got historical information 

about the stations’ performance. Consequently, that information was useful for 

failure detection. Task 2 used the data generated by this actor to build the 

predictive model.  



It is important to remark that we do not know which kind of actor represents each 

station because the Bosch dataset is anonymized and does not contain that information. 

Also, in the future, we expect to add support from other actors. 

Concerning the Scalability, our architecture is scalable in many senses:   

• Firstly, it accepts the inclusion of several everything-mining techniques.  

• Secondly, all actors involved in manufacturing processes are considered as part 

of the architecture.  

• Thirdly, this software was conceived to add incrementally other self-* properties 

to gain more and more autonomy with the inclusion of new data analytic 

autonomic cycles. 

• Finally, the use of the Everything-mining techniques ensures the scalability of the 

system to treat any source of information. 

Finally, regarding the Autonomy of the supervisory system, as can be seen from 

Fig. 8, 15, and 16, the system can make decisions for failure detection and quality control 

test predictions by itself (not human acts in the decision-making process to diagnose the 

system). In the future, this system will be able to allow not only self-supervising, but also 

self-planning and self-healing, with a focus on turning the manufacturing process into a 

fully coordinated, cooperative, and collaborative process in the context of Industry 4.0. 

Unfortunately, we cannot establish any quantitative comparison with previous 

researches because most of them do not present quantitative results. Moreover, the few 

papers that show some results in numbers not have any metric that can be used for 

comparison.  



6. Conclusions and Future Works 

Industry 4.0 requires improving the levels of integrability and interoperability in a 

coordinated, cooperative, and collaborative way (Burns et al., 2019; Pietrewicz, 2019). 

This paper presented an architecture for autonomous integration and interoperability of 

actors in the Industry 4.0 context, which combines multiple paradigms to increase the 

autonomy of the manufacturing process. Moreover, this framework intends to increase 

the autonomy of a system by adding incrementally self-* properties. 

The presented architecture serves as a support for other standard reference 

architectures for Industry 4.0, like RAMI 4.0 and IIRA (Lin et al., 2015). This research is 

not intending to replace the existing standards, but extends with solutions to deal with the 

challenges of Industry 4.0 not covered by the existing frameworks. 

Specifically, this paper shows the implementation of the autonomic cycle of self-

supervising as the first step towards self-coordinated manufacturing processes. The 

implementation of the autonomic cycle of self-supervising was detailed methodologically 

using MIDANO, allowing us to reach the desired results. It means that this autonomic 

cycle reached its designed goals of failure detection and quality control test predictions, 

intending to improve the autonomy of the manufacturing process. 

Regarding the adaptability and scalability of this research to more complex 

systems, implies to join the system’s experts with the data scientists in order to catch the 

data for the creating and validation of everything mining models, such as the 

manufacturing process model, the predictive models, and other models used to measure 

the devices’ health. Particularly, this study was conducted over a vast and intricate 

manufacturing process, as the Bosh Production Line, which not only contains a 

considerable quantity of actors, but also generates a large quantity of imbalanced data. 

The results of this research work show that everything mining techniques are necessary 

to deal with the issue related to the self-organization of manufacturing processes. 



Consequently, this study can serve as a guide to incorporate self-supervising properties 

to other manufacturing systems. 

The results of this study allowed us to confirm the positive impact of combining 

the Autonomic computing paradigm, the Internet of Everything, and the Everything-

mining, oriented to enable self-coordinated manufacturing processes in the context of 

Industry 4.0. Also, the main contributions of this research are: 

• The capacity to support several Everything-mining techniques. Each mining 

technique improves the knowledge of the system, and by consequence, the 

decision-making processes. 

• The integration of all actors involved in manufacturing processes, such as Thing, 

Data, People, and Services. 

• The support for self-* properties that are added incrementally, guaranteeing, in 

this sense, the scalability of the system. 

• The support for real-time analysis and decision-making.  

• The capacity of diagnosing the system and to launch the self-healing autonomic 

cycle. 

Future works are oriented to implement the autonomic cycles of self-configuring 

and self-healing, as well as the self-cooperation and self-collaboration autonomic 

managers, in order to turn manufacturing processes into a fully integrated and 

autonomous manufacturing system. Additionally, other features will be added to the 

prototype application developed in this research, so that it can support other Everything-

mining techniques, in order to turn the manufacturing process into a smart and self-

coordinated production system. Besides, in the future, we are planning to add one thing 

mining data analytical technique as DEKG, to get a proper failure diagnostic and increase 



the number of failures that this system can detect. Concerning the scalability and 

adaptability of the self-supervising autonomic cycle presented in this paper to more 

complex use cases, it will be deeply addressed in future works.  

Moreover, another future work is related to the utilization of our architecture in 

the real world. For that, we need to create a digital twin of all actors involved in the 

manufacturing process, so that each actor has its digital counterpart (Burns et al., 2019). 

Multi-agent systems can be useful for this task (Terán et al., 2017), or another platform, 

such as ROS Industrial (ROS Industrial, 2018). In this sense, a previous work conducted 

by Aguilar et al. (2017d) details how to deal with issues related to the bidirectional 

communication of software agents and cloud-services, naturally. Next, a message queue 

management system is essential to allow the autonomic cycles to receive the information 

or events needed to make decisions, using the existing everything-mining models. The 

digital counterpart of actors will be able to get information from the actor and activate its 

effectors so that they can act according to the orders given by the autonomic cycles, and 

change the environment according to the current requirements and context. 
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