
HAL Id: hal-02956700
https://cnrs.hal.science/hal-02956700v1

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Implementing self-* autonomic properties in
self-coordinated manufacturing processes for the

Industry 4.0 context
Manuel Sanchez, E. Exposito, J. Aguilar

To cite this version:
Manuel Sanchez, E. Exposito, J. Aguilar. Implementing self-* autonomic properties in self-coordinated
manufacturing processes for the Industry 4.0 context. Computers in Industry, 2020, 121, pp.103247.
�10.1016/j.compind.2020.103247�. �hal-02956700�

https://cnrs.hal.science/hal-02956700v1
https://hal.archives-ouvertes.fr

Implementing self-* autonomic properties in self-coordinated

manufacturing processes for the Industry 4.0 context

M. Sáncheza,b,c,d* and E. Expositob,d and J. Aguilarc,d,e

aDepartment of Informatics Engineering, Universidad Nacional Experimental del

Táchira, San Cristóbal, Venezuela; bUniversité de Pau et des Pays de l’Adour, E2S

UPPA, LIUPPA, Anglet, France; cCEMISID, University of the Andes, Mérida,

Venezuela;
dTepuy R+D Group. Artificial Intelligence Software Development. Mérida,

Venezuela; e
 Department of Informatics and Systems, Universidad EAFIT, Medellin,

Colombia.

mbsanchez@unet.edu.ve, UNET, Edificio C, Dpto. Ing. en Informática, Av. Paramillo

Universidad, San Cristóbal 5001, Táchira, Venezuela *corresponding author

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0166361520304814
Manuscript_dd8910ced07d0c8ff3f71a5ddcb9ebb4

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0166361520304814
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0166361520304814

Implementing self-* autonomic properties in self-coordinated

manufacturing processes for the Industry 4.0 context

Industry 4.0 requires high levels of autonomy in order to guarantee the

manufacturing processes to achieve production goals. For this, it is needed high

levels of coordination, cooperation, and collaboration, such that the manufacturing

process’ actors can communicate and interoperate. A previous paper proposed

three autonomic cycles of data analytics tasks for self-coordination in

manufacturing processes. In this paper, we implement one of these autonomic

cycles, allowing self-supervising of the coordination process. This autonomic cycle

is designed using the MIDANO’s methodology, and implemented and tested using

an experimental tool that was developed to replay the production process event

logs, in order to detect failures and invoke the autonomic cycle for self-healing

when needed.

Keywords: Industry 4.0; self-supervising; autonomic computing; process mining;

self-coordination.

1. Introduction

The concept of “Industry 4.0” is projected to bring a variety of benefits to the business,

such as product customization, efficiency, productivity, quality, among others (Birkel et

al., 2019; Oesterreich & Teuteberg, 2016). Lu (2017) affirms that the principles of

industry 4.0 are interoperability, virtualization, decentralization, real-time capability,

service orientation, and modularity. In that sense, Pedone & Mezgár (2018) sustains that

the interoperability of actors allows increasing the flexibility and adaptability of

manufacturing systems. Consequently, (Liao et al., 2017) says that in Industry 4.0, the

interoperability principle permits the actors of the manufacturing process to exchange

information. Particularly, the actors that take place in manufacturing processes has been

defined in (Sanchez et al., 2019a, 2019b) as:

• People: Humans behind a human-machine interface (HMI), a wearable device, or

social networks (Flemisch et al. 2012). Generally, in Industry 4.0, people are not

directly immersed in the production line, due to the risk that manufacturing

operation can represent for their life (Dencker et al., 2009; Gaham et al., 2015).

However, people are expected to collaborate, using an HMI, with other actors, in

order to improve the production efficiency, enabling factories to become more

agile and more competitive (Dencker et al., 2009; Gaham et al., 2015). Besides,

human monitoring will always be essential due to other actors are not able to deal

with all possible manufacturing scenarios (Pacaux-Lemoine et al., 2017; Romero

et al., 2016).

• Data: Databases, unstructured data, or raw data produced by things, services, or

humans.

• Things: It represents anything with connectivity capabilities, like sensors,

actuators, smartphones, smart vehicles, computers, robots, among others (Xu et

al. 2014).

• Services: It means anything that can be accessed using a service interface, like a

Database (DBaaS), Knowledge (KaaS), Software (SaaS), Business Processes

(BPaaS), among others. (Lee et al., 2015; Vizcarrondo et al. 2017).

Consequently, Leżański (2017) affirms that the conjunction of hardware devices,

information technologies, and the control theory, allows increasing the autonomy of

automated mechanical systems. Moreover, in the Industry 4.0 context, the organizations

must have the autonomy to schedule tasks for maintenance, failure prediction,

reconfiguration, and adapt themselves to new requirements and unexpected changes in

the manufacturing processes (Li et al., 2017; Santos et al., 2017).

In past researches, we proposed to use autonomic computing in combination with

the information and communication paradigms to deal with the integrability and

interoperability challenges in Industry 4.0 (Sanchez et al., 2019b). This combination of

technologies will allow incrementally, adding self-* properties, such as self-connection,

self-communication, self-coordination, self-cooperation, and self-collaboration (Sanchez

et al., 2019b). Like autonomy and autonomic concepts give the impression of having the

same meaning, it is appropriate to clarify these terms. An autonomous system/process

refers to a system/process that can be executed from start to finish without human

intervention (Collier, 2002; Truszkowski et al., 2010). On the other hand, the autonomic

term is derived from autonomous, and it relates to a metaphor-based on biology,

specifically, to the ability of the Autonomous Nervous System to reflex reactions

involuntarily (Morris, 1982; Sterritt & Hinchey, 2005; Truszkowski et al., 2010).

Consequently, Truszkowski et al. (2010) affirm that autonomy means self-

governance/self-direction, but autonomic is a specialized form of autonomy for self-

management (that means, self-heal, self-protect, self-configure, self-optimize, self-* of

the process).

Notably, in previous researches (Sanchez et al., 2019a, 2019b), we have proposed

an approach to solve the Industry 4.0 integrability and interoperability challenges

incrementally using a stack of five levels, called the 5C stack levels. In this approach, we

must start solving the challenges at the level of Connection, next at the Communication

level, and finally, once that actors can adequately connect and communicate, we can solve

challenges at the levels of Coordination, Cooperation, and Collaboration, depending on

the actors and system needs. In this way, we can group challenges and deal with them at

the proper level. The 5C levels were defined in (Sanchez et al., 2019a, 2019b) as:

• Connection: links the actors to the network, which means that the actors can

contact each other (Kumar et al., 2020). The connection is essential to allow

communication.

• Communication: lets actors exchange messages, establish a conversation, and

interact with other actors (Liu et al., 2014; S.-W. Yang & Chen, 2013). Also,

communication means that actors can understand each other. Connection and

Communication are essentials to achieve interoperability of the system, as well as

to allow more elaborated processes like coordination, cooperation, and

collaboration.

• Coordination: is an activity carried out by a central actor (or orchestrator) that

allows coherently to harmonizing the execution of the tasks of a system (intra-

systems integration or vertical integration) (Pietrewicz, 2019; Suali et al., 2017).

In terms of services, coordination is closely related to the concept of intra-system

orchestration (internal to a business process or system) (Haupert et al. 2017).

• Cooperation: According to (Berdal et al., 2019; Pacaux-Lemoine et al., 2017),

cooperation consists of a negotiation process that allows achieving agreements to

the actors of the same system (intra-system integration or vertical integration), or

the entities of two or more systems (inter-systems integration or horizontal

integration), for the execution of their tasks, in order to accomplish individual

objectives. Cooperation is related to inter-system orchestration (Haupert et al.

2017).

• Collaboration: refers to actors of two or more systems (inter-system) that work

together in order to achieve a common goal that participants would not be able to

accomplish alone (Dencker et al., 2009; Wang et al., 2017). Collaboration is

related to inter-system choreography (interactions between autonomous

processes) (Haupert et al. 2017). Collaboration does not rely on a central

coordinator.

Consequently, the Autonomic computing is a paradigm that allows creating

flexible, scalable, and adaptive systems (IBM, 2004; Lalanda et al., 2013; Parashar &

Hariri, 2005; Sterritt & Hinchey, 2005; Vizcarrondo et al., 2012). Those systems can

change their behaviors, according to their needs, through self-awareness and self-

reference, by using introspection (the system’s ability to monitor and reason about its

internal status (Vizcarrondo et al., 2017)) and intersection (the program's ability to change

its execution state (Vizcarrondo et al., 2017))) mechanisms, in order to reason and make

decisions. Based on this idea, Sanchez, Exposito, & Aguilar (2019a) proposed a

framework for autonomous integration of actors in manufacturing processes, in the

context of Industry 4.0. This framework combines the Internet of Everything (IoE)

(Martino et al., 2018; L. T. Yang et al., 2017) as an integration layer, and the Autonomic

computing and Everything Mining as a reflective layer, in order to promote the autonomic

process of self-coordination, self-cooperation and self-collaboration.

The same work proposes three autonomic cycles of data analytics tasks to promote

the self-coordination of actors in manufacturing processes. The main idea is that the

product being manufactured can coordinate its production, giving instructions to other

actors on how coordinately to produce itself. An autonomic cycle of data analytics tasks

is defined as a set of data analytics tasks that interoperate together, in order to achieve the

objectives that satisfy the needs of the managed resources (Aguilar et al., 2017b, 2017c,

2016). These tasks have different roles in the cycle: Observing the process, analyzing and

interpreting what happens in it, and making decisions that allow reaching the objective

for which the cycle was designed. In this sense, each autonomic cycle in (Sanchez et al.,

2019a) has a different goal regarding the autonomic coordination process for

manufacturing, which are: self-configuration of the manufacturing process (create a plan

for autonomous coordination of actors), self-supervising of the manufacturing process

(detect system failures) and self-healing of the manufacturing process (auto repair the

system).

On the other hand, an autonomous supervisory system in Industry 4.0 context is a

system that can perform acquisition of data, context-aware data analysis, and evaluation

based on both real-time and historical data (Derboul et al., 2018; Tiboni et al., 2019; Y.

Xu et al., 2017). These data analysis tasks produce information that can be used to gain

the capabilities of self-awareness and self-maintenance (Lee et al., 2015), which

contributes considerably to the resilience, automation, and productivity of manufacturing

processes, because it is possible to make predictive decisions about machinery failures

and machinery deterioration trends (Dinardo et al., 2018; Lee et al., 2014). Xu et al.

(2017) establish the importance of having the right diagnostic approach to guarantee the

safe operation of the equipment. Furthermore, Leżański (2017) affirms that the automatic

supervision of manufacturing processes belongs to the most advanced features of the

autonomy of a machine-based system. Besides, other authors insist that the automated

supervision of machine-based systems has become a necessity (Cao et al., 2019), due that

a supervisory system can increase their autonomy.

Based on the previous ideas, this paper presents the implementation of a self-

supervising autonomic cycle for manufacturing (Sanchez et al., 2019a), in a coordination

context. Our self-supervising autonomic cycle is a supervisory system that uses the

Autonomic computing paradigm and Everything-mining techniques in order to get useful

information oriented to detect and manage system failures. This autonomic cycle of self-

supervising has the next features:

• It uses two everything-mining techniques: process mining and big data mining.

• The process-mining gets useful insights from the manufacturing process in a

variety of forms. Firstly, it discovers the manufacturing process flows (Petri net

or process graph). This graph is used later to show the process behavior

graphically so that the people actor can supervise and control the manufacturing

process. However, in this research work, we do not cope with people changing the

system behavior, because the primary goal of this research is to provide a self-

supervisory system, as a first step to enable autonomic coordination in

manufacturing systems. Other useful information provided by the Process mining

is the bottlenecks found in the process (actors that probably present issues), and

the historical performance of the whole manufacturing process (globally) and

actors (individually). This information is crucial in order to detect future failures

in the execution of the actor’s tasks.

• The data mining builds a predictive model that is used to detect if a product will

fail or not the quality control test. This model will allow the system to reconfigure

itself in order to avoid or repair the failures.

• The everything-mining paradigm gathers the information that is needed by the

self-supervisory system to make decisions.

• The concept of an autonomic cycle using everything-mining techniques has not

been used in the past to build a supervisory system for the Industry 4.0 context.

This paper is organized as follows: Section 2 presents the related works, Section 3 details

the functional and technical aspects of our proposed architecture, as well as the design of

the autonomic cycle for self-supervising. Section 4 shows a case study and the

instantiation of the autonomic cycle of self-supervising in it. Section 5, exposes the

results, finishing with some conclusions in Section 6.

2. Related Works

This section presents related researches in the field of supervisory systems regarding the

Industry 4.0 context. Particularly, Xu et al. (2017) developed a Fault Diagnosis System

using the Industrial Big Data concept (Obitko & Jirkovský, 2015). In the first place, they

have made a classification of fault diagnosis systems by dividing them into three types.

• Knowledge-driven models: is applyied to system with a small number of inputs

and outputs, easy to model, but only for specific type of failures.

• Data-driven models: this model can increase the diagnostic accuracy and the

degree of automation using data mining in historical data.

• Value-driven models: similar to data-driven, but this type of fault diagnosis

systems use big data and big data analytical methods, to detect particular values

that are not easily detected by traditional methods.

In the second place, they introduce a new concept, called Device

Electrocardiogram (DEKG), which consists of visualizing every event and motion of the

equipment. Moreover, it can monitor the status of operations through the changes in the

DEKG, and predict downtimes, in order to provide predictive and proactive maintenance.

The architecture of a DEKG fault diagnosis system consists of 4 layers: equipment, data

acquisition, processing, and application. The Equipment Layer is the physical layer,

where all the equipment is deployed. The Data Acquisition layer gathers and formats

massive data from the equipment layer. The data collected in the Data Acquisition layer

are transferred to the Processing layer, where various fault diagnosis methods based on

big data are used to perform degradation assessment and predictions. Finally, the result

of the analysis is sent to the Application layer, where it is used to predict, to generate

warning messages, and to optimize the system.

Leżański (2017) develops an architecture of a supervisory system for

manufacturing processes in Industry 4.0. Leżański describes the method that a

supervisory system must follow for failure detection. The first stage is the sensor stage,

in which the data are collected using sensors and send to the next stage. The Signal

Processing stage is where the data is processed. The next stage includes feature extraction

and selection using Artificial Intelligence methods, find the features that allow the

development of the different knowledge models. Those models are used in the Fault

detection & the classification stage for failure detection. Finally, in the control strategy

stage, a decision-making process takes place, to restore the process to a normal

operational state. The architecture proposed by Leżański has five components. The first

component groups the two first stages of the supervisory method described previously,

and the second component is grouping the last three stages. An adapter is used between

the first and second components, to transform the data collected from sensors to the data

format used by the second component. Moreover, the output of the second component is

transmitted to the client applications, which require specific functionalities of the system.

Silva et al. (2018) create an Intelligent Data Analysis and Real-Time Supervision

(IDARTS) framework, with the primary goal of performing data analysis and real-time

supervision for manufacturing environments. IDARTS combines distributed data

acquisition, machine learning, and run-time reasoning, to assist in fields like predictive

maintenance, and quality control. IDARTS was conceived thinking in three principles:

the integration of physical and software elements (Thought the application of Cyber-

Physical Production Systems (Rojas et al., 2017), abbreviated as CPPS, the data exchange

between heterogeneous components (using a common data representation and an

exchange format to ensure interoperability), and the knowledge management and data

analysis (by employing advanced data analysis and knowledge management methods on

semantically enriched data acquired by the consists Production System). The IDARTS

framework is comprised of various modular components. The CPPS is dealing with all

the activities related to the acquisition and processing of production data. The CPPS

interacts with the Real-time Data Analysis (RDA) component, which is in charge of

analysing data during the system’s execution, with the purpose of providing relevant

information. Finally, the knowledge management component entails the higher-level data

analysis and the knowledge generation using the historical data as data source aimed to

provide feedback and updates to the previous modules. The IDARTS paper does not show

results about the fault detection system.

Tiboni et al. (2019) present a modular architecture for a supervised, fully

integrated, and monitored system. The proposed approach is based on commercial

devices and an Industrial Internet of Things (Elattar et al., 2017; Haupert et al., 2017; L.

Xu et al., 2014) network. The authors do not give a detailed explanation about how to

transform a plant into a fully supervised and monitored system, neither about their system

architecture. Moreover, they have detailed devices that can be used to enable smart

factory technologies.

Furthermore, Derboul et al. (2018) present a study of the impact of a SCADA

(Zhou et al., 2017) system on the performance of production processes. The results of this

study confirm the positive and direct impact of having industrial supervision in the

performance of a production system. The study was conducted in a company in which the

usage of the SCADA systems has allowed them to increase their profits, reduce costs, etc.

This study is specific to the company that they have studied, which means that this study

cannot be generalized to other cases or sectors.

Reis and Gins (2017) provided a study of the evolution of Industrial Process

Monitoring (IPM). They conclude that metrics like process-oriented targets (production

throughput, selectivity, product quality) and reliability metrics (service time, down-time,

the time between failures, failure rate) have a crucial impact on the global performance

of the company, and should not be handled separately. Moreover, they argue that with

Prognosis, the IPM will acquire a predictive capability that allows better management of

manufacturing processes.

Mangal and Kumar (2016) created a predictive model in the Bosch production

line using Big Data Analytics methods to detect what parts are most likely to fail the

quality control test. Moreover, they have made an essential analysis of the Bosch

Production line datasets, getting useful insights like revealing the anonymized time

period, which was encoded by Bosch in a different time unit. Those perceptions are

relatively crucial for our research in order to apply the Everything-mining techniques and

to build the self-supervisory system correctly.

Cao et al. (2019), has proposed an ontology that formalizes the domain knowledge

associated with condition monitoring tasks of manufacturing processes. This ontology

can be used in an intelligent condition monitoring system to perform fault prognostics

tasks in manufacturing processes. This ontology approach is focused not only on

incorporating the knowledge about the prognostic’s tasks, but also including the

knowledge needed for characterizing the manufacturing actors that are being monitored.

The ontology consists of three modules: the Manufacturing module, the Context module,

and the Condition Monitoring module. The Manufacturing module represents the domain

according to three elements: Product, Process, and Resources. Product and Process are

actors involved in the manufacturing process, but the Resources describes the knowledge

about the resources used to manufacture a product, and how the Process used them for

that purpose. The context module is used to describe the current state of an entity

(location, time, activity, and others). The Condition Monitoring module represents the

essential knowledge needed to describe the machinery operation conditions. A reasoning

mechanism used over this ontology allows performing machinery state identification and

error detection.

On this part of the paper, we are going to use the next set of criteria to compare

our approach to the previous works (see Table I):

(1) The number of everything-mining techniques used: This element indicates the

number of different mining techniques used to build the supervisory system. It is

supposed that each mining technique exploits a different data source to generate

a different knowledge, which means that it must be able to detect more different

failures.

(2) The type of supervisory system that was built (a. Knowledge-Driven, b. Data-

driven, c. Value-Driven), based on the classification proposed by Y. Xu et al.

(2017).

(3) They use process mining techniques: process mining can exploit an event log,

which is essential for the manufacturing processes in order to get useful insights

from the system. Explicitly, the process mining technique can be used off-line to

create a precise representation of the real manufacturing process (model). This

process model can be fed with new data after each execution of the manufacturing

process.

(4) Studied Actors (a. Things, b. Data, c. Services, and d. People): This element

indicates the data of the actors that the mining techniques will use. If more actors

are studied, then more information and knowledge can be extracted from the

system. For the extraction of data from the authors, different mining techniques

can be used. For example, a thing minings technique can be considered to analyze

the data directly associated with devices (like DEKG). Sentiment analysis and

social networks mining are a kind of people mining due that we can get insights

about people's feels, and how that feels can influence their work, cause

occupational accidents, among other aspects. Service mining can be used to

discover new services. Finally, all mining techniques applied to databases,

unstructured data, or raw data not associated directly with a specific actor, are

considered as data or semantic mining.

(5) Scalability: Indicates if the supervisory system supports the future inclusion of

new mining-techniques or self-* properties. This statement means that the system

accepts the inclusion of new models created using other mining techniques,

without rewriting all the supervisory system or add it new self-* properties.

(6) The autonomy of the supervisory system: This criterion indicates the level of

independence (None, Low, Medium, High, Fully autonomous) of the supervisory

system. It means how much the supervisory system can act without human

participation.

According to the results shown in Table I, the supervisory systems build in

previous researches, still have many issues and need many improvements. For instance,

they only use one type of mining technique, mostly data mining techniques. It means that

they are not considering useful information that can be found in processes/services,

people, and things. Moreover, neither previous research works considered process mining

to analyze the process flow in order to improve its autonomy. Regarding the scalability

of the system to allow the inclusion of new self-* properties and mining techniques, most

of the works are not able to include those capabilities easily; it means that the scalability

of those supervisory systems is not good enough in this sense. Concerning the autonomy

of the supervisory system, they still need much work oriented to turn-on autonomy in the

manufacturing process.

TABLE I. Related works’ characteristics

 Criteria

Research 1 2 3 4 5 6

(Leżański, 2017) 1 c No b No Low

(Y. Xu et al., 2017) 1 c No a No Medium

(Tiboni et al., 2019) 0 n/a No n/a No Low

(Derboul et al., 2018) 0 a No b No Low

(Cao et al., 2019) 1 b No a, c Yes Medium

(Silva et al., 2018) 1 c No b Yes High

(Reis & Gins, 2017) 0 n/a No n/a n/a None

(Mangal & Kumar, 2016) 1 c No b No None

Our approach several b Yes a, b, c, d Yes High

In that sense, this work proposes an autonomic cycle for self-supervising, oriented

to enable self-coordination in manufacturing processes. It is one of the three autonomic

cycles that provide the self-coordination capability to the system. The other two cycles

allow self-planning and self-healing features (Sanchez et al., 2019a). Therefore, the

previous statement demonstrates the scalability of this system in terms of the inclusion of

new autonomous capabilities. Also, our autonomic cycle of self-supervising uses two

everything mining techniques (process mining and data mining), which generate different

knowledge about the system.

Additionally, the related works remark deficiencies and future works regarding

the autonomous supervisory systems for Industry 4.0. For instance:

• Tiboni et al. (2019) say that the description of the supervisory system’s

implementation using artificial intelligence tools in a whole plant is a missing

work. Our paper describes how to combine different artificial intelligence

techniques and paradigms, in order to implement a self-supervisory system in a

production plant.

• Xu et al. (2017) indicate that it would be valuable to fuse different diagnostic

methods to make maintenance decisions automatically. Our proposed self-

supervising autonomic cycle combines two different everything-mining

techniques for failure detection and prediction. Besides, one of the everything-

mining techniques is a log-based process mining, which, according to the

literature review, is a technique that has not been studied to build supervisory

systems in the Industry 4.0 context. Moreover, the self-supervisory system

implemented in this paper can autonomously make decisions and start the self-

repairing mechanisms when a failure is detected or predicted.

• Derboul (2018) suggests that the generalization of the results to other cases is still

missing work. In that sense, the present paper describes, not only how our

architecture extends the existing reference architectures for Industry 4.0, but also,

it shows models, diagrams, and algorithms that could be used to generalize and

reproduce the present research.

3. Our Architecture

3.1. Proposed Autonomic Integration framework (AIFI 4.0)

In previous research (Sanchez et al., 2019a), we have proposed a framework based on the

Autonomic Computing paradigm (Lalanda et al., 2013; Parashar & Hariri, 2005;

Vizcarrondo et al., 2012), the Internet of Everything (IoE), and the Everything-mining

(X mining) as crucial elements, to guarantee the autonomy, integrability, and

interoperability of the actors involved in manufacturing processes by enabling self-*

properties in the system regarding the Industry 4.0 context (Burns et al., 2019; Liao et al.,

2017).

Fig. 1 shows the architecture of the proposed framework, which is called AIFI

4.0. AIFI is composed of three layers. The Physical layer corresponds to the

manufacturing process itself, where all the actors are involved (Sanchez et al., 2019a).

From the previous paragraph, it can be seen that the actors of the manufacturing

process are directly related to the actors of the IoE paradigm. Because of that, the

Integration Layer is centered on IoE as integration media. IoE guarantees the connectivity

of the actors. Besides, the main point of this layer is the integrability of actors in the

manufacturing process by allowing them to connect and to communicate. This business

process is deployed as a service (BPaaS) in the integration platform. The Integration

Layer enhances the technical interoperability by defining the infrastructure and protocols

necessary for the communication of the actors. Some previous works in this domain are

(Burns et al., 2019; Liao et al., 2017; Liu et al., 2014; Sanchez et al., 2018a, 2018b).

Figure 1. Autonomic Integration framework for Industry 4.0

The Reflective Layer uses the Autonomic Computing paradigm, with the primary

goal of enhancing the interoperability of actors, so that they can exchange information

and use it for self-organization, by enabling self-coordination, self-cooperation, and self-

collaboration processes, as autonomic cycles of data analytics tasks. This layer is

responsible for preparing all the knowledge bases needed to allow the functional and

semantic interoperability in the system. This interoperability problem has been studied in

previous researches (Aguilar et al., 2017d; Burns et al., 2019; Kalatzis et al., 2019; Liao

et al., 2017; Obitko & Jirkovský, 2015; Pedone & Mezgár, 2018; Sanchez et al., 2019a;

Vizcarrondo et al., 2017). Moreover, this layer allows the deployment of any self-*

properties into the system to gain adaptability and autonomy capabilities to the

manufacturing process. The autonomic features described previously are designed as

autonomic cycles of data analytics tasks. In our case, the Managed Resource is the

Business Process because it is the element that needs improving its autonomy.

Consequently, each autonomic cycle requires the utilization of Everything-mining

techniques, applied to the data sources linked to the production process. The main X-

mining techniques are data mining (big data analysis, unstructured data mining, etc.),

things mining (Devices mining, etc.), people mining (social network analysis, sentiment

analysis, among others), and service mining (process mining, service mining, etc.). These

mining techniques create the knowledge base needed by the autonomic cycles to

understand the system and to make decisions that might autonomously impact the entire

process. Consequently, the X-mining techniques discover useful information (from the

actors) for the self-coordination, self-cooperation, and self-collaboration processes, to get

an understanding (semantic) about the process to establish a plan defining

how/when/where the actors must interact oriented to self-organize themselves and to

guarantee an efficient achievement of their individual and collective goals (Sanchez et

al., 2019a, 2019b).

In that sense, an autonomic manager that allows self-coordination in

manufacturing processes regarding the Industry 4.0 context was proposed by Sanchez et

al. (2019a). This autonomic manager comprises three autonomic cycles of data analytics

tasks; they were named ACCI40-*. The first autonomic cycle (ACCI40-1) can build a

coordination plan for the production process (self-configuration), based on the production

goals and the current context (availability of the entities, their characteristics, etc.). The

outcome of this autonomic cycle is the prescriptive model of the coordination plan.

The second autonomic cycle (ACCI40-2) is in charge of the supervision of the

execution of the previous plan, to detect failures (self-supervising), and ensure that the

plan is being executed correctly. The outcome of this cycle is a system's diagnostic model.

The last autonomic cycle (ACCI40-3) is responsible for the reconfiguration of the

coordination plan (self-healing) when the ACCI40-2 detects an abnormal situation.

ACCI40-3 generates a prescriptive model for the reconfiguration of the current

coordinated process.

These three autonomic cycles allow the next self-* properties: self-configuration,

self-supervising, and self-healing, for the coordination of actors in the manufacturing

process, in order to properly reach the production goals. However, this paper is focused

on describing how to use the everything-mining and autonomic computing to enable the

self-supervising autonomic cycle in a manufacturing process in the Industry 4.0. This

work corresponds to the third layer (coordination) of the 5C integration stack.

3.2. Design of the Autonomic cycle of self-supervising

In this sub-section, we detail the design of the ACCI40-2 (The self-supervising autonomic

cycle). This autonomic cycle was designed following MIDANO’s methodology (Aguilar

et al., 2017a; Pacheco et al., 2014; Rangel et al., 2013). MIDANO is a methodology used

for developing data analytics tasks and consists of three phases (see Fig. 2).

Phase 1: The main goal of this phase is knowing the organization, its processes,

the experts, among other aspects, such that the goals of the data analytics tasks in the

organization can be set. Moreover, in this phase, the specification of the autonomic cycles

for data analysis will be made.

Figure 2. MIDANO’s methodology (Aguilar et al., 2017a; Pacheco et al., 2014; Rangel

et al., 2013).

Phase 2: This phase is based on an ETL process (Extraction, Transformation, and

Load), whose purpose is extracting, transforming and loading the data that will be used

by the data analytics tasks. A Minable View (MV) is created for this purpose, which

contains all the useful variables to achieve the goals of the autonomic cycles.

Phase 3: In this phase, all the data analytics tasks of the autonomic cycle are

implemented. These tasks allow creating the required knowledge models, such as

predictive models, descriptive models, etc. This phase ends with the implementation of a

prototype of the autonomic cycle.

Mainly, in this paper, we are centered on the autonomic cycle for self-supervising

(ACCI40-2). This autonomic cycle consists of three data analytics tasks, which are

detailed below:

3.2.1. Task 1: Build/update a model of the production process based on historical

data.

The characteristics of this task are listed in Table II. This task uses a Process Mining

technique to create a model that allows identifying the desired patterns for fault detection.

Essentially, this task allows discovering useful information like the production’s flow,

problematic stations (bottlenecks), the historical processing time on average for each

station, as well as the global performance of the whole manufacturing process (throughput

time). The model created by this task contains all this information, and it is used by Task

2 and 3 for failure detection.

TABLE II. Data Analytics Task 1 Characteristics

Task Name
Build/update a model of the production process based on

historical data

Task Description
Create/update the manufacturing process model, which give us

useful information that can be used to detect failures

Data source Historical data gathered by sensors.

Data analytics task type Association

Data analytics technique Process Mining

Type of knowledge

model

Descriptive model

Related Data analytics

tasks

Task 3

Autonomic cycle task

type

Analysis

3.2.2. Task 2: Build a predictive model for the quality control test based on

historical data.

This data analytics task is focused on failures that are detected using a predictive model

based on data about the quality control test results obtained from each product. The

predictive model is created using a machine learning technique applied to the quality

control test results of the products. This model detects failures before each product enters

in the manufacturing line, and allows repairing the system in order to avoid that failure.

The characteristics of this task are shown in Table III.

3.2.3. Task 3: Determine how the coordination plan is currently executing.

This task uses the current manufacturing events as input in order to detect failures in the

global performance of the manufacturing process. The failure detection is made based on

the models created in previous tasks. Firstly, the process model created in Task 1 will

help in detecting stations’ failures (determine actors that do not guarantee the

manufacturing process), as well as failures in the global performance of the production

process. Secondly, the model created in Task 2 is essential to detect whether or not a

product will pass the quality control test before starting its production. When this task

detects an anomaly, the autonomic cycle of self-healing is invoked, in order to repair the

system. The characteristics of this task are shown in Table IV.

TABLE III. Data Analytics Task 2 Characteristics

Task Name Build a predictive model based on historical data

Task Description
Create a predictive model for failure detection using the quality

control test result.

Data source Historical data containing the quality control test result.

Data analytics task type Classification

Data analytics technique Neural networks

Type of knowledge

model

Classification model

Related Data analytics

tasks

Task 3

Autonomic cycle task

type

Analysis

TABLE IV. Data Analytics Task 3 Characteristics

Task Name
Determine which actors do not guarantee the manufacturing

process.

Task Description
Detect failures using models created in other data analytics

tasks.

Data source
Manufacturing events gathered in the current execution of the

manufacturing process.

Data analytics task type Classification

Data analytics technique Process mining and data mining

Type of knowledge

model

Classification model

Related Data analytics

tasks

Task 1 and Task 2

Autonomic cycle task

type

Decision-making

Fig. 4 shows the component diagram of the autonomic cycle for the self-

supervising prototype. The Business Process is the component that is supervised. The

Predictive model is the output of Task 2, while the Process model is the output of Task 1.

Finally, the diagnostic module characterizes Task 3. The Business process provides the

categorical, numeric, and date features required by the Predictive model, in order to make

the quality control test prediction. Similarly, the event log required by the Process model

to detect failures is provided by the Business Process. The diagnostic module uses the

event log, the process graph (provided by the Process model), the result from the

Predictive model, and the result from the Process model, in order to determine the status

of the manufacturing process (decision-making), and invoke the autonomic cycle for self-

healing when needed.

Figure 4. Autonomic cycle of self-configuring (component diagram).

4. Case Study

4.1. Description of the Bosch Production line dataset.

The dataset used in this research for experimentation corresponds to a manufacturing

process of auto parts in the Bosch Industry (Kaggle, 2016). Bosch is an enterprise that

manufactures parts for car-engines, and it is mainly focused on spark plugs. The

manufacturing process is driven by a production line with different stations that are in

charge of assembly, test, etc., each product.

According to (Mangal & Kumar, 2016; Singla & Agrawal, 2016), the Bosch

production line training dataset contains 1,183,747 samples (it means, auto parts

produced). Moreover, the dataset comprises three types of features: 968 numerical

features, 2140 categorical features, 1156 date-stamps, and a label indicating if the part is

good or bad (the quality control result). However, this data is completely anonymized,

that means that we do not have information about the type of product that is being

manufactured, or the goal of each station in the production line, neither if the station

corresponds to a device, a person or a service. Nevertheless, (Mangal & Kumar, 2016;

Singla & Agrawal, 2016) say that there exist 51 stations distributed among four

production lines.

Furthermore, like the data is anonymized, the features are labeled following a

convention that tells the production line, the station on the line, and a feature number.

E.g., L0_S2_F35 is a feature measured on line 0, station 2, and feature number 35

(Mangal & Kumar, 2016; Singla & Agrawal, 2016). Besides, each date column ends in a

number that corresponds to the feature. E.g., the value L3_S51_D4259 is the time at

which L3_S51_F4259 was taken (Mangal & Kumar, 2016; Singla & Agrawal, 2016).

Finally, it is essential to remark that the data is highly unbalanced; it means that there are

6,879 positive cases (failures) and 1,176,868 negative cases (success).

The Bosch production line also includes a test dataset with 1,183,748 samples.

Moreover, this dataset does not contain information about the result of the quality control

process. Additionally, the test dataset follows the same conventions as the training

dataset.

One crucial point to consider regarding the Bosch Production Line dataset is that

it is completely anonymized, which means that the type of contextual information

included in the dataset and the type of actors that take part in the manufacturing process

are unknown. In that sense, the Everything-mining paradigm is essential to the objective

of determining what mining technique will fit the best to extract the information needed

by the autonomic cycles, and allow the self-supervising of the manufacturing process.

4.2. Implementation of the autonomic cycle of self-supervising

In this sub-section, it is detailed the implementation of the autonomic cycle

described in Section III. The macro algorithm followed to implement this autonomic

cycle, as well as the technological tool used, are shown in Table V.

TABLE V. Macro-Algorithms to Implement the Self-Supervising Autonomic Cycle

Data Analytics Task Macro-algorithm Tools

Task 1

1. Extract the manufacturing process event logs

from the Bosch training dataset.

2. Apply the process mining algorithm

3. Create a manufacturing process model.

Python pandas,

CSV, DateTime,

and Numpy,

Celonis (Celonis

SE, 2019).

Task 2

1. Make the appropriate transformations to the

Bosch training dataset.

2. Analyze the training dataset.

3. Select the machine learning technique that

best fits the data.

4. Train the predictive model using the Bosch

dataset.

5. Verify the model.

Python pandas,

Numpy and

Keras.

Task 3

1. Extract the event logs from the test dataset.

2. Run each test event log in the process model

and look for failures in the performance of the

production process.

3. Run each test event log in the process model

and look for failures in the stations of the

manufacturing process.

4. Run each test event log in the predictive model,

and make predictions about the quality control

test of each product.

5. If a failure is detected, invoke the autonomic

process for self-healing.

Python (Python

TM, 2019)

pandas and

Numpy, C++.

To implement Task 1 was necessary to transform the Bosch dataset into an event

log due that the Process mining algorithm requires the data in the format shown in Fig. 5.

Figure 5. Event logs format required for process mining.

Where:

• Case ID: This is an identifier for the auto-part that is being produced.

• Activity: Represent the stations that constitute the production lines, in which the

auto-parts are processed.

• Timestamp: It is a date that indicates when a station starts the processing of the

auto-part (see Fig. 3). In the Bosch dataset, the format of that value is a decimal

number, and it does not correspond to the required format of date, as shown in

Fig. 5.

• Resource: This is an optional parameter that represents a feature, or a resource

used in the station that is currently processing the auto-part. This value is not

considered in our case.

Consequently, the Bosch manufacturing dataset was transformed to fit the format

in Fig 5 (the Python algorithm used, can be found in (Sanchez et al., 2019c)). This format

lets us create a minable view that can be used as data-source for Task 1. The resulting

minable view is shown in Fig. 6. The significant central transformation made during this

step concerns the date on which each product was processed for each station. Bosch

anonymized this value as a decimal number in an unknown format. However, Mangal and

Kumar (2016) have deduced, after analyzing the correlation of the data, that 0.01 units of

this value are equivalent to 6 mins.

Figure 6. Event logs produced after transforming the Bosch dataset.

Once the data is in the correct format, we proceed to apply the process mining

technique using the Celonis tool (Celonis SE, 2019). This step comprises uploading the

training event logs to Celonis, set the parameters, and start the process mining algorithm.

Celonis processes the data and returns the discovered process graph.

Using the knowledge discovered by Celonis, we have built a model of the Bosch

manufacturing process, that can be used as a knowledge base for decision-making, in

order to detect failures in future production events (events from the test dataset) of the

manufacturing process. Firstly, we proceeded to extract the information from Celonis and

saved it into three CSV files that contain the connection between stations and the stations’

processing time. Secondly, it was created a Python script that takes these three files as

input and generates a single file with all the process model information (this code is

available at (Sanchez et al., 2019c)). The information saved to this model is shown in Fig.

7.

Figure 7. Bosch production line process model.

As can be seen, it contains the manufacturing process name, the actors (for

example, L0_S0 represents the stations number 0 of the production line number 0), the

avg. production time, the total number of cases uses to build the model, the connections

among actors (for example, L0_S1=L0_S2;2.0;339345 represents a transition from

station number 1 to station number 2 in the production line 0), as well as the processing

time of each station (for example, in the transition L0_S1=L0_S2;2.0;339345; the value

2.0 represents the processing time in average of the products, and the value 339345

indicates the number of products used to get that value).

At this point, we can build a process model using a process mining technique. An

essential characteristic of our framework is that it allows the model to be validated by an

expert, which can also incorporate adjustments or make suggestions oriented to improve

the information contained in the models.

The second model (Task 2), is a predictive model that was built to detect if an

auto-part will fail the quality control test. The predictive model is the second model that

Task 3 uses for the decision-making process. This model can be built because the training

data contains a column that indicates whether an auto-part fails or pass the quality control

test. This classification model can predict both results, positive and false quality control

test results, with a high level of confidence. In this way, a Python script was used to train

the predictive model using different algorithms. Primarily, we used five different

classifiers and selected the one that gave us the best results. Those classifiers are:

• Linear Discriminant Analysis (LDA). It is a commonly used technique for data

classification, which is typically employed for dimensionality reduction and

pattern identification (Tharwat et al., 2017).

• Balanced Random Forest (BRF). Classical Random Forest is an ensemble of

decision trees used for data classification (Pal, 2005). This paper uses a variation

of the classical Random Forest Algorithm, which can deal with imbalanced

classes (Lemaitre et al., 2014b; O’Brien & Ishwaran, 2019).

• Balanced Bagging (B-B). Bagging consists of an ensemble of classifiers that build

several estimators on different subsets of data randomly selected (Breiman, 1996;

Buitinck et al., 2013; Pedregosa et al., 2011). A Balanced Bagging classifier adds

an extra step oriented to adequately balance the training dataset (Lemaitre et al.,

2014a).

The training dataset comprises 400,000 entries of a total of 1,183,748. Another 100,000

entries are used as the testing set. To validate the classification models, we have used

some metrics commonly used for this kind of machine learning models, such as precision,

recall, f1-score, accuracy, Matthew's correlation coefficient (MCC), and the Receiver

operating characteristic (ROC) curves (Singh et al., 2009; Wardhani et al., 2019). Table

VI shows a summary of those metrics.

TABLE VI. Result of metrics used to evaluate the classifiers.

Classifier Class Precision Recall Accuracy F1-Score MCC

B-RF
Pass 100.00% 99.99% 99.99% 100.00%

0.9941
Fail 98.83% 100.00% 100.00% 99.41%

B-B
Pass 100.00% 99.99% 99.99% 100.00%

0.9957
Fail 99.16% 100.00% 100.00% 99.58%

LDA
Pass 99.31% 99.54% 99.54% 99.42%

0.17977
Fail 21.92% 15.69% 15.69% 18.29%

From the previous table, it can be noticed that the Balanced Random Forest

algorithm shows good results predicting whether each auto-part passes or fails the quality

control test. Besides, the B-RF MCC is 0.9941, which means that this classifier is good

predicting both classes (pass and fail). The Balanced Bagging classifier presents similar

metric values to the B-RF classifier, which indicates that both are good at predicting

positive and negative values. However, the B-B MCC is a little higher than the B-RF

MCC, which could indicate that the B-B classifier is better than B-RF.

Finally, the LDA classifier predicts if an auto-parts pass the quality control test

with an f1-score of 99.42%, but the f1-score for auto-parts that fails the quality control

test is 18.29%. Consequently, the MCC for this classifier is 0.17977, which confirms that

this classifier is not good at predicting both classes.

Basically, from the previous discussion, it is clear that the B-RF and B-B

classifiers present the best classification rate for both classes (pass and fail). To decide

which of these two classifiers will be used by the autonomic cycle, it is needed to use

another technique to measure the predictive performance of these classifiers. In this sense,

Fig. 8 presents the ROC curves for both classifiers.

Figure 8. Comparison of B-RF and B-B classifiers using the ROC curves.

The B-RF classifier ROC curve shows that this classifier does not always separate

the classes correctly with an Area Under the Curve (AUC) of 0.9969. However, regarding

the B-B classifier, the ROC curve shows that it does a perfect class separation with an

AUC of 1.0. The previous statement confirms that the B-B classifiers present the best

results for this dataset.

In general, if this model gets a false positive (an auto-part that fails the quality

control test, but the predictor says it passes), the self-healing autonomic cycle does not be

activated, which means that the self-supervisory system does not comply its design goal.

If the predictor gets a false negative (an auto-part that passes the quality control test, but

the predictor says it will fail), then the production process is reconfigured incorrectly.

However, this issue can be rechecked by the self-healing autonomic cycle, in which case

the operator must be involved in order to make the correct decision. The lowest those

situations happen, the best the supervisory system works.

Task 3 uses all the data analytics models created in Tasks 1 and 2, in order to

detect and predict failures. The prototype of the autonomic cycle for self-supervising was

created as a Qt application (The-Qt-Company, 2019). Fig. 9 describes how the people

actor can interact with this prototype.

Figure 9. Use case of the people actor.

The Data Scientist is in charge of creating the everything-mining models by

applying different mining techniques. For this particular research, the Data scientist

generates a process model and a predictive model applying process mining and data

mining techniques. The manufacturing process expert must validate the models created

by the data scientist to guarantee that they represent the real process. Once the everything-

mining models are validated, the operator can use them in the autonomic cycle. One time

the autonomic cycle is personalized to the supervised process, the operator can see all the

details about the events of failures and quality control test predictions detected.

Figure 10. Autonomic cycle of self-supervising (sequence diagram).

Notably, this application uses the predictive model in order to predict quality

control test failures and detects station performance failures and global performance

failures. Thus, it supports two Everything-mining techniques, process mining and big data

mining. Fig. 10 shows, more specifically, the functionality of the autonomic cycle of self-

supervising.

Previous to the start of the manufacturing process, Task 1 (message 1) and Task

2 (message 2) are invoked, in order to create or update the process and predictive models,

using the historical data of the Business process. When the manufacturing process starts,

the Process model component subscribes to the Message queue to get informed about

each event that happens during the manufacturing process (message 4). In the same way,

the Predictive model subscribes to the Message queue to get informed about the data

required to make quality control test predictions (message 4). At the same time, the

Process model sends the process graph to the diagnostic module (message 3), so that it

can be aware of the current production process layout.

While the manufacturing process is running, the Business process sends data to

the Message queue regularly (message 6). The Message queue module transforms and

sends the data to the corresponding data analytics model. The process model receives the

data as event logs (message 11), but the predictive model receives it as features (message

8). The process and predictive models process the corresponding data and emit the result

to the Diagnostic module (messages 9, 10, 12, and 13). The Diagnostics module sends the

results to Task 3 (message 14), in order to determine how the coordination plan is

currently executing. If any failure is detected, then it is informed to the operator so that

he/she can be aware of the system events and maybe, can make future decisions if that is

required (message 15). Next, the autonomic cycle of self-healing is invoked (message 16)

in order to repair the manufacturing process. Consequently, the Message Queue element

is a component that resides in the communication layer supported by IoE, which allows

the integration of the Business Process with the autonomic cycles.

As can be seen, the operator is not involved in the decision-making process

because this step corresponds only to the failure detection phase. However, in future

researches, during the implementation of the self-healing autonomic cycle, the people

actor must play a role more active, as suggested by Flemisch et al. (2012). In such a case,

the self-healing process will suggest the operator some fixes, and he/she will decide which

of the suggestions fit the best to the current failure or propose a different solution.

Moreover, the system can learn from the operator, in order to improve its

recommendations (also, it is a topic of future researches).

Figure 11. Self-supervising autonomic cycle prototype.

Fig 11 shows a screenshot of the prototype of the self-supervisory system. This

prototype allows the operator to define the models must be used for failure detection and

prediction (in our case, the process and predictive models), and to connect with the testing

data, in order to replay each event of the manufacturing process and use our autonomic

cycle for failure detection. The prototype allows the operator starting, stopping, pausing,

restarting, and accelerating the test of the manufacturing process. Besides, this prototype

diagnoses the system (predicts quality control test results and detect performance issues)

and invokes the autonomic cycle autonomously for self-repairing when it is required. In

this way, it implements our autonomic cycle of self-supervising.

5. Results and discussion

5.1. Results

In this subsection, we will discuss the result obtained in each phase of the supervisory

system implementation.

5.1.1. Task 1

The process mining applied to the Bosch dataset allows us to build a process model for

failure detection based on the following information.

Figure 12. Min and max number of cases produced daily.

In the first place, 1779 parts are produced daily on average. Moreover, 833 parts

are the minimum number of parts produced daily, and 3060 is the maximum (see Fig. 12).

Another essential metric regarding the global performance of the manufacturing process

is the average Throughput time (see Fig. 13), it indicates that each product is produced in

environ 107 hours. It means that if during the production process execution, it is detected

that this value is much higher than 107, then it represents a failure in the general

performance of the production process.

Figure 13. Throughput time.

Figure 14. Stations with bottlenecks.

In Fig. 14, stations that present bottleneck are shown. E.g., station 24 can take

until nine days processing one auto-part before passing it to station 26, affecting 10% of

all the auto-parts produced. Similarly, the transition from station 26 to station 29 takes

three days, which affects 19% of all the manufactured auto-parts. In general, the more

significant bottlenecks are in transitions S24 to S26, S26 to S29, S10 to S29, S11 to S29,

S9 to S29, and S24 to S24. This information is essential to detect failures in the execution

of the manufacturing process actor’s tasks, and let us know what stations need special

attention.

Figure 15. Stations workload.

Likewise, Fig. 15 shows the stations’ workload. In this case, we can see that the

station with the highest workload is station 37, with 1981 cases by day on average.

Moreover, station 32 is the station with the lowest workload, only 42 cases by day. This

statement confirms the insights that Mangal and Kumar (Mangal & Kumar, 2016)

discover about station 32: “station 32 has the highest error rate. Also, station 32 does not

process many products. Hence its impact on the production yield is minimal”.

Figure 16. Bosch manufacturing process’ flow.

Regarding the Bosch manufacturing process, Fig. 16 shows the layout of this

production process, as well as the connections among actors. Each rounded rectangle

represents one actor (a Bosch station). Lines represent transitions or paths (edges). This

graph contains useful information about the stations' processing time (avg. time that each

station takes to process an auto-part). This information is essential to detect failures at the

stations' levels. Moreover, the prototype application uses this graph in order to know how

each product is moving thought the production process.

From Fig. 16 can be deduced that although there are four production lines, they

are not independent of each other.

5.1.2. Task 2

When a product is entering the manufacturing process, the predictive model is used to

make quality control test predictions. Consequently, this prototype outputs information

about failure prediction and detection in a dashboard, so that the operator can check what

is happening in the manufacturing process (see Fig 17). The red circle represents the auto-

parts being manufactured, and its movement thought the production line.

Figure 17. Bosch manufacturing process.

5.1.3. Task 3.

In essence, the autonomic cycle is continuously checking the performance of each station.

If this performance is degraded respect to the value indicated by the process model, then

the autonomic cycle of self-healing is launched. Similarly, when an auto-part finishes its

production, this prototype compares the throughput time defined in the process model

with the current throughput time, and if it is more significant respect to the time defined

in the model, then the self-healing automatic cycle is launched. Fig. 18 shows the control

messages about the failures and quality control test predictions.

Figure 18. Self-supervision dashboard.

For instance, Fig. 18 shows failures and predictions. The first four message shows

that some auto-part will fail the quality control test. Each message happens at different

times of the day (during the execution of the manufacturing process), and it also shows

that the autonomic cycle of self-healing was started. Similarly, messages 5 and 7-9,

indicates that some stations are presenting failures because their performance was

degraded, and the self-healing autonomic cycle was invoked.

We have measured the time (average) that this supervisory system takes to make

a decision. It means, the average time that this supervisory system uses to predict if a

product will fail or not the quality control test (performance of the classification model),

as well as the time that the supervisory system employs to detect whether a station is

working correctly or not (performance of the process mining model). Fig. 19 shows that

those times have a low rate. It means that the supervisory system can quickly detect or

predict failures, which also is a desired characteristic in systems that require real-time

processing (Lu, 2017).

Figure 19. Average time for failure and predictions.

Another important aspect of this supervisory system is that it can be generalized

to other systems, by using the generic design presented in Section 2. However, the

everything mining models must be appropriately built to represent the manufacturing

process being studied. Essentially, our architecture can be used to promote self-*

capabilities to any system. In part, due to the scalability of our system, and because this

system is compatible with other reference architectures for Industry 4.0, like RAMI 4.0

(Pisching et al., 2018; Platform Industry 4.0, 2018), as is shown in Fig. 20.

Figure 20. Compatibility AIFI and RAMI 4.0

0.001

0.013

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Avg. time for failure detection Avg. Time for quality control test

prediction

A
v
g

.
T

im
e

 (
m

s)

AIFI 4.0 promotes the inclusion of self-* capabilities, like self-management, self-

supervising, self-repairing, self-healing, etc. into RAMI 4.0, to promote the self-

coordination, self-cooperation, and self-collaboration processes. Besides, the AIFI

reflective layer brings support to the Information, Functional, and Business layers of

RAMI. It means that the RAMI 4.0 layers use the knowledge and self-* properties

deployed in AIFI, to endow autonomy in the manufacturing process. Moreover, The AIFI

Physical and Integration layers are compatible with the Asset, Integration, and

Communication layers of RAMI, respectively.

5.2. Verification of the quality criteria in our approach

In this subsection, a comparison with previous researches is made using the quality

criteria defined in Section 2.

Concerning the Number of Everything-mining techniques used by the supervisory

system, our self-supervising autonomic cycle uses two Everything-mining techniques.

Properly, it has used process mining and data mining in order to create a process model

and a predictive model that help in getting a diagnosis of the current status of the

manufacturing process, and in initiating the corresponding autonomic cycle of self-

healing if needed.

Regarding the type of supervisory system that was built (classification made by

Xu et al. (2017)), our self-supervisory system is a value-driven supervisory system

because it can detect failures that are not easily detected by traditional methods. In that

sense, the supervisory system built on this research was tested with an anonymized

dataset, but even when the dataset is anonymized, Tasks 1 and 2 of the autonomic cycle

were able to get useful information to diagnose the manufacturing process, make quality

control test predictions, and detect performance failures.

About the use of any event-log Process-mining feature, our research is focused on

the use of the process mining technique, which gave us many insights about the

manufacturing process, still when the dataset is anonymized. Notably, the process mining

technique allows:

• Discovering the manufacturing process’ layout.

• Discovering problematic stations and statistical data, like the throughput time and

the average process time of each station, which was useful for failure detection.

• Detecting the relationship between actors and production lines. Besides, it

detected that the production lines are not independent and that Line 0 consists of

two sub-lines.

This information is not easy to get using other data analytics techniques. This

statement also proves that this supervisory system is a value-driven supervisory

system.

Relating to the Studied Actors, the architecture used in this research considers all

the actors that can be involved in manufacturing processes. However, in this case study,

we have worked with two actors:

• The Process actor was used in Task 1 to extract information about the

manufacturing process, discover actors, relationships, production, and processing

times, among others.

• The Data actor was used in Task 1 and Task 2. Task 1 got historical information

about the stations’ performance. Consequently, that information was useful for

failure detection. Task 2 used the data generated by this actor to build the

predictive model.

It is important to remark that we do not know which kind of actor represents each

station because the Bosch dataset is anonymized and does not contain that information.

Also, in the future, we expect to add support from other actors.

Concerning the Scalability, our architecture is scalable in many senses:

• Firstly, it accepts the inclusion of several everything-mining techniques.

• Secondly, all actors involved in manufacturing processes are considered as part

of the architecture.

• Thirdly, this software was conceived to add incrementally other self-* properties

to gain more and more autonomy with the inclusion of new data analytic

autonomic cycles.

• Finally, the use of the Everything-mining techniques ensures the scalability of the

system to treat any source of information.

Finally, regarding the Autonomy of the supervisory system, as can be seen from

Fig. 8, 15, and 16, the system can make decisions for failure detection and quality control

test predictions by itself (not human acts in the decision-making process to diagnose the

system). In the future, this system will be able to allow not only self-supervising, but also

self-planning and self-healing, with a focus on turning the manufacturing process into a

fully coordinated, cooperative, and collaborative process in the context of Industry 4.0.

Unfortunately, we cannot establish any quantitative comparison with previous

researches because most of them do not present quantitative results. Moreover, the few

papers that show some results in numbers not have any metric that can be used for

comparison.

6. Conclusions and Future Works

Industry 4.0 requires improving the levels of integrability and interoperability in a

coordinated, cooperative, and collaborative way (Burns et al., 2019; Pietrewicz, 2019).

This paper presented an architecture for autonomous integration and interoperability of

actors in the Industry 4.0 context, which combines multiple paradigms to increase the

autonomy of the manufacturing process. Moreover, this framework intends to increase

the autonomy of a system by adding incrementally self-* properties.

The presented architecture serves as a support for other standard reference

architectures for Industry 4.0, like RAMI 4.0 and IIRA (Lin et al., 2015). This research is

not intending to replace the existing standards, but extends with solutions to deal with the

challenges of Industry 4.0 not covered by the existing frameworks.

Specifically, this paper shows the implementation of the autonomic cycle of self-

supervising as the first step towards self-coordinated manufacturing processes. The

implementation of the autonomic cycle of self-supervising was detailed methodologically

using MIDANO, allowing us to reach the desired results. It means that this autonomic

cycle reached its designed goals of failure detection and quality control test predictions,

intending to improve the autonomy of the manufacturing process.

Regarding the adaptability and scalability of this research to more complex

systems, implies to join the system’s experts with the data scientists in order to catch the

data for the creating and validation of everything mining models, such as the

manufacturing process model, the predictive models, and other models used to measure

the devices’ health. Particularly, this study was conducted over a vast and intricate

manufacturing process, as the Bosh Production Line, which not only contains a

considerable quantity of actors, but also generates a large quantity of imbalanced data.

The results of this research work show that everything mining techniques are necessary

to deal with the issue related to the self-organization of manufacturing processes.

Consequently, this study can serve as a guide to incorporate self-supervising properties

to other manufacturing systems.

The results of this study allowed us to confirm the positive impact of combining

the Autonomic computing paradigm, the Internet of Everything, and the Everything-

mining, oriented to enable self-coordinated manufacturing processes in the context of

Industry 4.0. Also, the main contributions of this research are:

• The capacity to support several Everything-mining techniques. Each mining

technique improves the knowledge of the system, and by consequence, the

decision-making processes.

• The integration of all actors involved in manufacturing processes, such as Thing,

Data, People, and Services.

• The support for self-* properties that are added incrementally, guaranteeing, in

this sense, the scalability of the system.

• The support for real-time analysis and decision-making.

• The capacity of diagnosing the system and to launch the self-healing autonomic

cycle.

Future works are oriented to implement the autonomic cycles of self-configuring

and self-healing, as well as the self-cooperation and self-collaboration autonomic

managers, in order to turn manufacturing processes into a fully integrated and

autonomous manufacturing system. Additionally, other features will be added to the

prototype application developed in this research, so that it can support other Everything-

mining techniques, in order to turn the manufacturing process into a smart and self-

coordinated production system. Besides, in the future, we are planning to add one thing

mining data analytical technique as DEKG, to get a proper failure diagnostic and increase

the number of failures that this system can detect. Concerning the scalability and

adaptability of the self-supervising autonomic cycle presented in this paper to more

complex use cases, it will be deeply addressed in future works.

Moreover, another future work is related to the utilization of our architecture in

the real world. For that, we need to create a digital twin of all actors involved in the

manufacturing process, so that each actor has its digital counterpart (Burns et al., 2019).

Multi-agent systems can be useful for this task (Terán et al., 2017), or another platform,

such as ROS Industrial (ROS Industrial, 2018). In this sense, a previous work conducted

by Aguilar et al. (2017d) details how to deal with issues related to the bidirectional

communication of software agents and cloud-services, naturally. Next, a message queue

management system is essential to allow the autonomic cycles to receive the information

or events needed to make decisions, using the existing everything-mining models. The

digital counterpart of actors will be able to get information from the actor and activate its

effectors so that they can act according to the orders given by the autonomic cycles, and

change the environment according to the current requirements and context.

7. References.

Aguilar, J., Aguilar, K., Jerez, M., & Jiménez, C. (2017a). Implementación de tareas de

analítica de datos para mejorar la calidad de servicios en redes de comunicaciones.

Publicaciones En Ciencias y Tecnología, 11(2), 63–77.

Aguilar, J., Buendia, O., Moreno, K., & Mosquera, D. (2016). Autonomous Cycle of Data

Analysis Tasks for Learning Processes. Technologies and Innovation, 187–202.

https://doi.org/10.1007/978-3-319-48024-4_15

Aguilar, J., Cordero, J., & Buendía, O. (2017b). Specification of the Autonomic Cycles

of Learning Analytic Tasks for a Smart Classroom. Journal of Educational

Computing Research, 0735633117727698.

https://doi.org/10.1177/0735633117727698

Aguilar, J., Sanchez, M., Cordero, J., Valdiviezo-Díaz, P., Barba-Guamán, L., &

Chamba-Eras, L. (2017c). Learning analytics tasks as services in smart

classrooms. Universal Access in the Information Society, 17(4), 693–709.

https://doi.org/10.1007/s10209-017-0525-0

Aguilar, J., Sanchez, M., Jerez, M., & Mendonca, M. (2017d). An Extension of the MiSCi

Middleware for Smart Cities Based on Fog Computing. Journal of Information

Technology Research (JITR), 10(4), 23–41.

https://doi.org/10.4018/JITR.2017100102

Berdal, Q., Pacaux-Lemoine, M.-P., Trentesaux, D., & Chauvin, C. (2019). Human-

Machine Cooperation in Self-organized Production Systems: A Point of View. In

T. Borangiu, D. Trentesaux, A. Thomas, & S. Cavalieri (Eds.), Service

Orientation in Holonic and Multi-Agent Manufacturing (pp. 123–132). Springer

International Publishing. https://doi.org/10.1007/978-3-030-03003-2_9

Birkel, H. S., Veile, J. W., Müller, J. M., Hartmann, E., & Voigt, K.-I. (2019).

Development of a Risk Framework for Industry 4.0 in the Context of

Sustainability for Established Manufacturers. Sustainability, 11(2), 384.

https://doi.org/10.3390/su11020384

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2), 123–140.

https://doi.org/10.1023/A:1018054314350

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,

Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., Vanderplas, J., Joly, A.,

Holt, B., & Varoquaux, G. (2013). API design for machine learning software:

Experiences from the scikit-learn project. ArXiv:1309.0238 [Cs].

http://arxiv.org/abs/1309.0238

Burns, T., Cosgrove, J., & Doyle, F. (2019). A Review of Interoperability Standards for

Industry 4.0. Procedia Manufacturing, 38, 646–653.

https://doi.org/10.1016/j.promfg.2020.01.083

Cao, Q., Giustozzi, F., Zanni-Merk, C., Beuvron, F., & Reich, C. (2019). Smart Condition

Monitoring for Industry 4.0 Manufacturing Processes: An Ontology-Based

Approach. Cybernetics and Systems, 50, 1–15.

https://doi.org/10.1080/01969722.2019.1565118

Celonis SE. (2019). Celonis. Celonis. https://www.celonis.com/

Collier, J. (2002). What is Autonomy? International Journal of Computing Anticipatory

Systems: CASY 2001 - Fifth International Conference., 20.

http://cogprints.org/2289/

Dencker, K., Fasth, Å., Stahre, J., Mårtensson, L., Lundholm, T., & Akillioglu, H. (2009).

Proactive assembly systems-realising the potential of human collaboration with

automation. Annual Reviews in Control, 33(2), 230–237.

https://doi.org/10.1016/j.arcontrol.2009.05.004

Derboul, A., Hadj, B. I., & Chafik, K. (2018). Contribution of Industrial Information

Systems to Industrial Performance: Case of Industrial Supervision. Springer

International Publishing AG, Part of Springer Nature, 884–901.

https://doi.org/10.1007/978-3-319-74500-8_79

Dinardo, G., Fabbiano, L., & Vacca, G. (2018). A smart and intuitive machine condition

monitoring in the Industry 4.0 scenario. Measurement, 126, 1–12.

https://doi.org/10.1016/j.measurement.2018.05.041

Elattar, M., Wendt, V., & Jasperneite, J. (2017). Communications for Cyber-Physical

Systems. In Industrial Internet of Things (pp. 347–372). Springer, Cham.

https://doi.org/10.1007/978-3-319-42559-7_13

Flemisch, F., Heesen, M., Hesse, T., Kelsch, J., Schieben, A., & Beller, J. (2012).

Towards a dynamic balance between humans and automation: Authority, ability,

responsibility and control in shared and cooperative control situations. Cognition,

Technology & Work, 14(1), 3–18. https://doi.org/10.1007/s10111-011-0191-6

Gaham, M., Bouzouia, B., & Achour, N. (2015). Human-in-the-Loop Cyber-Physical

Production Systems Control (HiLCP2sC): A Multi-objective Interactive

Framework Proposal. In T. Borangiu, A. Thomas, & D. Trentesaux (Eds.), Service

Orientation in Holonic and Multi-agent Manufacturing (pp. 315–325). Springer

International Publishing. https://doi.org/10.1007/978-3-319-15159-5_29

Haupert, J., Klinge, X., & Blocher, A. (2017). CPS-Based Manufacturing with Semantic

Object Memories and Service Orchestration for Industrie 4.0 Applications. In

Industrial Internet of Things (pp. 203–229). Springer, Cham.

https://doi.org/10.1007/978-3-319-42559-7_8

IBM. (2004). Autonomic Computing User’s Guide.

https://www.ibm.com/developerworks/autonomic/books/fpu0mst.htm

Kaggle. (2016). Bosch Production Line Performance. https://kaggle.com/c/bosch-

production-line-performance

Kalatzis, N., Routis, G., Marinellis, Y., Avgeris, M., Roussaki, I., Papavassiliou, S., &

Anagnostou, M. (2019). Semantic Interoperability for IoT Platforms in Support

of Decision Making: An Experiment on Early Wildfire Detection. Sensors (Basel,

Switzerland), 19(3). https://doi.org/10.3390/s19030528

Kumar, A., Glisson, W., & Cho, H. (2020, January 7). Network Attack Detection Using

an Unsupervised Machine Learning Algorithm.

https://doi.org/10.24251/HICSS.2020.795

Lalanda, P., McCann, J. A., & Diaconescu, A. (2013). Autonomic Computing. Springer

London. https://doi.org/10.1007/978-1-4471-5007-7

Lee, J., Ardakani, H. D., Yang, S., & Bagheri, B. (2015). Industrial Big Data Analytics

and Cyber-physical Systems for Future Maintenance & Service Innovation.

Procedia CIRP, 38, 3–7. https://doi.org/10.1016/j.procir.2015.08.026

Lee, J., Kao, H.-A., & Yang, S. (2014). Service Innovation and Smart Analytics for

Industry 4.0 and Big Data Environment. Procedia CIRP, 16, 3–8.

https://doi.org/10.1016/j.procir.2014.02.001

Lemaitre, G., Oliveira, D., & Aridas, C. (2014a). Balanced Bagging Classifier.

Imbalanced Learn. https://imbalanced-

learn.readthedocs.io/en/stable/generated/imblearn.ensemble.BalancedBaggingCl

assifier.html

Lemaitre, G., Oliveira, D., & Aridas, C. (2014b). Balanced Random Forest Classifier.

Imbalanced Learn. https://imbalanced-

learn.readthedocs.io/en/stable/generated/imblearn.ensemble.BalancedRandomFo

restClassifier.html

Leżański, P. (2017). Architecture of Supervisory Systems For Subtractive Manufacturing

Processes In Industry 4.0 Based Manufacturing. Journal of Machine Construction

and Maintenance, 104, 59–64.

Li, D., Tang, H., Wang, S., & Liu, C. (2017). A big data enabled load-balancing control

for smart manufacturing of Industry 4.0. Cluster Computing, 20(2), 1855–1864.

https://doi.org/10.1007/s10586-017-0852-1

Liao, Y., Ramos, L. F. P., Saturno, M., Deschamps, F., de Freitas Rocha Loures, E., &

Szejka, A. L. (2017). The Role of Interoperability in The Fourth Industrial

Revolution Era. IFAC-PapersOnLine, 50(1), 12434–12439.

https://doi.org/10.1016/j.ifacol.2017.08.1248

Lin, S.-W., Miller, B., Durand, J., Joshi, R., Didier, P., Amine, C., Torenbeek, R., Duggal,

D., Martin, R., Bleakleay, G., & others. (2015). Industrial internet reference

architecture (Tech. Rep No. 2017-01–25). Industrial Internet Consortium (IIC).

https://www.iiconsortium.org/pdf/SHI-WAN%20LIN_IIRA-v1%208-release-

20170125.pdf

Liu, Y., Yuen, C., Cao, X., Hassan, N. U., & Chen, J. (2014). Design of a Scalable Hybrid

MAC Protocol for Heterogeneous M2M Networks. IEEE Internet of Things

Journal, 1(1), 99–111. https://doi.org/10.1109/JIOT.2014.2310425

Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research

issues. Journal of Industrial Information Integration, 6, 1–10.

https://doi.org/10.1016/j.jii.2017.04.005

Mangal, A., & Kumar, N. (2016). Using big data to enhance the bosch production line

performance: A Kaggle challenge. 2016 IEEE International Conference on Big

Data (Big Data), 2029–2035. https://doi.org/10.1109/BigData.2016.7840826

Martino, B. D., Li, K.-C., Yang, L. T., & Esposito, A. (2018). Trends and Strategic

Researches in Internet of Everything. In Internet of Everything (pp. 1–12).

Springer, Singapore. https://doi.org/10.1007/978-981-10-5861-5_1

Morris, W. (Ed.). (1982). The American Heritage dictionary (2nd college ed). Houghton

Mifflin.

Obitko, M., & Jirkovský, V. (2015). Big Data Semantics in Industry 4.0. Industrial

Applications of Holonic and Multi-Agent Systems, 217–229.

https://doi.org/10.1007/978-3-319-22867-9_19

O’Brien, R., & Ishwaran, H. (2019). A random forests quantile classifier for class

imbalanced data. Pattern Recognition, 90, 232–249.

https://doi.org/10.1016/j.patcog.2019.01.036

Oesterreich, T. D., & Teuteberg, F. (2016). Understanding the implications of digitisation

and automation in the context of Industry 4.0: A triangulation approach and

elements of a research agenda for the construction industry. Computers in

Industry, 83, 121–139. https://doi.org/10.1016/j.compind.2016.09.006

Pacaux-Lemoine, M.-P., Trentesaux, D., Zambrano Rey, G., & Millot, P. (2017).

Designing intelligent manufacturing systems through Human-Machine

Cooperation principles: A human-centered approach. Computers & Industrial

Engineering, 111, 581–595. https://doi.org/10.1016/j.cie.2017.05.014

Pacheco, F., Aguilar, J., Rangel, C., Cerrada, M., & Altamiranda, J. (2014).

Methodological framework for data Processing based on the data science

paradigm. Computing Conference (CLEI), XL Latin American, 1–12.

Pal, M. (2005). Random forest classifier for remote sensing classification. International

Journal of Remote Sensing, 26(1), 217–222.

https://doi.org/10.1080/01431160412331269698

Parashar, M., & Hariri, S. (2005). Autonomic Computing: An Overview. In J.-P. Banâtre,

P. Fradet, J.-L. Giavitto, & O. Michel (Eds.), Unconventional Programming

Paradigms (pp. 257–269). Springer Berlin Heidelberg.

Pedone, G., & Mezgár, I. (2018). Model similarity evidence and interoperability affinity

in cloud-ready Industry 4.0 technologies. Computers in Industry, 100, 278–286.

https://doi.org/10.1016/j.compind.2018.05.003

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn:

Machine Learning in Python. Journal of Machine Learning Research, 12,

2825−2830.

Pietrewicz, L. (2019). Coordination in the age of Industry 4.0. Economic and Social

Development: Book of Proceedings, 264–274.

Pisching, M. A., Pessoa, M. A. O., Junqueira, F., dos Santos Filho, D. J., & Miyagi, P. E.

(2018). An architecture based on RAMI 4.0 to discover equipment to process

operations required by products. Computers & Industrial Engineering, 125, 574–

591. https://doi.org/10.1016/j.cie.2017.12.029

Platform Industry 4.0. (2018). Reference Architectural Model Industrie 4.0 (RAMI4.0)—

An Introduction. Platform Industry 4.0. https://www.plattform-

i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html

Python TM. (2019). Welcome to Python.org. Python.Org. https://www.python.org/

Rangel, C., Pacheco, F., Aguilar, J., & Cerrada, M. (2013). Methodology for detecting

the feasibility of using data mining in an organization. Computing Conference

(CLEI), XXXIX Latin American, 502–513.

Reis, M., & Gins, G. (2017). Industrial Process Monitoring in the Big Data/Industry 4.0

Era: From Detection, to Diagnosis, to Prognosis. Processes, 5(35), 1–16.

https://doi.org/10.3390/pr5030035

Rojas, R. A., Rauch, E., Vidoni, R., & Matt, D. T. (2017). Enabling Connectivity of

Cyber-physical Production Systems: A Conceptual Framework. Procedia

Manufacturing, 11, 822–829. https://doi.org/10.1016/j.promfg.2017.07.184

Romero, D., Bernus, P., Noran, O., Stahre, J., & Fast-Berglund, Å. (2016). The Operator

4.0: Human Cyber-Physical Systems & Adaptive Automation Towards Human-

Automation Symbiosis Work Systems. In I. Nääs, O. Vendrametto, J. Mendes

Reis, R. F. Gonçalves, M. T. Silva, G. von Cieminski, & D. Kiritsis (Eds.),

Advances in Production Management Systems. Initiatives for a Sustainable World

(pp. 677–686). Springer International Publishing. https://doi.org/10.1007/978-3-

319-51133-7_80

ROS Industrial. (2018, November 16). ROS-Industrial. ROS Industrial.

https://rosindustrial.org/

Sanchez, M., Aguilar, J., & Exposito, E. (2018a). Fog computing for the integration of

agents and web services in an autonomic reflexive middleware. Software Oriented

Computing and Applications, 12(333), 1–15.

Sanchez, M., Aguilar, J., & Exposito, E. (2018b). Integración SOA-MAS en Ambientes

Inteligentes. DYNA, 85(206), 268–282.

https://doi.org/10.15446/dyna.v85n206.68671

Sanchez, M., Exposito, E., & Aguilar, J. (2019a). Autonomic Cycles of Everything

Mining for Coordination in the Context of the Industry 4.0. submitted to

publication, Journal of Industrial Information Integration, In Review.

Sanchez, M., Exposito, E., & Aguilar, J. (2019b). Industry 4.0 Survey from a System

Integration Perspective. Submitted to Publication, Journal of Computer

Integration Manufacturing, In Review.

Sanchez, M., Exposito, E., & Aguilar, J. (2019c). Self-Supervising Autonomic cycle

replayer.

https://bitbucket.org/mbsanchez/ssacsimulator/src/master/DataSets%20I4.0/PreP

rocess/

Santos, M. Y., Sá, J. O. e, Costa, C., Galvão, J., Andrade, C., Martinho, B., Lima, F. V.,

& Costa, E. (2017). A Big Data Analytics Architecture for Industry 4.0. Recent

Advances in Information Systems and Technologies, 175–184.

https://doi.org/10.1007/978-3-319-56538-5_19

Silva, R., Rocha, A. D., Leitao, P., & Barata, J. (2018). IDARTS – Towards intelligent

data analysis and real-time supervision for industry 4.0. Computers in Industry,

101, 138–146. https://doi.org/10.1016/j.compind.2018.07.004

Singh, Y., Kaur, A., & Malhotra, R. (2009). Empirical validation of object-oriented

metrics for predicting fault proneness models. Software Quality Journal, 18(1), 3.

https://doi.org/10.1007/s11219-009-9079-6

Singla, L., & Agrawal, P. (2016). Bosch Production Line Performance [PDF].

http://neddimitrov.org/uploads/classes/201604CO/LukeshPrateek-

BoschFailurePrediction.pdf

Sterritt, R., & Hinchey, M. (2005). Autonomic Computing " Panacea or Poppycock?

Proceedings of the 12th IEEE International Conference and Workshops on

Engineering of Computer-Based Systems, 535–539.

https://doi.org/10.1109/ECBS.2005.22

Suali, A. J., Fauzi, S. S. M., Nasir, M. H. N. M., & Sobri, W. a. W. M. (2017).

Synthesizing the Literature on the Issues of Coordination and its Impact on

Software Quality. Journal of Telecommunication, Electronic and Computer

Engineering (JTEC), 9(3–3), 27–31.

Terán, J., Aguilar, J., & Cerrada, M. (2017). Integration in industrial automation based

on multi-agent systems using cultural algorithms for optimizing the coordination

mechanisms. Computers in Industry, 91, 11–23.

https://doi.org/10.1016/j.compind.2017.05.002

Tharwat, A., Gaber, T., Ibrahim, A., & Hassanien, A. E. (2017). Linear discriminant

analysis: A detailed tutorial. AI Communications, 30(2), 169–190.

https://doi.org/10.3233/AIC-170729

The-Qt-Company. (2019). Qt-Cross-platform software development for embedded &

desktop. https://www.qt.io

Tiboni, M., Aggogeri, F., Pellegrini, N., & Perani, C. A. (2019). Smart Modular

Architecture for Supervision and Monitoring of a 4.0 Production Plant. Int. J. of

Automation Technology, 13(2), 310–318.

Truszkowski, W., Hallock, H. L., Rouff, C., Karlin, J., Rash, J., Hinchey, M., & Sterritt,

R. (2010). Introduction. In W. Truszkowski, H. Hallock, C. Rouff, J. Karlin, J.

Rash, M. Hinchey, & R. Sterritt (Eds.), Autonomous and Autonomic Systems:

With Applications to NASA Intelligent Spacecraft Operations and Exploration

Systems: With Applications to NASA Intelligent Spacecraft Operations and

Exploration Systems (pp. 3–23). Springer London.

https://doi.org/10.1007/b105417_1

Vizcarrondo, J., Aguilar, J., Exposito, E., & Subias, A. (2017). MAPE-K as a service-

oriented architecture. IEEE Latin America Transactions, 15(6), 1163–1175.

https://doi.org/10.1109/TLA.2017.7932705

Vizcarrondo, J., Aguilar, J., Exposito, E., & Subias, A. (2012). ARMISCOM: Autonomic

reflective middleware for management service composition. 2012 Global

Information Infrastructure and Networking Symposium (GIIS), 1–8.

https://doi.org/10.1109/GIIS.2012.6466760

Wang, Y., Sheng, Y., Wang, J., & Zhang, W. (2017, November 14). Human Intention

Estimation With Tactile Sensors in Human-Robot Collaboration. ASME 2017

Dynamic Systems and Control Conference. https://doi.org/10.1115/DSCC2017-

5291

Wardhani, N. W. S., Rochayani, M. Y., Iriany, A., Sulistyono, A. D., & Lestantyo, P.

(2019). Cross-validation Metrics for Evaluating Classification Performance on

Imbalanced Data. 2019 International Conference on Computer, Control,

Informatics and Its Applications (IC3INA), 14–18.

https://doi.org/10.1109/IC3INA48034.2019.8949568

Xu, L., He, W., & Li, S. (2014). Internet of Things in Industries: A Survey. IEEE

Transactions on Industrial Informatics, 10, 2233–2243.

https://doi.org/10.1109/TII.2014.2300753

Xu, Y., Sun, Y., Wan, J., Liu, X., & Song, Z. (2017). Industrial Big Data for Fault

Diagnosis: Taxonomy, Review, and Applications. IEEE Access, 5, 138–146.

https://doi.org/10.1109/ACCESS.2017.2731945

Yang, L. T., Di Martino, B., & Zhang, Q. (2017). Internet of Everything. Mobile

Information Systems, 2017, 1–3. https://doi.org/10.1155/2017/8035421

Yang, S.-W., & Chen, Y.-K. (2013). The M2M Connectivity Framework: Towards an

IoT Landscape. 2013 IEEE International Conference on Green Computing and

Communications and IEEE Internet of Things and IEEE Cyber, Physical and

Social Computing, 572–579. https://doi.org/10.1109/GreenCom-iThings-

CPSCom.2013.108

Zhou, X., Xu, Z., Wang, L., & Chen, K. (2017). What should we do? A structured review

of SCADA system cyber security standards. 2017 4th International Conference

on Control, Decision and Information Technologies (CoDIT), 0605–0614.

https://doi.org/10.1109/CoDIT.2017.8102661

