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We construct admissible circulant Laplacian matrix functions as generators for strictly increasing random walks on the integer line. These Laplacian matrix functions refer to a certain class of Bernstein functions. The approach has connections with biased walks on digraphs. Within this framework, we introduce a space-time generalization of the Poisson process as a strictly increasing walk with discrete Mittag-Leffler jumps subordinated to a (continuous-time) fractional Poisson process. We call this process 'space-time Mittag-Leffler process'. We derive explicit formulae for the state probabilities which solve a Cauchy problem with a Kolmogorov-Feller (forward) difference-differential equation of general fractional type. We analyze a "well-scaled" diffusion limit and obtain a Cauchy problem with a space-time convolution equation involving Mittag-Leffler densities. We deduce in this limit the 'state density kernel' solving this Cauchy problem. It turns out that the diffusion limit exhibits connections to Prabhakar general fractional calculus. We also analyze in this way a generalization of the space-time fractional Mittag-Leffler process. The approach of construction of good Laplacian generator functions has a large potential in applications of space-time generalizations of the Poisson process and in the field of continuous-time random walks on digraphs.

INTRODUCTION

During the last three decades a vast interest in fractional calculus has emerged due to its success to describe so called 'anomalous phenomena' such as anomalous transport and diffusion [START_REF] Kutner | The continuous time random walk, still trendy: fifty-year history, state of art and outlook[END_REF][START_REF] Gorenflo | The asymptotic universality of the Mittag-Leffler waiting time law in continuous time random walks[END_REF][START_REF] Gorenflo | Mittag-Leffler Waiting Time, Power Laws, Rarefaction, Continuous Time Random Walk, Diffusion Limit[END_REF][START_REF] Metzler | The Random Walk's Guide to Anomalous Diffusion : A Fractional Dynamics Approach[END_REF][START_REF] Metzler | The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics[END_REF][START_REF] Zaslavsky | Chaos, fractional kinetics, and anomalous transport[END_REF][START_REF] Saichev | Fractional kinetic equations: solutions and applications[END_REF], anomalous relaxation in dielectrics [START_REF] Capelas De Oliveira | Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics[END_REF], creep models [START_REF] Mainardi | Creep, relaxation and viscosity properties for basic fractional models in rheology[END_REF], and various complex phenomena [START_REF] Gorenflo | Fractional relaxation of distributed order[END_REF], just to quote a few examples. Many of these models can be traced back to the Montroll-Weiss picture of continuous-time random walk (CTRW) [START_REF] Montroll | Random walks on lattices II[END_REF]. Whereas classical CTRW models are random walks subordinated to an independent Poisson process, their fractional generalizations lead to fat-tailed waiting-time Mittag-Leffler type densities with non-Markovian long memory behavior governed by evolution equations of fractional and generalized fractional types [START_REF] Kutner | The continuous time random walk, still trendy: fifty-year history, state of art and outlook[END_REF][START_REF] Metzler | The Random Walk's Guide to Anomalous Diffusion : A Fractional Dynamics Approach[END_REF][START_REF] Zaslavsky | Chaos, fractional kinetics, and anomalous transport[END_REF][START_REF] Hilfer | Fractional master equations and fractal time random walks[END_REF][START_REF] Meerschaert | The Fractional Poisson Process and the Inverse Stable Subordinator[END_REF]. For fundamental discussions on fractional calculus we invite the reader to consult references [START_REF] Ortigueira | What is a fractional derivative?[END_REF][START_REF] Tarasov | No nonlocality. No fractional derivative[END_REF][START_REF] Giusti | A comment on some new definitions of fractional derivative[END_REF][START_REF] Hilfer | Desiderata for fractional derivatives and integrals[END_REF]. In the meantime several generalizations of fractional calculus have been proposed. One of the most pertinent generalizations seems to be the so called Prabhakar generalization [START_REF] Garra | Tomovski. Hilfer-Prabhakar derivatives and some applications[END_REF][START_REF] Mainardi | On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics[END_REF][START_REF] Giusti | A practical guide to Prabhakar fractional calculus[END_REF]. This generalization involves the Prabhakar function as a generalization of the Mittag-Leffler function and was first introduced by Prabhakar [START_REF] Prabhakar | A singular integral equation with a generalized Mittag-Leffler function in the kernel[END_REF]. In the context of continuous-time renewal processes a Prabhakar generalization of the fractional Poisson process was introduced by Cahoy and Polito [START_REF] Cahoy | Renewal processes based on generalized Mittag-Leffler waiting times[END_REF] and applied to stochastic motions on undirected graphs by Michelitsch and Riascos [START_REF] Michelitsch | Continuous time random walk and diffusion with generalized fractional Poisson process[END_REF][START_REF] Michelitsch | Generalized fractional Poisson process and related stochastic dynamics[END_REF][START_REF] Michelitsch | Generalized space-time fractional dynamics in networks and lattices Generalized Space-Time Fractional Dynamics in Networks and Lattices[END_REF] and discrete-time versions were developed in our recent paper [START_REF] Michelitsch | On Discrete-Time Generalized Fractional Poisson Process And Related Stochastic Dynamics[END_REF].

The present paper is mainly concerned with space-time generalizations of the Poisson process which can be traced back to special kinds of biased walks, namely strictly increasing walks on D t p n (t) = -ξ g [START_REF] Kutner | The continuous time random walk, still trendy: fifty-year history, state of art and outlook[END_REF] g(1 -T-1 )p n (t)

p n (t)| t=0 = δ n0 ξ > 0, t ≥ 0, n ∈ N 0 . (1) 
for the state probabilities {p n (t)} (n = 0, 1, 2, .. ∈ N 0 ) of the process. The state probabilities p n (t) = P(N (t) = n), n ∈ N 0 , t ∈ R + indicate the probabilities to find a walker (with the indicated initial condition) at time t in state N (t) = n in a strictly increasing walk N (t) =

N (t)
j=1 Z j ∈ N 0 with IID strictly positive integer jumps Z j ∈ N and N (t) ∈ N 0 denotes the number of arrivals up to time t in a renewal process independent of the random jumps Z j . The state probability distribution is normalized on the state space ∞ n=0 p n (t) = 1, ∀t ≥ 0. On the left-hand side of (1), D t stands for a general fractional derivative which is related to the mentioned renewal process (See [START_REF] Kochubei | General fractional calculus, evolution equations, and renewal processes[END_REF] for an outline of the framework of general fractional calculus). T-1 indicates the backward shift operator where shift operators Tm (m ∈ Z) act on the state space such that Tm p n (t) = p n+m (t) (we denote with 1 the unity operator T0 = 1). The 'Laplacian operator function' g(1 -T-1 ) represents the generator of the process. The stochastic process governed by ( 1) is a space-time generalization of the Poisson process since for g(1 -T-1 ) = 1 -T-1 (with (1 -T-1 )p n (t) = p n (t) -p n-1 (t)) and D t = d dt Eq. ( 1) recovers the classical Kolmogorov-Feller (forward) equation of the homogeneous Poisson counting process. One of the goals of the present paper is to elaborate a general approach to construct non-trivial generalizations by means of "good Laplacian operator functions" g(1 -T-1 ).

We will show that under suitable "well-scaled" continuous-space limit conditions from the integer-state space to a continuous one ({0, 1, . . .} = N 0 → [0, ∞) = R + ) the discrete Cauchy problem [START_REF] Kutner | The continuous time random walk, still trendy: fifty-year history, state of art and outlook[END_REF] turns into a Cauchy problem with a diffusion equation of the following general structure D t P(x, t) = -ξP(x, t) + ξ x 0 W(x -τ )P(τ , t)dτ , ξ > 0, x, t ≥ 0 P(x, t)| t=0 = δ(x).

(

) 2 
This equation allows solely jumps into the positive x-direction, i.e. 'strictly increasing' walks. The convolution on the right-hand side describes incoming jumps from [0, x) to state x whereas the term -ξP(x, t) = -ξP(x, t) ∞ x W(τ -x, t)dτ accounts for outgoing jumps from x to (x, ∞) where P(x, t) stands for the 'state density', W(x) indicates the transition density kernel and δ(x) the Dirac's δ-distribution.

A further aim of the present paper is also to highlight connections of these models with a certain class of biased random walks on directed graphs. This aim is especially motivated by the huge upswing of network science which has become nowadays an immense interdisciplinary field [START_REF] Newman | Networks: An Introduction[END_REF][START_REF] Noh | Random walks on complex networks[END_REF] last but not least driven by rapidly developing applications in online (social) networks and search engines. There is a vast fund of specialized literature on various aspects of the subject, e.g. [START_REF] Newman | Networks: An Introduction[END_REF][START_REF] Hughes | Random Walks and Random Environments[END_REF][START_REF] Hughes | Random Walks and Random Environments[END_REF][START_REF] Mohar | Graph Theory[END_REF][33]. For instance models have been developed to describe Lévy flight dynamics and random walks with long-range jumps on undirected graphs [START_REF] Michelitsch | Fractional Dynamics on Networks and Lattices[END_REF][START_REF] Riascos | Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights[END_REF], random walks with stochastic resetting on graphs [START_REF] Riascos | Random walks on networks with stochastic resetting[END_REF] and models for long-range mobility in cities [START_REF] Riascos | Networks and long-range mobility in cities: A study of more than one billion taxi trips in New York City[END_REF] among many others.

The present paper is organized as follows. In Section 2 we recall some basic properties of biased walks on directed networks where we focus on ergodic (strongly connected) finite directed graphs and the features of the Laplacian and transition matrices of these graphs. Having recalled these basic features, we define in Section 3 necessary and sufficient "good Laplacian properties" that a physically admissible 'good Laplacian matrix' must fulfill. Starting with a good Laplacian matrix allowing only 'local' transitions to next neighbor nodes we utilize these Laplacian properties to construct non-trivial good Laplacian functions (i.e. those that conserve the "good Laplacian properties") which constitute the family of admissible generators g(1 -T-1 ) on the right-hand side of [START_REF] Kutner | The continuous time random walk, still trendy: fifty-year history, state of art and outlook[END_REF]. It turns out that the family of good Laplacian functions refers to a certain class of Bernstein functions. For undirected graphs this approach was developed recently [START_REF] Michelitsch | Fractional Dynamics on Networks and Lattices[END_REF][START_REF] Riascos | Random walks with long-range steps generated by functions of Laplacian matrices[END_REF] and has also been extended to a class of biased walks [START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF].

In section 4 we recall in this picture a class of biased walks on the integer line allowing solely strictly positive integer jumps generated by the fractional Laplacian matrix of a directed line leading to the Sibuya walk, with a fat-tailed distribution for the jumps as a proto-typical example of a discrete approximation of the stable subordinator, e.g. [START_REF] Meerschaert | The Fractional Poisson Process and the Inverse Stable Subordinator[END_REF][START_REF] Gorenflo | On the Fractional Poisson Process and the Discretized Stable Subordinator[END_REF][START_REF] Pachon | On Discrete-Time Semi-Markov processes, Discrete and Continuous Dynamical Systems B[END_REF].

Section 5 is devoted to explore with this approach space-time generalizations of the Poisson process leading to Cauchy problems of the general structure (1) involving "good Laplacian matrix functions" of Section 3. We discuss within this framework also classical cases such as the space-fractional Poisson process and the space-time fractional Poisson process introduced by Orsingher and Polito [START_REF] Orsingher | The space-fractional Poisson process[END_REF].

As a principal part of this paper in Section 6 we apply this approach to construct the "space-time Mittag-Leffler process" as a pertinent generalization of the Poisson process governed by an evolution equation of general type (1). This process is a strictly increasing walk on the integer line with (discrete) Mittag-Leffler jumps taking place at Mittag-Leffler arrival times of the fractional Poisson process. We derive by means of explicit formulae the state probabilities and the 'well-scaled' continuous-space limit (diffusion limit) of this process. We obtain a biased (forward) diffusion equation of general space-time fractional type referring to the class (2), which is solved by the continuous-space limit density kernel of the state-probabilities. This kernel is derived in explicit form involving so called Prabhakar kernels. In this way we demonstrate connections with Prabhakar general fractional calculus. We also highlight the equivalence with the Montroll-Weiss CTRW picture.

Finally, as a byproduct we construct in Section 7 the space-fractional generalization of the space-time Mittag-Leffler process and derive the Cauchy problem governing the state probabilities. The latter as well as its diffusion limit are derived in explicit forms where again Prabhakar kernels and general fractional calculus come into play.

BIASED WALKS ON DIRECTED GRAPHS

In this section we recall some basic notions and properties of biased walks taking place on directed graphs (also referred to as digraphs). We consider first a finite directed graph consisting of N nodes (states) which we denote by j = 1, . . . N . In a directed graph the edges between nodes in general have a direction such that a path may exist allowing the walk m → n but the return path n → m does not necessarily exist. If for all pairs of nodes finite paths (and hence return paths) via directed edges exist, then the digraph is said to be strongly connected and equivalently ergodic, e.g. [START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF][START_REF] Harary | Graphical Enumeration[END_REF]. In order to define random walks on digraphs we introduce the N × N Laplacian matrix L containing this topological information. The Laplacian matrix has the elements [START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF] 

L ij = k (out) i δ ij -Ω ij (3)
where we use the synonymous notation δ pq = δ p,q for the Kronecker symbol. Matrix (3) is a generalization of the Laplacian matrix for binary undirected networks [START_REF] Newman | Networks: An Introduction[END_REF][START_REF] Mohar | Graph Theory[END_REF]33], to include the possibility of weights in the connections and asymmetry in the flow along the edges. For these particular connections we have Ω ij = Ω ji where we assume Ω ij ≥ 0 is a non-negative matrix. Further, by construction we assume Ω ii = 0. In (3) is present the so called out-degree defined by [START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF] k

(out) i = N j=1 Ω ij > 0 (4)
constituting a measure for the number of nodes which can be reached in a single jump from a node i. The out-degree is assumed to be strictly positive saying that we do not allow isolated (disconnected) nodes. Then we introduce the one-step transition matrix W [START_REF] Newman | Networks: An Introduction[END_REF][START_REF] Noh | Random walks on complex networks[END_REF][START_REF] Michelitsch | Fractional Dynamics on Networks and Lattices[END_REF]]

W i→j = δ ij -L ij = Ω ij k (out) i (5)
indicating the probability of the transition i → j in one jump. Per construction ( 5) is row-stochastic, i.e. 0 ≤ W i→j ≤ 1 with N j=1 W i→j = 1 and the transition matrix is such that W i→i = 0, i.e. in each jump the walker has to move to a different node. For our convenience and as an equivalent description we introduce here the (non-symmetric) auxiliary Laplacian matrix

L ij = L ij k (out) i (6)
having normalized degrees L ii = 1. We notice that dynamical processes in directed networks have a greater variety than in the undirected case. Since the Laplacian matrices ( 3) and ( 6) are not symmetric they have in general complex eigenvalues which are considered more closely in subsequent Section 3. We now can define a discrete-time Markov chain (Markovian random walk) on this graph governed by the simple master equation, e.g. [START_REF] Noh | Random walks on complex networks[END_REF][START_REF] Michelitsch | Fractional Dynamics on Networks and Lattices[END_REF] 

P ij (t + 1) = N r=1 P ir (t)W r→j , P ij (0) = δ ij , t ∈ N 0 . (7) 
We assume here that the walker at t = 0 is sitting on the departure node i. In the 't-step transition matrix' the element P ij (t) indicates the probability of the transition i → j in t jumps. Note that for digraphs P(t) also is not symmetric and for the initial condition P(0) = 1 we have

[P(t)] ij = [W t ] ij , t ∈ N 0 . (8) 
An important property of walks on strongly connected digraphs is (aperiodic) ergodicity. A Markov chain ( 8) is said to be ergodic if exists n 0 ∈ {1, 2, . . .} = N such that

[P(n)] ij > 0, ∀i, j = 1, . . . , N n ≥ n 0 , (9) 
is strictly positive, i.e. for each pair of nodes i → j there is at least one connecting path (and return path) not longer than n 0 jumps via directed connecting edges. For a discussion of some aspects of ergodicity of biased walks in digraphs we refer to [START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF] (and see also the references therein).

For later use we consider a Montroll-Weiss CTRW where a biased walk with transition matrix [START_REF] Metzler | The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics[END_REF] is subordinated to a counting process with state-probabilities P(N (t) = n) = Φ (n) (t). Then the transition matrix [START_REF] Capelas De Oliveira | Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics[END_REF] with the elements P ij (t) indicating the probability to find the walker at time t on node j (with the given initial condition) is generalized by the Cox series [START_REF] Cox | Renewal Theory[END_REF] [

P(t)] ij = ∞ n=0 Φ (n) (t)[W n ] ij , t ∈ R + . ( 10 
)
We notice that the discrete-time Markov chain (8) indeed is a special case of (10) when we account for a homogeneous event stream with state probabilities

Φ (n) (t) = Θ(t -n) -Θ(t -(n + 1)
) where Θ(t) is the Heaviside step function which is such that Θ(t) = 1 for t ≥ 0 and Θ(t) = 0 for t < 0 (in particular Θ(0) = 1). Indeed [START_REF] Gorenflo | Fractional relaxation of distributed order[END_REF] 

[P(t)] ij (t) = [W n ] ij recovers then (8) as Φ (n) (t) = 1 for t ∈ [n, n + 1) and Φ (n) (t) = 0 otherwise.

BIASED WALKS WITH LONG-RANGE JUMPS

One goal of this paper is to introduce new types of biased walks with special emphasis on strictly increasing walks with long-range jumps by a systematic method for their construction. To this end we consider a strongly connected (ergodic) digraph with a Laplacian matrix L defined in (3) characterizing its topology. Now we seek "good" Laplacian matrix functions L → g(L)

defining new topologies such that the following "good Laplacian properties'' are conserved, namely [START_REF] Michelitsch | Fractional Dynamics on Networks and Lattices[END_REF][START_REF] Riascos | Random walks with long-range steps generated by functions of Laplacian matrices[END_REF][START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF]:

(i) N j=1 L ij = 0 (i.e.
the Laplacian matrix has a unique eigenvalue µ 1 = 0 and a right eigenvector with constant (real) components i|v 1 = 1/ √ N ). This condition ensures that in a strongly connected graph the transition matrix has the unique real eigenvalue λ 1 = 1 of largest absolute value (reflecting the existence of a unique stationary distribution). (iii) L ij = -Ω ij ≤ 0 for i = j, i.e. the off-diagonal elements are all non-positive.

(ii) L ii = k (out) i > 0 (∀i = 1, . . . N )
Clearly the conditions (i)-(iii) maintain stochasticity of the transition matrix (5) and hence of [START_REF] Gorenflo | Fractional relaxation of distributed order[END_REF].

We notice that the auxiliary Laplacian (6) fulfills conditions ((i)-(iii) with uniform normalized degree L ii = 1 ∀i = 1, . . . N . Without loss of generality it is now more convenient to work with the auxiliary Laplacian (6) instead of the Laplacian matrix (3). We will proof subsequently that new non-trivial "good" Laplacian matrices that conserve (i)-(iii) are obtained by the class of matrix functions [START_REF] Michelitsch | Fractional Dynamics on Networks and Lattices[END_REF][START_REF] Riascos | Random walks with long-range steps generated by functions of Laplacian matrices[END_REF][START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF] 

g(L) = ∞ 0 1 -e -τ L ν(dτ ) (11)
containing as argument the auxiliary Laplacian matrix L (6) and 1 denotes the unity matrix. In this integral ν(dτ ) indicates a Lévy measure which is such that, e.g. [START_REF] Kochubei | General fractional calculus, evolution equations, and renewal processes[END_REF] ∞ 0 min{1, τ }ν(dτ ) < ∞ [START_REF] Hilfer | Fractional master equations and fractal time random walks[END_REF] and ensures convergence of [START_REF] Montroll | Random walks on lattices II[END_REF]. Let us consider for a moment a scalar version g(µ) (µ ≥ 0) of [START_REF] Montroll | Random walks on lattices II[END_REF].

Then we can define a special class of Bernstein functions by the Lévy-Khintchine representation

g(µ) = ∞ 0
1 -e -τ µ ν(dτ ), [START_REF] Meerschaert | The Fractional Poisson Process and the Inverse Stable Subordinator[END_REF] which fulfills g(µ)| µ=0 = 0. This property conserves the zero eigenvalue in the matrix function [START_REF] Montroll | Random walks on lattices II[END_REF]. In subsequent applications without loss of generality we consider Lévy measures ν(dτ ) = ν(τ )dτ with non-negative Lévy densities ν(τ ) ≥ 0. The Laplacian Bernstein function (13) also is called Laplace exponent [START_REF] Polito | A generalization of the space-fractional Poisson process and its connection to some Lévy processes[END_REF] 1 . Generally a non-negative function f (a, b, µ) ≥ 0 (a, b ≥ 0) defined on µ ∈ [0, ∞) is said to be a Bernstein function if it fulfills (-1) n-1 d n dµ n f (a, b, µ) ≥ 0 (n ≥ 1) and hence has the representation [START_REF] Kochubei | General fractional calculus, evolution equations, and renewal processes[END_REF] f

B (a, b, µ) = a + bµ + ∞ 0 1 -e -τ µ ν(dτ ). (14) 
We consider Laplacian functions g(µ) [START_REF] Meerschaert | The Fractional Poisson Process and the Inverse Stable Subordinator[END_REF] which refer to the class of Bernstein functions with a = b = 0, i.e. g(µ) = f B (0, 0, µ). The condition a = 0 is necessary to have g(µ)| µ=0 = 0 for the sake of condition (i). The combination a = 0, b > 0 gives an admissible Laplacian function fulfilling (i)-(iii), however it adds a 'trivial' contribution of the original Laplacian matrix L. Therefore we 1 This name comes from the fact it it occurs as a limit in strictly increasing subordinators St as the Laplace transform e -tg(µ) = Ee -µS t [START_REF] Polito | A generalization of the space-fractional Poisson process and its connection to some Lévy processes[END_REF].

consider here only non-trivial matrix functions [START_REF] Meerschaert | The Fractional Poisson Process and the Inverse Stable Subordinator[END_REF] with also b = 0. We notice that the derivative d dµ g(µ) is a completely monotonic function, i.e.

(-1) n-1 d n dµ n g(µ) ≥ 0, n ∈ N [START_REF] Tarasov | No nonlocality. No fractional derivative[END_REF] with g(µ) > 0 for µ > 0 and g(0) = 0. For theorems and a profound analysis of Bernstein and completely monotonic functions and related subjects, see [START_REF] Widder | The Laplace transform[END_REF][START_REF] Schilling | Theory and applications[END_REF]. We now demonstrate that [START_REF] Montroll | Random walks on lattices II[END_REF] conserves the properties (i)-(iii). For a proof in undirected networks with symmetric Laplacian matrices, see [START_REF] Michelitsch | Fractional Dynamics on Networks and Lattices[END_REF][START_REF] Riascos | Random walks with long-range steps generated by functions of Laplacian matrices[END_REF] and for the fractional Laplacian matrix function on digraphs consult [START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF].

We introduce a constant Λ > 1 such that the matrix Λ1 -L has uniquely non-negative matrix elements, namely (Λ -1)

δ ij + Ω ij k (out) i ≥ 0.
Then for ergodic (i.e. strongly connected) digraphs exists a n 0 > 0 such that all elements of the integer matrix power 

[(Λ1 -L) n ] ij > 0, n ≥ n 0 , ∀i, j = 1,
e Λ1-L = ∞ n=0 1 n! [Λ1 -L] n ( 17 
)
is strictly positive 3 , since there are infinitely many uniquely positive matrices 1 n! [Λ1 -L] n contained in this series (namely those for n > n 0 ). Since 1 is commuting with any matrix L we have e

Λ1-L = e Λ1 • e -L thus [e Λ1-L ] ij = e Λ [e -L ] ij > 0. Now since e Λ > 0 the matrix exponential e -L
for an ergodic digraph indeed is strictly positive

[e -L ] ij > 0, ∀i, j = 1, . . . N . ( 18 
)
On the other hand because of condition (i) we have row-stochasticity

N j=1 [e -L ] ij = 1, ∀i, j = 1, . . . N (19)
as a consequence of eigenvalue zero of L this relation follows from N j=1 [L n ] ij = δ n0 . Then since all matrix elements (18) are positive and row-normalized we have that

0 < [e -L ] ij < 1, ∀i, j = 1, . . . N . ( 20 
)
Hence it follows that 0 < 1 -[e -L ] ii < 1 thus the Bernstein matrix function 1 -e -τ L (τ > 0)

conserves the conditions (i)-(iii) of a good Laplacian matrix. By similar considerations for non-ergodic digraphs one can show that the matrix exponential contains zero valued blocks of non-diagonal elements (where zero entries indicate the pairs of nodes where no finite directed paths exist). However, conditions (i)-(iii) in the Bernstein matrix function [START_REF] Montroll | Random walks on lattices II[END_REF] still are conserved [START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF] Conditions (i)-(iii) remain also conserved by the integration in [START_REF] Montroll | Random walks on lattices II[END_REF] with a (non-negative) Lévy measure ν(dτ ) if the integral converges. This is definitely the case by virtue of ( 12) and if and only if the eigenvalues of the auxiliary Laplacian L have solely non-negative real parts {µ m } ≥ 0. This indeed is true as we show by the following brief proof.

2

The same holds also for undirected graphs [START_REF] Michelitsch | Fractional Dynamics on Networks and Lattices[END_REF].

3

We call a matrix '(strictly) positive' if it has solely positive entries.

Denoting the eigenvalues of the auxiliary Laplacian ( 6) by µ m with µ 1 = 0 and the eigenvalues of the one-step transition matrix ( 5) by λ m we have

µ m = 1 -λ m , m = 1, 2, . . . , N . (21) 
where µ 1 = 1 -λ 1 = 0 (thus λ 1 = 1 which is the unique so called Perron-Frobenius eigenvalue [START_REF] Frobenius | Über Matrizen aus nicht negativen Elementen[END_REF]). Then we have that lim n→∞ W n = W ∞ remaining row-stochastic (corresponding to λ 1 = 1) which contradicts the existence of an exploding eigenvalue |λ| n → ∞. We hence can infer that for the complete set of complex eigenvalues holds

|λ m | ≤ 1, ∀m (22) 
and with {λ m } ≤ |λ m | ≤ 1 we have that

{µ m } = 1 -{λ m } ≥ 1 -|λ m | ≥ 0, ∀m. (23) 
We notice that in this proof we neither needed ergodicity nor that the digraph is finite thus it also includes strictly increasing walks on the infinite integer line (See ( 43)).

This concludes our proof that the Lévy-Khintchine representation [START_REF] Montroll | Random walks on lattices II[END_REF] indeed also converges for digraphs and is useful to construct good Laplacian matrix functions to define new biased walks with the one-step transition matrix

W (g) ij = δ ij - g ij (L) g ii (L) . (24) 
It follows from above considerations (See especially ( 18)-( 20) with ( 11)) for ergodic digraphs that all off-diagonal elements of ( 24) are strictly positive W (g) ij > 0 (i = j) allowing the walker to reach any node in a single jump introducing new fully connected topologies. In non-ergodic digraphs some off-diagonal elements take values null due to the absence of finite directed paths [START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF]. We also notice that as L is not symmetric and in some cases non-diagonisable having Jordan canonic forms [START_REF] Benzi | Nonlocal network dynamics via fractional graph Laplacians[END_REF] where our proof remains valid also for these cases.

CIRCULANT TRANSITION MATRICES AND STRICTLY INCREASING WALKS

In this section we consider the class of biased walks on the integer line with IID strictly positive integer increments ('jumps') Z j > 0. Such a walk is defined by

Y n = n j=1 Z j , Z j ∈ N, Y 0 = 0. (25) 
The random walk ( 25) is a discrete counterpart to a strict subordinator [START_REF] Pachon | On Discrete-Time Semi-Markov processes, Discrete and Continuous Dynamical Systems B[END_REF]. There is a path a → b only if b > a but then no return path b → a. Therefore in contrast to the walks on strongly connected (finite) digraphs, the walk ( 25) is not ergodic. As an example let us recall the Sibuya walk. The Sibuya distribution has generating function [START_REF] Pachon | On Discrete-Time Semi-Markov processes, Discrete and Continuous Dynamical Systems B[END_REF] wα (u

) = Eu Z = 1 -(1 -u) α , α ∈ (0, 1), |u| ≤ 1. (26) 
In a Sibuya walk the jumps Z j ∈ N in (25) follow the Sibuya distribution (also known under the name Sibuya(α)) which is defined for α ∈ (0, 1) as

P(Z j = k) = w α (k) = 1 k! d k du k wα (u) u=0 = (-1) k-1 α(α -1)..(α -k + 1) k! = (-1) k-1 α k = α k Γ(k -α) Γ(1 -α)Γ(k) , k ∈ N (27) 
with w α (k)| k=0 = wα (u)| u=0 = 0 (crucial for the occurrence of strictly positive jumps Z j > 0) and w α (k) > 0 for all k ∈ N. In the limit α → 1the 'trivial' distribution w 1 (k) = δ 1,k is recovered (not called Sibuya) where the walker makes unit jumps Z j = 1 to its right-sided neighbor node almost surely. For later use we also mention the important property that Sibuya(α) is fat-tailed, namely for k large by using

Γ(k-α) Γ(k) ∼ k -α we have the asymptotic behavior w α (k) ∼ α Γ(1 -α) k -α-1 = - k -α-1 Γ(-α) > 0, (k → ∞). (28) 
For the following analysis it will be convenient to utilize the connection of generating functions and the shift operators. For a detailed outline we refer to our recent article [START_REF] Michelitsch | On Discrete-Time Generalized Fractional Poisson Process And Related Stochastic Dynamics[END_REF] and see also Appendix A.

Let us introduce the shift operator Ta (a ∈ R) which is such that Ta f (x) = f (x + a) and consider its circulant matrix representation

Tm f (p) = f (p + m) =: ∞ q=-∞ f (q)[ Tm ] qp = ∞ q=-∞ f (q)δ q,p+m , p, q, m ∈ Z (29) 
and hence [ Tm ] qp = δ q,p+m . This circulant structure remains true for all matrices of operator functions of shift operators. All matrices M mn (we also write M m,n ) we are dealing with in the context of increasing walks [START_REF] Michelitsch | Generalized space-time fractional dynamics in networks and lattices Generalized Space-Time Fractional Dynamics in Networks and Lattices[END_REF] are characterized by the properties

M m,n = M m+s,n+s = M 0,n-m , n, m, s ∈ Z M m,n = M 0,n-m = 0, n -m ∈ Z - (30) 
We call a matrix "upper triangular circulant" if it fulfills (30), i.e. all elements below the main diagonal are strictly null. The Sibuya transition matrix ( 33) is a proto-typical example for such an upper triangular circulant matrix. We introduce the generating function of an upper triangular circulant matrix [START_REF] Hughes | Random Walks and Random Environments[END_REF] as follows

M (u) = ∞ k=-∞ M 0,k u k = ∞ k=0 M 0,k u k , |u| ≤ 1 M 0,n = 1 n! d n du n M (u)| u=0 , n ∈ N 0 M 0,n = 0, n < 0 (31) 
thus only non-negative powers u k (k ≥ 0) are contained in M (u). Then we observe the important property which holds for upper triangular circulant matrices

1 n! d n u n M 1 (u) M 2 (u) u=0 = n k=0 M (2) 0,n-k M (1) 0,k = n k=0 M (1) 0,k M (2) k,n = ∞ k=-∞ M (1) 0,k M (2) k,n = [M (1) M (2) ] 0,n = [M (2) M (1) ] 0,n (32) 
connecting matrix multiplication and discrete (commuting) convolutions (See also [START_REF] Michelitsch | On Discrete-Time Generalized Fractional Poisson Process And Related Stochastic Dynamics[END_REF]).

The operator that emerges when replacing in ( 26) u with T-1 is hence the upper triangular circulant one-step transition matrix of the Sibuya walk [START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF], namely

[ wα ( T-1 )] mn = [ wα ( T-1 )] 0,n-m = [1 -(1 -T-1 ) α ] m,n = δ mn -[L α ] m,n , α ∈ (0, 1] =          ∞ k=1 (-1) k-1 α k δ m,n-k = (-1) n-m-1 α n -m , n -m > 0 0, n -m ≤ 0 (33) 
where m, n ∈ Z and we used the following properties of the (unitary) shift operator with

( T-1 ) k = T-k and (29) thus [ T-k ] m,n = δ m,n-k = δ k,n-m , m, n, k ∈ Z (34) 
also is upper triangular circulant with entries 1 in the kth upper side-diagonal (n -m = k), and 0 elsewhere. Formula (33) contains the upper triangular circulant fractional Laplacian matrix

g(L) = L α = (1 -T-1 ) α with the elements [L α ] mn = [(1 -T-1 ) α ] mn =        (-1) n-m α n -m , n -m ∈ N 0 0, n -m < 0 α ∈ (0, 1]. (35) 
For α = 1 the Laplacian matrix4 

[L] mn = [(1 -T-1 )] m,n = δ mn -δ m,n-1 , m, n ∈ Z (36) 
is recovered. Then with [START_REF] Hughes | Random Walks and Random Environments[END_REF] we see that the generating function of Laplacian ( 36 Further instructive for subsequent use is to consider the matrix elements of the matrix exponential of the Laplacian (36) which we conveniently obtain from its generating function by

[e -τ L ] 0,n = 1 n! d n du n e -τ (1-u) | u=0 = e -τ τ n n! , τ > 0, n ∈ N 0 (37) 
which is upper triangular circulant with a Poisson distribution in the non-vanishing entries and we directly verify the general properties ( 18)-( 20) of Laplacian matrix exponentials in digraphs. This relation underlines the utmost importance of the Poisson distribution in strictly increasing walks.

These observations suggest that generating functions of good Laplacian matrix functions g(1 -T-1 )

of strictly increasing walks on the integer line such as occurring on right-hand side of (1) are with (11) obtained as

g(1 -u) = ∞ 0 (1 -e -τ (1-u) )ν(dτ ) = ∞ k=0 [g(1 -T-1 )] 0,k u k , |u| ≤ 1 ( 38 
)
where clearly g(1 -T-1 ) has upper triangular circulant matrix representation. For instance for the Lévy measure ν α (dτ ) = α Γ(1-α) τ -1-α dτ for which (38) converges within α ∈ (0, 1) yields generating function (1 -u) α of the Sibuya fractional Laplacian matrix [START_REF] Riascos | Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights[END_REF]. The generating function of the one-step transition matrix then becomes with [START_REF] Riascos | Random walks with long-range steps generated by functions of Laplacian matrices[END_REF] and ( 24)

W (g) (u) = 1 - 1 g(1) g(1 -u), |u| ≤ 1, g(1) = [g(L)] 0,0 = 1 g(1)
∞ 0 e -τ (e τ u -1) ν(dτ ) [START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF] with the 'generalized degree' g(1

) = g(1 -u)| u=0 = ∞ 0 [1 -e -τ ]ν(dτ ) > 0.
The elements of the transition matrix are then straight-forwardly obtained as

W (g) 0,n = 1 g(1) ∞ 0 τ n n! e -τ ν(dτ ) > 0, n ∈ N W (g) 0,0 = 0. (40) 
The matrix elements are traced back to Poisson terms τ n n! e -τ weighted by the Lévy measure ν(dτ ) resulting in strictly positive W (g) 0,n > 0 for n > 0 and W (g) 0,n = 0 else introducing new topologies with directed edges allowing jumps of any positive integer size Z j ∈ {1, 2, . . .} = N. For the class of Lévy measures ν(dτ ) = ν(τ )dτ with densities ν(τ ) which fulfill ∞ 0 ν(τ )dτ < ∞,

i.e. having existing Laplace transforms

ν(s) = ∞ 0 e -τ s ν(τ )dτ < ∞, {s} ≥ 0 (41) 
we have g(1 -u) = ν(0)ν(1 -u) thus the generating function [START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF] of the transition matrix writes

W (g) (u) = ν(1 -u) -ν(1) ν(0) -ν(1) . ( 42 
)
Due to the restriction of convergence of (41) we notice that relation [START_REF] Riascos | Non-local biased random walks and fractional transport on directed networks[END_REF] is more general than [START_REF] Orsingher | The space-fractional Poisson process[END_REF].

After these considerations let us verify the crucial property (23) when we account for the (in our convention left-) eigenvectors of the unitary shift operator

v n = Ce iϕn (ϕ ∈ (-π, π]) with v • L = ∞ m=-∞ v m [L] mn = (1 -e -iϕ
)v n thus the continuous complex eigenvalue spectrum of the Laplacian matrix [START_REF] Riascos | Random walks on networks with stochastic resetting[END_REF] is

µ(ϕ) = 1 -e -iϕ , ϕ ∈ (-π, π] (43) with µ(ϕ)| ϕ=0 = 0 ( {µ(ϕ)} = 1 -cos ϕ > 0) for ϕ = 0 (ϕ ∈ (-π, π]
) in accordance with (23) 5 .

Hence [START_REF] Montroll | Random walks on lattices II[END_REF] converges and has the canonical representation

[g(L)] n,m = 1 2π π -π e iϕ(m-n) g(1 -e -iϕ )dϕ (44) 
where the eigenvalues of the Laplacian matrix function write with ( 11)

g(1 -e -iϕ ) = ∞ 0 [1 -e -τ (1-e -iϕ ) ]ν(dτ ) (45) 
5

Here

W = 1 -L = [ T-1 ] is unitary with λ(ϕ) = e -iϕ thus for all eigenvalues |λ(ϕ)| = 1. which is convergent since {µ(ϕ)} = 1 -cos ϕ ≥ 0 (ϕ ∈ (-π, π]). Now expanding e τ e -iϕ = ∞ =0 τ ! e -i ϕ leading to 1 2π π -π e iτ e -iϕ e i(m-n)ϕ dϕ =        τ m-n (m -n)! , m ≥ n 0 , m < n ( 46 
)
Thus we get for the family of "good Laplacian matrix functions" as generators for strictly increasing walks the upper triangular circulant structure

[g(L)] n,m =        ∞ 0 δ n,m -e -τ τ m-n (m -n)! ν(dτ ), m -n ∈ N 0 0, m -n < 0 ( 47 
)
which clearly fulfills the "good Laplacian properties" (i)-(iii) and is consistent with relation [START_REF] Gorenflo | On the Fractional Poisson Process and the Discretized Stable Subordinator[END_REF]. The convergence of these integrals is ensured by the property (12) of the Lévy measure.

Mittag-Leffler transition matrix

For later use we derive now in the framework of this approach the one-step transition matrix of a strictly increasing walk on the integer line with jumps following a discrete approximation of the Mittag-Leffler density. Such a distribution was analyzed in [START_REF] Pillai | Discrete Mittag-Leffler distributions[END_REF] and generalizations in recent articles [START_REF] Michelitsch | On Discrete-Time Generalized Fractional Poisson Process And Related Stochastic Dynamics[END_REF][START_REF] Pachon | On Discrete-Time Semi-Markov processes, Discrete and Continuous Dynamical Systems B[END_REF]. To this end we consider a Lévy measure ν M L,α (dτ 

) = ν M L,α (τ )dτ with Lévy density ν M L,α (τ ) = λτ α-1 E α,α (-λτ α ) which itself
g M L,α (1 -u, λ) = 1 - λ λ + (1 -u) α = (1 -u) α λ + (1 -u) α , λ > 0, |u| ≤ 1. (48) 
Thus with (39) the generating function of the "Mittag-Leffler transition matrix" yields

WML,α (u, λ) = 1 - 1 g M L,α (1, λ) g M L,α (1 -u, λ) = λ λ + (1 -u) α (1 -(1 -u) α ), α ∈ (0, 1] |u| ≤ 1.
(49) This is the generating function of a discrete approximation of the Mittag-Leffler density introduced recently [START_REF] Pachon | On Discrete-Time Semi-Markov processes, Discrete and Continuous Dynamical Systems B[END_REF] in the context of discrete-time renewal processes and named there "Discrete Mittag-Leffler" (DML A ) distribution (of so called "type A", see Remark 9 in that paper). A discrete version of the Mittag-Leffler density has been analyzed in [START_REF] Pillai | Discrete Mittag-Leffler distributions[END_REF]. The elements of the Mittag-Leffler transition matrix are derived explicitly in relation [START_REF] Beghin | Fractional Poisson processes and related planar random motions[END_REF].

That [START_REF] Benzi | Nonlocal network dynamics via fractional graph Laplacians[END_REF] generates a discrete approximation of the Mittag-Leffler density can be seen beforehand by the following consideration. By introducing the scaling λ(h) = h α λ 0 (h, λ 0 > 0 where λ 0 is a new positive constant independent of h) and with u = e -hs shows that the generating function [START_REF] Benzi | Nonlocal network dynamics via fractional graph Laplacians[END_REF] converges to the Laplace transform of a Mittag-Leffler density, namely

W(λ 0 , s) = lim h→0 WML,α (e -hs , λ 0 h α ) = λ 0 λ 0 + s α (50)
where with f (s) we denote the (spatial) Laplace transform of f (x). It is instructive to recall this limit in terms of shift operator representation (See Appendix A and [START_REF] Michelitsch | On Discrete-Time Generalized Fractional Poisson Process And Related Stochastic Dynamics[END_REF] for details)

W M L,α (x, λ 0 ) = lim h→0 WML,α ( T-h , λ 0 h α )δ h (x) = lim h→0 λ 0 h α λ 0 h α + (1 -T-h ) α δ h (x) = lim h→0 λ 0 λ 0 + h -α (1 -T-h ) α δ h (x) = λ 0 λ 0 + D α x δ(x) = lim h→0 1 h [ WML,α (λ 0 h α )] 0, x h ( 51 
)
which has Laplace transform converging to [START_REF] Pillai | Discrete Mittag-Leffler distributions[END_REF] and contains the discrete δ-distribution δ h (x) defined in (A3). Relation (51) defines the "well-scaled" continuous-space limit density kernel ('transition density kernel') and converges to the Mittag-Leffler density [START_REF] Giusti | General fractional calculus and Prabhakar's theory[END_REF]. In the second line of (51) appears the (Riemann-Liouville) fractional derivative operator D α x of order α as

lim h→0 h -α (1 -e -hDx ) α = D α x (with T-h = e -hDx ).
Now we derive the matrix elements of the Mittag-Leffler transition matrix in explicit form. For our convenience for later use we introduce the Pochhammer-symbol

(c) m = Γ(c + m) Γ(c) =    1, m = 0, c(c + 1) . . . (c + m -1), m = 1, 2, . . . ( 52 
)
where especially (c) 0 = 1 and (0) m = δ m0 . Then we have with [START_REF] Benzi | Nonlocal network dynamics via fractional graph Laplacians[END_REF] the expansions

λ λ + (1 -u) α =                ∞ m=0 (-1) m λ m+1 (1 -u) -(m+1)α , |1 -u| -1 λ 1 α < 1 ∞ m=0 (-1) m λ -m (1 -u) αm , |1 -u| -1 λ 1 α > 1 WML,α (u, λ) =                ∞ m=0 (-1) m λ m+1 (1 -u) -(m+1)α -(1 -u) -mα , |1 -u| -1 λ 1 α < 1 ∞ m=0 (-1) m λ -m (1 -u) αm -(1 -u) α(m+1) , |1 -u| -1 λ 1 α > 1 (53) 
In order to determine the elements of the Mittag-Leffler transition matrix 6 we have to account for the cases of convergence in [START_REF] Mainardi | A fractional generalization of the Poisson processes[END_REF] at u = 0 to arrive at

[W M L,α (λ)] 0,n = λ1 λ1 + L α (1 -L α ) 0,n = 1 n! d n du u WML,α (u, λ)| u=0 , n ∈ N 0 =                λ n! ∞ m=0 (-1) m λ m Γ(α(m + 1) + n) Γ(α(m + 1)) - Γ(αm + n) Γ(αm) , 0 < λ < 1 (-1) n n! ∞ m=0 (-1) m λ -m Γ(αm + 1) Γ(αm -n + 1) - Γ(α(m + 1) + 1) Γ(α(m + 1) -n + 1)
, λ > 1

(54) where these series converge absolutely by accounting for the asymptotic behavior of the terms for m large as Γ(α(m+1)+n) Γ(α(m+1)) ∼ m n λ m for λ < 1, and in the same way ∼ m n λ -m for λ > 1, respectively. We also have [W M L,α (λ)] 0,0 = 0.
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As here all matrices commute we adopt the notation

A B = A • B -1 .
It is worthy also to consider the case α = 1 where (49) takes the form

WML,1 (u, λ) = uλ λ + 1 -u = λ (λ + 1) u (1 -u λ+1 ) = λ (λ + 1) ∞ k=0 u k+1 (λ + 1) k = ∞ k=1 pq k-1 u k p = λ λ + 1 , q = 1 λ + 1 , p + q = 1 (55) 
and hence we obtain for α = 1 the transition matrix

[W M L,1 (λ)] 0,n = pq n-1 , n ∈ N [W M L,1 (λ)] 0,0 = 0 ( 56 
)
which recovers the geometrical distribution (See also [START_REF] Pachon | On Discrete-Time Semi-Markov processes, Discrete and Continuous Dynamical Systems B[END_REF]). Having derived the Mittag-Leffler transition matrix in explicit form with [START_REF] Beghin | Fractional Poisson processes and related planar random motions[END_REF], it is now not a big deal to derive the "well-scaled" continuous-space limit (51) in explicit form. Using the asymptotic relation

(β)n n! ∼ n β-1 Γ(β) (n = x h → ∞)
we arrive by introducing the scaling λ(h) = λ 0 h α → 0 (i.e. with the case for 0 < λ < 1 of ( 54)) at

W M L,α (x, λ 0 ) = lim h→0 1 h [ WML,α (λ 0 h α )] 0, x h , x ∈ hN 0 = lim h→0 ∞ m=0 (-1) m λ m+1 0 1 x h ! h α(m+1)-1 ((m + 1)α) x h -(mα) x h ( 57 
)
where we employ here the Pochhammer symbol (52) and we account for

lim h→0 h α(m+1)-1 ((m + 1)α) x h = lim h→0 h α(m+1)-1 1 Γ[α(m + 1)] x h α(m+1)-1 = x α(m+1)-1 Γ[α(m + 1)] (58) 
with x ∈ R + when h → 0. The second term in (57) has a vanishing limit

lim h→0 h α(m+1)-1 (mα) x h = lim h→0 h α(m+1)-1 1 Γ(αm) x h αm-1 = lim h→0 h α x αm-1 Γ(αm) = 0. (59) 
We hence obtain for the well-scaled continuous-space limit (57) as anticipated the Mittag-Leffler density

W M L,α (x, λ 0 ) = λ 0 x α-1 ∞ m=0 (-λ 0 x α ) m Γ(αm + α) = λ 0 x α-1 E α,α (-λ 0 x α ) = d dx [1 -E α (-λ 0 x α )], x ∈ R + , α ∈ (0, 1] (60) 
containing the generalized Mittag-Leffler function E α,γ (z) = ∞ m=0 z m Γ(αm+γ) . For α = 1 (60) recovers the exponential density W M L,1 (x, λ 0 ) = λ 0 e -λ 0 x which also is the continuous-space limit of (56) obtained with p(h) = λ 0 h λ 0 h+1 and q(h) = 1

λ 0 h+1 thus W M L,1 (x, λ 0 ) = lim h→0 1 h [ WML,1 (λ 0 h)] 0, x h = lim h→0 λ 0 (1 + λ 0 h) -x h = λ 0 e -λ 0 x = d dx (1 -e -λ 0 x ), x ∈ R + . (61) 

SPACE-TIME GENERALIZATIONS OF THE POISSON PROCESS

The classical cases

During the last two decades, an increasing interest in generalizations of the Poisson renewal process has emerged. The most natural generalization probably is obtained when the exponential waiting time density is generalized by a Mittag-Leffler density. The resulting generalization is the fractional Poisson process which was introduced and analyzed by several authors [START_REF] Gorenflo | On the Fractional Poisson Process and the Discretized Stable Subordinator[END_REF][START_REF] Repin | Fractional Poisson law[END_REF][START_REF] Laskin | Fractional Poisson process[END_REF][START_REF] Mainardi | A fractional generalization of the Poisson processes[END_REF][START_REF] Beghin | Fractional Poisson processes and related planar random motions[END_REF]. Then space-time generalizations of the Poisson process were introduced such as the 'space-fractional Poisson Process', the 'space-time fractional Poisson process' [START_REF] Orsingher | The space-fractional Poisson process[END_REF] and further generalizations of the latter [START_REF] Polito | A generalization of the space-fractional Poisson process and its connection to some Lévy processes[END_REF] were developed within the last decade. Generally these space-time generalizations can be seen as strictly increasing walks on the integer line subordinated to a renewal process. Before we introduce in Section 6 such a generalization, let us briefly recall these classical cases.

Poisson process

We consider the Cauchy problem

d dt p n (t) = -ξp n (t) + ξp n-1 (t) = -ξ(1 -T-1 )p n (t), p n (0) = δ n0 , ξ > 0, t ≥ 0 d dt p(t) = -ξp(t) • L. (62) 
Indeed Cauchy problem (62) defines the time-evolution of the state probabilities in the standard Poisson counting process which is the simplest variant of the general class (1) (where L is the circulant Laplacian matrix (36)). Equation ( 62) is the Kolmogorov-Feller (also referred to as Kolmogorov-forward) equation which is solved by the state probabilities of the standard Poisson counting process p n (t) = P(N (t) = n) (n ∈ N 0 , t ≥ 0) where N (t) ∈ N 0 counts the events within the time interval [0, t]. We can conceive the Poisson counting process in the Montroll-Weiss CTRW picture [START_REF] Montroll | Random walks on lattices II[END_REF] as a strictly increasing random walk with one-step transition matrix 

[W] m,n = [ T-1 ] m,n = δ m,n-
p n (t) = [p(0) • e -ξtL ] n = 1 n! d n du n e -ξt(1-u) | u=0 = (ξt) n n! e -ξt , n ∈ N 0 , t ∈ R + .
(63)

Fractional Poisson process

The most natural time-generalization of the Poisson process is defined by the Cauchy problem

d β dt β p n (t) = -ξ(1 -T-1 )p n (t), ξ > 0, p n (0) = δ n0 , β ∈ (0, 1] d β dt β p(t) = -ξp(t) • L (64)
which is the well-known fractional Kolmogorov-Feller equation of the fractional Poisson process [START_REF] Laskin | Fractional Poisson process[END_REF] where d β dt β denotes the Caputo fractional derivative of order β defined as, e.g. [START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF] 

d β dt β p(t) = 1 Γ(1 -β) t 0 (t -τ ) -β d dτ p(τ )dτ , β ∈ (0, 1] (65) 
where in the limit lim β→1- 

(t-τ ) -β Γ(1-β) = δ(t -τ ) (
p(t) = p(0) • E β (-ξt β L) = [. . . , [E β (-ξt β L)] 0,n , . . .] ( 66 
)
where comes into play the Mittag-Leffler type matrix function

E β (-ξt β L) = ∞ m=0 (-ξt β ) m Γ(βm + 1) L m (67) with the Mittag-Leffler function E β (z) = ∞ m=0 z m Γ(βm+1) . Taking into account that the generating function of ∞ k=0 [L m ] 0,k u k = (1 -u) m then the Mittag-Leffler matrix function (67) has the generating function ∞ k=0 [E β (-ξt β L)] 0,k u k = E β (-ξt β (1 -u)).
Hence with [START_REF] Hughes | Random Walks and Random Environments[END_REF] we get for the components of the state vector (66)

p β n (t) = [E β (-ξt β L)] 0,n = 1 n! d n du n E β (-(1 -u)ξt β )| u=0 , n ∈ N 0 , t ∈ R + = (ξt β ) n n! ∞ m=0 (m + n)! m! (-ξt β ) m Γ((m + n)β + 1) . ( 68 
)
We identify (68) indeed with the state probabilities of Laskin's fractional Poisson distribution [START_REF] Laskin | Fractional Poisson process[END_REF] which also was derived in different manners by several further authors [START_REF] Repin | Fractional Poisson law[END_REF][START_REF] Mainardi | A fractional generalization of the Poisson processes[END_REF][START_REF] Beghin | Fractional Poisson processes and related planar random motions[END_REF]. For β = 1 (68) recovers the Poisson distribution (63).

Space-time fractional Poisson process

Orsingher and Polito have generalized the Cauchy problems ( 62), (64) by introducing a spatial generalization L → L α where the right-hand sides of ( 62) and (64), respectively, are generalized by the (Sibuya-) fractional Laplacian matrix [START_REF] Riascos | Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights[END_REF]. They named these processes space-fractional Poisson process and space-time fractional Poisson process, respectively [START_REF] Orsingher | The space-fractional Poisson process[END_REF]. Indeed the space-fractional Poisson process is a Sibuya-walk subordinated to an independent Poisson process, and the space-time fractional Poisson process is a Sibuya walk time-changed with an independent fractional Poisson process. The Cauchy problem defining the space-time fractional Poisson process then writes

d β dt β p n (t) = -ξ(1 -T-1 ) α p n (t), α, β ∈ (0, 1], ξ > 0, t ≥ 0 p n (t)| t=0 = δ n0 d β dt β p(t) = -ξp(t) • L α (69)
For β = 1 the space-fractional Poisson process is recovered and for α = 1 the fractional Poisson process. We obtain the state vector solving (69) as

p α,β (t) = p(0) • E β (-ξt β L α ), α, β ∈ (0, 1], t ≥ 0 (70) having generating function pα,β (u, t) = E β (-ξt β (1 -u) α ) (71) 
where pα,β (u, t)| u=1 = 1 reflects row-stochasticity of the upper triangular circulant transition matrix E β (-ξt β L α ) (normalization of the state probabilities). The state distribution is obtained as

p α,β n (t) = 1 n! d n du n E β (-(1 -u) α ξt β )| u=0 , n ∈ N 0 , t ≥ 0 = ∞ m=0 (-ξt β ) m Γ(βm + 1) 1 n! d n du n (1 -u) αm | u=0 = (-1) n n! ∞ m=0 Γ(αm + 1) Γ(αm + 1 -n) (-ξt β ) m Γ(βm + 1) (72)
which is the expression obtained by Orsingher and Polito (Eq. (2.28) in [START_REF] Orsingher | The space-fractional Poisson process[END_REF]) and recovers for β = 1 their expression for the space-fractional Poisson process derived in the same paper [START_REF] Orsingher | The space-fractional Poisson process[END_REF]. Further generalizations of the space-fractional Poisson are considered in [START_REF] Orsingher | Counting processes with Bernštein intertimes and random jumps[END_REF][START_REF] Garra | Some probabilistic properties of fractional point processes[END_REF].

Well-scaled diffusion limits

We consider briefly the diffusion limit of standard Poisson α, β = 1. To this end we define a well-scaled continuous-space limit in (63) by introducing the scaling ξ(h) = ξ 0 h -1 (where ξ 0 > 0 is a new dimensional constant independent of h) to arrive at

P 1,1 (x, t) = lim h→0 e -ξ 0 t h -1 (1-e -hDx ) δ h (x) = e -ξ 0 tDx δ(x) = T-ξ 0 t δ(x) = δ(x -ξ 0 t) (73)
which is a moving Dirac δ-distribution propagating with constant velocity ξ 0 in the positive x-direction. It is immediately checked that (73) solves the continuous-space limit of (64) which is the Cauchy problem

∂ ∂t P 1,1 (x, t) = -ξ 0 ∂ ∂x P 1,1 (x, t), P 1,1 (x, t)| t=0 = δ(x).
(74)

Diffusion limit of space-time fractional Poisson

Further consider the space-time fractional Poisson process α ∈ (0, 1) and β ∈ (0, 1] with the scaling ξ(h) = ξ 0 h -α (ξ 0 > 0). Then we can write the continuous-space diffusion equation which emerges from the well-scaled limit of (69). By accounting for the lim h→0 h

-α (1 -T-h ) α = D α
x which takes the Riemann-Liouville fractional derivative of order α (e.g. [START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF][START_REF] Podlubny | Fractional Differential Equations[END_REF][START_REF] Michelitsch | Sur une généralisation de l'opérateur fractionnaire[END_REF]] and many others) we obtain for (69) the space-time fractional diffusion equation

∂ β ∂t β P(x, t) = -ξ 0 D α x P(x, t), P(x, t)| t=0 = δ(x). ( 75 
)
On the right hand side of (75) occurs the spatial Riemann-Liouville fractional derivative of order α ∈ (0, 1) defined as, e.g. [START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF][START_REF] Podlubny | Fractional Differential Equations[END_REF]]

D α x P(x, t) = ∂ ∂x x 0 (x -τ ) -α Γ(1 -α) P(τ , t)dτ , α ∈ (0, 1). ( 76 
)
We notice that since the right-hand side of (69) the fractional Laplacian L α = [(1 -T-1 ) α ] does not contain an own scaling parameter. In order to get an existing limit we have rescaled the constant

ξ(h) = ξ 0 h -α (having dimension [sec] -β
) where ξ 0 has units [sec -β cm α ].

SPACE-TIME MITTAG-LEFFLER PROCESS

Having recalled these classical cases, we introduce here a generalization of the Poisson process which is a strictly increasing walk on the integer line with Mittag-Leffler jumps taking place at fractional Poisson arrival times. We also highlight the connections with the Montroll-Weiss CTRW picture in more details. We call this process 'space-time Mittag-Leffler process' which we define by a Cauchy problem of the general type (1), namely

d β dt β p n (t) = -ξ(λ + 1) (1 -T-1 ) α (λ + (1 -T-1 ) α ) p n (t), ξ, λ > 0, t ≥ 0 α, β ∈ (0, 1], n ∈ N 0 p n (t)| t=0 = δ 0,n d β dt β p(t) = - ξ [g M L,α ] 0,0 p(t) • g M L,α (L), [p(t) • g M L,α (L)] n = n m=0 p m (t)[g M L,α (L)] 0,n-m . (77) 
The right-hand side contains the good Laplacian matrix function

g M L,α (L) = L α λ+L α of (48) (with generalized degree [g M L,α ] 0,0 = g M L,α (1 -u, λ)| u=0 = 1 λ+1
) and generates discrete Mittag-Leffler jumps with transition matrix [START_REF] Beghin | Fractional Poisson processes and related planar random motions[END_REF]. The last line indicates the matrix representation and uses the upper triangular circulant property of g M L,α (L) (See [START_REF] Hughes | Random Walks and Random Environments[END_REF]) and d β dt β stands for the Caputo fractional derivative (65). The generating function representation of Cauchy problem (77) then writes

d β dt β p(u, t) = -ξ (λ + 1)(1 -u) α λ + (1 -u) α p(u, t), |u| ≤ 1, p(u, t)| t=0 = 1. ( 78 
)
For the solution of (77) we can write

p α,β λ,ξ (t) = p(0) • E β -ξt β (λ + 1) L α λ1 + L α (79)
with the generating function of the state-probabilities

pα,β λ,ξ (u, t) = E β -ξt β (λ + 1)(1 -u) α λ + (1 -u) α = ∞ m=0 [-ξt β (λ + 1)] m Γ(βm + 1) (1 -u) αm [λ + (1 -u) α ] m (80)
involving the standard Mittag-Leffler function E β (z) where in the Poisson limit β = 1 in all relations due to E 1 (z) = e z the Mittag-Leffler functions recover exponentials and the Caputo derivative recovers the standard first order time-derivative. We observe that pα,β λ,ξ (u, t)| u=1 = 1 reflecting normalization of the state probabilities. Expression (80) contains

Ē(m) α (λ, u) = [g M L,α (1 -u)] m = 1 [1 + λ(1 -u) -α ] m = ∞ s=0 (m) s s! (-λ) s (1 -u) -αs , λ 1 α |1 -u| -1 < 1 (81)
and plainly

Ē(m) α (λ, u) = [g M L,α (1 -u)] m = λ -m (1 -u) αm (1 + λ -1 (1 -u) α ) m = ∞ s=0 (m) s s! (-1) s λ -s-m (1 -u) α(s+m) , λ 1 α |1 -u| -1 > 1 (82)
where (m) s = m(m + 1)..(m + s -1) stands for the Pochhammer-symbol [START_REF] Laskin | Fractional Poisson process[END_REF]. Ē(m) α (λ, u) is the generating function of a discrete version of a so called Prabhakar kernel [START_REF] Prabhakar | A singular integral equation with a generalized Mittag-Leffler function in the kernel[END_REF][START_REF] Michelitsch | On Discrete-Time Generalized Fractional Poisson Process And Related Stochastic Dynamics[END_REF][START_REF] Giusti | General fractional calculus and Prabhakar's theory[END_REF]. We will show this connection explicitly in subsequent analysis of well-scaled continuous-space limits. The state-probabilities solving (77) are then with ( 80) and (81) obtained as

p α,β λ,ξ,n (t) = 1 n! d n du n E β -(λ + 1)(1 -u) α ξt β λ + (1 -u) α | u=0 , n ∈ N 0 = ∞ m=0 [-(λ + 1)ξt β ] m Γ(βm + 1) E (m) α (λ, n) (83)
Since we take the derivatives at u = 0 we need to account for that (81) converges at u = 0 for 0 < λ < 1, whereas (82) converges at u = 0 for λ > 1. We hence arrive at

E (m) α (λ, n) =                1 n! ∞ s=0 (-λ) s (m) s s! Γ(αs + n) Γ(αs) , 0 < λ < 1 (-1) n λ -m n! ∞ s=0 (-1) s λ -s (m) s s! Γ(α(s + m) + 1) Γ(α(s + m) -n + 1) , λ > 1 n ∈ N 0 .
(84) One can easily verify in view of the asymptotic scaling

Γ(sα+a) Γ(αs+b) ∼ s a-b and (m)s s! ∼ s m-1 for s → ∞
that the series (84) for the two cases converge absolutely. We directly verify the initial condition

p α,β λ,ξ,n (t)| t=0 = E (0) α (λ, n) = δ 0,n . For n = 0 we have E (m) α (λ, 0) = (1 + λ) -m thus the 'survival probability' (probability that the walker at t = 0 still is in the initial state n = 0) is Mittag-Leffler, namely p α,β λ,ξ,0 (t) = pα,β λ,ξ (u, t)| u=0 = E β (-ξt β ) (85) 
which is necessarily the survival probability in the fractional Poisson process. We notice that for β ∈ (0, 1) the space-time Mittag-Leffler process is non-Markovian with long memory features, whereas for β = 1 it becomes Markovian due to the memoryless nature of the standard Poisson process, e.g. [START_REF] Saichev | Fractional kinetic equations: solutions and applications[END_REF][START_REF] Laskin | Fractional Poisson process[END_REF].

In Figure 1 the time-dependence of the state probabilities (83) for n = 0, 1, 2 is depicted for different values of α, β ∈ (0, 1], respectively. The survival probability n = 0 is independent of α and given by the Mittag-Leffler survival probability (85) which turns for β = 1 into an exponential (see the plots on the left) with initial conditions p α,β λ,ξ,0 (t)| t=0 = 1 whereas for n = 1, 2 the zero initial conditions can be seen in the plots. For large dimensionless times τ = tξ 1 β → ∞ we have for β ∈ (0, 1) a power-law decay p α,β λ,ξ,n (t) ∼ τ -β (See asymptotic relation (90)).

Asymptotic behavior

It is worthwhile to consider the asymptotic behavior for n large and finite (dimensionless) times ξ 1 β t. To this end consider generating function for u → 1 -0 for α ∈ (0, 1), namely

E β -(λ + 1)ξt β (1 -u) α λ(1 + λ -1 (1 -u) α ) = 1 - (λ + 1)ξt β Γ(β + 1)λ (1 -u) α + O(1 -u) α (86) 
where O(1 -u) α indicates higher orders such that lim u→1-

(1 -u) -α O(1 -u) α = 0.
We notice in view of (86) that this asymptotic behavior is for α ∈ (0, 1) of the same fat-tailed type as for the state probabilities (72) of the space-time fractional Poisson process and also as Sibuya(α), namely

p α,β λ,ξ,n (t) ∼ - (λ + 1)ξt β λΓ(β + 1) 1 n! d n du n (1 -u) α | u=0 = (λ + 1)ξt β Γ(β + 1) (-1) n-1 a n ∼ α(λ + 1)ξt β n -α-1 λΓ(1 -α)Γ(1 + β) , n → ∞ (87) 
where α ∈ (0, 1) and β ∈ (0, 1]. The fat-tailed behavior p α,β λ,ξ,n (t) ∼ n -α-1 reflects the occurrence of long-range forward jumps and is equivalent to the divergence of the first moment, namely

d du pα,β λ,ξ,n (u, t)| u=1 = ∞ n=0 p α,β λ,ξ,n (t)n → ∞ for α ∈ (0, 1)
. The asymptotic form (87) contains also the 'well-scaled' continuous-space limit (h → 0: λ(h) = λ 0 h α and x ∈ hN 0 → R + ), namely

P α,β λ 0 ,ξ (x, t) = lim h→0 1 h p α,β λ 0 h α ,ξ, x h (t) ∼ αx -α-1 ξt β λ 0 Γ(1 -α)Γ(1 + β) , t ≥ 0, x → ∞. (88) 
The "well-scaled" continuous-space limiting procedure will be justified in subsequent paragraph in more details. λ 0 > 0 is a new constant (independent of h) and has units [cm] -α . The constant ξ > 0 has physical dimension [sec] -β thus (88) is a spatial density of units [cm] -1 .

Then let us also consider the asymptotic behavior for large (dimensionless) time tξ 1 β → ∞ and finite n. From the asymptotic behavior of the scalar Mittag-Leffler function

E β (-at β ) ∼ 1 a t -β Γ(1-β) with a = ξ(λ+1)
1+λ(1-u) -α follows for the asymptotic behavior of the generating function (80)

pα,β λ,ξ (u, t) ∼ (1 + λ(1 -u) -α ) (λ + 1)ξ t -β Γ(1 -β)
, tξ

1 β → ∞, β ∈ (0, 1), α ∈ (0, 1] (89) 
and hence for the state probabilities

p α,β λ,ξ,n (t) ∼ (δ n,0 + λ (α)n n! ) (λ + 1) t -β ξΓ(1 -β) , tξ 1 β → ∞, n ∈ N 0 , β ∈ (0, 1), α ∈ (0, 1] (90) 
where for n = 0 the pure Mittag-Leffler asymptotic behavior of the survival probability (85)

p α,β λ,ξ,0 (t) ∼ t -β
ξΓ(1-β) is obtained. We also get the asymptotic behavior in view of (89) for the well-scaled continuous-space limit by (h → 0: λ(h) = λ 0 h α and x ∈ hN 0 → R + ) for large dimensionless times and finite continuous state variable x ∈ [0, ∞)

P α,β λ 0 ,ξ (x, t) ∼ lim h→0 1 h p α,β λ 0 h α ,ξ, x h (t) = lim h→0 δ h (x) + λ 0 h α-1 (α) x h x h ! (λ 0 h α + 1) t -β ξΓ(1 -β) P α,β λ 0 ,ξ (x, t) ∼ δ(x) + λ 0 x α-1 Γ(α) t -β ξΓ(1 -β) , tξ 1 β → ∞, x ∈ R + , β ∈ (0, 1) (91) 
where the asymptotic t -β -power-law decay reflects the non-Markovian long memory feature of the process.

Well-scaled continuous-space limit

Having derived the state probabilities (83) solving Cauchy problem (77), we are now interested in the well-scaled continuous-space limit density solving a (forward) diffusion equation which turns out to refer to the general class [START_REF] Gorenflo | The asymptotic universality of the Mittag-Leffler waiting time law in continuous time random walks[END_REF]. We can define this diffusion limit by the scaling assumption λ(h) = h α λ 0 where λ 0 > 0 is independent of h. Here the constant ξ does not need to be rescaled in order to obtain an existing limit. We define the 'well-scaled' continuous-space limit state density kernel by

P α,β λ 0 ,ξ (x, t) = lim h→0 E β -ξ(λ 0 h α + 1)t β 1 + λ 0 h α (1 -T-h ) -α δ h (x) = lim h→0 1 h p α,β λ 0 h α ,ξ, x h (t) = E β -ξt β 1 + λ 0 D -α x δ(x) (92)
where we employed the discrete-δ distribution δ h (x) defined in (A3) and its limiting behavior (A4) and in this limiting process x ∈ hN 0 → R + . D -α

x indicates the Riemann-Liouville fractional integral operator of order α. By taking into account (83) we get

P α,β λ 0 ,ξ (x, t) = lim h→0 ∞ m=0 [-(λ 0 h α + 1)ξt β ] m Γ(βm + 1) 1 h E (m) α λ 0 h α , x h (93)
where we use the asymptotic relation

(β)n n! ∼ n β-1 Γ(β)
. We have to consider in (84) the case 0 < λ(h) < 1 as λ(h) = λ 0 h α → 0 to evaluate the continuous-space limit

e m α,0 (-λ 0 , x) = lim h→0 1 h E (m) α λ 0 h α , x h = lim h→0 1 + λ 0 h α (1 -T-h ) -α -m δ h (x) = lim h→0 ∞ s=0 (m) s (-λ 0 ) s s! h αs ∞ n=0 (αs) n n! δ h (x -hn) = lim h→0 δ h (x) + ∞ s=1 (m) s (-λ 0 ) s s! h αs-1 (αs) x h x h ! e m α,0 (-λ 0 , x) = δ(x) + ∞ s=1 (m) s (-λ 0 ) s x αs-1 s!Γ(αs) , m = 0, 1, 2, .. ∈ N 0 , x ∈ R + = D x Θ(x)E m α,1 (-λ 0 x) ( 94 
)
and for m = 0 we have e 0 α,0 (-λ 0 , x) = lim h→0 δ h (x) = δ(x). In the last line we have used the property of the Heaviside step function D x Θ(x) = δ(x) and it comes into play the so called Prabhakar function which is a generalization of the Mittag-Leffler function introduced by Prabhakar [START_REF] Prabhakar | A singular integral equation with a generalized Mittag-Leffler function in the kernel[END_REF] as

E γ α,β (z) = ∞ s=0 (γ) s s! z s Γ(αs + β) , α, β, γ ∈ C, {α} > 0. (95) 
We used in the deduction (94) that T-hn δ h (x) = δ h (x -hn) = 1 h δ x h ,n where h → 0 : x ∈ hN 0 → R + (See also Appendix A, Eq. (A3)). The continuous-space limit expression (94) can be identified with a so called Prabhakar kernel e m α,0 (-λ 0 , x). 

P α,β λ 0 ,ξ (x, t) = ∞ m=0 (-ξt β ) m Γ(βm + 1) e m α,0 (-λ 0 , x), λ 0 , ξ > 0, α, β ∈ (0, 1], x, t ≥ 0 = D x Θ(x)Θ(t) ∞ m=0 (-ξt β ) m Γ(βm + 1) E m α,1 (-λ 0 x) . ( 96 
)
which has units [cm] -1 . We directly verify the initial condition P α,β λ 0 ,ξ (x, t)| t=0 = e 0 α,0 (-λ 0 , x) = δ(x).

The time-dependence of the state density kernel (96) is plotted in Figure 2 for the Poisson limit β = 1 for two different values of α. Increasing values of the state variable x are indicated by colors turning from red (small x > 0) to blue (large x). We observe that for larger α in the lower plot the state density exhibits increasingly oscillating behavior for increasing values of x. We will come back to this issue subsequently when we discuss the emerging continuous-space limit diffusion It is now only a small step to derive the continuous-space forward diffusion equation of generalized fractional type which is solved by the state density kernel (96). To this end we deduce the convolution kernel of continuous-space limit of the right-hand side in (77), by the well-scaled limit (See also relations [START_REF] Frobenius | Über Matrizen aus nicht negativen Elementen[END_REF] and ( 39))

G ξ,λ 0 ,α (x) = lim h→0 g M L,α (1 -T-h , λ 0 h α ) g M L,α (1, λ 0 h α ) δ h (x) = lim h→0 (λ 0 h α + 1) 1 + λ 0 h α (1 -T-h ) -α δ h (x) = 1 (1 + λ 0 D -α x ) δ(x) = ∞ m=0 (-λ 0 ) m D -mα x δ(x). ( 97 
) Therefore G ξ,λ 0 ,α (x) = D x D α-1 x D α x + λ 0 δ(x) = D x [Θ(x)E α (-λ 0 x α )] = δ(x) + Θ(x)D x E α (-λ 0 x α ) = δ(x) -Θ(x)λ 0 x α-1 E α,α (-λ 0 x α ) = δ(x) -W M L,α (x, λ 0 ). ( 98 
)
We call this kernel 'Laplacian density'. This result also is obtained by taking into account its spatial Laplace transform s α s α +λ 0 (obtained from the scaling limit of the first line in (98)). We notice that the Laplacian density still maintains the 'distributional versions' of the good Laplacian properties (i)-(iii): We have ∞ 0 G ξ,λ 0 ,α (x)dx = 0 corresponding to (i), G ξ,λ 0 ,α (x) < 0 for x > 0 (condition (iii)), and lim →0+ 0 G ξ,λ 0 ,α (x)dx = 1 corresponds to (ii). In the last line of (98) we account for the Mittag-Leffler transition density kernel W M L,α (x, λ 0 ) = λ 0 x α-1 E α,α (-λ 0 x α ) (60) occurring as continuous-space limit of the Mittag-Leffler matrix [START_REF] Beghin | Fractional Poisson processes and related planar random motions[END_REF]. The continuous-space-time Cauchy problem then writes

∂ β ∂t β P(x, t) = -ξ ∞ -∞ P(τ , t)G ξ,λ 0 ,α (x -τ )dτ , x, t ≥ 0, α, β ∈ (0, 1] = -ξ x 0 P(τ , t)G ξ,λ 0 ,α (x -τ )dτ = -ξP(x, t) + ξ x 0 W M L,α (x -τ , λ 0 )P(τ , t)dτ = -ξ ∂ ∂x x 0 E α (-λ 0 (x -τ ) α )P(τ , t)dτ = -ξP(x, t) + ξ x 0 λ 0 (x -τ ) α-1 E α,α [-λ 0 (x -τ ) α ]P(τ , t)dτ = -ξP(x, t) + ξλ 0 E x (α, α; 1; -λ 0 )P(x, t) P(x, t)| t=0 = δ(x) (99)
where in the second line is used that -D x E α (-λ 0 x α ) = λ 0 x α-1 E α,α (-λ 0 x α ) which yields the (weakly singular and hence integrable) Mittag-Leffler density, and where E x is the Prabhakar integral acting on the space variable x (see [START_REF] Prabhakar | A singular integral equation with a generalized Mittag-Leffler function in the kernel[END_REF]). The integration limits reflect the upper triangular circulant property of the Laplacian matrix function g M L,α (L) with G ξ,λ 0 ,α (x), W M L,α (x, λ 0 ), P(x, t) = 0 for x < 0 (See also the last line of (77)). Equation ( 99) is the well-scaled continuous-space limit of (77) and a generalized Kolmogorov-Feller (forward) diffusion limit equation of general type (2) solved by the state density kernel (96).

Eq. (99) has the following physical interpretation: The Mittag-Leffler convolution on the right-hand side is the contribution to P(x, t) by incoming jumps to x which originate from all states τ with 0 ≤ τ < x. The term -ξP(x, t) = -ξP(x, t) ∞ x W M L,α (τ -x)dτ describes the "loss" due to outgoing jumps from x by long-range Mittag-Leffler jumps into the infinite half space τ > x.

Coming back to Figure 2: In view of the structure of Eq. (99), the emergence of oscillating behavior in the time dependence of the state density, especially visible in the lower plot of this figure, is resulting from the complex interplay of incoming and outgoing jumps to and from a state x where we give a rough qualitative interpretation: For t and x both 'small', the incoming jumps at x are 'mainly' originating from the initial δ-peak P(x, 0) = δ(x) where their accumulation giving rise to the first maximum which decays in time by outgoing jumps and the lack of incoming jumps. This effect becomes the more evanescent the larger x due to dispersion effects caused by jumps of any length drawn from the fat-tailed Mittag-Leffler density. This dispersive behavior is strongly contrasted by the stable dispersion free propagation of the δ-distribution state density in the standard Poisson process (See relation (73)).

It appears worthy also to consider briefly the connection with the Montroll-Weiss CTRW picture [START_REF] Montroll | Random walks on lattices II[END_REF]. In this picture the Cauchy problem (77) is equivalent to a strictly increasing walk on the integer line with discrete Mittag-Leffler jumps according to the one-step transition matrix 

,β λ,ξ (u, s) = 1 s (1 -χβ (s)) ∞ n=0 [ χβ (s) WML,α (u, λ)] n = 1 s (1 -χβ (s)) 1 1 -WML,α (u, λ) χβ (s) = s β-1 s β + g M L,α (1-u,λ) g M L,α (1,λ) = s β-1 s β + ξ(λ+1)(1-u) α λ+(1-u) α (100)
where g M L,α ( 

s β p(u, s) -s β-1 p(u, t)| t=0 = - ξ(λ + 1)(1 -u) α λ + (1 -u) α p(u, s), p(u, t)| t=0 = 1. (101) 
Inverting the time-Laplace transform on the left hand side yields the Caputo-derivative thus the causal time-domain representation of (101) indeed coincides with the generating function representation of the Cauchy problem (78). This concludes our proof of equivalence of the space-time Mittag-Leffler process with a Montroll-Weiss CTRW of a strictly increasing walk with discrete Mittag-Leffler jumps (54) subordinated to a fractional Poisson process.

GENERALIZED SPACE-TIME MITTAG-LEFFLER PROCESS

Finally quasi as a byproduct we consider the space-fractional generalization of the space-time Mittag-Leffler process. Let g 1,2 (L) be good Laplacian matrix functions constructed by Lévy measures ν 1,2 (dτ ) with [START_REF] Riascos | Random walks with long-range steps generated by functions of Laplacian matrices[END_REF]. Then a good Laplacian matrix function is obtained also by the chain g 2 (g 1 (L)). With g 1 (L) = g M L,α (L) and g 2 (L) = L µ and the Laplacian L of (36) we get (where

ν 2 (dτ ) = -τ -1-µ Γ(-µ) dτ ) [g M L,α (L)] µ = - 1 Γ(-µ) ∞ 0 (1 -e -τ g M L,α (L) )τ -µ-1 dτ , µ ∈ (0, 1) = L αµ (λ1 + L α ) µ . (102) 
This integral converges for µ ∈ (0, 1) thus the fractional power [g M L,α (L)] µ in this range is a good Laplacian Bernstein matrix function conserving properties (i)-(iii). The Cauchy problem governing the state probabilities then reads

d β dt β p n (t) = -ξ(λ + 1) µ (1 -T-1 ) αµ (λ + (1 -T-1 ) α ) µ p n (t), ξ, λ > 0, t ≥ 0 α, µ, β ∈ (0, 1], n ∈ N 0 p n (t)| t=0 = δ 0,n (103) 
with the generating function of the state probabilities

pα,µ,β λ,ξ (u, t) = E β -ξt β (λ + 1) µ (1 -u) αµ (λ + (1 -u) α ) µ = ∞ m=0 [-ξt β (λ + 1) µ ] m Γ(βm + 1) [g M L,α (1 -u)] mµ . (104) 
We hence get for the state-probabilities

p α,µ,β λ,ξ,n (t) = ∞ m=0 [-(λ + 1) µ ξt β ] m Γ(βm + 1) E (mµ) α (λ, n), n ∈ N 0 (105) 
with the cases (See also (84))

E (mµ) α (λ, n) =                1 n! ∞ s=0 (-λ) s (mµ) s s! Γ(αs + n) Γ(αs) , 0 < λ < 1 (-1) n λ -mµ n! ∞ s=0 (-1) s λ -s (mµ) s s! Γ(α(s + mµ) + 1) Γ(α(s + mµ) -n + 1) , λ > 1 n ∈ N 0 . ( 106 
)
where these series converge absolutely in view of the asymptotic behavior of the terms for large s, namely ∼ s µm+n-1 λ s (λ < 1) and ∼ s µm+n-1 λ -s (λ > 1). E (mµ) α (λ, n) is a discrete approximation of a Prabhakar kernel. The well-scaled continuous-time limit is now straight-forwardly obtained with λ(h) = λ 0 h α → 0 in the first line of (106) with n = x h and yields the state density

P α,β λ 0 ,ξ (x, t) = lim h→0 1 h p α,µ,β λ 0 h α ,ξ, x h (t) = ∞ m=0 (-ξt β ) m Γ(βm + 1) e mµ α,0 (-λ 0 , x), λ 0 , ξ > 0, α, µ, β ∈ (0, 1], x, t ≥ 0 = D x Θ(x)Θ(t) ∞ m=0 (-ξt β ) m Γ(βm + 1) E mµ α,1 (-λ 0 x) . (107) 
with the Prabhakar kernel e mµ α,0 (-λ 0 , x) obtained as (See ( 94))

e mµ α,0 (-λ 0 , x) = δ(x) + ∞ s=1 (mµ) s (-λ 0 ) s x αs-1 s!Γ(αs) , m = 0, 1, 2, .. ∈ N 0 , x ∈ R + (108) 
Then we further get for the Laplacian density in the same way as in (98) the kernel

G ξ,λ 0 ,α,µ (x) = e µ α,0 (-λ 0 , x) = δ(x) -W (µ) α (x) = D x [Θ(x)E µ α,1 (-λ 0 x α )] (109) with E µ α,1 (-λ 0 x α ) = ∞ s=0 (µ)s(-λ 0 ) s x αs s!Γ(αs+1)
. The transition density kernel hence yields

W (µ) α (x) = -D x E µ α,1 (-λ 0 x α ) = λ 0 x α-1 ∞ s=0 (µ) s+1 (s + 1)! (-λ 0 x α ) s Γ(αs + α) , x > 0 (110) 
recovering for µ = 1 the Mittag-Leffler density. It is easily verified that the transition kernel is normalized

∞ 0 W (µ) α (x)dx = E µ α,1 (-λ 0 x α )| x=0 = 1.
The diffusion-limit Cauchy problem which again is of general type (2) then reads

∂ β ∂t β P(x, t) = -ξP(x, t) + ξ x 0 W (µ) α (x -τ )P(τ , t)dτ , P(x, t)| t=0 = δ(x) (111)
and is solved by the state density kernel (107). For µ = 1 all expressions turn into those previously derived for the space-time Mittag-Leffler process.

The fractional generalization of the space-time Mittag-Leffler process shows that the analysis of processes generated by chains of Bernstein matrix functions g n (..g 1 (L)) which again are of the class of Bernstein functions conserving the good Laplacian properties may open an interesting direction to be further explored.

CONCLUSIONS

In this paper, we have analyzed space-time generalizations of the Poisson process defined by Cauchy problems with generalized Kolmogorov-Feller difference-differential equations of type [START_REF] Kutner | The continuous time random walk, still trendy: fifty-year history, state of art and outlook[END_REF]. These generalizations in the Montroll-Weiss CTRW picture are strictly increasing walks on the integer line subordinated to a renewal process. We have shown that this approach can also be applied more generally to biased walks on digraphs and requires the construction of non-trivial 'good Laplacian matrix functions' g(L) introducing new topologies of fully connected structures with the small world property if the Laplacian matrix L is ergodic.

Choosing Lévy densities which are themselves normalized continuous distributions and a Laplacian L of the trivial strictly increasing walk [START_REF] Riascos | Random walks on networks with stochastic resetting[END_REF] leads to non-trivial discrete-approximations of these Lévy densities (See ( 38)-( 42)) in the form of upper triangular circulant transition matrices with strictly positive elements above the main diagonal allowing any positive integer jump. These properties are especially useful to construct new space-time generalizations of the Poisson process.

As a pertinent example we have derived in this way a 'good Laplacian matrix function' which generates a strictly increasing walk with discrete Mittag-Leffler jumps and introduced the space-time Mittag-Leffler process. For this process, by means of explicit formulae, we derived the state probabilities (Eq. ( 83)) solving the Cauchy problem (77). We developed for the space-time Mittag-Leffler process a well-scaled continuous space limiting procedure and obtained the state density (96) as a limiting expression of the state probabilities where Prabhakar kernels come into play. We derived in this way the forward diffusion equation of general fractional type (99) which is solved by the state density (96). The continuous-space limit diffusion equation (99) refers to the general class of generalized Kolmogorov-Feller forward equations [START_REF] Gorenflo | The asymptotic universality of the Mittag-Leffler waiting time law in continuous time random walks[END_REF]. We also showed that the space-time Mittag-Leffler process in the Montroll-Weiss picture is a CTRW with discrete Mittag-Leffler jumps subordinated to a fractional Poisson process.

Following this line, we introduced a space-fractional generalization of the space-time Mittag-Leffler process constructed by a chain of two good Laplacian functions conserving the good Laplacian properties. In this way we derived the Cauchy problem (103) governing the state probabilities for which we obtained an explicit formula (Eq. ( 105)). We also deduced the well-scaled state density kernel (Eq. ( 107)) which involves Prabhakar kernels and solves the continuous-space Cauchy problem (111).

There is a large potential in the presented approach to construct space-time generalizations of the Poisson process in terms of strictly increasing walks. Also new general types of biased walks subordinated to continuous-time or discrete-time counting processes derived in this way may have interesting applications in 'birth-and-death process' models. On the other hand construction of new processes involving Prabhakar distributions (See e.g. [START_REF] Polito | A generalization of the space-fractional Poisson process and its connection to some Lévy processes[END_REF]) seem to be promising candidates due to their connections to the dynamics of certain complex phenomena. Further applications in the field of 'aging of complex systems' which are characterized by strictly increasing random accumulation of damage ('misrepair') measures (See [START_REF] Riascos | Aging in transport processes on networks with stochastic cumulative damage[END_REF] for a Markovian model) could open an interesting interdisciplinary field as well.

Appendix A Discrete δ-distribution

We first introduce the discrete Heaviside function

Θ h (x) = Θ(x) =    1,
x ∈ {0, h, 2h, . . . }

0,

x ∈ {-h, -2h, . . .}

x ∈ hZ, h > 0.

(A1)

We especially emphasize that with this definition Θ h (0) = 1. We may extend the discrete Heaviside function here to its continuous counterpart defined for x ∈ R, i.e. the conventional Heavisideunit-step function with Θ(x) = 1 for t ≥ 0 (especially Θ(0) = 1) and Θ(x) = 0 for x < 0. This is especially necessary when we use T-h = e -hDx leading to the 'distributional representation' e -hDx Θ(x) = Θ(x -h) which is defined for x ∈ R.

Let δ k,l (we also use notation δ kl ) be the circulant Kronecker-δ defined by δ i,j = δ i+s,j+s    1, i = j 0, i = j i, j, s ∈ Z.

(A2)

Then we define the 'discrete δ-distribution' as follows

δ h (x) = Θ(x) -Θ(x -h) h = 1 -T-h h Θ(x) = 1 h δ x h ,0 =      1 h , x = 0 0, x = 0 x ∈ hZ (A3)
where δ x h ,0 in this relation indicates the circulant Kronecker-Symbol (A2) and x h ∈ Z. We observe that for h = 1 we have then δ 1 (t) = δ 0,x . Formula (A3) defines a discrete density for x ∈ hZ. However, it makes sense to extend this definition to x ∈ R. With this extended definition δ h (x) =

Θ(x)-Θ(x-h) h

becomes an integrable distribution (in the Gelfand-Shilov sense [START_REF] Gel'fand | Generalized Functions[END_REF]) with δ h (x) = 1 h for x ∈ [0, h) and δ h (x) = 0 else, especially we have ∞ 0 δ h (τ )dτ = h 0 δ h (τ )dτ = 1 thus lim h→0 δ h (x) = lim where indeed lim h→0 L{δ h (x)}(s) = L{δ(x)}(s) = 1 recovers the Laplace transform of Dirac's δ-distribution (A4).

  ) L(u) = 1 -u and the generating function of the fractional Laplacian matrix (35) yields Lα (u) = (1 -u) α . The generating function of fractional Sibuya transition matrix (33) per construction recovers the generating function (26) of Sibuya(α).

  is a Mittag-Leffler density and has Laplace transform λ λ+s α (α ∈ (0, 1], λ > 0). Then we get from the Lévy-Khintchine representation[START_REF] Riascos | Random walks with long-range steps generated by functions of Laplacian matrices[END_REF] the Laplacian generating function

1

 1 subordinated to a Poisson process where at each arrival the walker makes a jump of increment Z j = 1 almost surely. Clearly the solution of the Cauchy problem (62) is the well-known standard Poisson distribution

Figure 1 .

 1 Figure 1. State-probabilities p α,β λ,ξ,n (t) of the space-time Mittag-Leffler process as a function of t for: (a) α = 1.0 and (b) α = 0.5. The results are obtained numerically using Eq. (83) for the values n = 0, 1, 2 and β = 1 (in the left panels) and β = 0.75 (presented in the right panels); we maintain constant the parameters λ = 1, ξ = 1.

Figure 2 .

 2 Figure 2. State density kernel P α,β λ0,ξ (x, t) as a function of t. The results are obtained numerically from Eq. (96) for: (a) α = 0.5 and (b) α = 0.75 maintaining constant λ 0 = 1, ξ = 1 and β = 1. We present the values for x = 0.5, 1, 1.5, 2, . . . , 5 with different colors codified in the colorbar.

  (54) subordinated to a fractional Poisson process with Mittag-Leffler waiting time density (having time-Laplace transform χβ (s) = ξ ξ+s β ). The generating function of the time-Laplace transform of the Cox series (10) then yields the Montroll-Weiss equation pα

h→0 1 -

 1 e -hDx h Θ(x) = D x Θ(x) = δ(x), x ∈ R.

( 1 - 0 e -sx dx {s} > 0 = 1 -

 1001 -symmetric Dirac's δ-distribution which is concentrated at 0+ (and is null at 0-), fulfilling therefore∞ 0 δ(x)dx = lim h→0 h 0 δ h (x)dx = 1.This property is absolutely crucial and ensures for instance the normalization of the state density kernel (96). It is also worthy to consider the (spatial) Laplace transform L{δ h (x)}(s) = ∞ 0 - δ h (x)e -sx dx = e +hDx ) h e -sx dx = 1 -e -hs h ∞ e -hs hs (A5)

  tells us that each node has neighbor nodes, i.e. there are no isolated nodes.

  . . . N

	(16)
	are strictly positive. Condition (16) can be used as an equivalent definition of ergodicity of a
	digraph. One can further infer if such a finite n 0 exists, then ergodic digraphs must have a finite
	number N of states 2 . Then clearly the matrix exponential

  65) recovers the first-order derivative d dt p(t) and the fractional Poisson process turns into the standard Poisson process. The solution of (64) writes

  The Prabhakar kernel e γ α,β (ζ, x) was introduced by Giusti[START_REF] Giusti | General fractional calculus and Prabhakar's theory[END_REF] (where we use here his definition) as the kernel with Laplace transform ẽγ α,β (ζ, x)(s) = s -β (1 -ζs -α ) -γ . It follows that (84) indeed is a discrete approximation of Prabhakar kernel (94).

	With (94) and (93) we obtain for the state density kernel

  1 -u, λ) is the Laplacian generating function (48) and WML,α (u, λ) the generating function of the Mittag-Leffler transition matrix (49). We identify (100) indeed with the time-Laplace transform of the Mittag-Leffler generating function (80) of the state-probabilities. It is then straight-forward to see that (100) is equivalent to (78) by rewriting Montroll-Weiss relation (100) in the form

From now on we refer the auxiliary Laplacian L to as Laplacian matrix.