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While soil ecosystems undergo important modifications due to global change, the 
effect of soil properties on plant distributions is still poorly understood. Plant growth is 
not only controlled by soil physico-chemistry but also by microbial activities through 
the decomposition of organic matter and the recycling of nutrients essential for plants. 
A growing body of evidence also suggests that plant functional traits modulate spe-
cies’ response to environmental gradients. However, no study has yet contrasted the 
importance of soil physico-chemistry, microbial activities and climate on plant species 
distributions, while accounting for how plant functional traits can influence species-
specific responses.

Using hierarchical effects in a multi-species distribution model, we investigate how 
four functional traits related to resource acquisition (plant height, leaf carbon to nitro-
gen ratio, leaf dry matter content and specific leaf area) modulate the response of 
44 plant species to climatic variables, soil physico-chemical properties and microbial 
decomposition activity (i.e. exoenzymatic activities) in the French Alps.

Our hierarchical trait-based model allowed to predict well 41 species according to 
the TSS statistic. In addition to climate, the combination of soil C/N, as a measure of 
organic matter quality, and exoenzymatic activity, as a measure of microbial decom-
position activity, strongly improved predictions of plant distributions. Plant traits 
played an important role. In particular, species with conservative traits performed bet-
ter under limiting nutrient conditions but were outcompeted by exploitative plants in 
more favorable environments.

We demonstrate tight associations between microbial decomposition activity, plant 
functional traits associated to different resource acquisition strategies and plant dis-
tributions. This highlights the importance of plant–soil linkages for mountain plant 
distributions. These results are crucial for biodiversity modelling in a world where both 
climatic and soil systems are undergoing profound and rapid transformations.

Keywords: extracellular enzymatic activity, French Alps, hierarchical species 
distribution model, ORCHAMP, plant biogeography, trait-based model
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Introduction

Human-induced global change not only alters climate, but 
also soil properties and functioning (Rillig  et  al. 2019). 
Climate and soil jointly influence plant species distributions 
through their effect on plant growth, survival and reproduc-
tion (Buri  et  al. 2017). Moreover, there is a growing body 
of evidence that the interplay of plant functional traits with 
these environmental gradients shapes plant distributions 
(Pollock  et  al. 2012, Carboni  et  al. 2018). The framework 
of the ‘fast–slow’ plant economics spectrum predicts that 
the environment selects plants with specific functional traits, 
resulting in the spatial segregation of plants with different 
ecological strategies (Choler 2005, Reich 2014). Favorable 
environmental conditions select for functional trait values 
related to an exploitative strategy (i.e. rapid nutrient acquisi-
tion and fast growth, Aerts 1999, Reich 2014). Plants with 
exploitative traits lead to a soil organic matter that is easier 
to decompose, which increases nutrient availability, and in 
return favors exploitative plants. On the contrary, limiting 
environmental conditions promote a conservative strategy 
(i.e. slow plant growth but high nutrient retention capacity, 
Aerts 1999). Conservative plant traits induce low decom-
posability of soil organic matter, which slows down nutrient 
release in the soil, and thus selects plants with conservative 
trait values (Wardle and Bardgett 2002, Grigulis et al. 2013, 
Legay et al. 2016). Although it is well known that plants and 
soils are linked by feedback loops at local scales, the influence 
of plant–soil linkages on plant distributions is under-studied 
at large biogeographic scales.

One of the best-studied environmental drivers of plant 
success is climate (e.g. temperature, Grace 1987, Choler 
2018). In mountain environments, plant success depends on 
the ability to grow and reproduce quickly within the short 
growing season. Moreover, climatic extremes such as freezing 
events or drought can damage plant tissues and thus limit 
survival (Grace 1987). In addition to climate, soil physico-
chemical properties, such as pH, soil organic matter and soil 
C/N drive plant growth because they are related to nutrient 
availability (Lee 1998, Buri et al. 2017). However, measuring 
nutrient supply for plants is not straightforward at large spatial 
scales. Plant nutrient supply depends on the decomposition 
rate of soil organic matter by microbial communities. Many 
different microorganisms, mainly bacteria and fungi, pro-
duce extracellular enzymes (exoenzymes) to recycle the com-
plex macromolecules constituting the debris of dead living 
organisms such as plants themselves. Different exoenzymes 
target different molecules and at the end of the decomposi-
tion chain, some of them enable the release of soluble mono-
mers and finally nutrient mineralization (Sinsabaugh  et  al. 
2008, Burns et al. 2013). Nutrient supply for plants should 
thus be related to the activities of exoenzymes catalyzing the 
terminal reactions of decomposition. The sum of the activi-
ties of the main exoenzymes in the top-soil (hereafter total 
EEA) has been suggested as a relevant indicator of the micro-
bial decomposition activity (Burns  et  al. 2013) that makes 
nutrients available for plant uptake.

In soils, both the overall nutrient availability and the ele-
ment stoichiometry (here we focus on the balance between 
carbon, nitrogen and phosphorus) are driven by the quan-
tity and nutritional quality of plant litter inputs, and affect 
plant growth in return (Li et al. 2019). Microbes modulate 
the production of element-specific exoenzymes according to 
soil element stoichiometry (Sinsabaugh  et  al. 2008) Thus, 
the relative investment of microbial community in the acqui-
sition of each type of nutrients can be used as a proxy of 
nutrient limitation (e.g. high activity of N-targeting exoen-
zymes, EEN, in comparison to total EEA, EEN/total EEA, 
reflects a low availability in environmental nitrogen relative 
to carbon and phosphorus). Finally, microbes compete with 
plants for nutrients dissolved in the soil solution. The relative 
demand of the microbial community for nitrogen compared 
to phosphorus can be assessed through ratios of exoenzymes 
(i.e. EEN/EEP, Piton et al. 2019). For example, a high EEN/
EEP ratio means that plant competition with microbes will 
be stronger for nitrogen than for phosphorus, and might 
reduce nitrogen availability for plants. In sum, consider-
ing soil exoenzymes and their ratios promises an important 
way forward to include soil nutrient availability driven by 
reciprocal plant–soil linkages in plant distribution models. 
Moreover, accounting for plant functional traits related to 
nutrient acquisition strategies will allow accounting for the 
fact that conservative species respond in a different way to 
nutrient limitation than exploitative species.

In this paper, we aim to disentangle how climate, soil 
physico-chemical properties and microbial decomposition 
activity (the two latter are hereafter summarized as ‘soil prop-
erties’) influence the distributions of 44 plant species in the 
French Alps, while accounting for the modulating effects of 
plant traits. Our approach is based on a hierarchical multi-
species distribution model and addresses the two following 
questions: 1) what are the relative influences of climate, soil 
physico-chemical properties and microbial decomposition 
activity (measured via ratios of exoenzymatic activities) in 
explaining plant distributions in mountain ecosystems? 2) 
Do species with different functional traits respond differently 
to gradients of climate and soil properties?

Material and methods

Study sites and species data

We studied the distributions of plant species along 18 eleva-
tion gradients in the French Alps. The gradients belong to 
the long-term observatory ORCHAMP (<www.orchamp.
osug.fr>, Supplementary material Appendix 1) and were 
selected according to the following criteria: 1) continuous 
gradient from about 900 m to 3000 m (Supplementary mate-
rial Appendix 1 Fig. A1-A), 2) exposure and slope along the 
gradient is homogeneous, 3) vegetation is typical for the 
elevation stages with forests dominating the lower parts and 
alpine meadows the higher parts of the gradient and 4) all 
gradients together are representative for the environmental 
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and topographical variability of the French Alps (Fig. 1, 
Supplementary material Appendix 1 Fig. A1-B). Between 
2016 and 2018, a minimum of five sampling plots (30 × 30 m, 
see Fig. 1 for details) were installed along each elevation gra-
dient, with an average of 200 m elevation difference, resulting 
in 99 plots in total (Supplementary material Appendix 1 Fig. 
A1). Each plot included a subplot for collecting plant data 
and three subplots for soil sampling (Fig. 1). Plant and soil 
data were always sampled in the same year. All plant species 
in the subplot were identified by professional botanists. For 
the analyses, we only kept the 44 species for which we had 
sufficient presences (i.e. > 20 plots, Supplementary mate-
rial Appendix 2 Table A1) to build reliable species distribu-
tion models (Guisan et al. 2017). For each plant species, we 
selected plant height and three leaf traits, the ratio between 
leaf carbon and nitrogen contents (leaf C/N), leaf dry matter 
content (LDMC) and specific leaf area (SLA) because they 
represent important aspects of plant nutrition and light com-
petition (Cornelissen et al. 2003). Traits were retrieved from 
our own trait database, and averaged at the species level. On 
average 10 individuals were sampled over different environ-
mental conditions typical for the French Alps following stan-
dard protocols (Supplementary material Appendix 2 Table 
A1; Cornelissen et al. 2003).

Climatic data

To best characterize species’ climatic niches, we calculated a 
set of bioclimatic variables as averages over 1988–2018. More 
specifically, we used solar radiation and growing degree days 
(GDD, Choler 2018) to represent the average length and 
intensity of the growing season, intensity of freezing events 
(freezing degree days, FDD, Choler 2018) and water stress 
(climatic water deficit, CWD) in each plot (see Table 1 for 
details). These variables were calculated from the SAFRAN-
SURFEX/ISBA-Crocus-MEPRA reanalysis (Durand  et  al. 
2009, Vannier 2012). This corresponds to a version almost 
identical to the dataset made available by Vernay  et  al. 
(2019). The last corrections made before the publication of 

this dataset are sufficiently minor to not modify the conclu-
sions of this study. A key advantage of this model is that it 
combines observed weather station data and the output of 
numerical weather prediction models, and provides a joint 
product addressing meteorological and snow conditions in 
mountainous regions, based on large-scale topographical 
features (e.g. elevation, slope, aspect). This is of particular 
importance in mountain environments, where the starting 
point and the length of the growing season is determined by 
the presence of snow (Choler 2005, Carlson et al. 2015).

Soil sampling, soil physico-chemical properties and 
exoenzymatic activities

We sampled soil in each of the three 2 × 2 m soil subplots 
located 5 m below the inner transect of each sampling plot 
(Fig. 1). In each subplot, we sampled ten soil cores (10 cm 
depth × 5 cm diameter) and immediately pooled and homog-
enized them. We sieved the resulting composite samples with 
5.6 mm-sieves. We froze 2.75 g per sample for subsequent 
exoenzyme analyses (soil sub-samples B), 5 g to quantify 
water content of each sample, and kept the rest for physico-
chemical analyses (soil sub-samples A).

From soil sub-samples A, we measured pH, soil C/N, total 
nitrogen content, soil organic matter. These soil physico-chem-
ical properties also represent long-term effects of plants on soils. 
For example, soil C/N, total nitrogen content and soil organic 
matter depend on the quantity and quality of the plant litter 
inputs, and top-soil pH is also determined by interactions with 
the plant rhizosphere. We first further homogenized, dried and 
2 mm-sieved the soil. A part of the soil was grounded to a par-
ticle size below 250 μm with an ultra-centrifugal grinder ZM 
200 (Retsch ZM200) to determine total soil carbon and nitro-
gen contents using an elementary analyzer (Flash EA1112, 
Thermo Scientific). We gently crushed the rest of the samples, 
measured pH following the ISO 10390:2005 norm using a 
pH-meter (pH7110, inoLab) in a 1/5 solution (1 volumic part 
soil sample and 4 volumic parts distilled water), and quantified 
soil moisture content (after drying a subsample at 70°C for 

Figure 1. Experimental design of the ORCHAMP long-term observatory. (A) Location of the observatory in the French Alps, (B) location 
of the 18 elevation gradients, (C) example of the elevation distribution along the gradient, (D) sampling design of one plot. The inner 
transect (red area, E) represents the botanical sampling region, where all plants were identified. The squared zone (F) represents the area 
where the soil sampling is done on three 2 × 2 m subplots randomly chosen for each year of sampling.
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48 h) and organic matter (SOM) content by Loss on Ignition 
(after 4 h incubation in a muffle furnace at 550°C).

From soil sub-samples B, we estimated exoenzymatic activ-
ity of seven exoenzymes involved in the degradation of C-rich 
substrates (EEC: α-Glucosidase (AG), β-1,4-Glucosidase 
(BG), β-D-Cellobiosidase (CB) and β-Xylosidase (XYL)), 
N-rich substrates (EEN: β-1,4-N-acetylglucosaminidase 
(NAG) and leucine aminopeptidase) and P-rich substrates 
(phosphatase (PHOS)) using standardized fluorimetric tech-
niques (Bell et al. 2013). We homogenized soil during 1 min 
in a Waring blender in 200 ml of a sodium acetate buffer 
solution. Then soil slurry was added in technical duplicates to 
a 96-deep-well microplate with 200 µl of substrates specific to 
each enzyme at the saturation concentration. Exoenzymatic 
activities were assayed at pH 5 (mean pH across the sites, 
equivalent to meta-analysis from Sinsabaugh et al. 2008). For 
each soil sample duplicated standard curves were prepared by 
mixing 800 µl of soil slurry with 200 µl of 4-methylumbel-
liferone (MUB) or 7-amino-4-methylcoumarin (MUC) in 
96-deep-well microplates with growing concentrations from 
0 to 100 µM concentration. Plates were incubated at 25°C in 
the dark (3 h) on a rotary shaker (150 rpm) before centrifu-
gation at 2900 g (3 min). Finally, fluorescence was measured 
on 250 µl of supernatant on a microplate reader (Varioscan 
Flash, Thermo Scientific) with excitation wavelength set to 
365 nm and emission set to 450 nm. Exoenzymatic activities 
were expressed as nmol g soil−1 h−1, after correcting for nega-
tive controls. We calculated the total potential extracellular 
enzymatic activity (total EEA) as the sum of the potential 
enzymatic activities of the seven exoenzymes as well as the 
ratio of the potential activities of exoenzymes targeting nitro-
gen vs phosphorus (EEN/EEP), the relative potential activity 
of exoenzymes targeting nitrogen (EEN/total EEA) and phos-
phorus (EEP/total EEA, see Table 2 for details), respectively.

Statistical analyses

We aimed to build a model in which species traits can influ-
ence the species response to environmental variables. We did 

so in two steps. First, we determined the shape of the spe-
cies response to environmental variables using a flexible data-
driven model (i.e. generalized mixed-effect additive model) 
and used a stepwise selection procedure to select the best set 
of variables. Second, with the selected environmental vari-
ables, and for each single trait, we built a final hierarchical 
species distribution model that includes species response to 
environment modulated by species traits.

Step 1 – selection of environmental variables and associated 
response shapes
Our list of environmental variables was initially as follows: 
climate (i.e. GDD, FDD, CWD, solar radiation), soil 
physico-chemical properties (i.e. soil C/N, pH, total nitro-
gen content, SOM) and microbial decomposition activity 
(i.e. total EEA, EEP/total EEA, EEN/total EEA, EEN/EEP). 
All variables were centered and scaled, while plant height was 
also log-transformed.

1) We removed variables that were too correlated using 
the ‘findCorrelation’ of the package ‘caret’ in R. If two vari-
ables are highly correlated, this function removes the variable 
with the highest mean absolute correlation. Average correla-
tions are re-evaluated each time a variable is removed (Kuhn 
2008). We also checked whether these choices made sense 
from an ecological point of view. SOM, EEN/EEP, CWD 
and solar radiation were dropped, in line with our expecta-
tions that they were moderately associated with plant species 
distributions (see Supplementary material Appendix 2 Fig. 
A3 for details).

2) To determine the shape of species response to environ-
mental variables, we then used a generalized additive mixed-
effect model (GAMM) with species identity as random 
effects. Only the plant response to GDD was clearly uni-
modal and therefore we included GDD as a squared term in 
the subsequent analyses (Supplementary material Appendix 2  
Fig. A4).

3) To select the best combination of environmental vari-
ables, we then performed a forward selection using Bayesian 
information criteria (BIC). Since the final hierarchical model is 

Table 1. Climatic variables included in model 1 as a baseline of the forward stepwise selection. We extracted the raw meteorological and 
snow variables from the SAFRAN-SURFEX/Crocus-MEPRA reanalysis.

Name Unit Intermediate variables Formula (one year) Description and period

Growing degree  
days (GDD)

°C yr−1 Daily mean soil temperature at  
10 cm depth (Tavgi)

ΣiTavgi with Tavgi = 0  
if Tavgi < 0

Annual sum of average daily 
degrees above zero, averaged 
over 1988–2018. 

Freezing degree  
days (FDD)

°C yr−1 Daily mean soil temperature at  
10 cm depth (Tavgi)

ΣiTavgi with Tavgi = 0  
if Tavgi > 0

Annual sum of average daily 
degrees below zero, averaged 
over 1988–2018.

Solar radiation W m−2 Daily surface incident direct shortwave  
radiation (DIR_SWi), daily surface  
incident diffuse shortwave radiation  
(SCA_SWi)

ΣiDIR_SWi +  
SCA_SWi

Sum of daily solar radiation 
accumulated over the growing 
season, averaged over 1988–
2018.

Climatic water  
deficit (CWD)

mm yr−1 Daily rainfall sum (Psumi), daily reference 
 evapotranspiration (ET0i) from daily  
wind speed, surface pressure, relative  
humidity and saturated water vapor  
pressure (Allen et al. 1998, Vannier 
2012)

ΣiPsumi-ET0i with  
Psumi-ET0i = 0 if  
Psumi-ET0i > 0

Sum of daily climatic water 
deficit: the sum of the negative 
daily climatic water balance, 
over the growing season, 
averaged over 1988–2018.
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based on generalized linear mixed-effect models (GLMM), we 
here used a GLMM instead of a GAMM. The stepwise algo-
rithm selection was constrained to stop for ΔBIC > 10 or after 
six abiotic variables were included. We used the final model 
resulting of this selection procedure (model 1) as the basis for 
the subsequent analyses (models 2–5 including traits).

Step 2 – hierarchical species distribution models
From model 1, we built a hierarchical species distribu-
tion model for every single trait. That prevented us from 
model saturation. In other words, for leaf C/N (model 2), 
LDMC (model 3), plant height (model 4) and SLA (model 
5), we modeled the probability of presence P of species s, 
s ∈ {1…44}, at a site i, i ∈ {1…99}, as:

logit + +
=1

6

Ps i
c

c s c i s iX, , ,( ) =åB g e   

where the Xc,i were the fixed environmental variable c ∈ {1…6} 
at site i selected by model 1, γs was the random intercept for 
species identity, εi was a normally distributed error term. The 
Bc,s parameters were modeled as:

B b b bc s c s c c t sT, , , ,= + +0 ´   

where βc,s is the random slope for species identity, βc,0 can be 
interpreted as the coefficient for a hypothetical species with 
an average trait and βc,t described how trait T modulates the 
partial response of the species to the environmental variable 
Xc. In this paper, trait T was averaged at the species level. The 
interaction between the mean trait T and the environmen-
tal variable Xc provides information on how far the species 
is from its environmental optimum, and in that sense ‘mod-
ulates’ species probability of presence along environmental 
gradients. A positive trait–environment interaction (i.e. posi-
tive βc,t) means that a species s with high trait value Ts has a 
high probability of presence (high Ps,i) for a site i with high 
values of the considered environmental variable Xc,i.

The four hierarchical GLMMs were fitted using a bino-
mial response and a logit link. Species identity was included 
as a random effect, for which both slope and intercept were 
allowed to vary.

Parameters of all models were estimated by Laplace 
approximation of maximum likelihood using the ‘Bobyga’ 
optimiser of the ‘lmer’ function (package ‘lme4’ in R, R Core 
Team). We ensured model convergence by prohibiting the 
estimation of the correlations between random effects.

Model evaluation

To evaluate the hierarchical GLMM, we calculated the true 
skill statistic (TSS), which has the advantage to account both 
for the model sensitivity (i.e. proportion of observed presences 
predicted as presences) and specificity (i.e. the proportion 
of observed absences predicted as absences, Allouche  et  al. 
2006). TSS can vary from −1 to 1, where +1 indicates per-
fect fit and values of zero or less indicate a performance no 
better or worse than random (Allouche et al. 2006). We also 
calculated TSS values per species. Since the TSS requires a 
threshold to transform species’ probability of presence into 
binary presence–absence data, we selected the threshold that 
maximizes the TSS values.

Results

Relative roles of climate, soil physico-chemical 
properties and microbial decomposition activity on 
plant distributions

The most parsimonious GLMM model identified with the 
stepwise selection procedure had a good predictive accuracy 
and included a single climatic variable together with three 
soil variables (TSS = 0.436, model 1; Fig. 2).

Overall, soil properties were key to predict plant distri-
butions. Soil C/N, a proxy for organic matter decompos-
ability, had the strongest impact on plant presence, followed 
by growing degree days (GDD2), pH and total EEA. Across 

Table 2. Extracellular enzymatic activities (EEA) included in model 1 to perform a forward stepwise selection.

Name Unit Intermediate variables Formula

Total potential exoenzymatic 
activity (total EEA), sum  
of all measured exoenzyme 
activities

nmol g−1  
dry mass

α-Glucosidase (AG), β-glucosidase  
(BG), β-D-cellubiosidase (CB), 
β-xylosidase (XYL), leucine 
aminopeptidase (LAP),  
N-acetyl-β-glucosaminidase 
(NAG), phosphatase (PHOS)

Total EEA = AG + BG + CB + XYL + LAP + NAG + PHOS

Ratio of exoenzymes  
targeting nitrogen and  
phosphorus (EEN/EEP)

– Exoenzymes targeting nitrogen:  
LAP and NAG.

Exoenzyme targeting  
phosphorus: PHOS

EEN
EEP

LAP NAG
PHOS

=
+

Relative activity of  
exoenzymes targeting  
nitrogen (EEN/total EEA)

– Exoenzymes targeting nitrogen:  
LAP and NAG, total EEA

EEN
totalEEA

LAP NAG
totalEEA

=
+

Relative activity of  
exoenzymes targeting  
phosphorus (EEP/total EEA)

– Exoenzyme targeting  
phosphorus: PHOS, total EEA

EEP
totalEEA

PHOS
totalEEA

=
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species, probability of plant presence was highest for low C/N,  
low pH, high total EEA and intermediate values of GDD 
(model 1, Fig. 2).

Species with different functional traits respond 
differently to gradients of soil properties

In general, both model 1 (GLMM without traits) and the 
hierarchical trait-based GLMM models 2–5 (hierarchi-
cal trait-based GLMM) had good predictive accuracy for 
most species (average TSS = 0.46; Supplementary material 
Appendix 2 Fig. A5). Only three species had a TSS score 
lower than 0.3. Models accounting for functional traits 
(models 2, 3, 4 = 0.440, model 5 = 0.444) were slightly better 
than the model accounting for the environment only (model 
1, TSS = 0.436).

Plant species showed different responses to the environ-
ment and notably a strong trade-off along the gradients of 
two soil characteristics (model 1, Fig. 3): Some species were 
more generally found under a combination of low soil C/N 
and high total EEA, while others were more common under a 
combination of high soil C/N and low total EEA. This trade-
off was not due to a sampling bias since the two gradients 
were independent in our study area (i.e. low correlation of 
soil C/N and EEA over all plots; Supplementary material 
Appendix 2 Fig. A3).

Species-specific responses could be partially related to 
their functional traits. Species with conservative traits (high 
leaf C/N, high LDMC) were favored where organic matter 

was hard to decompose (high soil C/N, Fig. 3, 4, models 2, 
3). Furthermore, smaller species preferred low C/N and high 
total EEA sites (Fig. 3, 4, model 4). All plants benefited from 
microbial decomposition activity (high total EEA) but espe-
cially small species were favored on soils with high nutrient 
availability. Interestingly, no functional trait modulated spe-
cies responses to pH or GDD (models 2, 3, 4, 5), but vari-
ability between species responses to the GDD gradient was 
also much lower compared to the variability along gradients 
of soil properties (Fig. 3, Supplementary material Appendix 
2 Fig. A6-A).

Discussion

Understanding the mechanisms underlying plant distribu-
tions is a great challenge to anticipate the consequences of 
global changes on plant communities (Thuiller et al. 2008). 
Here, we develop a multi-species distribution model first 
to test how soil properties, especially microbial decomposi-
tion activities, shape plant species distributions in mountain 
environments, and second to account for how functional 
traits modulate species response to environmental gradi-
ents. We find that top-soil properties linked to nutrient 
recycling (microbial decomposition activity and organic 
matter decomposability) play a key role regarding plant 
distributions. Furthermore, we show that functional traits 
of plants related to resource acquisition strategies modulate 
plant response to soil properties. Exploitative species with 

Figure 2. Estimated standardized effect sizes of the environmental variables selected by the stepwise procedure using BIC (model 1). Red, 
green and blue points represent environmental variables related to climate, soil physico-chemical properties and exoenzymatic activities, 
respectively.
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acquisitive functional traits (e.g. low leaf C/N, low LDMC) 
are favored on soils with quick nutrient recycling, while 
conservative species (e.g. woody, with high leaf C/N and 
LDMC) dominate on nutrient-poor soils. In line with the 
‘fast–slow’ plant economics spectrum (Reich 2014), we show 
that the spatial segregation of ecological strategies following 
top-soil properties helps to explain mountain plant distribu-
tions along elevational gradients.

Relative roles of climate, soil physico-chemical 
properties and microbial decomposition activity in 
explaining plant distributions in mountain 
ecosystems

Climate remained an important driver of plant distributions 
in our mountain system. Species probability of presence was 
maximized for intermediate values of GDD (model 1, Fig. 2). 
This was expected, given the importance of the length and 
intensity of the growing season for mountain plants (Körner 
2003, Choler 2018). Interestingly, we show that top-soil prop-
erties play a key role for plant distributions, with an explana-
tory power comparable to that of climate. Increasing pH 
decreased the probability of presence of plant species (model 
1, Fig. 2). In the literature, pH is consistently reported to be 
an important driver of plant distributions. Its influence is pos-
sibly due to the switch from calcareous to siliceous bedrock, 
for which plants are specialized or not (Lee 1998, Corlett and 
Tomlinson 2020). Given that we measured pH on the first 
horizon, its influence might also be related to the interplay 
between plant litter, rhizosphere and soil physico-chemical 
properties, which affects microbial communities and nutrient 
supply to plants (Smiley 1974, Wang and Tang 2018).

Our study demonstrates that soil properties associated 
with nutrient availability are tightly associated with plant 
species distributions. Overall, species presence probabilities 
increased in nutrient-rich conditions, such as those indicated 
by high microbial decomposition activity and organic matter 
of high quality (i.e. high total EEA and low soil C/N, Fig. 3, 
4). Some studies found a significant effect of soil C/N on trees 
and woody species (e.g. positive on ericaceous as Vaccinium 
myrtillus, Coudun and Gégout 2007, Walthert and Meier 
2017), while others found weak effects on grassland plants 
(Dubuis et al. 2013, Buri et al. 2017). The varied effects of 
soil C/N were explained by the fact that measures of soil 
nutrient pools do not give information on the decomposi-
tion of the molecules involved (Dubuis et al. 2013, Buri et al. 
2017). In mountain areas, soil C/N might be low although 
organic pools of nitrogen are tied up with soil organic mat-
ter as complex insoluble polymers that are not accessible to 
plants (Wardle and Bardgett 2002, Körner 2003, Buri et al. 
2017). However, our results show that combining soil C/N as 
a measure of organic matter decomposability and total EEA 
as measure of the microbial decomposition activity improves 
the representation of nutrients available to plants both in for-
ests and in grasslands and thus our capacity to predict plant 
distributions (Fig. 3).

Species with different functional traits respond 
differently to gradients of soil properties

Although all species respond positively to favorable environ-
mental conditions, especially exploitative plants were advan-
taged in nutrient-rich places with mild climate. Under these 
favorable conditions, conservative species bear the costs of 

Figure 3. Species-specific partial response to total EEA as a function of species-specific partial response to soil C/N. Pie-charts represent the 
functional trait values of the species. The red and blue traits are expected to modulate the species response to soil properties and climate, 
respectively. The right-up box is a species (Vaccinium vitis-idaea) example with the legend for the functional traits. The left-bottom box 
shows the direction of increase for plant height, LDMC and leaf C/N. Full species names are given in Supplementary material Appendix 2 
Table A1.
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being excluded by plants with a more exploitative strategy 
(mostly herbaceous species, Fig. 3, Supplementary material 
Appendix 2 Fig. A6-7). Surprisingly, while we expected traits 
related to light competition (i.e. tall plants with high SLA) to 
confer a particular advantage to plants under mild environ-
mental conditions, we found no significant modulating effect 
of SLA for any of the environmental axes, and height conferred 
an advantage rather on nutrient-poorer soils. This is in opposi-
tion to the literature on broader grassland types (Pollock et al. 
2012, Carboni  et  al. 2018), but can be due to the fact that 
alpine plants are overall selected for rather small sizes and a 
small range of SLA to resist to cold temperatures (Körner 
2003). The advantage for tall plants on nutrient-poorer soils is 
due to the fact that within our dataset those plants were mostly 
woody species with a slower growth rate (Juniperus communis, 
Vaccinium myrtillus, Picea abies, Vaccinium vitis-idaea, Fig. 3, 
Supplementary material Appendix 2 Fig. A7).

In our alpine study, the variability among the responses 
of species along the gradient of soil properties was bigger 
than along the climatic gradient (Supplementary mate-
rial Appendix 2 Fig. A6), which could suggest that spatial 

segregation of plants with different strategies was mostly 
driven by soil properties (Reich 2014). Although the prob-
ability of presence of most plants increased in places with 
high soil organic matter decomposability (low soil C/N), the 
probability of presence of some species increased on nutrient-
poor soils (e.g. woody species, Fig. 3, Supplementary mate-
rial Appendix 2 Fig. A6-7), reflecting a differentiated strategy 
with selection for conservative traits, i.e. higher leaf C/N and 
LDMC (Fig. 4, Supplementary material Appendix 2 Fig. 
A7). Conservative leaf traits are necessary on nutrient-poorer 
soils with high soil C/N and give an advantage reinforced by 
plant–soil feedbacks (Aerts 1995, Reich 2014). Leaves with 
higher C/N contribute to the low decomposability level of 
the soil organic matter, which slows down decomposition, 
and reinforces high soil C/N (Grigulis et al. 2013, Legay et al. 
2016). This confirms the hypothesis of Aerts (1999), which 
states that in nutrient-poor habitats, selection is based more 
on the ability of plants to limit nutrient losses than on their 
ability to access nutrients quickly.

Although our results suggest that exploitative plants are 
often excluded as a result of strong nutrient limitations of 

Figure 4. Estimated standardized effect sizes of the interaction between functional traits (leaf C/N, model 2; LDMC, model 3; plant height, 
model 4; specific leaf area; model 5) and environmental variables. Contrasting rows for a single column allow comparing the modulating 
effect of the different functional traits for a single environmental variable. Filled and open circles represent significant and non-significant 
effects, respectively. Red, green and blue points represent environmental variables related to climate, soil physico-chemical properties and 
exoenzymatic activities, respectively.
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mountain soils, nutrients such as nitrogen are not only sup-
plied to plants from the decomposition of soil organic matter. 
With the continuous increase of atmospheric nitrogen depo-
sition since the industrial age (Galloway et al. 2008), nitro-
gen limitation might become less problematic in the future. 
Associated with milder temperatures, increased atmospheric 
nitrogen depositions in mountain areas could result in a shift 
towards communities dominated by exploitative plants and 
the competitive exclusion of conservative ones (Hautier et al. 
2009, Boutin et al. 2017). As plants with exploitative traits 
produce a litter easier to decompose, these community shifts 
might drive accelerated nutrient cycling rates in alpine sys-
tems, with unknown consequences on the carbon and nitro-
gen cycles at larger scales.

Finally, we used the mean of traits measured at different 
places, mostly in the French Alps, which represents the mean 
habitat suitability of the modeled species (Albert et al. 2012). 
However, within species, plants also respond to gradients of 
climatic and soil properties through modifications of the val-
ues of response traits by phenotypic plasticity or local adap-
tation (Lavorel and Garnier 2002). It has been shown that 
these variations around the mean traits influence the rela-
tionships of diversity measures with environmental gradients 
(Albert  et  al. 2012), and that intra-specific trait variability 
influences species distributions at small scales in alpine sys-
tems (Chalmandrier et al. 2017). We might thus expect that 
intra-specific trait distributions would influence our trait-
based distribution models. For example, it might reinforce the 
importance of traits–environment interactions or improve the 
explanatory power of trait-based species distribution models 
by providing information at finer scale for each species. In that 
sense, accounting for intraspecific trait variability is an interest-
ing perspective of trait-based species distribution models.

To conclude, by bridging soil biogeochemistry and plant 
biogeography we provide novel insights on how soil proper-
ties linked to nutrient availability shape mountain plant dis-
tributions in addition to climate. We show that incorporating 
microbial decomposition activity improves plant distribution 
models, probably because it allows estimating plant nutrient 
supply. Finally, our results support our hypothesis that plant 
functional traits associated with conservative–exploitative 
strategies modulate distributions along gradients of top-soil 
properties associated with nutrient availability. Future pros-
pects include a better understanding of the influence of the 
interaction between climate change and atmospheric nitro-
gen deposition on plants and the inclusion of intraspecies 
trait variability in large-scale distribution models.
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