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Abstract. This article is devoted to the mathematical and numerical treatments of a shape optimization
problem emanating from the desire to reconcile quantum theories of chemistry and classical heuristic models:
we aim to identify Maximum Probability Domains (MPDs), that is, domains Ω of the 3d space where the
probability Pν(Ω) to find exactly ν among the n constituent electrons of a given molecule is maximum.
In the Hartree-Fock framework, the shape functional Pν(Ω) arises as the integral over ν copies of Ω and
(n− ν) copies of the complement R3 \Ω of an analytic function defined over the space R3n of all the spatial
configurations of the n electron system. Our first task is to explore the mathematical well-posedness of the
shape optimization problem: under mild hypotheses, we prove that global maximizers of the probability
functions Pν(Ω) do exist as open subsets of R3; meanwhile, we identify the associated necessary first-order
optimality condition. We then turn to the numerical calculation of MPDs, for which we resort to a level
set based mesh evolution strategy: the latter allows for the robust tracking of complex evolutions of shapes,
while leaving the room for accurate chemical computations, carried out on high-resolution meshes of the
optimized shapes. The efficiency of this procedure is enhanced thanks to the addition of a fixed-point
strategy inspired from the first-order optimality conditions resulting from our theoretical considerations.
Several three-dimensional examples are presented and discussed to appraise the efficiency of our algorithms.

Keywords: Quantum Chemistry, Maximum Probability Domains, Shape Optimization, Level Set Method,
Fixed Point Algorithm.
AMS classification: 35P20, 93B07, 58J51, 49K20.
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1. Introduction

The traditional vision of the electron cloud of a molecule used in chemistry rests on the intuition whereby
electrons are “localized” in well-defined regions of space around the nuclei, and arranged, for instance, as
pairs or shells. In particular, this assumption is the basic principle of the celebrated Lewis model [62] and of
additional concepts, such as resonance and arrow pushing formalism [72, 92]. Although this “localized” theory
of the organization of electrons shows remarkable agreement with experimental observations, in particular
in the field of organic chemistry, it has found severe limitations: in particular, its inability to account for the
two-slit diffraction phenomenon of electrons rather vouches for a wave-like description.

Along this line of thinking, the modern theory of quantum chemistry [19, 47, 78, 97] is based on a
“delocalized” point of view about the electrons of a molecule. These are described in terms of a wave
function, often denoted by Ψ, encoding the density of probability that the total system be in any possible
state (notably in terms of the spatial positions of its elements). One drawback of this vision is that it does
not naturally bring into play the historic, key concept of chemical bonds between atoms.

To reconcile this dilemma, much effort has been devoted lately to extract “localized” chemical properties
of electrons from the knowledge of the wave function of the system, thus bridging the gap between chemical
intuition and accurate predictions from quantum mechanics. Among these so-called “interpretative methods”,
let us mention the Valence Bond theory [72, 73, 74, 91], the Electron Localization Function (ELF) method
[20, 83, 95], the Atoms in Molecules (AIM) theory [16, 17], and the Non Covalent Interaction (NCI) framework
[32, 60]; see also [49]. These methods are still the subject of intense research, stimulated by the tremendous
rise in computational power and the development of efficient numerical methods, which allow to consider
larger and larger chemical systems. Unfortunately, they all suffer from conceptual obstacles, to the point
that their predictions may be difficult to interprete. The featured objects (for instance, the ELF basins, or
the bond critical points in AIM) do not always correspond directly to the Lewis electron pairs and chemical
bonds which are familiar to experimentalists [15, 18, 30, 75, 76, 81, 82].

An alternative interpretative method was proposed about twenty years ago by A. Savin in the seminal
article [80]. This paradigm of Maximal Probability Domains (MPDs) consists in reconstructing localized
information about an n-electron system from the wave function Ψ by looking at the probability Pν(Ω)
that ν among these n electrons belong to a domain Ω of the Euclidean space R3, and that the remaining
n − ν electrons lie in the complement R3\Ω. Of particular interest are those domains Ω for which the
probability Pν(Ω) is maximal, a feature which is naturally expressed in the language of shape optimization.
Formally, Maximal Probability Domains (MPDs) are defined as the solutions (whenever they exist) to the
shape optimization problem:

(1.1) sup
Ω⊆R3

Pν (Ω) .
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This formalism is reminiscent of the seminal works [37, 14] devoted to the loge theory, which brings into
play similar probability functionals with the aim to optimize a partition of the molecular space into multiple
subsets called “loges” (and not one single domain as in (1.1)).

Multiple variants of the problem (1.1) have been considered in the framework of the MPD method, with
equal interest in chemical applications. For instance, in [25, 80], the difference

∆Pν(Ω) := Pν(Ω)− Pind
ν (Ω)

is introduced as an indicator of the valence shell of atoms, where Pind
ν (Ω) stands for the probability of finding

ν electrons in Ω, were the n electrons in the system completely independent.

From the chemical point of view, the MPD method relies on a simple mathematical formulation, and leads
to a geometrical and spatial characterization of the electronic molecular structures and their interactions.
It indeed provides unambiguous images of the core and valence domains of atoms [25, 80], of the lone and
bonding pairs [65], and of the regions where the electrons may move inside a simple molecule [26, 46, 63, 64],
a liquid [2], or a crystal [28, 29]. The instance of (1.1) where ν = 2 is especially appealing in chemistry, since
the local or global maximizers of the probability of finding exactly 2 electrons can be directly interpreted as
the locations of the Lewis pairs from traditional chemistry, or in any event, as stable electronic configurations.
We refer to Section 2.1 below for a brief introduction to the method of Maximum Probability Domains, and
to [63] for a more exhaustive presentation.

Maximum Probability Domains have been the focus of relatively few mathematical and algorithmic in-
vestigations in the literature, to the best of our knowledge. Shape optimization problems of the form (1.1)
present several peculiarities, despite their simple appearance. In particular, the unknown sets Ω may be
unbounded and the functional Pν(Ω), although purely geometric in the sense that it does not involve the so-
lution to a partial differential equation depending on Ω, features multiple integrals on Ω and its complement
R3\Ω, so that it is difficult to evaluate numerically.

In the case of single determinant wave functions, an efficient recursive formula for computing the proba-
bility Pν (Ω) was derived in [25], leading to a preliminary implementation of a shape optimization algorithm
for the calculation of MPDs in 2d. In the three-dimensional context, a simple algorithm was proposed in
[84, 85], relying on a Monte Carlo sampling of the wave function and preliminary chemical explorations. Yet
another numerical program was proposed in [63], featuring a discretization of the 3d space with uniform
cubic grids and a standard use of shape gradients. The model investigations conducted with these numerical
resources have revealed the great potential of the MPD method to unambiguously validate some key concepts
in chemistry and suggest new ones [1, 2, 27, 53, 65, 99]. Unfortunately, in spite of their achievements, these
algorithms suffer from severe technical limitations, which are prejudicial to the chemical interpretation: no-
tably, the use of uniform Cartesian computational grids inevitably causes large approximations errors, and
boundary variation algorithms employed for the numerical resolution of shape optimization problems are
well-known to be very sensitive to the initial design. These serious obstructions call for the device of efficient
numerical techniques for computing MPDs in the context of large electron systems.

The present article is devoted to the mathematical and numerical analyses of (1.1); our contributions are
twofold. From the theoretical point of view, we investigate the existence of Maximum Probability Domains
as global solutions to the shape optimization problem (1.1). This question is certainly of theoretical interest;
nevertheless, the proof also reveals a new characterization of maximizing domains, suggesting an interesting
improvement of the boundary variation algorithms applied hitherto in this context. In Theorem 2.5, roughly
speaking, we show the existence of a solution to Problem (1.1), under slight and non-restrictive assumptions
on the quantum chemistry model. Furthermore, we prove that any optimal domain Ω∗ necessarily satisfies
the identity

(1.2) Ω∗ = {FΩ∗

ν > 0}
where the explicit expression of the function FΩ∗

ν : R3 → R is given in Definition 2.4 below.
Our second topic of attention in this paper concerns the design of an efficient numerical algorithm for the

calculation of MPDs, via the resolution of the shape optimization problem (1.1). “Classical” techniques from
shape and topology optimization must be adapted in order to handle several features which are quite specific
to the calculation of MPDs. In particular, as we have mentioned, MPDs are often unbounded domains,
which is not a common situation in the practice of shape optimization. Also, the strong dependency of the
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optimized shape on the initialization choice makes it difficult to catch regions far from nuclei, which typically
feature very small values of the shape gradient, but which can nevertheless significantly contribute to the
value of the optimized probability functional. Moreover, the regions of the 3d space related to chemical
interactions between different nuclei often show sharp variations of the shape gradient, which may cause
instabilities in the optimization process. To overcome these difficulties, we introduce a hybrid algorithm,
combining a very accurate shape gradient algorithm, based on a level set based mesh evolution strategy,
with a fixed point method inspired from the identity (1.2). An open-source implementation of this method,
as well as a short manual, can be downloaded at the following address:

https://github.com/ISCDtoolbox/MPD
Admittedly, multiple contributions in the literature have been devoted to the calculation of MPDs, see for
instance [25, 84, 85, 63, 1, 2, 27, 53, 65, 99]). Nevertheless, one unique asset of our method is its ability to
capture unbounded domains. To the best of our knowledge, this is the first method for computing MPDs
with this property.

The remainder of this article is organized as follows. Section 2 collects background material about quan-
tum mechanics and the Hartree-Fock model for the wave function of the considered electron system. The
considered shape optimization problem (1.1) for the calculation of MPDs is then introduced, and the main
theoretical result of the article is stated. The next Section 3 is devoted to the proof of this result. The strat-
egy of the proof is constructive, and of interest for numerical purposes. It suggests an efficient computation
algorithm, which is the core of Section 4. In the latter, we present the main ingredients of our numerical
strategy for the resolution of (1.1): the evaluations of wave functions, orbitals, and shape derivatives are dis-
cussed, as well as our combined level set based mesh evolution approach with a new fixed-point method. We
finally propose several numerical illustrations of our method in Section 5, ranging from validation examples
in the context of simple and well-understood molecules to more challenging computations raising interesting
chemical interpretations.

2. Presentation of the chemical setting and of the considered shape optimization problem

In this section, we outline the physical context of our investigations. A few classical notions about the
quantum representation of electron clouds are recalled in Section 2.1; meanwhile, we set the main notation
used throughout the article. The next Section 2.2 focuses on the Hartree-Fock approximation for the wave
function of a many-electron system, allowing for an explicit expression of the latter. Finally, in Section 2.3,
we discuss the defining shape optimization problem (1.1) for MPDs and we state the related theoretical
findings of this article.

2.1. The wave function of an n-electron system and the probability functionals Pν(Ω)

The basic material of this section is mainly excerpted from the reference books [19, 78, 97]. Throughout this
article, we consider a quantum system composed of the n ≥ 2 electrons of a molecule; the coordinates of the
ith electron are described in terms of its spatial location xi ∈ R3 and its spin σi ∈

{
− 1

2 ,
1
2

}
. The chemical

state of the n-electron system is described by a wave function

(2.1)
Ψ :

(
R3 ×

{
− 1

2 ,
1
2

})n −→ C[(
x1

σ1

)
, . . . ,

(
xn
σn

)]
7−→ Ψ

[(
x1

σ1

)
, . . . ,

(
xn
σn

)]
,

which is normalized in the space L2
(
(R3 ×

{
− 1

2 ,
1
2

}
)n,C

)
, that is:

(2.2)
∑

(σ1,...,σn)∈{− 1
2 ,

1
2}n

∫
R3n

∣∣∣∣Ψ [(x1

σ1

)
, . . . ,

(
xn
σn

)]∣∣∣∣2 dx1...dxn = 1.

This function Ψ encodes all the available information about the considered electronic system, in the following
sense: the joint probability that for all i = 1, ..., n, the ith electron occupy the region Ωi ⊂ R3 with given
spin value σi = ± 1

2 equals: ∫
Ω1×...×Ωn

∣∣∣∣Ψ [(x1

σ1

)
, . . . ,

(
xn
σn

)]∣∣∣∣2 dx1...dxn.
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In addition to (2.2), Ψ satisfies the antisymmetry principle (a strong form of the Pauli exclusion principle):
for all

(
x1

σ1

)
, . . . ,

(
xn
σn

)
∈ R3 ×

{
− 1

2 ,
1
2

}
,

(2.3) Ψ

[
. . . ,

(
xi
σi

)
, . . . ,

(
xj
σj

)
, . . .

]
= −Ψ

[
. . . ,

(
xj
σj

)
, . . . ,

(
xi
σi

)
, . . .

]
, i, j = 1, . . . , n.

The mathematical assumption encodes the facts that the electrons of the system cannot be distinguished
from one another by an external observer – (2.3) indeed implies that the probability density function |Ψ|2 is
unaltered when the coordinates

(
xi
σi

)
,
(
xj
σj

)
of any two electrons are interchanged –, and that no two electrons

can occupy the same spatial position with identical spins.

In this setting, for all ν = 0, . . . , n, the probability Pν(Ω) that exactly ν electrons of the considered system
belong to a subset Ω ⊂ R3 (and that n− ν electrons belong to the complement R3 \ Ω), regardless of their
spins and of their numbering, reads:

(2.4) Pν(Ω) =

∫
Ων×(R3\Ω)n−ν

Sν(x1, . . . ,xn)dx1...dxn,

where the function Sν(x1, ...,xn) ∈ L1(R3n) is defined by:

(2.5) Sν(x1, . . . ,xn) =

(
n

ν

) ∑
σ∈{− 1

2 ,
1
2}n

Ψ
[(

x1

σ1

)
, . . . ,

(
xn
σn

)] 2

.

Note that in (2.4), we have used the convention A0 ×B = B ×A0 = B for arbitrary sets A and B. Besides,
since the total number n of electrons in the system is fixed once and for all, we omit the dependence of Pν
and Sν with respect to n.

2.2. The Hartree-Fock approximation for the ground state of an n-electron system

In this section, we provide a few more details about the wave function Ψ of the considered n-electron system,
whose structure is inherited from the so-called Hartree-Fock approximation; see for instance [97, Chapter 2
& 3]. This construction relies on the datum of n approximate wave functions φ1

(
x
σ

)
, . . . , φn

(
x
σ

)
, called spin

orbitals, accounting for the individual, independent behavior of each electron in the system. Mathematically,
these functions belong to the space L2(R3 × {− 1

2 ,
1
2},C), and form an orthonormal family of this space:

(2.6) ∀i, j = 1, . . . , n,
∑

σ∈{− 1
2 ,

1
2}

∫
R3

φi
(
x
σ

)
φj
(
x
σ

)
dx =

{
1 if i = j,
0 otherwise.

The wave function Ψ of the total n-electron system is defined from φ1, . . . , φn as a single Slater determinant,
that is:

(2.7) Ψ

[(
x1

σ1

)
, . . . ,

(
xn
σn

)]
:=

1√
n!

det

 φ1

(
x1

σ1

)
· · · φ1

(
xn
σn

)
...

...
φn
(
x1

σ1

)
· · · φn

(
xn
σn

)
 ,

a structure under which the antisymmetry principle (2.3) is obviously fulfilled.
As far as the nature of the functions φ1, . . . , φn is concerned, we only consider pure spin orbitals, that is,

each function φi
(
x
σ

)
is of the form:{

φi
(

x
1/2

)
= ψi(x)

φi
(

x
−1/2

)
= 0

or

{
φi
(

x
1/2

)
= 0

φi
(

x
−1/2

)
= ψi(x)

,

where the spatial orbitals ψi : R3 → C are functions of the spatial position x ∈ R3 only. When the total
number n of electrons is even, one may impose that the n spin orbitals φ1, . . . , φn be grouped by pairs, being
associated to the same spatial orbital, with opposite spins: this is the so-called restricted (or closed shell)
Hartree-Fock framework. On the contrary, in the unrestricted (or open shell) Hartree-Fock framework, the
spatial orbitals ψi of the different spin orbitals φi are free to be independent functions.
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Usually, in computational chemistry, each spatial orbital ψi is expanded as a linear combination of Gauss-
ian basis functions, namely;

(2.8) ∀x = (x, y, z) ∈ R3, ψi(x) =

R∑
r=1

cr (x− xr)αr (y − yr)βr (z − zr)γr e−ar|x−xr|
2

,

for some real numbers cr ∈ R and ar > 0, r = 1, . . . , R; see again [97]. From the physical point of view,
xr := (xr, yr, zr) ∈ R3 is the center of the rth nucleus of the considered molecule, and αr, βr, γr are integer
exponents, accounting for the type of the spatial orbital ψi. The values of the coefficients cr featured in (2.8)
are characterized as those minimizing the energy of the wave function Ψ of the total system. In practice, the
description (2.8) of the optimized spatial orbitals ψi (and thereby, that of the Hartree-Fock wave function
Ψ of the total system) is supplied by the computational chemistry package Gaussian [45].

Let us mention that the above Hartree-Fock framework is only one particular, single-determinant ap-
proximation of the wave function Ψ of the system, which arises in general as the sum of several Slater
determinants of the form (2.7), constructed from different sets of spin orbitals. Other single-determinant
approximations of Ψ (all originating from single-particle models) may be considered, such as those supplied
by the Kohn-Sham Density Functional Theory ; see for instance [71].

In any event, the theoretical developments of this article do not require such a precise knowledge as (2.8)
about the nature of the wavefunction Ψ. Often, we shall solely assume that the following Assumption 2.1 is
fulfilled.

Assumption 2.1.
• The function Ψ is antisymmetric with respect to the interchange between the spatial and spin coor-
dinates of any two electrons i and j, i.e. (2.3) holds.

• The function Ψ is normalized: for σ = (σ1, ..., σn) ∈ {− 1
2 ,

1
2}
n, let us introduce the reduced functional

(2.9)
Ψσ : R3 × . . .× R3 −→ C

(x1, . . . ,xn) 7−→ Ψ
[(

x1

σ1

)
, . . . ,

(
xn
σn

)]
;

we then impose that:

(2.10)
∑

σ∈{− 1
2 ,

1
2}n

∫
(R3)n

|Ψσ(x1, . . . ,xn)|2 dx1 . . . dxn = 1.

• The function Ψσ is real analytic on R3n.

Remark 2.2.
• Our main theoretical result, Theorem 2.5 below, actually holds under the slightly less restrictive
assumption that Ψ be real analytic on R3n\Z, where Z is a finite set of points. This observation
is of particular interest when different structures from (2.8) are assumed about the spatial orbitals
ψi; for instance, another popular set of basis functions in computational chemistry is that of Slater
orbitals, of the form Q(x − xr)e

−|x−xr| where Q(x) is a trivariate polynomial; these functions are
not differentiable at xr, thus reflecting the singularity of the wave function Ψ near the center of the
nuclei of the considered molecule.
• Our theoretical framework below relies only on Assumption 2.1, leaving the room for multi-determinant
wave functions Ψ. However, the numerical algorithms detailed in Section 4, used to calculate Pν and
its derivative, are not easily generalized to this multi-determinant case. For this reason, the appli-
cations of Section 5 stick to single-determinant wave functions as presented in this section. Note
however that these could actually be supplied by different chemical approximations from the Hartree-
Fock framework, as we have already hinted at.

2.3. The shape optimization problem and its relaxation

Let 0 ≤ ν ≤ n be given; the shape optimization problem characterizing the Maximum Probability Domains
of interest reads:

(Ps.o.
ν ) sup

Ω∈M
Pν(Ω),

6



where the probability Pν(Ω) that exactly ν electrons belong to Ω is defined by (2.4), andM is the set of all
Lebesgue measurable sets in R3.

Remark 2.3. The value of the functional Pν(Ω) is obviously unaltered if the considered shape Ω is perturbed
by a set with null Lebesgue measure. Hence, (Ps.o.

ν ) could be formulated in terms of the corresponding
equivalence classes of measurable subsets of R3. For simplicity, we prefer to stick to the formulation (Ps.o.

ν )
of the problem, omitting at times that its solutions ought to be understood up to negligible sets.

Our theoretical analysis of (Ps.o.
ν ) relies on a fairly classical strategy involving a relaxed optimization

problem; the latter features an enlarged set of admissible designs and a corresponding extended definition
of the optimized functional Pν , with better mathematical properties; see e.g. [51]. We trade “black-and-
white” designs Ω ∈M (or, equivalently their characteristic functions 1Ω ∈ L∞(R3, {0, 1})) for more general
“density” functions m ∈ L∞(R3, [0, 1]) which are allowed to take intermediate, “grayscale” values in (0, 1).
This is motivated by the well-known fact that L∞(R3, [0, 1]) is the weak-∗ closure of L∞(R3, {0, 1}) in L∞(R3)
(see [51] Prop. 7.2.17). The extended version of the objective Pν(Ω) to density functions m ∈ L∞(R3) is the
functional Jν : L∞(R3)→ R defined by:

(2.11) Jν(m) =

∫
R3n

Pν(m)(x1, . . . ,xn)Sν(x1, . . . ,xn) dx1 . . . dxn,

where Pν : L∞
(
R3
)
−→ L∞

(
R3n

)
is given by:

(2.12) Pν(m) : (x1, . . . ,xn) 7→
ν∏
i=1

m (xi)

n∏
j=ν+1

(1−m (xj)) .

Obviously, it holds Pν(Ω) = Jν(1Ω) for any Ω ∈M. The relaxed version of our problem (Ps.o.
ν ) now reads:

(Prelax
ν ) sup

m∈L∞(R3,[0,1])

Jν(m).

The main theoretical result of this article ensures that, under mild assumptions, global solutions to (Ps.o.
ν )

and (Prelax
ν ) coincide. Before giving a precise statement and a complete proof of this fact in the next Section 3,

a definition is in order:

Definition 2.4. For an arbitrary density m ∈ L∞
(
R3
)
and for ν = 0, ..., n, the function Fmν ∈ L1(R3) is

defined by:

(2.13) Fmν (x) =

∫
R3(n−1)

(ν − nm(xν+1))

ν∏
i=2

m(xi)

n∏
j=ν+2

(1−m(xj))Sν(x,x2, . . . ,xn)dx2 . . . dxn,

with the conventions that products over reversed indices equal 1 and that m(xn+1) = 0.
When m = 1Ω is the characteristic function of a shape Ω ∈M, we use the shorthand FΩ

ν ≡ F 1Ω
ν .

Theorem 2.5. Let the wave function Ψ fulfill Assumption 2.1, and assume in addition that there exists
m0 ∈ L∞(R3, [0, 1]) such that:

(2.14) Jν(m0) >

(
1 +

n− ν
ν

+
ν

n− ν

)−1

,

with the convention that the above right-hand side equals 1 if ν = 0 or ν = n. Then,

(i) The relaxed problem (Prelax
ν ) has a (possibly non unique) global solution in L∞(R3, [0, 1]).

(ii) Any global solution m∗ to the relaxed problem (Prelax
ν ) is of the form m∗ = 1Ω∗ where Ω∗ ∈M.

(iii) The shape optimization problem (Ps.o.
ν ) has a (possibly non unique) global solution inM.

(iv) Any global solution Ω∗ to (Ps.o.
ν ) is an open subset of R3 which satisfies the identity:

(2.15) Ω∗ = {FΩ∗

ν > 0} := {x ∈ R3, FΩ∗

ν (x) > 0},

up to a subset of R3 with null Lebesgue measure.
7



Remark 2.6. The characterization (2.15) of an optimal domain Ω∗ for (Ps.o.
ν ) actually implies that it is

much more regular than a mere open subset of R3. It indeed entails that Ω∗ is semi-analytic, i.e. for every
point x0 ∈ Ω∗, there exists a neighborhood U of x0 in R3 as well as 2pq real analytic functions gij, hij,
i = 1, . . . , p, j = 1, . . . , q, such that:

Ω∗ ∩ U =

p⋃
i=1

{x ∈ U | gij(x) = 0 and hij(x) > 0, j = 1, . . . , q}.

Semi-analytic sets enjoy quite convenient properties, such as being stratifiable in the sense of Whitney; see
[50, 56]. Since they are not needed in the following, we do not insist further on these features.

In spite of its theoretical aspect, Theorem 2.5 has interesting practical consequences. As we shall see in
Section 4.5 below, the characterization (2.15) of optimal domains paves the way to an efficient fixed-point
iteration procedure for the calculation of Ω∗.

Let us end this section with a few comments about the assumption (2.14) in Theorem 2.5. Since the latter
is rather technical and not very intuitive, we point out three simple and already quite general sufficient
conditions under which it is satisfied.

(1) A calculation reveals that (2.14) is implied by the following assumption:

There exists Ω0 ∈M such that Pν(Ω0) > min

{
1

3
,
ν

n
,
n− ν
n

}
.

This is a simple consequence of the inequality:

∀n ∈ IN \ {0} , ∀ν = 0, . . . , n,

(
1 +

n− ν
ν

+
ν

n− ν

)−1

≤ min

{
1

3
,
ν

n
,
n− ν
n

}
.

(2) Testing whether (2.14) is satisfied by a constant density m(x) = m for a.e. x ∈ R3, and recalling
that

∫
R3n Sν(x1, . . . ,xn) dx1 . . . dxn =

(
n
ν

)
, it follows that (2.14) holds true as soon as:

max
m∈[0,1]

(
n

ν

)
mν(1−m)n−ν >

(
1 +

n− ν
ν

+
ν

n− ν

)−1

,

or, after calculating explicitly the maximum in the above left-hand side:

(2.16)
(
n

ν

)(ν
n

)ν (
1− ν

n

)n−ν
>

(
1 +

n− ν
ν

+
ν

n− ν

)−1

.

This condition is easy to check numerically; for instance, we identify in Table 1 the values of ν for
which it is satisfied, for small electron numbers n.

(3) Regardless of the total number n of electrons, (2.16) (and so (2.14)) is always satisfied if ν = 0, 1 or
if ν = 2, a situation of much interest in chemistry, as we have already hinted at. This point is indeed
obvious for ν = 0 and 1; in the case ν = 2, (2.16) is actually equivalent to:

f(n) < 0 where f(s) := ss − s(s− 1)(s− 2)s−3(s2 − 2s+ 4);

The latter fact holds true, as follows from an elementary study of the function f : R→ R.

Remark 2.7. In addition to the previous sufficient conditions, (2.16) is asymptotically satisfied in the
following sense: for a fixed integer ν, let n tend to ∞. Using the classical equivalents

(
n
ν

)
∼ nν/ν! and

(n− ν)n−ν−1 ∼ e−νnn−ν−1 as n→∞, we see that, in this limit, (2.16) is equivalent to the (true) inequality:

νν−1n3 ≥ eνν!.

Remark 2.8. The assumption (2.14), or the weaker version (2.16), are technical sufficient conditions for
the conclusions of Theorem 2.5 to hold, which are naturally brought into play in the proof of the latter, and
do not lend themselves to a satisfactory physical interpretation.
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Indices ν = 0, . . . , n for which (2.16) holds Indices ν = 0, . . . , n for which (2.16) fails
n = 1 0, 1
n = 2 0, 1, 2
n = 3 0, 1, 2, 3
n = 4 0, 1, 2, 3, 4
n = 5 0, 1, 2, 3, 4, 5
n = 6 0, 1, 2, 4, 5, 6 3
n = 7 0, 1, 2, 5, 6, 7 3, 4
n = 8 0, 1, 2, 6, 7, 8 3, 4, 5
n = 9 0, 1, 2, 7, 8, 9 3, 4, 5, 6
n = 10 0, 1, 2, 3, 7, 8, 9, 10 4, 5, 6

Table 1. Fulfillment of condition (2.16) for various values of the number n of electrons and
of the index ν = 0, . . . , n.

3. Existence of Maximum Probability Domains

This section is dedicated to the proof of Theorem 2.5 about the existence of MPDs; unless stated otherwise,
we assume that n ≥ 2, and that the wave function Ψ satisfies Assumption 2.1. The proof follows a quite
classical outline when it comes to proving the existence of a solution to a shape optimization problem. At first,
we consider the relaxed version (Prelax

ν ) of the shape optimization problem (Ps.o.
ν ) of interest. Preliminary

properties of this problem are investigated in Section 3.1; then, we prove in Section 3.2 that (Prelax
ν ) has

a global maximizer m∗ ∈ L∞(R3, [0, 1]). The next Section 3.3 is devoted to the calculation of the first-
order optimality conditions associated to the relaxed problem (Prelax

ν ). Eventually, in Section 3.4, we prove
that any global maximizer m∗ of (Prelax

ν ) is actually the characteristic function 1Ω∗ of a measurable subset
Ω∗ ∈M which is optimal for (Ps.o.

ν ).

3.1. Preliminary remarks

We start with simple and useful properties about the function Sν(x1, . . . ,xn) in (2.5) and the relaxed
objective function Jν(m) defined by (2.11).

Lemma 3.1. For n ≥ 2 and 0 ≤ ν ≤ n, the following properties hold:

(i) The function Sν is symmetric with respect to the permutation of any two variables:

∀i < j = 1, ..., n, ∀(x1, . . .xn) ∈ R3n, Sν(x1, . . . ,xi, . . . ,xj , . . . ,xn) = Sν(x1, . . . ,xj , . . . ,xi, . . . ,xn).

(ii) It holds Jn(1) = J0(0) = 1. More generally, for any 0 ≤ ν ≤ n and any density m ∈ L∞(R3),

Jν(m) = Jn−ν(1−m).

Consequently, if m∗ is one maximizer of Jν over L∞(R3, [0, 1]), then 1−m∗ is also one maximizer of
Jn−ν over L∞(R3, [0, 1]).

(iii) For arbitrary m ∈ L∞(R3), one has
∑n
ν=0 Jν(m) = 1.

Proof. (i): This is an immediate consequence of the antisymmetry principle (2.3).

(ii): This follows readily from the definitions (2.11) and (2.12) of Jν and Pν .
9



(iii): Using the definitions of Pν and Sν , we calculate:
(3.1)
n∑
ν=0

Jν(m) =

∫
R3n

n∑
ν=0

(
n

ν

) ν∏
i=1

m (xi)

n∏
j=ν+1

(1−m (xj))

 ∑
σ∈{− 1

2 ,
1
2}n

Ψ
[(

x1

σ1

)
, . . . ,

(
xn
σn

)] 2

 dx1 . . . dxn

=

∫
R3n

n∑
ν=0

∑
Iν⊂{0,...,n}

#Iν=ν

∏
i∈Iν

m (xi)
∏
j /∈Iν

(1−m (xj))

 ∑
σ∈{− 1

2 ,
1
2}n

Ψ
[(

x1

σ1

)
, . . . ,

(
xn
σn

)] 2

 dx1 . . . dxn

=

∫
R3n

∑
I⊂{0,...,n}

∏
i∈I

m (xi)
∏
j /∈I

(1−m (xj))

 ∑
σ∈{− 1

2 ,
1
2}n

Ψ
[(

x1

σ1

)
, . . . ,

(
xn
σn

)] 2

 dx1 . . . dxn,

where we have used the antisymmetry principle (2.3) to pass from the first line to the second one. We now
remark that:

1 = (m(x1) + 1−m(x1)) . . . (m(xn) + 1−m(xn))

=
∑

I⊂{0,...,n}

∏
i∈I

m (xi)
∏
j /∈I

(1−m (xj)) ,

where we used a direct expansion of the product in the first line of the above formula. Combining this with
(3.1) and the normalization condition (2.10), the desired result follows. �

We now state two easy technical identities about the function Fmν introduced in Definition 2.4.

Lemma 3.2. Let m be an arbitrary element in L∞(R3, [0, 1]); the following identities hold:∫
R3

m(x)Fmν (x)dx = νPν (m)− (n− ν)Pν+1 (m)

and

∫
R3

(1−m(x))Fmν (x)dx = νPν−1 (m)− (n− ν)Pν (m) .

(3.2)

with the convention that Pn+1(m) = P−1(m) = 0.

Proof. For brevity, we solely verify these formulas in the case where 0 < ν < n. Inserting the identity

∀ xν+1 ∈ R3, ν − nm (xν+1) = ν(1−m∗ (xν+1))− (n− ν)m (xν+1) ,

into the definition (2.13) of Fmν , we obtain, for arbitrary x1 ∈ R3:

Fmν (x1) = ν

∫
(R3)n−1

ν∏
i=2

m (xi)

n∏
j=ν+1

(1−m(xj))Sν (x1, . . . ,xn) dx2 . . . dxn

− (n− ν)

∫
(R3)n−1

ν+1∏
i=2

m (xi)

n∏
j=ν+2

(1−m(xj))Sν (x1, . . . ,xn) dx2 . . . dxn.

Both formulas in (3.2) are then obtained by multiplying the above identity by m(x1) or (1 − m(x1)),
integrating over R3, and using the symmetry of Sν(x1, . . . ,xn) with respect to the permutation of any two
of the variables xi, xj . �

3.2. Existence of a solution to the relaxed problem (Prelax
ν )

Let us start with an elementary lemma from measure theory.

Lemma 3.3. Let (X,µ) and (Y, ν) be two complete, σ-finite measured spaces, and let the product space
X ×Y be equipped with the completed product measure. Let fk(x, y) and ϕk(y) be two sequences of functions
in L1(X × Y ) and L∞(Y ), respectively; we define the sequence gk ∈ L1(X) by:

gk(x) =

∫
Y

ϕk(y)fk(x, y) dν(y).

We assume that

fk
k→∞−−−−→ f∞ strongly in L1(X × Y ), and ϕk

k→∞−−−−→ ϕ∞ weakly− ∗ in L∞(Y ).
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Then,

gk
k→∞−−−−→ g∞, strongly in L1(X), where g∞(x) :=

∫
Y

ϕ∞(y)f∞(x, y) dν(y).

Proof. Let us first observe that the Fubini theorem (see e.g. [79]) implies that the functions gk(x) and g∞(x)
are indeed defined µ-almost everywhere on X, and that they belong to L1(X). We then decompose:

gk(x)− g∞(x) = h
(1)
k (x) + h

(2)
k (x),

where

h
(1)
k (x) :=

∫
Y

ϕk(y)(fk(x, y)− f∞(x, y))dν(y), and h(2)
k (x) =

∫
Y

(ϕk(y)− ϕ∞(y))f∞(x, y)dν(y).

The function h(1)
k (x) can be estimated as:∫

X

|h(1)
k (x)|dµ(x) ≤ ‖ϕk‖L∞(Y )‖fk − f∞‖L1(X×Y ),

so that h(1)
k → 0 strongly in L1(X) as k →∞.

On the other hand, the Fubini theorem ensures the existence of a subset A ⊂ X with µ(A) = 0 such that
for any x ∈ X \A, the partial mapping y 7→ f∞(x, y) belongs to L1(Y ). From the L∞(Y )-weak-∗ convergence
of ϕk, we infer that:

∀x ∈ X \A, h
(2)
k (x)

k→∞−−−−→ 0.

Since ∫
X

|h(2)
k (x)|dµ(x) ≤

(
sup
k
‖ϕk‖L∞(Y ) + ‖ϕ∞‖L∞(Y )

)
‖f∞‖L1(X×Y ),

it follows from the Lebesgue dominated convergence theorem that h(2)
k → 0 strongly in L1(X) as k → ∞,

which terminates the proof. �

Proposition 3.4. Assume that the wave function Ψ given by (2.1) satisfies Assumption 2.1. Then, the
functional Jν(m) defined by (2.11) is sequentially continuous for the weak-∗ convergence of L∞(R3, [0, 1]).

Proof. Without loss of generality, we limit ourselves with proving that Jn satisfies the required property, the
adaptation of the argument to the case where 0 ≤ ν < n being straightforward.

Let mk be a sequence of density functions in L∞
(
R3, [0, 1]

)
which converges to m∞ for the weak-∗

convergence. By definition,

Jn(mk) =

∫
R3

mk(x1)

(∫
R3

mk(x2)

(
· · ·
∫
R3

mk(xn)Sν(x1, · · · ,xn) dxn

)
· · · dx2

)
dx1.

Using Lemma 3.3, the functions

R3(n−1) 3 (x1, · · · ,xn−1) 7→
∫
R3

mk(xn)Sν(x1, · · · ,xn) dxn

belong to L1(R3n−3) and form a sequence which converges strongly in this space to the function:

(x1, · · · ,xn−1) 7→
∫
R3

m∞(xn)Sν(x1, · · · ,xn) dxn.

Repeating this argument with respect to the variables xn−1, . . . ,x1 successively, the desired result follows. �

The existence of a maximizer for (Prelax
ν ) is now a simple consequence of Proposition 3.4.

Corollary 3.5. The relaxed problem (Prelax
ν ) has one global solution.

Proof. We apply the direct method of calculus of variations for the existence of solutions to a maximization
problem. Let (mk)k∈IN be a maximizing sequence for (Prelax

ν ). Since this sequence is uniformly bounded (by
11



1) in L∞(R3), the Banach-Alaoglu theorem ensures that it converges (up to a subsequence still denoted by
mk) weakly-∗ in L∞(R3) to an element m∞ ∈ L∞(R3). Besides, one has:∫

R3

mk(x)φ(x)dx
k→∞−−−−→

∫
R3

m∞(x)φ(x)dx, and∫
R3

(1−mk(x))φ(x)dx
k→∞−−−−→

∫
R3

(1−m∞)(x)φ(x)dx,

for any positive function φ ∈ C∞c (R3), and so it easily follows that the function m∞ actually belongs to
L∞(R3, [0, 1]).

Using now the continuity of Jν supplied by Proposition 3.4, we see that:

sup
m∈L∞(R3,[0,1])

Jν(m) = lim
k→∞

Jν(mk) = Jν(m∞),

which completes the proof. �

3.3. Optimality conditions for the relaxed problem (Prelax
ν )

Let us first calculate the derivative of the functional Jν(m).

Proposition 3.6. The functional Jν(m) is Fréchet differentiable at any density m ∈ L∞(R3, [0, 1]). Its
Fréchet derivative, which we denote by h 7→ J ′ν(m)(h), reads:

(3.3) ∀h ∈ L∞(R3), J ′ν(m)(h) =

∫
R3

Fmν (x)h(x)dx,

where Fmν (x) is defined in (2.13).

Proof. At first, the mapping m 7→ Pν(m) is Fréchet differentiable from L∞(R3) into L∞(R3n) and its Fréchet
derivative reads:

∀h ∈ L∞(R3), P ′ν(m)(h) =

 n∏
j=ν+1

(1−m(xj))

 ν∑
i=1

m(x1) . . .m(xi−1)h(xi)m(xi+1) . . .m(xν)

−

(
ν∏
i=1

m(xi)

)
n∑

j=ν+1

(1−m(xν+1)) . . . (1−m(xj−1))h(xj)(1−m(xj+1)) . . . (1−m(xn)).

Since Sν(x1, . . . ,xn) belongs to L1(R3n), Jν(m) is Fréchet differentiable at any m ∈ L∞(R3), and its Fréchet
derivative reads, for arbitrary h ∈ L∞(R3):

J ′ν(m)(h) =∫
R3n

 n∏
j=ν+1

(1−m(xj))

( ν∑
i=1

m(x1) . . .m(xi−1)h(xi)m(xi+1) . . .m(xν)

)
Sν(x1, . . . ,xn)dx1 . . . dxn

−
∫
R3n

(
ν∏
i=1

m(xi)

) n∑
j=ν+1

(1−m(xν+1)) . . . (1−m(xj−1))h(xj)(1−m(xj+1)) . . . (1−m(xn))

Sν(x1, . . . ,xn)dx1 . . . dxn.

Using the symmetry of Sν with respect to the exchange of any two of the xi and changing variables in the
above integrals, it follows readily that:

J ′ν(m)(h) =

∫
R3n

νh(x1)

(
ν∏
i=2

m(xi)

) n∏
j=ν+1

(1−m(xj))

Sν(x1, . . . ,xn)dx1 . . . dxn

−
∫
R3n

(n− ν)h(x1)

(
ν∏
i=2

m(xi)

)
m(xν+1)

 n∏
j=ν+2

(1−m(xj))

Sν(x1, . . . ,xn)dx1 . . . dxn.
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Rearranging both integrals and using the Fubini theorem, we finally arrive at:

J ′ν(m)(h) =

∫
R3

Fmν (x)h(x)dx,

which is the desired result. �

We now infer from the previous result the first-order necessary conditions of optimality for the relaxed
problem (Prelax

ν ).
Proposition 3.7. Let m∗ ∈ L∞(R3, [0, 1]) be one local maximizer of (Prelax

ν ). Then, the following inclusions
hold, up to subsets of R3 with null Lebesgue measure:
(i) {Fm∗ν < 0} ⊆ {m∗ = 0} ⊆ {Fm∗ν 6 0},
(ii) {Fm∗ν > 0} ⊆ {m∗ = 1} ⊆ {Fm∗ν > 0},
(iii) {0 < m∗ < 1} ⊆ {Fm∗ν = 0}.
Proof. Since Fm

∗

ν is in L1(R3) we know from the Lebesgue differentiation theorem that almost every point
x0 ∈ R3 is a Lebesgue point for Fm

∗

ν , that is:

(3.4)
1

|B(x0, r)|

∫
B(x0,r)

|Fm
∗

ν (x)− Fm
∗

ν (x0)|dx r→0−−−→ 0.

For the same reason, we know that almost every point x0 in {m∗ = 1} has density one:

(3.5)
|B(x0, r) ∩ {m∗ = 1} |

|B(x0, r)|
r→0−−−→ 1;

see [39, §1.7] about these facts.
Let us then consider any point x0 ∈ {m∗ = 1} which is a Lebesgue point of Fm

∗

ν and a point with
density one of {m∗ = 1}. The strategy of the proof is to use both properties to construct an admissible
perturbation of m∗ and to extract information about the integrand Fm

∗

ν of the derivative of Jν(m∗) around
x0. More precisely, introducing a sequence rk of positive numbers decreasing to 0, let us introduce the sets
Gk := B(x0, rk) ∩ {m∗ = 1}; it follows from the definitions that the sequence of functions gk := 1Gk is such
that m∗− ηgk belongs to L∞(R3, [0, 1]) for any 0 < η < 1. Since m∗ is a global maximizer of (Prelax

ν ), it also
holds:

Jν(m∗ − ηgk)− Jν(m∗) 6 0;

dividing the previous inequality by η and letting η → 0, we infer that:

−J ′ν(m∗)(gk) = −
∫
Gk

Fm
∗

ν (x)dx 6 0.

Now dividing both sides by |Gk|, letting k → +∞ and using that x0 satisfies (3.4) and (3.5), we obtain that
Fm

∗

ν (x0) > 0. Hence, we have proved that:

For a.e. x ∈ R3 s.t. m∗(x) = 1, Fm
∗

ν (x) > 0.

A similar argument based on perturbations of the form m∗ + ηhk of m∗, where hk = 1Hk is the charac-
teristic function of a subset Hk = {m∗ = 0} ∩ B(x0, rk) centered at a point x0 which is at the same time a
Lebesgue point of Fm

∗

ν and a point in {m∗ = 0} with density one, we obtain:

For a.e. x ∈ R3 s.t. m∗(x) = 0, Fm
∗

ν (x) 6 0.

Finally, repeating again the same procedure, it follows:

For a.e. x ∈ R3 s.t. 0 < m∗(x) < 1, Fm
∗

ν (x) = 0.

The complete statement of the proposition results from these facts since the sets {Fm∗ν < 0}, {Fm∗ν > 0}
and {Fm∗ν = 0} are a partition of R3, as well as the sets {m∗ = 0}, {m∗ = 1} and {0 < m∗ < 1} (up to a set
with null Lebesgue measure). �

Remark 3.8. A similar argument shows that if Ω ∈ M is one local maximizer for the shape optimization
problem (Ps.o.

ν ), one has necessarily:
• For a.e. x ∈ Ω, FΩ

ν (x) ≥ 0;
• For a.e. x ∈ R3 \ Ω, FΩ

ν (x) ≤ 0.
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3.4. End of the proof of Theorem 2.5

Proof of (i): This is exactly the statement of Corollary 3.5 above.

Proof of (ii): For simplicity, we assume that 0 < ν < n (the cases where ν = 0 and ν = n being handled in
a similar way). Let m∗ ∈ L∞(R3, [0, 1]) be any global maximizer of the relaxed problem (Prelax

ν ); we prove
that the set {0 < m∗ < 1} has null Lebesgue measure.

To this end, we assume that {0 < m∗ < 1} has positive measure, and work towards a contradiction with
the assumption (2.14). From Proposition 3.7, the set {Fm∗ν = 0} has positive Lebesgue measure. Since Sν
is a real analytic function over R3n, standard results about the analyticity under the integral sign (see e.g.
[98], §7.5) imply that Fm

∗

ν is real analytic over R3. That this function vanish on a subset of R3 with positive
Lebesgue measure then implies that it must vanish identically on R3; hence {Fm∗ν = 0} = R3.

We now infer from the identities of Lemma 3.2 that:

(3.6) νJν(m∗) = (n− ν)Jν+1(m∗) and νJν−1(m∗) = (n− ν)Jν(m∗),

and so:

Jν−1(m∗) + Jν+1(m∗) = Jν(m∗)

(
n− ν
ν

+
ν

n− ν

)
.

Now using Lemma 3.1 yields:

1 > Jν−1(m∗) + Jν(m∗) + Jν+1(m∗) >

(
1 +

n− ν
ν

+
ν

n− ν

)
Jν(m∗).

Therefore, one has necessarily

Jν(m∗) 6

(
1 +

n− ν
ν

+
ν

n− ν

)−1

.

The last inequality is actually strict. Indeed, assume that

Jν(m∗) =

(
1 +

n− ν
ν

+
ν

n− ν

)−1

.

Then, according to the above computations, one has Jk(m∗) = 0 for every k ∈ {1, . . . , ν − 2, ν + 2, . . . , n}
(recall that we have assumed ν 6= 0). Since Pk(m∗) and Sν are nonnegative functions, this entails Pk(m∗)Sν =
0 in R3n. Since {0 < m∗ < 1} has positive measure, we infer that Sν necessarily vanishes on a non-zero
Lebesgue measure set of R3n, which is impossible by analyticity.

All things considered, we have proved that:

Jν(m∗) <

(
1 +

n− ν
ν

+
ν

n− ν

)−1

,

which is the sought contradiction with (2.14). This proves that both sets {Fm∗ν = 0} and {0 < m∗ < 1} have
null Lebesgue measure, and so m∗ is the characteristic function of a measurable set Ω∗ ∈M, as desired.

Proof of (iii): As an immediate consequence of the previous point, any global maximizer m∗ of the relaxed
problem (Prelax

ν ) (the existence of which being guaranteed by (i)) is the characteristic function 1Ω∗ of a
measurable set Ω∗ ∈M, which is necessarily a global maximizer of (Ps.o.

ν ).

Proof of (iv): Let Ω∗ ∈ M be any global solution to (Ps.o.
ν ); it follows from the previous analyses that

m∗ := 1Ω∗ is one global solution to (Ps.o.
ν ). The fact proved in (ii) that

{
Fm

∗

ν = 0
}

has zero Lebesgue
measure, together with the necessary optimality conditions of Proposition 3.7 imply in this case:

{Fm
∗

ν < 0} = {m∗ = 0}, {Fm
∗

ν > 0} = {m∗ = 1},

these identities being understood up to subsets of R3 with null Lebesgue measure. This yields (2.15), and
the set Ω∗ is open since Fm

∗

ν is continuous over R3.
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4. A shape and topology optimization algorithm for the calculation of Maximum
Probability Domains

We now turn to the numerical resolution of our shape optimization problem (Ps.o.
ν ), emphasizing on the

specific treatments imposed by the context of quantum chemistry.
In the first Section 4.1, we recall a few basic notions about shape derivatives. Then, in Sections 4.2 and 4.3,

we discuss the practical calculation of the probability functionals Pν(Ω) and their shape derivatives. We then
outline in Section 4.4 the level set based mesh evolution strategy used for the numerical representation of
shapes and their evolution, and we sketch the shape gradient algorithm inspired by the aforementioned
ingredients. In Section 4.5, we present a fixed point algorithm based on the characterization (2.15) of
optimal shapes, whose combination with our shape gradient algorithm yields an optimization strategy which
conveniently handles topological changes, as well as the capture of regions of space where the shape gradient
takes small values. Finally, the construction of the fixed box D where our computations take place in practice
is not trivial when it comes to the calculation of MPDs, since the latter may be unbounded domains; we
discuss this task in Section 4.6.

4.1. Computation and use of shape derivatives

The numerical resolution of a shape optimization problem of the form (Ps.o.
ν ) rests upon the knowledge of the

derivative of the optimized functional with respect to the domain. This notion can be understood in a variety
of manners, one of them relying on Hadamard’s boundary variation method which we sketch briefly for the
convenience of the reader; see e.g. [3, 51, 67] and the recent survey [7] for more exhaustive presentations.

In this framework, variations of a Lipschitz domain Ω are considered under the form

(4.1) Ωθ = (Id + θ)(Ω),

where θ ∈ W 1,∞(R3,R3) is a “small” vector field and Id : R3 → R3 is the identity mapping. One function
J(Ω) of the domain is said to be shape differentiable at a particular shape Ω if the underlying mapping
θ 7→ J(Ωθ) from W 1,∞(R3,R3) into R is Fréchet differentiable at θ = 0. The corresponding derivative
J ′(Ω)(θ) is the shape derivative of J at Ω and the following expansion holds:

(4.2) J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o(θ), where
o(θ)

‖θ‖W 1,∞(R3,R3)

θ→0−−−→ 0.

The following proposition supplies the shape derivative of the probability functionals Pν(Ω):

Proposition 4.1. For n ≥ 2 and 0 ≤ ν ≤ n, the function of the domain Pν(Ω) is shape differentiable at
any (possibly unbounded) Lipschitz domain Ω, and the corresponding shape derivative reads:

(4.3) ∀θ ∈W 1,∞(R3,R3), P′ν(Ω)(θ) =

∫
∂Ω

FΩ
ν θ · n ds,

where n is the unit normal vector to ∂Ω, pointing outward Ω, and FΩ
ν is defined in (2.13).

Proof. For θ ∈W 1,∞(R3,R3), a change of variables yields (see [39] in the present Lipschitz context):

Pν(Ωθ) =

∫
Ωνθ

∫
(R3\Ωθ)n−ν

Sν(x1, . . . ,xn)dx1 . . . dxn,

=

∫
Ων

∫
(R3\Ω)n−ν

|det(I +∇θ(x1))| . . . |det(I +∇θ(xn))|Sν(x1 + θ(x1), . . . ,xn + θ(xn))dx1 . . . dxn.

Classical shape calculus then entails that Pν(Ω) is shape differentiable, with derivative:

P′ν(Ω)(θ) = ν

∫
Ων

∫
(R3\Ω)n−ν

(divθ(x1)Sν(x1, . . . ,xn) +∇x1
Sν(x1, . . . ,xn) · θ(x1)) dx1 . . . dxn

+ (n− ν)

∫
Ων

∫
(R3\Ω)n−ν

(
divθ(xν+1)Sν(x1, . . . ,xn) +∇xν+1

Sν(x1, . . . ,xn) · θ(xν+1)
)

dx1 . . . dxn,
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where we have used the symmetry of Sν(x1, . . . ,xn) with respect to the exchange of any two of the variables
xi. Now integrating by parts, we obtain the surface expression:

P′ν(Ω)(θ) = ν

∫
∂Ω

(∫
Ων−1

(∫
(R3\Ω)n−ν

Sν(x1, . . . ,xn)dxν+1 . . . dxn

)
dx2 . . . dxν

)
θ · n(x1)ds(x1)

− (n− ν)

∫
∂Ω

(∫
Ων

(∫
(R3\Ω)n−ν−1

Sν(x1, . . . ,xn)dxν+2 . . . dxn

)
dx1 . . . dxν

)
θ · n(xν+1)ds(xν+1).

After inspection, and using once more the symmetry of Sν(x1, . . . ,xn), this is the desired formula. �

Note that the expression (4.3) for P′ν(Ω)(θ) complies with the so-called structure theorem for shape
derivatives (see e.g. [51, §5.9]): P′ν(Ω)(θ) depends only on the values of the normal component θ · n of the
considered deformation θ on the boundary ∂Ω of the optimized shape.

Taking advantage of this expression, it is easy to infer an ascent direction for Pν(Ω) from a given shape
Ω; for instance, selecting a deformation θ with the property

(4.4) θ = FΩ
ν n on ∂Ω,

it stems from (4.2) that, for a small enough (pseudo-)time step τ > 0, the following expansion holds:

(4.5) Pν(Ωτθ) = Pν(Ω) + τ

∫
∂Ω

(
FΩ
ν

)2
ds + o(τ), where

o(τ)

τ

τ→0−−−→ 0,

that is, Ωτθ enjoys an improved performance with respect to Pν(Ω), provided FΩ
ν does not vanish identically

on ∂Ω (in which case Ω is already a critical point of Pν(Ω)).

Remark 4.2. In (4.4), an ascent direction for Pν(Ω) is identified as the gradient associated to the derivative
P′ν(Ω)(θ) via the L2(∂Ω) inner product; however natural, this choice suffers from at least two drawbacks.
On the one hand, θ as in (4.4) only makes sense on the boundary ∂Ω of the considered shape Ω, while
our numerical method for tracking the evolution of Ω requires that it is defined on the whole computational
domain D (see Section 4.4 below). On the other hand, such a deformation θ may be quite irregular on
∂Ω (mathematically, it only belongs to L2(∂Ω)). This may induce numerical artifacts such as parasitic
oscillations of the boundary of the optimized shape; see for instance [66, §6.2.4] for a description of this
phenomenon.

A popular idea to overcome both issues consists in identifying a shape gradient for Pν(Ω) via another inner
product a(·, ·), acting on a (Hilbert) space V of vector fields defined on D as a whole and enjoying higher
regularity than that of functions in L2(∂Ω). For instance, one may take

(4.6) V = H1(D)d, and a(u, v) =

∫
D

(α2∇u · ∇v + uv) dx,

where α stands for a regularization length scale. The identification of the shape gradient gΩ ∈ V of Pν(Ω)
then amounts to the resolution of the variational problem:

Search for gΩ ∈ V s.t. ∀w ∈ V, a(gΩ, w) = P′ν(Ω)(w),

which is achieved in practice by using a standard finite element method.
An alternative choice to (4.6) is to use the inner product induced by the bilinear form of the linear elasticity

system, as in e.g. [36]; we refer to [7, 23, 48, 38] about this procedure.

4.2. Numerical evaluation of the probabilities Pν(Ω)

The defining formulas (2.4) and (2.5) are unfortunately awkward when it comes to the numerical evaluation
of the probabilities Pν(Ω). For instance, the straightforward use of (2.4) requires the calculation, at each
quadrature point of the subset Ων × (R3 \ Ω)n−ν of the 3n-dimensional space, of 2n determinants of n × n
matrices, which is totally impractical, even for moderately large values of n.

To circumvent this drawback, we rely on the algorithm proposed in [25] in the present case of a single
determinant wave function. We briefly summarize this procedure in the context of the relaxed functional
Jν(m), involving a general density function m ∈ L∞(R3, [0, 1]), which will prove useful in the next section.
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Let S(m) ∈ Cn×n be the overlap matrix, defined by:

(4.7) ∀i, j = 1, . . . , n, S (m)ij :=
∑

σ∈{− 1
2 ,

1
2}

∫
R3

m(x)φi
(
x
σ

)
φj
(
x
σ

)
dx.

This matrix is obviously Hermitian, and it can be proved that its (real-valued) eigenvalues (λi(m))i=1,...,n

completely determine Jν(m) via the relation:

(4.8) Jν (m) =
∑

Iν⊆{1,...,n}
# Iν=ν

(∏
i∈Iν

λi (m)

) ∏
j∈{1,...,n}\Iν

(1− λj (m))

 .

The calculation of Jν(m) can then be carried out along the following lines, for any integer ν = 0, . . . , n:
(1) calculate the entries of the overlap matrix S(m) in (4.7);
(2) diagonalize S(m) to obtain the eigenvalues λi(m), i = 1, . . . , n;
(3) compute Jν(m) via the following iterative procedure: let the sequence of numbers

{
pij
}
i=0,...,n
j=0,...,i

be

defined by p0
0 = 1, and:

(4.9) ∀i = 1, . . . , n,


pi0 = (1− λi(m)) pi−1

0 ,

pij = λi(m) pi−1
j−1 + (1− λi(m)) pi−1

j , for j = 1, . . . , i− 1,

pii = λi(m) pi−1
i−1.

It then turns out that:

(4.10) Jν (m) = pnν .

This computation procedure for Jν(m) is much more efficient than the aforementioned naive evaluation
of the integral (2.4); the first and third steps can indeed be realized in O(n2) operations, while the second
one requires no more than O(n3) operations if a standard diagonalization algorithm is used.

Remark 4.3. Unfortunately, this algorithm is restricted to the case where Ψ is defined as a single Slater
determinant, the generalization to the case of multi-determinant wave functions being far from obvious.

4.3. Numerical evaluation of FΩ
ν

The numerical realizations of the shape gradient algorithm proposed in Section 4.4 and of the fixed point
iteration procedure of Section 4.5 require the efficient evaluation of the quantity Fmν (x) in (2.13) at all
points x in (a discretization of) the computational domain D. This is achieved thanks to a variation of the
procedure described in Section 4.2, which was also originally proposed in [25, §2.2].

Let m ∈ L∞(R3, [0, 1]) be a given density function, and let S(m) be the associated overlap matrix, see
(4.7). We denote by Λ(m) := diag(λi(m))i=1,...,n and X(m) ∈ Cn×n the diagonal matrix made from its
eigenvalues, and the unitary matrix gathering its eigenvectors, respectively:

(4.11) S(m)X(m) = X(m)Λ(m), and XT (m)X(m) = In,

where In is the identity n× n matrix.
Assuming that all the eigenvalues of S(m) are simple, the implicit function theorem implies that the

mappings m 7→ λi(m) and m 7→ X(m) are Fréchet differentiable at m, and that:

(4.12) ∀h ∈ L∞(R3), Λ′(m)(h) = X(m)
T
S′(m)(h)X(m),

where the derivative of S(m) is given by:

(4.13) S′(m)ij(h) =
∑

σ∈{− 1
2 ,

1
2}

∫
R3

h(x)φi
(
x
σ

)
φj
(
x
σ

)
dx.

As we have seen in Section 4.2, the functional Jν(m) can be evaluated via the recursive procedure (4.9)
and (4.10), in which all the quantities pij are multivariate polynomial expressions in terms of λ1(m), . . . , λn(m).

17



Hence, the chain rule yields:

(4.14) J ′ν(m)(h) =

n∑
l=1

qnν,lλ
′
l(m)(h),

where an elementary calculation reveals that the sensitivities qiν,l :=
∂piν
∂λl

can be computed recursively by
setting q0

0,l = 1 for all l = 1, . . . , n, and:

∀i = 1, . . . , n,


qi0,l = αi,l(m) qi−1

0,l ,

qij,l = βi,l(m) qi−1
j−1,l + αi,l(m) qi−1

j,l for j = 1, . . . , i− 1,

qii,l = βi,l(m) qi−1
i−1,l,

with the coefficients αl,l(m) = −1, βl,l(m) = 1, and for k 6= l, αk,l(m) = 1− λk(m), βk,l(m) = λk(m).
Combining (4.12) to (4.14), we now obtain, for arbitrary h ∈ L∞(R3),

J ′ν(m)(h) =

∫
R3

 n∑
i,j=1

(
n∑
l=1

qnν,lXil(m)Xjl(m)

) ∑
σ∈{− 1

2 ,
1
2}

φi
(
x
σ

)
φj
(
x
σ

) 
h(x) dx;

comparing this expression with (3.3) and using the continuity of Fmν on R3, we eventually infer the practical
expression of Fmν (x):

∀x ∈ R3, Fmν (x) =

n∑
i,j=1

(
n∑
l=1

qnν,lXil(m)Xjl(m)

) ∑
σ∈{− 1

2 ,
1
2}

φi
(
x
σ

)
φj
(
x
σ

)  .

Thanks to this expression, once the overlap matrix (4.7) and its eigendecomposition (4.11) have been
computed (both operations being already required for the evaluation of Jν(m)), the value of Fmν (x) can be
calculated at any point x ∈ D in constant time.

4.4. Maximization of Pν(Ω) using the method of Hadamard and a level-set based mesh evolution
method

The chief numerical technique involved in our practical resolution of the shape optimization problem (Ps.o.
ν ),

is the level set based mesh evolution method from our previous work [4, 5, 6] (see also [41, 42] for recent
applications). The latter features an explicit (meshed) description of any shape arising in the course of the
optimization process, and still allows for arbitrarily large deformations of the latter (including topological
changes). In a nutshell, we rely on two complementary descriptions of Ω:

• A meshed description: Ω is meshed exactly. More precisely, the mesh T of the computational domain
D is arranged so that
(i) it is conforming in the sense of finite element computations;
(ii) it contains an explicit discretization of the actual shape Ω as a submesh;
(iii) the regions of D where sharp variations of the spin orbitals φi occur contain smaller elements.
This meshed representation of shapes allows for an accurate calculation of the coefficients of the
overlap matrix (4.7) and of the probabilities Pν(Ω); see Fig. 1 (left) for an illustration.

• A level set description: following the seminal work [70] dedicated to the level set method (see also
[9, 100] about its introduction in the context of shape optimization), Ω is the negative subdomain of
a “level set function” ϕ : D → R, that is:

(4.15)


ϕ(x) < 0 if x ∈ Ω,
ϕ(x) = 0 if x ∈ ∂Ω,
ϕ(x) > 0 if x ∈ D \ Ω;

see Fig. 1 (right).
This description is particularly convenient when it comes to updating the shape; indeed, if Ω(t)

is a domain evolving according to a velocity field with normal component v(t,x) over a time period
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(0, T ), it is well-known that an associated level set function ϕ(t,x) (i.e. (4.15) holds at any time t)
is obtained as the solution to the following Hamilton-Jacobi equation:

(4.16)

{
∂ϕ

∂t
(t,x) + v(t,x)|∇ϕ(t,x)| = 0 for (t,x) ∈ (0, T )×D,

ϕ(0, ·) is one level set function for Ω(0).

In practice, (4.16) is solved on the simplicial mesh of D by means of a semi-implicit scheme very
much similar to that of [96]; see [22]. We refer to [69, 86] for more exhaustive presentations of the
stakes and capabilities of the level set method.

Figure 1. (Left) One mesh of D, featuring an explicit discretization of the shape Ω (in
black); (right) Level set representation ϕ of the shape Ω at the vertices of the mesh T .

Efficient algorithms are used in order to switch from one representation of a shape Ω ⊂ D to the other:
• When Ω is explicitly discretized in the mesh T of D, one level set function ϕ : D → R for Ω is

computed as the signed distance function dΩ to Ω, that is:

∀x ∈ D, dΩ(x) =


−d(x, ∂Ω) if x ∈ Ω,

0 if x ∈ ∂Ω,
d(x, ∂Ω) if x ∈ D \ Ω,

where d(x, ∂Ω) = miny∈∂Ω |x− y| is the usual Euclidean distance from x to ∂Ω. The calculation of
dΩ is realized thanks to the open-source library mshdist [35].

• From the datum of a level set function ϕ : D → R for Ω, in practice defined at the vertices of an
arbitrary mesh T of D, a new mesh T̃ of D is created in which Ω appears explicitly as a submesh,
and which is adapted to a desired local size feature, by using the open-source remeshing library mmg
from [33]; see [34].

The shape optimization algorithm combining the ingredients of this section and the previous ones is
summarized in Algorithm 1.

Remark 4.4. The Algorithm 1 is local, insofar as it is only guaranteed to converge to a local maximizer
of (Ps.o.

ν ), which (strongly) depends on the initial shape Ω0. As we have mentioned, and as we shall see
throughout Section 5, these local solutions (and not only the global maximizer of (Ps.o.

ν )) are of much interest
from the chemical point of view, since they account for stable, plausible electronic configurations.
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Algorithm 1 Level set mesh evolution algorithm for the resolution of (Ps.o.
ν ).

Initialization:
• Computational domain D (see Section 4.6 below about its practical determination).
• Analytical expression of the wave function Ψ of the considered electron system; see Section 2.2.
• Initial shape Ω0, and mesh T0 of D where Ω0 explicitly appears as a submesh.

for k = 0, 1, 2, . . . until convergence do
(1) Calculation of an ascent direction. Calculate FΩk

ν (x) and P′ν(Ωk)(θ) as in Sections 4.1 and 4.3. A
smooth ascent direction θk : D → R3 is inferred by using the extension-regularization procedure
detailed in Remark 4.2.

(2) Update of the shape.
(a) Generate one level set function ϕk for Ωk on the actual mesh Tk of D;
(b) Solve the level set evolution equation (4.16) with velocity field θk and initial data ϕk

over a suitably short time period (0, τk). A level set function for the new shape Ωk+1 is
obtained at the vertices of T k.

(c) Create a new mesh Tk+1 of D where Ωk+1 explicitly appears as a submesh; the mesh
Tk+1 is adapted to the geometry of Ωk+1 and to the variations of the spin orbitals φi.

(3) Stop the procedure when max
{
|J (Ωk+1)− J (Ωk) |, ‖FΩk

ν ‖L2(∂Ωk)

}
< εstop (in practice

εstop = 0.005).
end for

return Optimized shape Ωk.

4.5. Addition of a fixed point strategy

In spite of its efficiency, the shape gradient Algorithm 1 is not devoid of flaws when it comes to the resolution
of (Ps.o.

ν ); more precisely:

• (Local) maximizers of (Ps.o.
ν ) are often unbounded domains, which are not easily captured, especially

when the chosen initial shape is bounded. Indeed, the spin orbitals φi in (2.8) show exponential decay
away from the nuclei of the considered molecule, and so do the function Sν in (2.5) and the derivative
FΩ
ν in (2.13). As a result, significant updates of the shape in regions of R3 which are “far” from the

nuclei are unlikely.
• In principle, shape optimization algorithms based on the method of Hadamard do not leave the room

for changes in the topology of shapes: all the variations Ωθ in (4.1) of a given shape Ω are indeed
homeomorphic to Ω. In practice, up to some abuse of the theoretical framework, certain topological
changes may occur in the course of the optimization process; separate regions of the boundary of
the shape (e.g. distant holes) may merge, but under no circumstances could holes appear inside the
bulk of the shape, or “islands” could emerge within void.

To alleviate these issues, insofar as possible, we propose to couple the shape gradient Algorithm 1 with a
fixed-point iteration strategy, inspired by that in [10, 12]; the latter appraises the sensitivity of the optimized
functionals Pν(Ω) with respect to a different type of perturbations, of a more topological nature.

Let us first present this technique as a standalone resolution method for (Ps.o.
ν ). From Proposition 3.7

and Remark 3.8, the optimality conditions for (Ps.o.
ν ) read as follows: if Ω is a global maximizer of Pν(Ω),

then:

(4.17) for a.e. x ∈ Ω, FΩ
ν (x) ≥ 0, and for a.e. x ∈ R3 \ Ω, FΩ

ν (x) ≤ 0.

In other words, if Ω is a global maximizer of Pν(Ω), then ϕ := −FΩ
ν is one level set function for Ω, in the

sense that (4.15) holds.
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Noting in addition that if ϕ is one level set function for a domain Ω, then so is cϕ for any constant c > 0,
the optimality conditions (4.17) can be enforced by seeking a function ϕ : D → R such that:

‖ϕ‖L2(D) = 1, ϕ = gΩ
ν , where Ω = {x ∈ D s.t. ϕ(x) < 0} and gΩ

ν := − 1

‖FΩ
ν ‖L2(D)

FΩ
ν .

We now apply a fixed-point algorithm with relaxation to construct such a function ϕ. Starting from an
initial shape Ω0, and a corresponding level set function ϕ0 with ‖ϕ0‖L2(D) = 1, a sequence of shapes Ωk and
associated level set functions ϕk is calculated in the following way:

(4.18) ϕk+1 =
1

‖ϕ̃k+1‖L2(D)

ϕ̃k+1, where ϕ̃k+1 := (1− γk)ϕk + γkgk,

gk ≡ gΩk
ν , and γk ∈ (0, 1) is a suitable relaxation step.

In practice, we rely on a slightly more efficient version of this algorithm, based on the so-called spherical
linear interpolation procedure [94], which conveniently alleviates the need to impose explicitly the normal-
ization of ϕk+1 in (4.18). Introducing ak := arccos(ϕk, gk)L2(D), we observe that:

‖ϕ̃k+1‖2L2(D) = (1− γk)2 + γ2
k + 2γk(1− γk)(ϕk, gk)L2(D).

Defining the “new” pseudo time-step τk > 0 via the relation
sin(τkak)

sin ak
:=

γk(
(1− γk)2 + γ2

k + 2γk(1− γk) cos ak

)1/2
,

an elementary calculation yields:
sin((1− τk)ak)

sin ak
=

(1− γk)(
(1− γk)2 + γ2

k + 2γk(1− γk) cos ak

)1/2
.

Hence, the updated level set function ϕk+1 in (4.18) is obtained directly as:

ϕk+1 =
1

sin ak

(
sin((1− τk)ak)ϕk + sin(τkak)gk

)
.

This fixed-point iteration procedure for the resolution of (Ps.o.
ν ) is summarized in Algorithm 2.

Algorithm 2 Fixed-point iteration algorithm for the resolution of (Ps.o.
ν ).

Initialization: Level set function ϕ0 for the initial shape Ω0 such that ‖ϕ0‖L2(D) = 1.

for k = 0, 1, 2, . . . until convergence do
(1) Calculate the gradient gk := − 1

‖FΩk
ν ‖L2(D)

FΩk
ν .

(2) Calculate ak := arccos(φk, gk)L2(D);
(3) Choose a relaxation step 0 < τk < 1;
(4) The updated level set function ϕk+1 is

ϕk+1 =
1

sin ak

(
sin((1− τk)ak)ϕk + sin(τkak)gk

)
,

corresponding to the updated shape Ωk+1 = {ϕk+1 < 0}.
end for

return Optimized shape Ωk.

In principle, Algorithm 2 could be used as is to solve (Ps.o.
ν ). Unfortunately, like most fixed-point strategies,

it may become unstable if the initial guess Ω0 is “too far” from the expected local maximizer (see Section 5
and especially Section 5.1). For this reason, in practice, we combine Algorithm 2 with our main shape
optimization Algorithm 1, by periodically interrupting the process of the latter (say, every 10 iterations) to
perform one iteration of the procedure in Algorithm 2.
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Remark 4.5.
• The fixed-point Algorithm 2 is very similar to that proposed in [10, 12] for the optimization of a shape
functional using its topological derivative, once we have observed that FΩ

ν is exactly the topological
derivative of the shape functional Pν(Ω); indeed, a variation of the proof of (3.3) reveals that for any
x ∈ Ω,

Pν(Ω \B(x, r)) = Pν(Ω)− r3|B(0, 1)|FΩ
ν (x) + o(r3),

where |B(0, 1)| = 4π
3 is the measure of the unit three-dimensional ball. We refer to [68] for more

details about topological derivatives and to [8, 11, 24] about their use in shape and topology optimiza-
tion. It follows from this remark that the use of Algorithm 2, and particularly its combination with
the boundary variation Algorithm 1, can be understood as a complementary means to appraise the
sensitivity of the optimized function Pν(Ω) with respect to topological changes, which echoes to the
“hybrid” strategies in shape and topology optimization based on shape and topological derivatives, see
again [8].

• This similarity between the shape derivative, the topological derivative and the derivative with respect
to density functions for a shape functional and its relaxed counterpart is not a surprise, and a
connection between those three concepts was established in a more general context in [13].

4.6. Construction of the computational domain D

The selection of the bounded domain D where all computations take place in numerical practice is not a
completely straightforward task in the present setting, where the sought optimized shapes may be unbounded.
It is therefore of utmost importance to ensure that D enclose the n electrons of the considered molecule with
a probability close to 1.

To achieve this, we start from a very large cube around the nuclei of the considered molecule, which is
equipped with a coarse mesh. Since the problem of maximizing the probability Pn(Ω) to find all n electrons
inside Ω has the full space R3 for global maximizer, a first use of Algorithm 1 for this problem yields an
increasing sequence of shapes Ωk, k = 1, . . ., with Pn(Ωk) → 1 as k → ∞. We interrupt the procedure at
the stage k0 when the probability Pn(Ωk0

) exceeds 1− εhold-all (in practice, εhold-all = 0.005). The resulting
domain D := Ωk0

is then meshed thanks to the numerical tools presented in Section 4.4, and yields a suitable
computational box for the resolution of the problem (Ps.o.

ν ) of interest.

5. Numerical results

In this section, we provide several calculation examples of Maximum Probability Domains which illustrate
the capabilities of the proposed numerical methods, and also suggest interesting comments from the chemical
point of view.

Most of our numerical examples focus on the calculation of MPDs associated to the probability P2(Ω) of
finding ν = 2 electrons. Indeed, as we have hinted at in the introduction, the historic Lewis model from
classical chemistry predicts that the valence electrons of a molecule tend to arrange in pairs; three categories
of these structures are usually distinguished, corresponding to different locations within the molecule and
different chemical properties:

• the core electron pairs are attached to one specific atom; they are chemically inert.
• The valence lone pairs are also attached to a particular atom, but they may be chemically reactive

and responsible for specific properties of the molecule.
• The chemical bonds are electron pairs shared by two atoms (and sometimes more in the case of

delocalised bonding).
Hence, MPDs associated to the value ν = 2 are the quantum counterparts of the electron pairs featured by
the historic Lewis model. Note however that the instances of the optimization problem (Ps.o.

ν ) where ν = 1
or ν > 2 are also pertinent from the chemical viewpoint, since the corresponding MPDs may be interpreted
as the locations of radical electrons, and multiple bonds with delocalized electrons, respectively.

In the following examples, we aim to identify these Lewis pairs as local solutions to the shape optimization
problem (Ps.o.

ν ) for ν = 2. Even though Theorem 2.5 and the subsequent remarks guarantee the existence
of global maximizers in the cases under scrutiny, all local maximizers are plausible, stable configurations for
electron pairs, and are therefore of great physical relevance. Our numerical strategy relies on the coupling

22



between the boundary variation Algorithm 1 and the fixed-point Algorithm 2 described in Sections 4.4
and 4.5: using initial shapes with different locations within the considered molecule, the numerical resolution
of (Ps.o.

ν ) is driven towards MPDs corresponding to as many different pairs of the considered electron cloud.
Our first two examples in Sections 5.1 and 5.2 are devoted to the computation of several MPDs in the

context of quite simple and well-understood molecules from the chemical point of view, namely HF and H2O,
respectively; we then consider in Section 5.3 the ethylene molecule C2H4, which displays a double carbon
(carbon bond). Finally, in Sections 5.4 and 5.5, we apply our methods in the contexts of the dicarbon C2

and of the larger propellane molecule C5H6 (in terms of the total number of electrons), respectively, with the
aim to try and gain insight about the locations of particular electron pairs which are the subject of active
debates within the chemical community.

Before proceeding, let us warn the reader that the chemical interpretations raised by our computations
should somehow be tempered, since they rely on drastic simplifications of the realistic physical model, notably
because of the use of single determinant wave functions; see Remark 2.2 and the perspectives outlined in
Section 6.

5.1. The hydrogen-fluorine molecule HF

This first example aims to illustrate the main features of the shape and topology optimization Algorithms 1
and 2 in the context of the simple hydrogen-fluorine molecule H−F. This molecule possesses n = 10 electrons
in total, which are organized in five pairs, according to the Lewis model: one of them corresponds to the core
electrons of the fluorine atom F, three are valence lone pairs of the latter, and the fifth pair is the chemical
bond between the hydrogen and fluorine atoms.

We expect that each of these pairs be associated to a Maximum Probability Domain, characterized as
a local maximizer of (Ps.o.

ν ) for ν = 2. Following chemical intuition, the MPD associated with the core
electron pair should be a small, almost spherical domain centered around the fluorine nucleus. Since the
wave function Ψ is that of an isolated molecule in vacuum, we expect that the other four valence MPDs be
unbounded in R3.

Here, and throughout the numerical examples of this article, Ψ is built as a single Slater determinant of
the form (2.7) in the restricted Hartee-Fock framework (see Section 2.2); the constituent molecular orbitals
φi in (2.8) are supplied by the standard def2-TZVPP basis sets [101] taken from the Basis Set Exchange
database [77]. In the present context of the HF molecule, Ψ involves n = 10 molecular orbitals φi, each of
them being described by means of R = 59 Gaussian primitives.

We focus our attention on the calculation of the MPD associated with the bond between the H and F
atoms, which is the electron pair closest to H. In this context, we select the sphere whose radius equals 0.58
times the interatomic distance, centered on the hydrogen atom by way of the initial guess Ω0 (see Fig. 2 top
left). We then experiment several algorithmic strategies to solve (Ps.o.

ν ), based on the numerical methods
presented in Section 4:

• Case 1: the boundary variation Algorithm 1 is used as is;
• Case 2: the fixed-point Algorithm 2 is used in a standalone fashion;
• Case 3: the combination of Algorithms 1 and 2 is applied.

In this section, and throughout this article, our numerical simulations are conducted on a standard HP
Desktop computer tower equipped with Ubuntu 16.04, 16G of RAM, and Intel Xeon E5−2665 2.4/3.1 GHz
with 8 physical threads (16 in hyper-threading).

The optimized shapes resulting from these experiments are displayed in Fig. 2; the details of the optimiza-
tion processes, and the associated convergence histories are reported in Table 2 and Fig. 3, respectively. In
all three cases, the average number of vertices (resp. tetrahedra) in the featured meshes of the computational
domain D is 35,000 (resp. 200,000). Obviously, the optimization procedure has not converged in Case 1; as
can be seen from Fig. 3 and the values of the probability P2(Ω) reported in Table 2, which are significantly
lower than those found in our next experiments. The sole application of a shape gradient algorithm is not
able to capture regions far from the nuclei of the molecule. This can be explained by the very large contrast
between the “reasonably large” values taken by the shape gradient of P2(Ω) inside the interatomic regions
(of the order of 10−4), when compared to its very small magnitude (of the order of 10−8, i.e. below the
orders of magnitude of the roundoff and numerical errors) far away from it. The procedure conducted in
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Case 2 blows up very rapidly (the resulting shape is not reported): as often in the practice of fixed-point
iteration strategies, the choice of an initial guess Ω0 which is “too far” from the expected result makes the
procedure totally unstable. On the contrary, the strategy of Case 3, resulting in the shape displayed in Fig. 2
(right) reveals a satisfying behavior: the addition of fixed point steps to the boundary variation Algorithm 1
allows to circumvent the difficulties encountered in Cases 1 and 2. It enables the rapid capture of an un-
bounded domain (only 14 iterations are needed for the whole computation), resulting in a shape with better
performance P2(Ω) (see again Table 2).

Figure 2. Maximum Probability Domains for ν = 2 associated with the chemical bond pair
of the H−F molecule obtained using different algorithmic strategies. The H−F molecule
is represented by the usual “ball and stick” model, with green/white ball representing the
location of the fluorine/hydrogen atoms respectively, while the bicolour stick stands for the
chemical bond between them. (Left) initial shape; optimized domains in (middle) Case 1,
and (right) Case 3.
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Figure 3. Convergence histories of the numerical experiments conducted in Section 5.1:
the dashed and dotted lines are respectively associated to the standard boundary variation
Algorithm 1. The continuous line is associated to the combination of Algorithms 1 and 2.
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As a complementary assessment of the physical relevance of the obtained MPDs Ω, we calculate their
population, that is, the expectation of the number of electrons contained in them:

(5.1)
n∑
ν=0

νPν(Ω).

In the case of the MPD obtained in Case 3, the value of this population is very close to 2, even though no
particular effort is paid in enforcing this feature during our computations. This is further confirmation that
this domain is a plausible location for the chemical bond between both atoms of the HF molecule.

Case P2(ΩMPD) Volume Population Residual Cpu time Status Iter.
Case 1 0.40445 7.302 1.90208 4.43× 10−4 3h12mn CV 76
Case 3 0.42908 65.51 1.94882 1.01× 10−4 31mn11s CV 14
Case 2 0.00000 277.4 9.99520 4.40× 10−54 2mn49s Failed 5

Table 2. Details of the results obtained in the search for the valence electron pairs of the
H−F molecule in Section 5.1.

5.2. The water molecule H2O

This section is devoted to the water molecule H2O, whose chemical behavior is also well understood. Accord-
ing to the Lewis theory, the n = 10 electrons of this molecule are arranged in five electron pairs: one core
pair and two valence lone pairs are attached to the oxygen nucleus, and each hydrogen atom is connected to
the oxygen via a chemical bond.

We search for the Maximum Probability Domains of the H2O molecule accounting for these five pairs.
Again, this goes through the numerical resolution of the shape optimization problem (1.1) for ν = 2, thanks
to our combination of Algorithms 1 and 2, using different initial shapes Ω0. The restricted Hartee-Fock wave
function Ψ describing the present electron cloud is a single Slater determinant of the form (2.7), involving
n = 10 spin orbitals φi, each of them being of the form (2.8) with R = 67 Gaussian primitives.

We first look for the MPD associated to the core electron pair of the molecule, and we investigate two
different scenarii as regards the initial shape Ω0:

• Case 1: Ω0 is a ball with radius 0.55 times the distance O−H, centered at the oxygen atom; see
Fig. 4 (top, left).

• Case 2: Ω0 is a ball with radius 0.55 times the distance O−H, whose center is shifted away from the
oxygen atom, in order to investigate the stability of the centered configuration; see Fig. 4 (bottom,
left).

In both cases, the average number of vertices of the meshes of the computational domain D is 35, 000
(corresponding to, roughly, 200, 000 tetrahedra). The optimized shapes obtained in both situations are
displayed on Fig. 4: as expected, in Case 1, where Ω0 is very close to the expected MPD, only very few
iterations (8) of our numerical procedure are required for convergence; the total computation takes about 10
mn. On the contrary, in Case 2, where Ω0 lies a little farther, the calculation requires a few more iterations
(19 in total), corresponding to a computational time of about 45 mn.

We next turn to the identification of the four valence electron pairs of the water molecule. The four
initial shapes used in this context are depicted on Fig. 5 (upper row), and the corresponding results are
displayed in Fig. 5 (bottom row), which may be grouped into two sets of symmetrically related solutions:
the optimized shapes on the two leftmost columns in Fig. 5 correspond to the oxygen lone pairs, and the
optimized shapes on the two rightmost columns are the O−H bonds of the molecule. The final values of
the probability function P2(Ω) agree with those obtained by other numerical strategies in [63, 65, 85, 99]:
we obtain P2(Ω) = 0.416 for the MPDs associated to the oxygen lone pair and P2(Ω) = 0.453 for those
corresponding to the bonds. As in the case of the H−F molecule tackled in Section 5.1, our numerical
strategy manages to capture unbounded optimized shapes, with several connected components, even when a
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Figure 4. Maximum Probability Domains attached to the core electron pair of the oxygen
atom in the H2O molecule. The oxygen atom is represented in red, and the two hydrogen
atoms are in white, at the ends of the bicolor stick representing the two O−H bonds. The
same final domain is obtained starting from two different initializations Ω0: (upper row,
from left to right) iterations 0, 2 and 8 when Ω0 is centered on the oxygen atom; (lower row,
from left to right) iterations 0, 11, and 19 when Ω0 is shifted away from the oxygen atom.

bounded and connected initial guess is used. Let us emphasize that this is a salient feature of the proposed
coupling of the boundary variation Algorithm 1 (which does not allow such dramatic topological changes)
with the fixed point iteration strategy of Algorithm 2. Note that the smaller connected components featured
by these MPDs are not numerical artifacts from the calculation. Indeed, we have verified that their removal
from the obtained optimized shape leads to a slight decrease in the value of the probability P2(Ω). In a
similar spirit, solving (Ps.o.

ν ) anew, starting from these versions of the optimized shapes where the small
connected components are removed, leads to their restoration after a few iterations.

Interestingly, these calculations suggest a possible answer about an old, but still lively debate between
two rival visions for the water lone pairs (i.e. the two valence pairs attached to the oxygen atom) [31, 53, 54].
On the one hand, the prevailing representation within the organic chemistry community, provided by the
so-called “hybridization theory”, features two equivalent “rabbit-ear” lone pairs, with identical shapes; see
Fig. 6 (left). On the other hand, the Molecular Orbital reading of the H2O molecule predicts two different
lone pairs, one of so-called σ type, and the other of so-called π type; see Fig. 6 (right). In this perspective,
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Figure 5. Maximum Probability Domains associated with the valence electron pairs in the
H2O molecule; the initial domains are displayed on the upper row, and the optimized ones
are on the bottom row. The first two examples on the left correspond to MPDs associated
with the oxygen lone pairs, while the other two on the right are the MPDs associated with
the O−H chemical bond.

our numerical results in Fig. 5 feature two distinct lone pairs with very similar shapes, and thus tend to
speak in favor of the “rabbit-ear” shaped lone pairs hypothesis.

Figure 6. (Left) In the H2O molecule, the “rabbit-ear” description of the water lone pairs
predicts that the oxygen atom has two lone pairs with equivalent shapes, which are symmetric
with respect to the plane of the molecule; (right) the σ−π vision features two different electron
pairs, one of σ-type (comprised in the plane of the molecule), the other of π-type (which is
orthogonal to it).

5.3. The ethylene molecule C2H4

We now study the ethylene molecule C2H4, which features n = 16 electrons, and we more particularly focus
on the double C=C bond lying between the two carbon atoms. Similarly to what happens for multiply
bonded hydrocarbons in general, it was originally suggested in [72] that this double bond corresponds to
two bent bonds with similar shapes, also called banana bonds [74]. Yet, another description featuring two
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Figure 7. (Left) the “bent-bond” model for the double C=C bond of the ethylene molecule
features two electron pairs which are symmetric with respect to the plane of the molecule;
(right) the σ − π description of this bond involves one σ electron pair within the molecule
plane, and an orthogonal π electron pair.

different bonds of σ and π types has become increasingly popular within the chemical community [57, 58];
see Fig. 7 for a schematic representation of both orbital sets.

In order to put both hypotheses to the test, we use our combination of Algorithms 1 and 2 to search for
the Maximum Probability Domains of the ethylene molecule in the C−C interatomic region, leaving aside the
core pairs. Again, this means that we perform several resolutions of (Ps.o.

ν ) for ν = 2, starting from multiple
initial guesses situated in this region. In all the conducted experiments, the average number of vertices in
the computational mesh of D is 70, 000 (and so the average number of tetrahedra is about 375, 000).

Our first experiment features a sphere located in the C−C interatomic axis or slightly above, with radius
0.79 times the distance between carbon atoms, by way of initial guess Ω0; see Fig. 8 (left). The optimized
domain Ω resulting from our combination of Algorithms 1 and 2 is that displayed on Fig. 8 (right). Judging
from its symmetry with respect to the plane of the molecule, it is tempting to associate the MPD Ω to a
C−C bond of σ type (again, see Fig. 7, (right)). However, despite many attempts, we did not find any
corresponding complementary MPD that would correspond to a π-bond between these two carbon atoms.

In a second set of experiments, using initial domains Ω0 situated from either side of the plane of symmetry
of the molecule (see Fig. 9, left column) leads to two MPDs in the C−C interatomic region, which are
represented on Fig. 9 (right column). These could correspond to two equivalent “banana bonds”, which are
symmetric with respect to the plane of the molecule. Besides, the final value 0.404 of the probability P2(Ω)
for either of these two MPDS Ω is slightly larger than that 0.401 obtained in the first experiment, in the
case of the potential σ-bond MPD of Fig. 8.

All things considered, both arguments suggest that the “banana bond” model may be the most plausible
structure for the two bonds between the carbon atoms of the ethylene.

5.4. The quadruple bond of the dicarbon dimer C2

In this section, we conduct investigations in the context of the dicarbon molecule C2. It contains n = 12
electrons, arranged in two core pairs (one attached to each carbon atom), and four bonds, whose configuration
is the main focus of this section, since it has aroused lively debates within the chemical community lately
[43, 44, 52, 87, 88, 90, 93]:

(1) Contrary to the common belief that two atoms within the same group of the periodic table are
incapable of forming more than three bonds together, chemical arguments exposed in [90] vouch for
a quadruple bonding situation in the case of the dicarbon dimer C2, a setting which we shall refer to
as the C≡C model in the sequel. A tentative explanation for this peculiar bonding was proposed in
[87], relying on Valence Bond analysis: the dimer C2 would feature three standard covalent bonds,
and a fourth, weaker C−C bond, of particular “inverted” type, resulting from the interaction of
two atomic orbitals located near the two different carbon atoms, oriented in opposite directions, and
nevertheless interacting with each other. Contrary to traditional covalent bonds, this type of bonding
can occur without significant overlap between the orbitals at stake: it is enabled by the so-called
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Figure 8. Maximum Probability Domain associated to the potential σ bond pair between
the two carbon atoms of the ethylene molecule, as discussed in Section 5.3 (no corresponding
π MPD has been found). The carbon atoms are in grey, and the hydrogen ones are in white:
(left) initial guess; (right) optimized shape.

“charge-shift bonding” mechanism, originating from thekinetic energy lowering effect [55, 89]. Since
then, other interpretative methods have supported this increasingly popular view.

(2) Alternative models for C2 feature only a double C−C bond and two lone pairs – each one being
located near a different carbon atom. This suggestion will be referred to as the |C=C| model
[52, 93].

(3) Finally, a third model, closer to the quadruple bonding model, has been introduced in [93] and
considers C2 as being a triply bonded diradical, meaning that C2 would contain two isolated, inde-
pendent electrons, each one being attached to a different carbon atom. This will be referred to as
the ·C≡C· model in the following.

Taking advantage of our numerical algorithms, we aim to gain insight about the relevance of these three
visions. As usual, we apply our combination of Algorithms 1 and 2 to identify the local maximizers of the
shape optimization problem (Ps.o.

ν ) for ν = 2, starting from different initial shapes. In all the forthcoming
experiments, the computational mesh of D contains about 70, 000 vertices (for about 375, 000 tetrahedra).

We start by assessing the scenarii featuring three distinct bonds between the two carbon atoms. Since
the C2 molecule has rotational symmetry with respect to the C-C axis, we rely on three different initial
guess, which are as many balls Ω0 with common radius 0.85 times the interatomic distance, whose centers
are slightly shifted from the C-C axis, with a rotational symmetry of ±120◦. This results in the three MPDs
displayed in Figs. 10 and 11, which have the form of “banana bonds”, like those found in Section 5.3, in the
case of the ethylene molecule. In order to verify that the collection of these three MPDs does correspond to
three distinct bonds, we calculate the population (5.1) contained in their reunion. The resulting number is
5.6, which is fairly close to the expected value 6. This seems to support the fact that there are three classical
covalent bonds between the two carbon atoms, thus ruling out out the |C=C| model.

To proceed, we then search for an MPD associated to ν = 2 electrons outside the interatomic CC region.
To this end, we rely on the initial shape Ω0 depicted on Fig. 11 (top, left), which is “far” from this region.
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Figure 9. Maximum Probability Domains associated with the C−C bond pairs in the ethy-
lene molecule C2H4, investigated in Section 5.3. The carbon atoms are represented in grey,
and the hydrogens are in white: (left) initial guess; (right) MPDs interpreted as banana
bonds.

The resulting local maximizer of (Ps.o.
ν ), denoted by Ω2

ext, features two connected components; see Fig. 11
(top, right).

At this stage, we have identified four disjoint MPDs for the C2 molecule (leaving aside the core pairs). This
collection is a priori compatible with both the quadruple bond C≡C and the diradical ·C≡C· representations
of the four bonds. In order to come to a decision about the relevance of both models, we perform one last
experiment: we search for an MPD associated to ν = 1 electron, outside the interatomic region, using one
of the two connected components of the domain Ω2

ext as initial guess. The rationale behind this test is that,
if according to the ·C≡C· model, the remaining two valence electrons of C2 were independent, each being
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Figure 10. Representation of the three MPDs for ν = 2 associated to the “banana bonds”
of the C2 dimer considered in Section 5.4.

located near one of the two carbon atoms of the molecule (instead of forming a genuine, “inverted bond”), one
would expect to find two MPDs for ν = 1 almost exactly corresponding to the two connected components
of Ω2

ext. Our numerical results do not support this ·C≡C· model: the MPD for ν = 1 resulting from this
procedure is a delocalized (i.e. disconnected) domain, which resembles much Ω2

ext, as depicted in Fig. 11:
it also has two connected components, with a lower total volume. From the chemical point of view, this
result suggests that the two electrons of C2 lying outside the interatomic region cannot be really separated
as two independent electrons; rather, they ought to be seen as the constituent of a genuine electron pair.
All things considered, our MPD analysis would comfort the quadruple bond vision C ≡ C between the two
carbon atoms of the C2 dimer, with three central standard “banana” bonds, and a fourth “inverted” bond.

5.5. The propellane molecule C5H6

We conclude this numerical section with a more challenging calculation, arising in the context of the [1,1,1]
propellane molecule C5H6, which contains n = 36 electrons; see Fig. 12 for an illustration. This investigation
is motivated by a conjecture from the chemical community regarding the chemical bond between the two
bridgehead carbon atoms of this polycyclic molecule (i.e. the two axial carbons which do not belong to one
of the CH2 groups); see [40, 59]. For this molecule, the standard Def2-SVP basis set has been used for the
molecular orbitals φi in the definition (2.7) of the wave function Ψ.

This central bond is certainly not conventional in nature: practical experiments have indeed evidenced
its strength, which far exceeds that of a classical bond between two atoms lying at such distance from one
another. The mechanism of “inverted” bond has been proposed in [102] to account for this phenomenon,
like in the case of the C≡ C model for the C2 dimer discussed in Section 5.4. This interpretation has been
challenged recently, leading to a revival of the controversy [21, 61].

Thanks to our numerical Algorithms 1 and 2, we search for an MPD for ν = 2 electrons, related to an
“inverted” bond between the two central carbons: inspired from the case of the C2 dimer in Section 5.4, we
start from an initial guess composed of two disjoint spheres, one near each carbon atom; see Fig. 12 (left).
On average, the meshes of the computational domain D involved in the process contain 170, 000 vertices
(corresponding to about 1, 000, 000 tetrahedra), and the total calculation takes about 8h.

As displayed in Fig. 12 (right), the resulting optimized shape resembles much the MPD Ω2
ext found in

Section 5.4. Like in there, the outlook of this optimized shape could be explained either by the existence
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Figure 11. (Upper row) Maximum Probability Domain for ν = 2, associated with the “in-
verted” C−C bond at stake in Section 5.4; (left) initial guess and (right) optimized shape.
(Lower row) maximum Probability Domain for ν = 1; (left) initial guess and (right) opti-
mized shape.

of a two-electron “inverted” bond between the bridgehead carbon atoms of the propellane molecule, or
alternatively by the presence of two radical electrons, one being attached to each of these carbon atoms.

In order to explore further both hypotheses, we rely on the same strategy as in Section 5.4: we search for
MPDs associated to ν = 1 electron in the vicinity of these two carbon atoms. Contrary to the case of the
C2 molecule, this search results in two types of MPDs, depending on the initial guess used in the practice
of our algorithmic strategy. On the one hand, two MPDs for ν = 1 were found, localized near either carbon
atom; on the other hand, another, “delocalized” MPD was found, which very much resembles that obtained
in the case of the C2 dimer; see Fig. 13. Both types of solutions are associated with fairly large values of
the probability functional P1(Ω): this quantity equals 0.450 for each of the two aforementioned “localized”
MPDs, and 0.429 for the “delocalized” MPD.

The existence of a “delocalized” MPD for ν = 1, associated with a large value of the quantity P1(Ω) tends
to support the presence of a genuine inverted bond in the propellane molecule. Let us however emphasize
once more that, like in the case of the C2 dimer dealt with in Section 5.4, these conclusions would have to
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be confirmed by the use of a more realistic chemical description of the considered electronic system, notably
involving multi-determinant wavefunctions; see Remark 2.2 about this point.

Figure 12. One MPD for ν = 2 resembling an inverted bond between the two central carbon
atoms in the [1,1,1] propellane molecule C5H6 considered in Section 5.5: (left) initial guess;
(right) optimized shape.

6. Conclusion and open problems

Elaborating on the landmark model of [80], we have analyzed the shape optimization problem (Ps.o.
ν ) char-

acterizing Maximum Probability Domains, which are the delocalized, quantum counterparts of the Lewis
structures from classical chemistry.

From the theoretical standpoint, a new characterization of MPDs was obtained, involving a relaxed
version (Prelax

ν ) of the problem (Ps.o.
ν ), which allows to prove existence of a global maximizer to (Ps.o.

ν ) in a
wide variety of concrete situations. From the practical point of view, we have introduced a shape gradient
algorithm for (Ps.o.

ν ), enriched with a fixed point iteration strategy suggested by our theoretical findings,
which offers significant improvements with respect to prior resolution techniques dedicated to (Ps.o.

ν ). The
numerical experiments conducted owing to these techniques have interesting interpretations, paving the way
to promising further applications in computational chemistry.

The present work opens the way to multiple directions for future work. The most crucial challenge
towards unleashing the full potential of the MPD paradigm for chemical interpretations is certainly the
efficient treatment of multi-determinant wave functions for the description of the quantum arrangement of
electrons within the considered molecules. This task is highly non trivial, since the intricate structure of
these general wave functions does not lend itself to the convenient algorithmic simplifications brought to
light in [25], which are key in making numerical computations affordable.

From the algorithmic viewpoint, it would be desirable to improve the computational efficiency of our
shape optimization algorithm, which remains computationally expensive when large chemical structures are
concerned. For instance, the (costly) remeshing stages involved in Algorithm 1 could be parallelized thanks
to the new capabilities of the library mmg.

Eventually, it would be interesting to investigate the second-order shape sensitivity of the probability
functionals Pν(Ω) featured in (Ps.o.

ν ). On the one hand, such information would make it possible to appraise
the stability of the calculated MPD; on the other hand, it could be exploited to devise more efficient second-
order algorithms.
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Figure 13. Calculation of Maximum Probability Domains for ν = 1 in the case of the
propellane molecule C5H6 investigated in Section 5.5. (Upper row) case where the initial
guess is made of one connected component of the MPD for ν = 2 of Fig. 12; (left) initial
guess; (right) resulting, “localized” MPD for ν = 1. (Lower row) case where the initial guess
is made of two spheres, located near the two central carbons; (left) initial guess; (right)
resulting, “delocalized” MPD for ν = 1.
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