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Abstract. The masking countermeasure is among the most powerful countermeasures to counteract
side-channel attacks. Leakage models have been exhibited to theoretically reason on the security of
such masked implementations. So far, the most widely used leakage model is the probing model defined
by Ishai, Sahai, and Wagner at (CRYPTO 2003). While it is advantageously convenient for security
proofs, it does not capture an adversary exploiting full leakage traces as, e.g., in horizontal attacks.
Those attacks target the multiple manipulations of the same share to reduce noise and recover the
corresponding value. To capture a wider class of attacks another model was introduced and is referred
to as the random probing model. From a leakage parameter p, each wire of the circuit leaks its value with
probability p. While this model much better reflects the physical reality of side channels, it requires
more complex security proofs and does not yet come with practical constructions.

In this paper, we define the first framework dedicated to the random probing model. We provide an
automatic tool, called VRAPS, to quantify the random probing security of a circuit from its leakage
probability. We also formalize a composition property for secure random probing gadgets and exhibit
its relation to the strong non-interference (SNI) notion used in the context of probing security. We
then revisit the expansion idea proposed by Ananth, Ishai, and Sahai (CRYPTO 2018) and introduce
a compiler that builds a random probing secure circuit from small base gadgets achieving a random
probing expandability property. We instantiate this compiler with small gadgets for which we verify
the expected properties directly from our automatic tool. Our construction can tolerate a leakage
probability up to 27, against 2725 for the previous construction, with a better asymptotic complexity.

Keywords: Compiler, Masking, Automated verification, Random probing model

1 Introduction

Most cryptographic algorithms are assumed to be secure against black-box attacks where the ad-
versary is limited to the knowledge of some inputs and outputs to recover the manipulated secrets.
However, as revealed in the late nineties [21], when implemented on physical devices, they be-
come vulnerable to the more powerful side-channel attacks which additionally exploit the physical
emanations such as temperature, time, power consumption, electromagnetic radiations.

As such attacks may only require cheap equipment and can be easily mounted in a short time
interval, the community had to adapt quickly by looking for efficient countermeasures. The most
widely deployed approach to counteract side-channel attacks was simultaneously introduced in 1999
by Chari et al. [12] and by Goubin and Patarin [18] and is now called masking. Basically, the idea
is to split each sensitive variable x of the implementation into n shares such that n — 1 of them



are generated uniformly at random and the last one is computed as the combination of x and
all the previous shares according to some group law . When x is the (bitwise) addition, we talk
about linear sharing (aka Boolean masking). The adversary thus needs to get information on all
the shares of x to recover information on the sensitive value. This countermeasure is really simple
to implement for linear operations which are simply applied on each share separately. However,
things are getting trickier for non-linear operations where it is impossible to compute the result
without combining shares.

To reason about the security of masked implementations, the community introduced leakage
models. One of the most broadly used is the probing model, introduced by Ishai, Sahai, and Wag-
ner [20]. In a nutshell, a circuit is claimed to be t-probing secure if the exact values of any set of ¢
intermediate variables do not reveal any information on the secrets. As leakage traces are assumed
to reveal noisy functions of the manipulated data, this model is motivated by the difficulty to re-
cover information from the combination of ¢ variables from their noisy functions in masking schemes
(as t grows). Nevertheless, the probing model fails to capture the huge amount of information re-
sulting from the leakage of all manipulated data, and in particular from the repeated manipulation
of identical values (see horizontal attacks in [7]). Therefore, after a long sequence of works building
and analyzing masking schemes with respect to their security in the probing model [25,15, 9], the
community is now looking for security in more practical models.

The noisy leakage model was originally considered by Chari et al. in [12] and was later formalized
by Prouff and Rivain in [24] as a specialization of the only computation leaks model [23] in order to
better capture the reality of the physical leakage. Informally, a circuit is secure in the noisy leakage
model if the adversary cannot recover the secrets from a noisy function of each intermediate variable
of the implementation. While realistic, this model is not convenient for security proofs, and therefore
masking schemes continued to be verified in the probing model relying on the not tight reduction
that was formally established by Duc, Dziembowski, and Faust [17].

The latter reduction actually came with an intermediate leakage model, called random probing
model, to which the security in the noisy leakage model reduces to. In the random probing model,
each intermediate variable leaks with some constant leakage probability p. A circuit is secure in this
model if there is a negligible probability that these leaking wires actually reveal information on the
secrets. It is worth noting that this notion advantageously captures the horizontal attacks which
exploit the repeated manipulations of variables throughout the implementation. Classical probing-
secure schemes are also secure in the random probing model but the tolerated leakage probability
(a.k.a. leakage rate) might not be constant which is not satisfactory from a practical viewpoint.
Indeed, in practice the side-channel noise might not be customizable by the implementer.

Only a few constructions [1, 3, 2] tolerate a constant leakage probability. These three construc-
tions are conceptually involved and their practical instantiation is not straightforward. The first
one from Ajtai et al. and its extension [3] are based on expander graphs. The tolerated probability
is not made explicit. The third work [2] is based on multi-party computation protocols and an
expansion strategy; the tolerated probability is around 2726 and for a circuit with |C| gates, the
complexity is O(|C| - poly(k)) for some parameter x but the polynomial is not made explicit.

Following the long sequence of works relying on the probing security, formal tools have recently
been built to supervise the development of masking implementations proven secure in the probing
model. Namely, verification tools are now able to produce a security proof or identify potential
attacks from the description of a masked implementation at up to some masking orders (i.e.,
< 5) [4,14,11]. In the same vein, compilers have been built to automatically generate masked



implementations at any order given the high level description of a primitive [5, 11, 10]. Nevertheless,
no equivalent framework has yet been proposed to verify the security of implementations in the
random probing model.

Our contributions. In this paper, we aim to fill this huge gap by providing a framework to verify,
compose, and build random probing secure circuits from simple gadgets. Our contributions are
three-fold.

Automatic verification tool. As a first contribution, we define a verification method that we in-
stantiate in a tool to automatically exhibit the random probing security parameters of any small
circuit defined with addition and multiplication gates whose wires leak with some probability p. In
a nutshell, a circuit is (p, f)-random probing secure if it leaks information on the secret with prob-
ability f(p), where f(p) is the failure probability function. From these notations, our tool named
VRAPS (for Verifier of Random Probing Security), based on top of a set of rules that were previ-
ously defined to verify the probing security of implementations [4], takes as input the description
of a circuit and outputs an upper bound on the failure probability function. While it is limited to
small circuits by complexity, the state-of-the-art shows that verifying those circuits can be partic-
ularly useful in practice (see e.g. the maskVerif tool [4]), for instance to verify gadgets and then
deduce global security through composition properties and/or low-order masked implementations.
The source code of VRAPS is publicly available.”

Composition and expanding compiler. We introduce a composition security property to make gad-
gets composable in a global random probing secure circuit. We exhibit the relation between this
new random probing composability (RPC) notion and the strong non-interference (SNI) notion
which is widely used in the context of probing security [5]. Then, we revisit the modular approach
of Ananth, Ishai, and Sahai [2] which uses an expansion strategy to get random probing security
from a multi-party computation protocol. We introduce the expanding compiler that builds ran-
dom probing secure circuits from small base gadgets. We formalize the notion of random probing
expandability (RPE) and show that a base gadget satisfying this notion can be securely used in the
expanding compiler to achieve arbitrary/composable random probing security. As a complementary
contribution, our verification tool, VRAPS, is extended to verify the newly introduced RPC and
RPE properties.

Instantiation. We instantiate the expanding compiler with new constructions of simple base gadgets
that fulfill the desired RPE property, which is verified by VRAPS. For a security level k, our
instantiation achieves a complexity of O(k") and tolerates a constant leakage probability p ~
0.0045 > 278. In comparison, and as a side contribution, we provide a precise analysis of the
construction from [2] and show that it achieves an O(x82) complexity for a much lower tolerated
leakage probability (p ~ 2726). Finally, we note that our framework probably enables more efficient
constructions based on different base gadgets; we leave such optimizations open for future works.

2 Preliminaries

Along the paper, K shall denote a finite field. For any n € N, we shall denote [n] the integer
set [n] = [1,n] N Z. For any tuple # = (z1,...,2,) € K" and any set I C [n], we shall denote

" See https://github.com/CryptoExperts/VRAPS



x|r = (x;)ier. Any two probability distributions D; and Dy are said e-close, denoted D; ~. Do, if
their statistical distance is upper bounded by ¢, that is

1
SD(D1; D2) := 2%: ppy (2) = pp,y(2)| <&,
where pp, (-) and pp, (-) denote the probability mass functions of D; and Ds.

2.1 Circuit Compilers

In this paper, an arithmetic circuit over a field K is a labeled directed acyclic graph whose edges
are wires and vertices are arithmetic gates processing operations over K. We consider three types
of arithmetic gate:

— an addition gate, of fan-in 2 and fan-out 1, computes an addition over K,
— a multiplication gate, of fan-in 2 and fan-out 1, computes a multiplication over K,
— a copy gate, of fan-in 1 and fan-out 2, outputs two copies of its input.

A randomized arithmetic circuit is equipped with an additional type of gate:
— a random gate, of fan-in 0 and fan-out 1, outputs a fresh uniform random value of K.

A (randomized) arithmetic circuit is further formally composed of input gates of fan-in 0 and fan-
out 1 and output gates of fan-in 1 and fan-out 0. Evaluating an ¢-input m-output circuit C' consists
in writing an input & € K’ in the input gates, processing the gates from input gates to output gates,
then reading the output y € K™ from the output gates. This is denoted by y = C(x). During the
evaluation process, each wire in the circuit is assigned with a value on K. We call the tuple of all
these wire values a wire assignment of C' (on input x).

Definition 1 (Circuit Compiler). A circuit compiler is a triplet of algorithms (CC,Enc, Dec)
defined as follows:

— CC (circuit compilation) is a deterministic algorithm that takes as input an arithmetic circuit
C and outputs a randomized arithmetic circuit C.

— Enc (input encoding) is a probabilistic algorithm that maps an input x € K’ to an encoded input
zcKY.

— Dec (output decoding) is a deterministic algorithm that maps an encoded output y € K™ to a
plain output y € K™.

These three algorithms satisfy the following properties:

— Correctness: For every arithmetic circuit C of input length £, and for every x € K¢, we have
Pr (Dec(C(&)) = C(x) | @ + Enc(z)) =1, where C = CC(C).
— Efficiency: For some security parameter A € N, the running time of CC(C) is poly (X, |C|), the

running time of Enc(x) is poly(\, |x|) and the running time of Dec(ﬂ) is poly (A, |yl|), where
poly (), q) = O(NF1¢*2) for some constants ki, k.



2.2 Linear Sharing and Gadgets

In the following, the n-linear decoding mapping, denoted LinDec, refers to the function J,, K" — K
defined as

LinDec: (z1,...,2p) = 21+ -+ 2y ,
for every n € N and (z1,...,z,) € K”. We shall further consider that, for every n,¢ € N, on input
(Z1,...,%) € (K¢ the n-linear decoding mapping acts as
LinDec : (Z1,...,%¢) — (LinDec(Z1), ..., LinDec(Zy)) .
Let us recall that for some tuple & = (z1,...,2,) € K" and for some set I C [n], the tuple

(z)ier is denoted Z|;.

Definition 2 (Linear Sharing). Letn, ¢ € N. For any x € K, an n-linear sharing of x is a random
vector * € K" such that LinDec(Z) = x. It is said to be uniform if for any set I C [n] with |I| <n
the tuple X|r is uniformly distributed over KHI!. A n-linear encoding is a probabilistic algorithm
LinEnc which on input a tuple T = (x1,...,2¢) € K* outputs a tuple T = (T1,...,7¢) € (K")¢ such
that Z; is a uniform n-sharing of x; for every i € [{].

In the following, we shall call an (n-share, {-to-m) gadget, a randomized arithmetic circuit
that maps an input # € (K") to an output € (K")™ such that & = LinDec(z) € K’ and
y = LinDec(y) € K™ satisfy y = g(x) for some function g. In this paper, we shall consider gadgets
for three types of functions (corresponding to the three types of gates): the addition g : (21, x2) —
x1 + x9, the multiplication g : (z1,22) — 1 - z2 and the copy g :  — (x,2). We shall generally
denote such gadgets Gaqd, Gmuit and Geopy respectively.

Definition 3 (Standard Circuit Compiler). Let A € N be some security parameter and let n =
poly(X). Let Gagd, Gmuir and G opy be n-share gadgets respectively for the addition, multiplication
and copy over K. The standard circuit compiler with sharing order n and base gadgets G 44, Gmuit,
G copy s the circuit compiler (CC, Enc, Dec) satisfying the following:

1. The input encoding Enc is an n-linear encoding.

2. The output decoding Dec is the n-linear decoding mapping LinDec.

3. The circuit compilation CC consists in replacing each gate in the original circuit by an n-share
gadget with corresponding functionality (either Goqd, Gumui o7 Geopy), and each wire by a set
of n wires carrying a n-linear sharing of the original wire. If the input circuit is a randomized
arithmetic circuit, each of its random gates is replaced by n random gates, which duly produce
a n-linear sharing of a random value.

For such a circuit compiler, the correctness and efficiency directly holds from the correctness and
efficiency of the gadgets G oqd, Gmuir and G copy.

2.3 Random Probing Leakage

Let p € [0,1] be some constant leakage probability parameter. This parameter is sometimes called
leakage rate in the literature. Informally, the p-random probing model states that during the eval-
uation of a circuit C' each wire leaks its value with probability p (and leaks nothing otherwise),
where all the wire leakage events are mutually independent.

In order to formally define the random-probing leakage of a circuit, we shall consider two
probabilistic algorithms:



— The leaking-wires sampler takes as input a randomized arithmetic circuit C' and a probability
p € [0,1], and outputs a set W, denoted as

W < LeakingWires(C, p) ,

where W is constructed by including each wire label from the circuit C' with probability p to
W (where all the probabilities are mutually independent).

— The assign-wires sampler takes as input a randomized arithmetic circuit C, a set of wire labels
W (subset of the wire labels of C'), and an input @, and it outputs a |[W|-tuple w € (KU{L})MI,
denoted as

w < AssignWires(C, W, x) ,

where w corresponds to the assignments of the wires of C' with label in W for an evaluation on
input .

We can now formally define the random probing leakage of a circuit.

Definition 4 (Random Probing Leakage). The p-random probing leakage of a randomized
arithmetic circuit C' on input x is the distribution L,(C, x) obtained by composing the leaking-wires
and assign-wires samplers as

L,(C,x) u AssignWires(C, LeakingWires(C, p), x) .

Remark 1. By convention the output wires of C' (i.e. the wires incoming output gates) are excluded
by the LeakingWires sampler whereas the input wires of C' (i.e. the wires connecting input gates to
subsequent gates) are included. Namely the output set W of LeakingWires(C, p) does not include
any output wire label of C'. This is because when composing several circuits (or gadgets), the output
wires of a circuit are the input wires in a next circuit. This also relates to the widely admitted only
computation leaks assumption [23]: the processing of a gate leaks information on its input values
(and information on the output can be captured through information on the input).

Definition 5 (Random Probing Security). A randomized arithmetic circuit C with £ -n € N
input gates is (p,e)-random probing secure with respect to encoding Enc if there exists a simulator
Sim such that for every = € K*:

Sim(C) ~. £,(C,Enc(x)) . (1)

A circuit compiler (CC, Enc, Dec) is (p,e)-random probing secure if for every (randomized) arith-
metic circuit C the compiled circuit C = CC(C) is (p,|C| - €)-random probing secure where |C| is
the size of original circuit.

As in [2] we shall consider a simulation with abort. In this approach, the simulator first calls
the leaking-wires sampler to get a set YW and then either aborts (or fails) with probability e or
outputs the exact distribution of the wire assignment corresponding to WW. Formally, for any leakage
probability p € [0, 1], the simulator Sim is defined as

Sim(C) = SimAW(C, LeakingWires(C, p)) (2)



where SImAW, the wire assignment simulator, either returns L (simulation failure) or a perfect
simulation of the requested wires. Formally, the experiment

W LeakingWires(a,p)

out + SImAW(C, W)

leads to
Prlout = 1] =¢ and (out | out # 1) d (AssignWires(a, W, Enc(x)) | out # L) . (3)

It is not hard to see that if we can construct such a simulator SimAW for a compiled circuit C , then
this circuit is (p, £)-random probing secure.

3 Formal Verification

In this section we show how to compute the simulation failure probability f(p) as a function of
the leakage probability p for the base gadgets. Since even for simple gadgets this tasks would be
difficult to perform by hand, we use a formal verification tool to compute f(p).

3.1 Simulation Failure probability

We first derive an upper bound on the simulation failure probability as a function of the leakage
probability p. We consider a compiled circuit C composed of s wires labeled from 1 to s and a
simulator SimAW as defined in previous section. For any sub-set W C [s] we denote by dyy the
value defined as follows:
{1 if SimAW(C, W) = L,
oy =

0 otherwise.

The simulation failure probability € in (3) can then be explicitly expressed as a function of p.
Namely, we have ¢ = f(p) with f defined for every p € [0, 1] by:

fo)= > ow - (@ —pyM. (4)

WC[s]

Letting ¢; be the number of sub-sets W C [s] of cardinality ¢ for which dyy = 1, namely for which
the simulation fails, we have ¢; = Z|W‘:i oy and hence (4) simplifies to

f)=> c-p-(1—p* . (5)
=1

For any circuit C achieving t-probing security, the values dyy with V| < ¢ are equal to zero,
and therefore the corresponding ¢;’s are zero, which implies the following simplification:

S

fo)=> a-p-(1-p* ",

i=t+4+1



Moreover, by definition, the coefficients c¢; satisfy:

¢ < () (6)

which leads to the following upper-bound for f(p):

o) < i (j)-pi-(l—p)si .

i=t+1

Ezxample: evaluating f(p) for the 2-share ISW multiplication gadget (ISW-2). This gadget takes at
input the 2-sharings (z, 1) and (yo,y1) of x and y respectively, and outputs the 2-sharing

(20,21) = (o - yo+ 70,21 - y1 + 70+ 20 - y1 + 21 - Yo)

where 1 is a random value. The processing is composed of the following intermediate results, where
each variable is assigned a wire:

Co=2o*Yo 20=Co+7T0 C1=T1*Yyr C2=2cC1+T0
C3 =To*xYl C=Ca+C3 C5=T1%Yg 21 —C4+Cs

When the same variable is involved as input of several operations, a copy gadget (with 1 input wire
and 2 output wires) is applied to duplicate it. Consequently, each new use of the same variable
as input of an operation adds 2 wires to the final count of overall wires. It may be checked that
the circuit corresponding to ISW-2 is composed of 21 wires, excluding the 2 output wires. Since
it is 1-SNI but not 2-SNI, every set with a single wire can be simulated, which is not the case
for all pairs of wires. Actually, 51 among the latter pairs cannot be simulated. If we continue the
test for the sets of cardinality from 3 to 21, we get the following list of coefficients ¢;, 1 < i < 21,
computed with the verification tool described in the next section: 0, 51, 754, 4827, 18875, 52994,
115520, 203176, 293844, 352702, 352715, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210,
21, 1. Directly injecting these coefficients in (5) gives the expression of f(p) for ISW-2.

3.2 Verification method

For any compiled circuit C and any simulator defined as in Section 2.3, the computation of the
function f(p) for any probability p essentially amounts to computing the values of the coefficients
¢;’s appearing in (5). If no assumption is made on the circuit, this task seems difficult to carry out
by hand. Actually, it may be checked that an exhaustive testing of all the possible tuples of wires
for a gadget with s wires has complexity lower bounded by 2%, which gives 22! for a simple gadget
like the ISW multiplication gadget with two shares per input. Here, we introduce a verification
tool, that we call VRAPS, enabling to automatically test the perfect simulation for any set of wires
of size lower than or equal to some threshold 5. The role of the latter threshold is simply to control
the verification duration (which can be long if the circuit to test is complex). Our tool implicitly
defines a simulator that may fail with a probability ¢ = f(p) satisfying (5).



The verification tool takes as input the representation of a compiled circuit C and a test
parameter 3, and outputs the list of coefficients c1, ..., cg. It is assumed that C takes as input the
n-linear encoding Enc(x) of vector = (z1,..., ) defined in K*. It is moreover assumed that C
is composed of s wires respectively denoted by w1, ..., ws. In the following, we consider s-tuples in
the form of u = (uq,...,us) € {0,1}* together with the common rule v C u iff for every i € [s],
uw, =1 = wu; =1 (in this case «’ will be said to be included in u). An s-tuple u for which there
exists an assignment of the wires in W = {wj;; i € [s],u; = 1} such that the simulation fails shall
be called a failure tuple. Such a tuple shall be said to be incompressible if no tuple t' C ¢ is a
failure tuple. The main idea of the proposed verification tool is to test the simulation failure only
on incompressible failure tuples whose Hamming weight ranges from 1 to 5. The steps are described
in Algorithm 1.

Algorithm 1 Verification tool

Input: a compiled circuit C with s wires and a threshold B<s
Output: a list of 5 coefficients c1, ..., ¢cg

1: 4y < > will be used to store a list of failure tuples
2: ¢+ (0,...,0) > will be used to store the output coefficients
3: for h=1to g do

4: Ly, < listTuples(s,h) > list of s-tuples of Hamming weight h
5: (ZZ,Z?) <+ eliminateFromSmaller(¢y, £;) > select tuples including an incompressible failure tuple
6: o2 failureTest(C, o) > identify failure tuples in ¢}
7 Ly < Up U K{f > update list of incompressible failure tuples
8: ¢ < updateCoeffs(c, ££l U E{f) > update coefficients
9: end for
10: return c

The function listTuples outputs the list of all s-tuples with Hamming weight h with h € [s]. The
function eliminateFromSmaller takes as input the list £, of current tuples of Hamming weight h and
the list of incompressible failure tuples £,. It returns two lists:

- Eilz the elements of ¢, which are not incompressible (i.e. which include at least one element
from £,)
— (7 the elements of ¢, which are incompressible (i.e. Zh\ﬁff)

The function failureTest takes as input the second list EZ and checks if a perfect simulation can
be achieved for each wire family W corresponding to a tuple in Kﬁ. Basically, for each wire family,
a sequence of rules taken from maskVerif [4] is tested to determine whether VW can be perfectly
simulated. It outputs EfQ, the list of incompressible failure s-tuples of Hamming weight h. In a
nutshell, each wire w; in W is considered together with the algebraic expression ¢;(-) describing its
assignment by C as a function of the circuit inputs and the random values returned by the random

gates, then the three following rules are successively and repeatedly applied on all the wires families
W (see [4] for further details):

rule 1: check whether all the expressions ¢;(-) corresponding to wires w; in W contain all the
shares of at least one of the coordinates of x;

rule 2: for every ¢;(+), check whether a random 7 (i.e. an output of a random gate) additively
masks a sub-expression e (which does not involve r) and appears nowhere else in the other ¢;(-)



with j # 4; in this case replace the sum of the so-called sub-expression and r by r, namely
e+r<r,
rule 3: apply mathematical simplifications on the tuple.

Function updateCoeffs takes as input the current array of 8 coefficients ¢; for 1 < i < 8 and the
concatenation of both lists of potential failure tuples €£1 and €£2. For each failure tuple, these
coefficients are updated.

Link with the tool maskVerif . This tool was introduced in [4] to automatically and formally
verify higher-order masking implementations, and has further been improved to verify the ¢-NI and
t-SNI security properties. Essentially, this tool verifies each property by analyzing the dependency
of sets of fixed number of wires (say t) with a specific number of input shares. In our case, the size
of the wires’ sets which must be tested (to decide whether the corresponding coefficient ¢; must be
incremented or not) is a priori not bounded, or (for efficiency reasons) is bounded by a threshold g
that is not a security parameter but an efficiency one. Moreover, our testing must take intermediate
failures into account. Although maskVerif does not directly allows to answer our specific needs,
we could have exploited its rules directly in our tool with dedicated add-ons. However we wanted
to provide an easy-to-understand global tool and we therefore re-implemented the common parts
(essentially those enabling to decided whether a given set of wires can be simulated or not).

Optimization 1 (grouping the wires). In most of the compiled circuits that we usually consid-
ered, several wires are always assigned the same value. Grouping those wires altogether allows us
to significantly reduce the number of wires to be considered by the verification tool. Let us denote
by s* the number of groups, by «; the size of the i-th group and by w; a representative of the i-th
group. Then, Algorithm 1 can be almost directly applied to the shortened list of s* wires (instead of
s). The single main difference is that the updateCoeffs procedure also takes into account the weights
a; when updating the coefficients ¢;. For instance, considering h = 3, and the tuple (1,1, 1,0, ...,0)
with respective weights ay = 2 (for wy), ag = 1 (for we) and ag = 3 (for ws), the function would
increase cg with 6, ¢4 with 6, ¢5 with 4 and ¢g with 1. The latter evaluation is performed using a
recursive function which evaluates the number of partitions of an integer j into h parts with the
constraints that each part should be at least one. When this optimization is applied, it may be
observed that the updateCoeffs procedure also starts to update some coefficients ¢; for i > 5. These
updated coefficients can be used as lower bounds of the final ¢; values. They will be called c%nf in
the rest of this paper. ¢;* will be used to denote the maximal possible value for ¢;, namely the
binomial coefficient (3).

Optimization 2 (using the ‘longest failure tuple’). To build all the potential failure tuples, a
strategy consists in exhaustively testing all the s-tuples with Hamming weight below the Hamming
weight of the longest incompressible attack tuple. Once this set, let say Uinc , has been built, the
set of all potential failure tuples can be deduced by executing the following procedure:

— for one uine € Uine define Ugajiure = {u € {0,1}%; uine C u}.

— for every new uinc € Uinc , update Usaiture = Utaiture U {1 € {0,1}%; uine C u}

Implementation. An implementation of Algorithm 1 has been developed in Python. This tool,
named VRAPS, has been open sourced at:

https://github.com/CryptoExperts/VRAPS
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Small examples. In order to illustrate our automatic verification of gadgets in the random probing
model, we give the list of coefficients and the subsequent failure functions obtained for three known
gadgets from the literature, namely the 2-share and 3-share multiplication gadgets introduced by
Ishai, Sahai, and Wagner in [20] and a 3-share multiplication gadget from [8] with an optimal
number of random variables to achieve security in the 2-probing model. Descriptions for these
three gadgets are given below together with an approximation of the corresponding failure function
f produced by our tool. Operations are performed according to the standard priority rules. Sharings
x and y denote the inputs, sharings z denote the outputs, and r; are random variables. Copy gates
are implicit when variables are used more than once. Hereafter O(p?) is to be interpreted as p tends
to 0.

2-share ISW multiplication gadget (ISW-2):

{202930'y0+7“0

= = 51p% + T54p> + 4827p* + O(p°
Z1=T1-Y1+ro+To Y1 +T1-Yo f(p) p p p (p)

3-share multiplication gadget from [8] (EC16-3):

20 =20 Yo+ 1o+ To-y2+ T2 Yo
Z1=x1 Y1 +71+xo Y1 +T1-Yo = f(p) = 1116p3+44909p4+(9(p5)
Zg=X2-Yo+ro+r1+T1-y2+T2 Y1

3-share ISW multiplication gadget (ISW-3):

20 =T Yo+ 1o+ 71
21 =x1-Yo + (To-y1 +70) + 1 - y1 + 72
29 =22 - Yo + (To - Y2 +11)+

(o2 -y1+ (x1-y2+12)) +22- Y2

= f(p) = 1219p® 4 55756p* + O(p°)

For our three examples, our verification tool (Algorithm 1) has been launched respectively with
B8 =s =21 for ISW-2, with 8 =9 < s = 57 for ISW-3 and with § = 13 < s = 52 for EC16-3. In
the two later cases, the missing coefficients ¢; with ¢ > 8 have been either set to 0 or to (‘z) This
allowed us to define a lower bound fi,s and an upper bound fq,, for the functions f corresponding
to ISW-3 and EC16-3. The behavior of these functions is plotted in Figures 1 to 3.

4 Composition

This section aims to provide composition properties for random-probing secure gadgets. In a nut-
shell, we aim to show how to build random probing secure larger circuits from specific random
probing secure building blocks.

4.1 Random Probing Composability

We introduce hereafter the random probing composability notion for a gadget. In the following
definition, for an n-share, ¢-to-m gadget, we denote by I a collection of sets I = (Iy,...,I;) with
I C[n],..., I; C [n] where n € N refers to the number of shares. For some = (71, ..., %) € (K")’,
we then denote Z|r = (Z11,,. .., 2¢|1,) where 7|7, € K/l is the tuple composed of the coordinates
of the sharing Z; of indexes included in I;.

11
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Definition 6 (Random Probing Composability). Let n,¢,m € N. An n-share gadget G :
(K™t — (K™)™ is (t, p,e)-random probing composable (RPC) for some t € N and p,e € [0,1] if
there exists a deterministic algorithm Sim? and a probabilistic algorithm SimQG such that for every
input & € (K™)¢ and for every set collection J; C [n], ..., Jm C [n] of cardinals |Ji| < t, ...,
|Jm| < t, the random experiment

W <« LeakingWires(G, p)
I« Simf (W, J)
out Simg(fn\h)
yields
Pr((|[Ii] >t) V...V (I >t) <e (7)
and A
out 2 (AssignWires(G, W, ) , gl)
where J = (J1,...,Jm) and y = G(Z). Let f : R — R. The gadget G is (t, f)-RPC if it is
(t,p, f(p))-RPC for every p € [0,1].

In the above definition, the first-pass simulator Sim? determines the necessary input shares
(through the returned collection of sets I) for the second-pass simulator Simg to produce a perfect
simulation of the leaking wires defined by the set W together with the output shares defined by the
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collection of sets J. Note that there always exists such a collection of sets I since I = ([n],...,[n])
trivially allows a perfect simulation whatever WW and J. However, the goal of Simf is to return a
collection of sets I with cardinals at most ¢. The idea behind this constraint is to keep the following
composition invariant: for each gadget we can achieve a perfect simulation of the leaking wires plus
t shares of each output sharing from ¢ shares of each input sharing. We shall call failure event the
event that at least one of the sets I, ..., Iy output of SimIG has cardinality greater than ¢t. When
(t,p,e)-RPC is achieved, the failure event probability is upper bounded by ¢ according to (7). A
failure event occurs whenever Simg; requires more than ¢ shares of one input sharing to be able to
produce a perfect simulation of the leaking wires (i.e. the wires with label in W) together with the
output shares in y|y. Whenever such a failure occurs, the composition invariant is broken. In the
absence of failure event, the RPC notion implies that a perfect simulation can be achieved for the
full circuit composed of RPC gadgets. This is formally stated in the next theorem.

4.2 Composition Security

Theorem 1 (Composition). Lett € N, p,e € [0,1], and CC be a standard circuit compiler with
(t,p,e)-RPC base gadgets. For every (randomized) arithmetic circuit C' composed of |C| gadgets,
the compiled circuit CC(C) is (p,|C| - €)-random probing secure. Equivalently, the standard circuit
compiler CC is (p, €)-random probing secure.

Proof. Let W denote the leaking wires of the randomized circuit CC(C') with probability p for each
wire. We now build a simulator Sim taking as inputs CC(C) and W and that perfectly simulates
W with probability at least (1 — |C| - €) from the simulators of the (¢,p,e)-RPC base gadgets.

We start with splitting set W into |C/| distinct subsets W; for ¢ € {1,...,|C|} such that each W
stands for the output of LeakingWires when applied to the i’th gadget G; of CC(C') with probability
p. Then, we start from end gadgets whose outputs coincide with the circuit’s outputs. We execute
their Simfi with W; and J = (), to get the sets I of required inputs. Then, we target their parents,
that are gadgets whose outputs are inputs of end gadgets. For each such gadget G;, we execute
SimlGi with W; and J as defined by children sets I, to get the new sets I of required inputs. The
simulation goes through the circuit from bottom to top by applying the SimlG simulators to get
the W; and I/J sets. The simulation fails if at least one set I is of cardinal greater than ¢. For |C|
gadgets, this happens with probability 1 — (1 — )/¢l < |C| - e. Otherwise, the simulation runs the
Simg’v simulators from top to bottom by randomly picking the initial (z;)7, which completes the
construction of our global simulator Sim. g

4.3 Relation with Standard Probing Composition Notions

We first reformulate the Strong Non-Interference notion introduced in [5] with the formalism used
for our definition of the Random Probing Composability.

Definition 7 (Strong Non-Interference (SNI)). Let n, £ and t be positive integers. An n-share
gadget G : (K™)* — K" is t-SNI if there exists a deterministic algorithm Simf and a probabilistic
algorithm SimQG such that for every set J C [n| and subset W of wire labels from G satisfying
IW| + |J| <t, the following random experiment with any @ € (K™)*

I < Sim{W,J)

out < Sim¢ (z|1)
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yields

and
out & (ASSignWires(G,W,I’B\) , @\J) (9)

where I = (I1,...,1I;) and y = G(Z).

Then, we demonstrate that gadgets satisfying the ¢-SNI notion are also random probing com-
posable for specific values that we explicit in the following proposition, whose proof is available in
Appendix A.

Proposition 1. Let n, £ and t be positive integers and let G be a gadget from (K™)* to K". If G
is t-SNI, then it is also (t/2,p,e)-RPC for any probability p and € satisfying:

e= i <‘Z>pi(1—p)s_i : (10)

where s is the number of wires in G.

4.4 Verification of Gadget Composability

Our random probing verification tool (Algorithm 1) can be easily extended to define a simulator
for the (¢, p,e)-random probing composability of a gadget for some ¢ and some p. This essentially
amounts to extend Algorithm 1 inputs with a multi-set O and to modify the failureTest procedure
in order to test the simulation for each tuple in the input list #, augmented with the outputs
coordinates with indices in . Then, our extended algorithm is called for every set O composed of
at most ¢ indices in each of the sets Ji, ..., J;,. The output for the call with input set O is denoted
by co = (c?, . ,cg). For our simulator construction, the probability & satisfies

S
e=> cp-(1—p)°,
i=1
where s denotes the number of wires in the tested gadget. Moreover, the ¢;’s satisfy ¢; = maxp CZO.

Ezxample. As an illustration of the proposition, let us consider the well deployed 3-share ISW
multiplication gadget Gisw.3 : (K?)? — (K3) displayed in Section 3 and satisfying 2-SNT from [5].
Considering implicit copy gadgets that are mandatory in the circuit definition when a variable is
reused, the corresponding circuit contains s = 57 wires. From Proposition 1, this gadget is also
(1, p,e1sw)-RPC for any probability p and e1sw such that

57

S . .

elsw = ) <Z.>pl(1 —p)”
=2

Figure 4 displays for p € [0, 1] the values taken by eigw (in red). It also displays (in green) the
values e]qy, obtained by calling our verification tool on the same gadget Gisw.3 with 3 = 5 (see
Algorithm 1) and by replacing the missing coefficients ¢; with ¢ > § by their upper bound (f) (see
(6)). It may be checked for small values of p the failure probability e]qy is smaller than ergw which
directly implies that the simulation induced by our verification tool is tighter than that deduced
from Proposition 1.
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5 Expansion

Constructing random-probing-secure circuit compilers with a gadget expansion strategy has been
proposed by Ananth, Ishai and Sahai in [2]. Such strategy was previously used in the field of multi-
party computation (MPC) with different but close security goals [13, 19]. Note that such approach is
called composition in [2] since it roughly consists in composing a base circuit compiler several times.
We prefer the terminology of expansion here to avoid any confusion with the notion of composition
for gadgets as considered in Section 4 and usual in the literature — see for instance [5,9, 11].

We recall hereafter the general principle of the gadget expansion strategy and provide an asymp-
totic analysis of the so-called expanding circuit compiler. Then we propose an implementation of
this strategy which relies on the new notion of gadget expandability. In contrast, the construction
of [2] relies on a t-out-n secure MPC protocol in the passive security model. The advantage of our
notion is that it can be achieved and/or verified by simple atomic gadgets leading to simple and
efficient constructions. After introducing the gadget expandability notion, we show that it allows
to achieve random-probing security with the expansion strategy. We finally explain how to adapt
the verification tool described in Section 3 to this expandability notion.

5.1 Expansion Strategy

The basic principle of the gadget expansion strategy is as follows. Assume we have three n-share
gadgets Gadd, Gmult, Gcopy and denote CC the standard circuit compiler for these base gadgets. We

can derive three new n2-share gadgets by simply applying CC to each gadget: Géd)d CC(Gaqq),
G? = CC(Gpui) and Ggo)py = CC(Geopy). Let us recall that this process simply consists in

mult

replacing each addition gate in the original gadget by G.qq, each multiplication gate by G and
each copy gate by Geopy, and by replacing each wire by n wires carrying a sharing of the original
wire. Doing so, we obtain n?-share gadgets for the addition, multiplication and copy on K. This
process can be iterated an arbitrary number of times, say k, to an input circuit C:

cC A CC =
C Cy Cy .

The first output circuit 51 is the original circuit in which each gate is replaced by a base gadget
Gadd, Gmuy or Gcopy. The second output circuit Cy is the original circuit C' in which each gate
is replaced by an n’-share gadget Gﬁl)d, a®

mult

or G((;o%)y as defined above. Equlvalently, Cg is the
circuit Cl in which each gate is replaced by a base gadget. In the end, the output circuit C'k is hence
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the original circuit C' in which each gate has been replaced by a k-expanded gadget and each wire
as been replaced by n* wires carrying an (n*)-linear sharing of the original wire. The underlying
compiler is called expanding circuit compiler which is formally defined hereafter.

Definition 8 (Expanding Circuit Compiler). Let CC be the standard circuit compiler with
sharing order n and base gadgets G 444, Gmuit; G copy- The expanding circuit compiler with expansion
level k and base compiler CC is the circuit compiler (CC(k)7 Enc(k), Dec(k)) satisfying the following:

1. The input encoding Enc® is an (nF)-linear encoding.
2. The output decoding Dec is the (n*)-linear decoding mapping.
3. The circuit compilation is defined as

CC®()=CCoCCo---0CC()

k times

The goal of the expansion strategy in the context of random probing security is to replace
the leakage probability p of a wire in the original circuit by the failure event probability € in the
subsequent gadget simulation. If this simulation fails then one needs the full input sharing for the
gadget simulation, which corresponds to leaking the corresponding wire value in the base case.
The security is thus amplified by replacing the probability p in the base case by the probability &
(assuming that we have ¢ < p). If the failure event probability ¢ can be upper bounded by some
function of the leakage probability: e < f(p) for every leakage probability p € [0, pmax] for some
Pmax < 1, then the expanding circuit compiler with expansion level k£ shall result in a security

amplification as

f f f
p=cyg——el - e =H(p),

which for an adequate function f (e.g. f : p — p?) provides exponential security. In order to get
such a security expansion, the gadgets must satisfy a stronger notion than the composability notion
introduced in Section 4 which we call random probing expandability; see Section 5.3 below.

5.2 Asymptotic Analysis of the Expanding Compiler

In this section we show that the asymptotic complexity of a compiled circuit C = CC(k)(C) is
IC| = O(|C| - k°) for security parameter k, for some constant e that we make explicit.
Let us denote by N = (N, Ne, Ny, N;) T the column vector of gate counts for some base gadget
G, where N, N., Np,, N, stands for the number of addition gates, copy gates, multiplication gates
and random gates respectively. We have three different such vectors
Nadad = (Nadd.as Nadd.c> Naddm, Nadd,r) "

. T
Nmult = (Nmult,aa Nmult,m Nmult,mv Nmult,r)

. T
NCOpy = (Ncopy,aa NCOpy,C7 NCOpy,’VTIJ NCOpy,T’)

for the gate counts respectively in the base addition gadget GG,qq4, in the base multiplication gadget
Gmuie and in the base copy gadgets Geopy. Let us define the 4 x 4 square matrix M as

M = (Nadd | Neopy | Nuult | Nrand) with  Npang = (Oy0707n)T )

where the definition Ny,,q holds from the fact that the standard circuit compiler replaces each
random gate by n random gates.
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It can be checked that applying the standard circuit compiler with base gadgets Gaad, Gmult
and Gopy to some circuit C' with gate-count vector N¢ gives a circuit C with gate-count vector
Nz = M - Nc¢. It follows that the kth power of the matrix M gives the gate counts for the level-k
gadgets as:

0
k k k . k 0
M* =M M- M= (Ngy | N, | Ny | Niy) with NGOy = |
k times nk
where Ng;zi, Néﬁ?lt and Néﬁgy are the gate-count vectors for the level-k gadgets Gz(afi)dv Ggfl)ﬂt and

G((;]f)%y respectively. Let us denote the eigen decomposition of M as M = Q- A - Q~!, we get

A
A5
N

MF=Q A" Q7' with AF=

where Aq, Aa, A3, A\q are the eigenvalues of M. We then obtain an asymptotic complexity of
ICl=O(IC] - (A + A5 + X + D) = O(|C - max(Ai, Ae, Az, Aa)")

for a compiled circuit C' = CC*)(C) (where the constant in the O(-) depends on @ and shall be
fairly small).

Interestingly, if multiplication gates are solely used in the multiplication gadget (i.e. Nagd,m =
Neopy,m = 0) which is the case in the constructions we consider in this paper, it can be checked
that (up to some permutation) the eigenvalues satisfy

(A1, Xo) = eigenvalues(M,.) , A3 = N* k

mult,m

and M =n

where M, is the top left 2 x 2 block matrix of M i.e.

M. — Nadd,a Ncopy,a
ac —
Nadd,c Ncopy,c

We finally get
IC| = O(|C|- NE.)  with  Npyax = max(eigenvalues(Mqe), Nuutm) - (11)

In order to reach some security level € = 277 for some target security parameter £ and assuming
that we have a security expansion p — f(k)(p), the expansion level £ must be chosen so that
f®)(p) < 27%. In practice, the function f is of the form

fip—= Y cip < (catOp)p*.
i>d

where O(p) is to be interpredted as p tends to 0. In the rest of this paper, we shall say that such a
function has amplification order d.
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The upper bound f(p) < ¢, p? with ¢, = c¢; + O(p) implies f®(p) < (c; p)dk. Hence, to satisfy
the required security f*) (p) < 27 while assuming ¢, p < 1, the number k of expansions must
satisfy:

k > logy(k) — logy(—logy(cp)) -

We can then rewrite (11) as

log Npax

ICl=0(|C] - x°) with e= (12)

logd

5.3 Random Probing Expandability

In the evaluation of random probing composability, let us recall that the failure event in the simu-
lation of a gadget means that more that ¢ shares from one of its inputs are necessary to complete a
perfect simulation. For a gadget to be expandable we need slightly stronger notions than random
probing composability. As first requirement, a two-input gadget should have a failure probability
which is independent for each input. This is because in the base case, each wire as input of a gate
leaks independently. On the other hand, in case of failure event in the child gadget, the overall
simulator should be able to produce a perfect simulation of the full output (that is the full input
for which the failure occurs). To do so, the overall simulator is given the clear output (which is
obtained from the simulation of the base case) plus any set of n — 1 output shares. This means that
whenever the set J is of cardinal greater than ¢, the gadget simulator can replace it by any set J’
of cardinal n — 1.

Definition 9 (Random Probing Expandability). Let f : R — R. An n-share gadget G :

K" x K™ — K" is (¢, f)-random probing expandable (RPE) if there exists a deterministic algorithm

Simf and a probabilistic algorithm Simg*v such that for every input (z,y) € K" x K", for every set

J C [n] and for every p € [0, 1], the random experiment

W < LeakingWires(G, p)
(I, I, J")  SimF(W, J)
out + Simg(VV7 J' 2, 9l1,)
ensures that
1. the failure events F1 = (!I1| > t) and Fo = (|I2| > t) verify

Pr(F)) =Pr(F2) =¢ and Pr(FiAF) =¢? (13)

with e = f(p) (in particular Fi and Fa are mutually independent),
2. J"is such that J' = J if |J| <t and J C [n] with |J'| =n — 1 otherwise,
3. the output distribution satisfies

out g (AssignWireS(Ga W7 (55\7 :/y\)) ’ /Z\|Jl) (14)

A

where Z = G(Z,Y)
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The RPE notion can be simply extended to gadgets with 2 outputs: the SimlG simulator takes
two sets J; C [n] and Jy C [n] as input and produces two sets J| and Jj satisfying the same
property as J' in the above definition (w.r.t. J; and J). The Sim$ simulator must then produce
an output including zi[;; and z»|;; where 1 and Z are the output sharings. The RPE notion can
also be simply extended to gadgets with a single input: the Sim? simulator produces a single set
so that the failure event (|I| > t) occurs with probability lower than & (and the Sim§' simulator is
then simply given Z|; where ¥ is the single input sharing). For the sake of completeness, and since
we only focus in 2 — 1 and 1 — 2 gadgets in this paper, the RPE definition for the 1 — 2 case is
given in Appendix B.

It is not hard to check that the above expandability notion is stronger that the composability
notion introduced in Section 4. Formally, we have the following reduction:

Proposition 2. Let f =R — R and n € N. Let G be an n-share gadget. If G is (t, f)-RPE then
G is (t, f)-RPC, with f'(-)=2- f(-).

Proof. We consider a (t, f)-RPE n-share gadget G : K” x K" — K". The (¢,2 - f)-random com-
posability property is directly implied by the (¢, f)-random probing expandability by making use
of the exact same simulators and observing that

Pr((|I1] > t) vV (12| > t)) < Pr(|I1] > t) + Pr(|l2| > t) =2-¢.

The case of 1 — 2 gadgets is even more direct. ([l

5.4 Expansion Security

Definition 9 of random probing expandability is valid for base gadgets. For level-k gadgets G¥) =
CC(k_l)(G) where G € {Gadd, Gmult; Geopy } 1s a base gadget, we provide a generalized definition of
random probing expandability.

Adequate subsets of [nF]. We first define the notion of “adequate” subsets of [n*], instead of
only bounded subsets. For this we define recursively a family Sy € P([n*]), where P([n*]) denotes

the set of all subsets of [n*], as follows:

S ={Ie), 1<)
Sp={(I1,...,I,) € (Sp_1 U[n*" )", I; € Sp_1 V j € [1,n] except at most ¢}

In other words, a subset I belongs to S if among the n subset parts of I, at most ¢ of them are full,
while the other ones recursively belong to Si_1; see Figure 9 in Appendix C.1 for an illustration
withn =3 and t = 1.

Generalized definition of Random Probing Expandability. We generalize Definition 9 as
follows. At level k the input sets I and Io must belong to Sk, otherwise we have a failure event.
As in Definition 9, the simulation is performed for an output subset J’ with J' = J if J € S,
otherwise J' = [n*] \ {j*} for some j* € [n*].
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Definition 10 (Random Probing Expandability with {Sg}ren). Let f: R — R and k € N.
An nF-share gadget G : K" x K?" — K" s (Sk, f)-random probing expandable (RPE) if there
erists a deterministic algorithm Sim? and a probabilistic algorithm SimZG such that for every input

(Z,9) € K™ x K”k, for every set J € S, U [nk] and for every p € [0,1], the random experiment
W < LeakingWires(G, p)
(I, I2, J') + Sim§(W, J)
out + Simg’y(V\/7 J 2|, 0n)
ensures that
1. the failure events Fi = (.71 ¢ Sk) and Fo = (IZ ¢ Sk) verify
Pr(F1) =Pr(F2) =e and Pr(FiAF) = g (15)

with € = f(p) (in particular Fy and Fa are mutually independent),
2. the set J' is such that J' = J if J € Sk, and J' = [n¥]\ {j*} for some j* € [n¥] otherwise,
3. the output distribution satisfies

out 2 (AssignWires(G, W, (Z,7)) , Z|.) (16)
where Z = G(Z,7).
The notion of random probing expandability from Definition 10 naturally leads to the statement
of our main theorem; the proof is given in Appendix C.1.

Theorem 2. Letn € N and f : R — R. Let Gogqa, Guit, Geopy be n-share gadgets for the addi-
tion, multiplication and copy on K. Let CC be the standard circuit compiler with sharing order n
and base gadgets G 44, Guuit, Geopy. Let cC® pe the expanding circuit compiler with base com-

piler CC. If the base gadgets Goaqdq, Gmur and Geopy are (t, f)-RPE then, Gg:l)d = CC(k*I)(Gadd),

G%t = CC(k_l)(Gmult), G(clf,;,y = CC(k_l)(Gcopy) are (Sy, f*))-RPE, nF-share gadgets for the addi-
tion, multiplication and copy on K.

The random probing security of the expanding circuit compiler can then be deduced as a
corollary of the above theorem together with Proposition 2 (RPE = RPC reduction) and Theorem 1
(composition theorem).

Corollary 1. Letn € N and f : R = R. Let Goqa, Gmuit,; G copy be n-share gadgets for the addition,
multiplication and copy on K. Let CC be the standard circuit compiler with sharing order n and base
gadgets Goga, Gmuit, Geopy- Let CC® pe the expanding circuit compiler with base compiler CC. If
the base gadgets G444, Gmuy and Geopy are (t, f)-RPE then cc®) s (p,2 - f¥)(p))-random probing
secure.

5.5 Relaxing the Expandability Notion

The requirement of the RPE property that the failure events F; and F» are mutually independent
might seem too strong. In practice it might be easier to show or verify that some gadgets satisfy a
weaker notion. We say that a gadget is (¢, f)-weak random probing expandable (WRPE) if the failure
events verify Pr(F;) < e, Pr(F2) < ¢ and Pr(F; AF2) < €2 instead of (22) in Definition 9. Although
being easier to achieve and to verify this notion is actually not much weaker as the original RPE.
We have the following reduction of RPE to wRPE; see Appendix C.3 for the proof.
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Proposition 3. Let f = R — [0,0.14]. Let G : K" x K* — K" be an n-share gadget. If G is
(t, f)-wRPE then G is (t, f')-RPE with f'(-) = f(-) + %f(~)2.

Assume that we can show or verify that a gadget is wRPE with the following failure event
probabilities

Pr(F1) = filp) , Pr(F2) = fo(p) and Pr(Fi A F2) = fia(p)
for every p € [0,1]. Then the above proposition implies that the gadget is (p, f)-RPE with

f p = fmax(p) + %fmax(p)2 with fmax = max(fl, f2a \/E) .

We shall base our verification of the RPE property on the above equation as we describe hereafter.

5.6 Verification of Gadget Expandability

We can easily adapt our automatic tool to verify the weak random probing expandability for base
gadgets (Definition 9). Basically, the verification is split into two steps that we first describe for
the case of addition and multiplication gadgets with fan-in 2 and fan-out 1.

In a first step, our tool computes the function f to check the (¢, f)-wRPE property for output sets
of shares of cardinal at most ¢. For 2-input gadgets, this step leads to the computation of coefficients
¢; corresponding to three failure events F1, F2, and F1 AJFs as defined above but restricted to output
sets of shares of cardinal less than ¢. The process is very similar to the verification of random probing
composability but requires to separate the failure events counter into failure events for the first input
(|Z1| > t), for the second input (|Zz| > t) or for both ((|Z1| > t) A (|Z2| > t)). In the following, we
denote the three functions formed from the corresponding coefficients as fl(l), 2(1), and fl(%).

Then, in a second step, our tool verifies that there exists at least one set of n — 1 shares for each
output, such that the simulation failure is limited by f(p) for some probability p € [0, 1]. In that
case, it still loops on the possible output sets of shares (of cardinal n — 1) but instead of computing
the maximum coefficients, it determines whether the simulation succeeds for at least one of such
sets. A failure event is recorded for a given tuple if no output sets of cardinal n —1 can be simulated
together with this tuple from at most ¢ shares of each input. As for the first verification step, we
record the resulting coefficients for the three failure events to obtain functions f1(2), f2(2), and fl(g)

From these two steps, we can deduce f such that the gadget is (¢, f)-wRPE:

vp € (0,1, f(p) = max(f1(p), f2(p), V/ f12(p))

with

falp) = max(f(p). [P (p))  for ae{1,2,12}

The computation of f for a gadget to satisfy (¢, f)-weak random probing expandability is a bit
trickier for copy gadgets which produce two outputs. Instead of two verification steps considering
both possible ranges of cardinals for the output set of shares J, we need to consider four scenarios
for the two possible features for output sets of shares J; and Jo. In a nutshell, the idea is to follow
the first verification step described above when both J; and Jy have cardinal equal or less than
t and to follow the second verification step described above when both J; and .Jo have greater
cardinals. This leads to functions f) and f2). Then, two extra cases are to be considered, namely
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when (|Ji| < t) and (|J2| > t) and the reverse when (|.J;| > t) and (|J2| < t). To handle these
scenarios, our tool loops over the output sets of shares of cardinal equal or less than ¢ for the first
output, and it determines whether there exists a set of n — 1 shares of the second output that a
simulator can perfectly simulate with the leaking wires and the former set. This leads to function
12 and reversely to function f2Y. From these four verification steps, we can deduce f such that
the copy gadget is (¢, f)-wRPE:

Vp € 0,1, f(p) = max(fN (p), fP(p), M2 (p), F*) (p)).

Once gadgets have been proven (t, f)-weak RPE, they are also proven to be (t, f)-RPE from
Proposition 3 with f': p— f(p) + % f(p)?. Examples of such computations for 3-share gadgets are
provided in Section 6.

6 New Constructions

In this section, we exhibit and analyze (1, f)-wRPE gadgets for the addition, multiplication, and
copy (on any base field K) to instantiate the expanding circuit compiler. These gadgets are sound
in the sense that their function f has amplification order strictly greater than one. As explained
in previous sections, an amplification order strictly greater than one guarantees that there exists
a probability pmaes € [0,1] such that ¥p < ppas, f(p) < p, which is necessary to benefit from the
expansion. For 2-input gadgets, f is defined as the maximum between f1, f2, and \/f12. Therefore,
the constraint on the amplification order also applies to the functions fi, fo, and +/f12. For the
function fio, this means that the amplification order should be strictly greater than two.

We start hereafter with an impossibility result, namely there are no (2-share, 2-to-1) (1, f)-
RPE gadgets such that f has an amplification order greater than one. Then, we provide concrete
instantiations of addition, multiplication, and copy gadgets based on 3 shares which successfully
achieve (1, f)-RPE for amplification order greater than one and can be used in the expansion
compiler.

6.1 About 2-Share Gadgets

Consider a gadget G with a 2-share single output z = (zg, 21) and two 2-share inputs « = (x¢, z1)
and y = (yo,y1). We reasonably assume that the latter are the outputs of gates with fan-in at most
two (and not direct input shares). For G to be (1, f)-RPE with f of amplification order strictly
greater than one, then fi2 must be of amplification strictly greater than two. In other words, we
should be able to exhibit a simulator such that one share of each input is enough to simulate
anyone of the output shares and an arbitrary couple of leaking wires. But the output wire zg and
both input gates of the second output share z; represent the full output and require the knowledge
of both inputs to be simulated. Therefore, fi2 has a non-zero coefficient in p and is thus not of
amplification order strictly greater than two. We thus restrict our investigation to n-share gadgets,
with n > 3 to instantiate our compiler.

In the upcoming gadget descriptions, notice that variables r; are fresh random values, operations
are processed with the usual priority rules, and the number of implicit copy gates can be deduced
from the occurrences of each intermediate variable such that n occurrences require n — 1 implicit
copy gates. Also, the function expression below each gadget corresponds to the function obtained
from our verification tool when verifying weak random probing expandability. It implies that the
gadget is (¢, f)-wRPE for ¢t usually equal to one except when defined otherwise. A more complete
description of each function (with more coefficients) is available in Appendix D.1.
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6.2 Addition Gadgets

The most classical masked addition schemes are sharewise additions which satisfy the simpler
probing security property. Basically, given two input n-sharings & and vy, such an addition computes
the output n-sharing z as z1 < x1 +y1, 220 ¢ T2 + Y2, ..., 2n < Tpn + yn. Unfortunately, such
elementary gadgets do not work in our setting. Namely consider an output set of shares J of
cardinality ¢. Then, for any n, there exists sets W of leaking wires of cardinality one such that no
set I of cardinality < ¢ can point to input shares that are enough to simulate both the leaking wire
and the output shares of indexes in J. For instance, given a set J = {1,...,t}, if W contains x;1,
then no set I of cardinal < ¢ can define a set of input shares from which we can simulate both the
leaking wire and z1, ..., z:. Indeed, each z; for 1 < ¢ < ¢ requires both input shares z; and y; for its
simulation. Thus, a simulation set I would contain at least {1,...,¢} and ¢t + 1 for the simulation
of the leaking wire. I would thus be of cardinal £+ 1 which represents a failure event in the random
probing expandability definition. As a consequence, such a n-share addition gadget could only be
(t, f)-RPE with f with a first coefficient ¢; as defined in Section 3 strictly positive. In other words,
f would be of amplification order one such that Vp € [0, 1], f(p) > p.

In the following, we introduce two 3-share addition gadgets. From our automatic tool, both are
(1, f)-wRPE with f of amplification order strictly greater than one. Basically, in our first addition
gadget G;dd, both inputs are first refreshed with a circular refreshing gadget as originally introduced
in [6]:

Gzla,dd:ZO<_xO+TO+T1+yO+T3+T4
= V10p*? + O(p
214 X1 +r1+ro+yr+ra+7s5 fmax(p) JOE (p)

g xo+rot+roty2+rs+73

The second addition gadget Gidd simply rearranges the order of the refreshing variables:

ngd3ZOF~’U0+T0+T4+y0+T1+T3
zié— w1+ sy Fro g Fmaz(p) = V69p* + O(p?)
224 To+T2+T3+Y2+ 170+ 75

In each gadget, « and y are the input sharings and z the output sharing; f,,4. additionally
reports the maximum of the first non zero coefficient (as defined in Section 3) of the three functions
f1, fo, and fis, as defined in the previous section, obtained for the random probing expandability
automatic verifications. A further definition of these functions can be found in Appendix D.1. Note
that both gadgets Gidd and Gidd are built with 15 addition gates and 6 implicit copy gates.

6.3 Multiplication Gadget

We start by proving an impossibility result: no 3-share multiplication gadget composed of direct
products between input shares satisfies (1, f)-RPE with amplification order strictly greater than
one. Consider such a gadget G with two 3-input sharings * and y whose shares are directly mul-
tiplied together. Let (z; - y;) and (xj - y¢) be two such products such that i, j, k, ¢ € [3] and i # k
and j # £. If both results are leaking, then the leakage can only be simulated using the four input
shares. Namely, {i,k} C I; and {j,¢} C I5. This scenario represents a failure since cardinals of
I; and I> are both strictly greater than one. As a consequence, function fio which records the
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failures for both inputs is defined with a coefficient co at least equal to one. Hence fi5 is not of
amplification greater than two and f cannot be of amplification order greater than one. Regular
3-share multiplication gadgets consequently cannot be used as base gadgets of our compiler.

To circumvent this issue, we build a 3-share multiplication gadget Grlnult whose both inputs are
first refreshed, before any multiplication is performed:

Ug < o + 15 + 163 Uy <= T1 +Tre + 77; Uy < T2 + 77+ 75
Vo <= Yo + 18 + 193 V1 <= Y1 + 79 + r10; Vg < Y2 + 710 + 78

20 < (uO-Uo—I—T‘o)—i—(UO-01+T1)+(U0'U2+7’2)
21 (ul-vo—l—ﬁ)—i-(u1-01+7‘4)+(u1-1}2+7“3)
29 4— (UQ'U0+7"2)+(U2'01+T3)+(UQ'U2+T0)+T4

fma:p(p) = \/gp?)/Q + O(pQ)

6.4 Copy Gadget

We exhibit a 3-share (1, f)-wRPE copy gadget Géopy with f of amplification order strictly greater
than one:

Vg < U)T+To+T1; Wy < U+ T3+ T4
V1 4= Uy F T+ Ty wy g g+ fmaz(p) = 33p” + O(p%)
Vg <= U9 + T2 +T0; W2 < U2+ 75+ 173

It simply relies on two calls of the circular refreshing from [6] on the input. This last gadget is made
of 6 addition gates and 9 implicit copy gates.

6.5 Complexity and Tolerated Probability

Following the asymptotic analysis of Section 5.2, our construction yields the following instantiation
of the matrix M

(17)

with

1512
Mac = <6 9> and Nmult,m =9.
The eigenvalues of M. are 3 and 21, which gives Npax = 21. We also have a random probing
expandability with function f of amplification order d = % Hence we get

_ log Njax ~ log21

= = ~ 175
¢ logd log 1.5
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which gives a complexity of \6 | = O(|C| - k™). Finally, it can be checked from the coefficients of
the RPE functions given in Appendix D that our construction tolerates a leakage probability up
to

Pmax ~ 0.0045 > 278

This corresponds to the maximum value p for which we have f(p) < p which is a necessary and
sufficient condition for the expansion strategy to apply with (¢, f)-RPE gadgets.

As explained in Sec. 5.2, we can compute the new gate count vectors for each of the compiled
gadgets Gzélz), G(l;(()lf,g,, Grlrffl)t by computing the matrix M¥*. In Fig. 5, we plot the total number of
gates (Na+ N¢+ Ny, + N;) in each of the compiled gadgets as a function of the level k. For instance,
for level k = 9 the number of gates in the compiled gadgets is around 10'2. For the latter level and
assuming a leakage probability of p = 0.0045 (which is the maximum we can tolerate), we achieve
a security of € ~ 2776, On its right side, Fig. 6 plots the values taken by the function f such that
the gadgets Gy, G%14: GL . and Gl . are (¢, f)-RPE.

mult copy
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Fig. 5: Number of gates for Gigﬁ), Gié’;;)w Grln(fl)t circuits
with respect to the level k. Fig. 6: Values taken by the function f for (¢, f)-RPE

7 Comparison with Previous Constructions

In this section, we compare our scheme to previous constructions. Specifically, we first compare
it to the well-known Ishai-Sahai-Wagner (ISW) construction and discuss the instantiation of our
scheme from the ISW multiplication gadget. Then we exhibit the asymptotic complexity (and
tolerated leakage probability) of the Ananth-Ishai-Sahai compiler and compare their results to our
instantiation.

7.1 Comparison with ISW

The classical ISW construction [20] is secure in the ¢-probing model when the adversary can learn
any set of ¢ intermediate variables in the circuit, for n = 2t + 1 shares. This can be extended to ¢
probes per gadget, where each gadget corresponds to a AND or XOR gate in the original circuit.
Using Chernoff bound, security in the ¢-probing model per gadget implies security in the p-random
probing model, where each wire leaks with probability p, with p = O(t/|G|), where |G| is the
gadget size. Since in ISW each gadget has complexity O(t?), this gives p = O(1/t). Therefore, in
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the p-random probing model, the ISW construction is only secure against a leakage probability
p = O(1/n), where the number of shares n must grow linearly with the security parameter x in
order to achieve security 27%. This means that ISW does not achieve security under a constant
leakage probability p; this explains why ISW is actually vulnerable to horizontal attacks [7], in
which the adversary can combine information from a constant fraction of the wires.

ISW-based instantiation of the expanding compiler. In our instantiation, we choose to con-
struct a new 3-share multiplication gadget instead of using the ISW multiplication gadget from [20].
In fact, ISW first performs a direct product of the secret shares before adding some randomness,
while we proved in Section 6 that no such 3-share multiplication gadget made of direct products
could satisfy (1, f)-RPE with amplification order strictly greater than one. Therefore the ISW
gadget is not adapted for our construction with 3 shares.

Table 1 displays the output of our tool when run on the ISW gadget for up to 7 shares with
different values for ¢t. It can be seen that an amplification order strictly greater than one is only
achieved for ¢t > 1, with 4 or more shares. And an order of 3/2 is only achieved with a minimum of
4 shares for t = 2, whereas we already reached this order with our 3-share construction for t = 1.
If we use the 4-share ISW gadget with appropriate 4-share addition and copy gadgets instead of
our instantiation, the overall complexity of the compiler would be greater, while the amplification
order would remain the same, and the tolerated leakage probability would be worse (recall that
our instantiation tolerates a maximum leakage probability p ~ 278, while 4-share ISW tolerates
p ~ 27983). Clearly, the complexity of the 4-share ISW gadget (N,, N, Ny, N;.) = (24,30, 16,6) is
higher than that of our 3-share multiplication gadget (Ng, N¢, Ny, N;) = (28,23,9,11). In addition,
using 3-share addition and copy gadgets (as in our case) provides better complexity than 4-share
gadgets. Hence to reach an amplification order of 3/2, a 4-share construction with the ISW gadget
would be more complex and would offer a lower tolerated leakage probability.

For higher amplification orders, the ISW gadgets with more than 4 shares or other gadgets can
be studied. This is a open construction problem as many gadgets can achieve different amplification
orders and be globally compared.

7.2 Complexity of the Ananth-Ishai-Sahai Compiler

The work from [2] provides a construction of circuit compiler (the AIS compiler) based on the
expansion strategy described in Section 5 with a (p,€)-composable security property, analogous to
our (¢, f)-RPE property. To this purpose, the authors use an (m, ¢)-multi-party computation (MPC)
protocol II. Such a protocol allows to securely compute a functionality shared among m parties and
tolerating at most ¢ corruptions. In a nutshell, their composable circuit compiler consists of multiple
layers: the bottom layer replaces each gate in the circuit by a circuit computing the (m,c)-MPC
protocol for the corresponding functionality (either Boolean addition, Boolean multiplication, or
copy). The next k — 1 above layers apply the same strategy recursively to each of the resulting
gates. As this application can eventually have exponential complexity if applied to a whole circuit
C directly, the top layer of compilation actually applies the k bottom layers to each of the gates of C
independently and then stitches the inputs and outputs using the correctness of the XOR-encoding
property. Hence the complexity is in

o(c|- N} . (18)
where |C| is the number of gates in the original circuit and NN, is the number of gates in the circuit
computing 1. The authors of [2] prove that such compiler satisfies (p,e)-composition security
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Table 1: Complexity, amplification order and maximum tolerated leakage probability of the ISW multiplication
gadgets. Some leakage probabilities were not computed accurately by VRAPS for performances reasons. An interval
on these probabilities is instead given by evaluating lower and upper bound functions fins and fsup of f(p).

## shares Complexity t Amplification | log, of maximum tolerated
(Na, Ny Ni, N) order leakage probability
3 (12, 15, 9, 3) 1 1 -
1 1 —
4 (24, 30, 16, 6) 9 3/2 _9.83
1 1 —
5 (40, 50, 25, 10) 2 3/2 ~11.00
3 2 —8.05
1 1 —
2 3/2 —13.00
6 (60, 75, 36, 15) 3 2 [—9.83, —7.87]
4 2 [—9.83, —5.92]
1 1 —
2 3/2 [—16.00, —14.00]
7 (84, 105, 49, 21) 3 2 [—12.00, —7.87]
4 5/2 [—12.00, —2.27]
5 2 [—12.00, —3.12]

property, where p is the tolerated leakage probability and e is the simulation failure probability.
Precisely:

£ = Ng—H . pc-‘rl (19)

Equations (18) and (19) can be directly plugged into our asymptotic analysis of Sec. 5.2, with Ny
replacing our Npy.x and where ¢+ 1 stands for our amplification order d. The obtained asymptotic
complexity for the AIS compiler is

log N,
O(IC| - k) with e= 58 (20)
logec+1
This is to be compared to e = % in our scheme. Moreover, this compiler can tolerate a leakage
probability
1
P= 75 -
Ng

The authors provide an instantiation of their construction using an existing MPC protocol
due to Maurer [22]. From their analysis, this protocol can be implemented with a circuit of Ny =

(dm—c)- ((mgl)2 +2m (’?)) gates. They instantiate their compiler with this protocol for parameters
m = 5 parties and ¢ = 2 corruptions, from which they get Ny, = 5712. From this number of gates,
they claim to tolerate a leakage probability p = ﬁ ~ 2725 and our asymptotic analysis gives
a complexity of O(|C| - k¢) with e ~ 7.87 according to (20). In Appendix E, we give a detailed
analysis of the Maurer protocol [22] in the context of the AIS compiler instantiation. From our
analysis, we get the following number of gates for the associated circuit:

N, = (6m —5) - ((m_1>2+m(2k—2)+2k2> where k= <m> .

C C
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Using the parameters m =5 and ¢ = 2 from the AIS compiler instantiation [2], we get Ny = 8150.
This yields a tolerated leakage probability of p ~ 2725 and an exponent e = log 8150/log 3 ~ 8.19
in the asymptotic complexity (’)(|C’ | - ne) of the AIS compiler.

These results are to be compared to the p ~ 278 and e ~ 7.5 achieved by our construction. In
either case (Ny = 5712as claimed in [2] or Ny = 8150 according to our analysis), our construction
achieves a slightly better complexity while tolerating a much higher leakage probability. We stress
that further instantiations of the AIS scheme (based on different MPC protocols) or of our scheme
(based on different gadgets) could lead to better asymptotic complexities and/or tolerated leakage
probabilities. This is an interesting direction for further research.

8 Implementation Results

In this section, we describe and report the performances of a proof-of-concept implementation of
the expanding compiler with our base gadgets as well as a protected AES implementation. The
source code of these implementations are publicly available at:

https://github.com/CryptoExperts/poc-expanding-compiler

All implementations were run on a laptop computer (Intel(R) Core(TM) i7-8550U CPU, 1.80GHz
with 4 cores) using Ubuntu operating system and various C, python and sage libraries.

8.1 Circuit Compiler

First, we developed an implementation in python of a compiler CC, that given three n-share gadgets
Gadd, Gmult; Geopy and an expansion level k, outputs the compiled gadgets Gg;)d, Géﬁ%,y ,Gl(fl)ﬂt,
each as a C function. The variables’ type is given as a command line argument. Table 2 shows
the complexity of the compiled gadgets from Section 6 using the compiler with several expansion
levels k, as well as their execution time in milliseconds when run in C on randomly generated 8-
bit integers. For the generation of random variables, we consider that an efficient external random
number generator is available in practice, and so we simply use the values of an incremented counter

variable to simulate random gates.

Table 2: Complexity and execution time (in ms, on an Intel i7-8550U CPU) for compiled gadgets Gigfl)7 Gé((,lf,)y, Grln(fl)t

from Section 6 implemented in C.

k | # shares Gadget Complexity (Na, Nc, Nm, Ny) Execution time
Gl (15, 6, 0, 6) 1,69.10

1 3 Gespy (12, 9, 0, 6) 1,67.10*
Goiie (28, 23,9, 11) 5,67.10™*
G>) (297, 144, 0, 144) 2,21.10°

2 9 Gy (288, 153, 0, 144) 2,07.10~2
Gale) (948, 582, 81, 438) 9,91.1073
G>® (6183, 3078, 0, 3078) 9,29.10 2

3 27 a3, (6156, 3105, 0, 3078) 9,84.102
feleh (23472, 12789, 729, 11385) 3,67.107"
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It can be observed that both the complexity and running time grow by almost the same factor
with the expansion level, with multiplication gadgets being the slowest as expected. Base gadgets
with k& = 1 roughly take 10~* ms, while these gadgets expanded 2 times (k = 3) take between
1072 and 107! ms. The difference between the linear cost of addition and copy gadgets, and the
quadratic cost of multiplication gadgets can also be observed through the gadgets’ complexities.

8.2 AES Implementation

We describe hereafter a proof-of-concept AES implementation protected with our instantiation of
the expanding compiler. We start by describing the underlying AES circuit (over K = GF(256)),
followed by an analysis of the implementation in C of the complete algorithm.

AES circuit. We first describe the non-linear part of the AES, namely the sbox computa-
tion. For the field exponentiation (x +— 22 over GF(256)), we use the circuit representation
of the processing proposed in [16] and presented in Fig. 7. It corresponds to the addition chain
(1,2,4,8,9,18,19,36,55,72,127,254) and it has been chosen due to its optimality regarding the
number of multiplications (11 in total). Each time an intermediate result had to be reused, a copy
gate (marked with ||) has been inserted.

U HOR DGR (L O ON (OB DB HOROE DO
Ot | L

Fig. 7: Circuit for the exponentiation z s z2%4.

For the second part of the sbox, the affine function is implemented according to the following
equation:

Affine(z) = (((((((2072)* + 22x)? + 12)? + 73x)* + 2042)? + 168z)* + 238z)? + 5z + 99

with the necessary copy gates. Similarly, the inverse of the affine function is implemented for the
sbox inversion as follows:

Affine ™ (x) = (((((((147z)% 4 1462)% + 1902)? + 41x)% + 732)% 4 1392)% + 792)% 4 5z + 5

The rest of the operations (MixColumns, ShiftRows, AddRoundKey) are considered as in a standard
AES, while adding the necessary copy gates.

Gate count: Table 3 displays the gate count vectors for AES-128 encryption/decryption proce-
dures as well as for their building blocks. The sbox (resp. sbox inversion) gate count vector was
computed as the sum of the gate count vectors of both the exponentiation and affine (resp. affine
inversion) functions. We recall that N,, N., Ny, N; stand for the number of addition gates, copy
gates, multiplication gates, and random gates, respectively.

Using the gadgets szd, Gl . and Giopy proposed in Sec. 6 for the compilation of the AES
algorithm, we obtain the instantiation given in Equation (17) of the matrix M introduced in Sec.
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Table 3: AES operations complexity.

AES Operation Complexity (Na, No, Nm, Nr) ‘
AddRoundKey (for 1 byte) (1,0,0,0)
SubBytes (for 1 byte) (8,25,26,0)
MixColumns (for all columns) (60,60, 16, 0)
ShiftRows (for all rows) (0,0,0,0)
AES-128 encryption (1996, 4540, 4304, 0)
SubBytes Inversion (for 1 byte) (8,25,26,0)
MixColumns Inversion (for all columns) (104, 104, 36, 0)
ShiftRows Inversion (for all rows) (0,0,0,0)
AES-128 decryption (2592, 4956, 4484, 0)

5.2. Applying the same complexity analysis done previously on the gate count vectors, we display
in Fig. 8 the total number of gates in the AES-128 encryption/decryption procedures as functions
of the level k. For instance, for the same security level of 2776 exhibited in Sec. 6.5 for the gadgets
of Fig. 5, the AES-128 would have to be compiled at a level k£ = 9, and would count around 106
gates.

Circuit complexities (y-axis) wr.t the level k (x-axis)

108
1012
101

10° -~

1 2 3 4 5 & 7 8 9
— AES encryption AES decryption

Fig. 8: Number of gates after compilation of AES-128 encryption/decryption circuits with respect to the level k.

Implementation in C: An n-share AES-128 implementation was developed in C from the above
description. Compiled gadgets from Section 8.1 were used for basic operations (addition, multipli-
cation, copy), as generated using our circuit compiler described in Sec. 8.1. We chose the C 8-bit
unsigned integer type, and considered operations in GF(256). For the generation of random values,
we assume the availability of an efficient (pseudo)random number generator, and so we simply
considered the values of an incremented counter variable to simulate the cost.

Table 4 shows the AES-128 execution time on a 16-byte message with 10 pre-computed sub-
keys, using compiled gadgets Gigz), G};(()]S)y, Grlrfﬁl)t, with respect to the expansion level k£ and sharing
order n = 3F. It can be seen that the execution time increases with the expansion level with a
similar growth as in Table 2. This is because the complexity of the AES circuit strongly depends
on the gadgets that are used to replace each gate in the original arithmetic circuit. For example,
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with our 3-share gadgets that tolerate a leakage probability of p ~ 278, a 27-share (k = 3) AES-128
takes almost 200 milliseconds to encrypt or decrypt a message.

Table 4: Standard and n-share AES-128 execution time (in ms, on an Intel i7-8550U CPU) using compiled gadgets
G20, GeSgy, GL

mult”

AES Version E)fecution Time (in ms) ‘
Encryption Decryption
Standard (no sharing) 0.06 0.05
3-share (k = 1) 1.08 1.07
9-share (k = 2) 11.71 10.26
27-share (k = 3) 200.29 197.70
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A Proof of Proposition 1

Proof. Since G is t-SNI there exist two simulators Sim§ and Sim$ satisfying (8) and (9) for any
J C [n] and any W satisfying [W|+|J| < ¢. This is in particular true for every W and every J both
of cardinality lower than or equal to % For every set W such that | > % and every set J such
that |J] < §, we modify simulator Sim{’ to return the full set of input indices (i.e. I = [n]¢). Then,
the second simulator SimQG is simply augmented to perfectly simulate (AssignWires(G, W, Z) , y|;)
from the full knowledge of the gadget inputs (which is trivially possible). By construction, for any
J with |J] < &, the output I = (Iy,...,I;) of Sim& (W, J) contains at least one I; with cardinality
greater than % only when W has cardinality strictly greater than % (and in this case all the I;’s
have full cardinality [n]). Hence, the probability Pr ((|I;| > £) V...V (|I;| > %)) when J is a given
set with |J| < £ and W is the output of LeakingWires(G, p) satisfies (10), which concludes the proof.
U

B Random Probing Expandability for 1-to-2 Gadgets

We provide hereafter the formal definition of the RPE notion for gadgets with 1 input sharing and
2 output sharings.

Definition 11 (Random Probing Expandability). Let f = R — R. An n-share gadget G :
K" — K" x K" is (t, f)-random probing expandable (RPE) if there exists a deterministic algorithm
Sim? and a probabilistic algorithm SimQG such that for every input T € K", for every pair of sets
J1 € [n] and Jy C [n], and for every p € [0, 1], the random experiment

W < LeakingWires(G, p)
(I,J7,J5) « Sim§ (W, J1, J2)
out + Simg(W, J1. J5. T|1)

ensures that

the failure event probability satisfies Pr (|I| > t) < e with e = f(p),

the set Ji is such that J| = J1 if |J1] <t and J| C [n] with |J{| =n — 1 otherwise,
the set J} is such that Jy = Jo if |Ja| <t and J5 C [n] with |J)| =n — 1 otherwise,
the output distribution satisfies

o e

out £ (AssignWires(G, W, %), Gl , 1) (21)

where (y,2) = G().
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C Expandability

C.1 Illustration of the subsets Sy

Fig. 9: Illustration of all elements of S; and some elements of Sa, for n =3 and t = 1.

C.2 Proof of Theorem 2

The proof of the theorem relies on what we shall call the assignment expansion property. Through-
out the proof we shall denote &5, = f*) (p). We call level-k gadget a gadget that has been expanded
k —1 times G*) = CC(k_l)(G) where G is a base gadget (or a level-1 gadget) among Gadqd, Gmult,
Gcopy -

We proceed by induction to show that the level-k gadgets are (Sk, f(k))—RPE. The base case
is one of the theorem hypotheses, namely the base gadgets Gadqd, Gmuit and Geopy (i-€. the level-1
gadgets) are (¢, f)-RPE, which is equivalent to (S, f)-RPE. We must then show the induction
step: assuming that the level-k gadgets are (Sk, f (k))—RPE, show that the level-(k + 1) gadgets are
(Sk+1, f (k“))—RPE. For the sake of simplicity, we depict our proof by assuming that all the gadgets
are 2-to-1 gadget (which is actually not the case for copy gadgets). The proof mechanism for the
general case (with 2-to-1 and 1-to-2 gadgets) is strictly similar but heavier on the form.

In order to show that G**1) is (S; 1, f#TD)-RPE we must construct two simulators Sim
and Simg(Hl) that satisfy the conditions of Definition 10 for the set of subsets Si41. More precisely,

. . (k+1) . (k+1) ~ k+1
we must construct two simulators Sim{’ and Sim§ such that for every (z*,y*) € K" x

G(k+1)
1

K”k+1, and for every set J* € Spy1 U [n**1], the random experiment

W* « LeakingWires(G*+1) p)
(I1, 13, J*) + Sim{ (W*, J*)
out < Sim?(W*,J*,f*h;,@*][;)
ensures that
1. the failure events Ff = (If ¢ Sky1) and Fy = (I3 ¢ Sk41) verify
Pr(Fy) =Pr(F3) =epy1 and Pr(Fj AFy) = ety (22)

2. the set J*' is such that J* = J* if J* € Si,1 and J* = [nF+1]\ {j*} otherwise,
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3. the output distribution satisfies
out 2 (AssignWires(G, W, (Z,7)) , 2| +/) (23)

where Z = G0 (7).
We distinguish two cases: either J* € Sj, 1 (normal case), or J* = [n**1] (saturated case).

Normal case: J* € Siy1. By definition of the expanding compiler, we have that a level-(k + 1)
gadget G*TY is obtained by replacing each gate of the base gadget by the corresponding level-k
gadget and by replacing each wire of the base gadget by n* wires carrying a (n*)-linear sharing of
the original wire. In particular G*+1 has nkt1 output wires which can be split in n groups of n*
wires, each group being the output of a different G*) gadget. We split the set J* accordingly so
that J* = J{ U---UJ};, where each set J pertains to the ith group of output wires. By definition
of Sy, since J* € Siy1, we must have J € S; for all 1 < 7 < n, except at most ¢ of them for
which J¥ = [n*]. We define Ji,se as the set of indexes i such that J ¢ S. Therefore we must have
‘Jbase| <t

We first describe the simulator SimlG(kH) that takes the leaking wires W* and the output wires
J* € Sj41 to be simulated and produce the sets I7 C [n*™!] and I3 C [nF*1] of required inputs.
The simulator Sim?(kH) starts by defining a set Whase which is initialized to (); this will correspond
to the set of leaking wires for the base gadget. Then the simulation goes through all the level-k
gadgets composing G*11D) from bottom to top i.e. starting with the level-k gadgets producing the
output sharing up to the level-k gadgets processing the input sharings. Let us denote by {G;k)}j

these level-k gadgets. For each Gg-k), one runs the simulator Sim; from the (Sg, f (k))—RPE property

on input W; and J; defined as follows. The set of leaking wires W; is defined as the subset of WW*

corresponding to the wires of Gg-k). For the gadgets ng) on the bottom layer, the set J; is set to

one of the J¥ (with indices scaled to range in [n¥]). For all the other gadgets G§-k) (which are not

on the bottom layer), the set J is defined as the set I} or I3 output from Sim; for the child gadget
G, (for which Sim; has already been run).

Whenever a failure event occurs for a G;k) gadget, namely when the set I (either Iy or Is)
output from Sim; is such that I ¢ Sk, we add the index of the wire corresponding to this input
in the base gadget G to the set Wyase. Once the Sim; simulations have been run for all the G;k)
gadgets, ending with the top layers, we get the final sets I corresponding to the input shares. Each
of these sets corresponds to an n*-sharing as input of a Gg-k) gadget, which corresponds to a wire
as input of the base gadget among the 2 - n wires carrying the two input n-sharings of the base

gadget. We denote by I, ..., I7, and I3, ..., I3, the corresponding sets so that defining
II=I1L,u...ulf, and I3 =13;U...Ul,, (24)

the tuple 2*|7: and y*|;; contains the shares designated by the final I sets.

At the end of the SimlG(kH)

base gadget G for which a failure event has occurred in the simulation of the corresponding G

simulation, the set Wyaee contains all the labels of wires in the
(k)
J
gadget. Thanks to the (Sk, f (k))—RPE property of these gadgets, the failure events happen (mutually
independently) with probability e which implies

Whase = LeakingWires(G, ) (25)
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Recall that |Jpase] < t. We can then run Sim? to obtain:

(Il,basea IZ,base) = Sim?(wbasea Jbase) . (26)

Forall 1 <i < mn,ifi € Ij pase, we force I ; < [n¥], so that the corresponding i-th input wire of the

base gadget can be computed from the corresponding input wires in I7 ;. The simulator Sim?<k+1)

then returns (I7, I3) as output.

The (t, f)-RPE property of the base gadget G implies that the base failure events |I} pase| = n
and |2 pase| = n are eg41-mutually unlikely, where €11 = f(e}). We argue that for all 1 < i < n,
I, ¢ Sk <= i € I} pase- Namely if a failure event has occurred for a set Ii; (i.e. I3, ¢ Si) then
we must have ¢ € I} pase- Indeed, if a failure event has occurred for a set I7; then the label of the

ith input wire (for the first sharing) of the base gadget G has been added to Wh,se and Sim? has
no choice but to include this index to the set Ij page so that Sim2G can achieve a perfect simulation
of the wire assignment (as required by the RPE property of G). Moreover if i € I pase then by
construction we have set I}, = [n¥] and therefore IT; ¢ Sk. This implies that if |1} pase| < ¢ then
If € Si41 (and the same happens for I3 w.r.t. Iy pase). We deduce that the failure events F; and
F3 are also £;41-mutually unlikely, as required by the (Sy,1, f*t1))-RPE property of G*+1).

We now describe the simulator Simg(kH) that takes as input 7*|;x and y*[7; and produces a
perfect simulation of (AssignWires(G*+D, W*, (z*,5%)),2],+) where Z = G*+D(Z,7). Let 2° and
7° denote the n-linear sharings obtained by applying the linear decoding to each group of n* shares
in % and 7*, so that the elements of Z¥ and 7° correspond to the input wires in the base gadget
G. The assignment expansion property implies that a perfect assignment of the wires of G*+1 on
input #* and 7* can be derived from an assignement of the wires of the base gadget G on input z°
and 7°. The simulator makes use of this property by first running

OUtbase — Simg(wbasev Jbasev §b|11,basea gbyfz,base) ) (27)

Note that the input values 7°| Iy pase A0 7| Inpase Can be obtained from the corresponding shares in
If and I5. Thanks to the (¢, f)-RPE property of G and by construction of Ij pase and I2 pase, this
outputs a distribution satisfying

OUthase id (AssignWires(G, Whases (Eb,jjb)), Eb\Jbase> (28)

The simulator then goes through all the ng) gadgets from input to output and for each of them
runs the simulator Simy of the RPE property on inputs W;, J;, z|;, and y|;, where W; and J; are

the sets from the first phase of the simulation for the gadget Gg-k), I; and Iy are the corresponding
) ®)
J J

of G*+1)(z* 7). Provided that the partial inputs Z|;, and 7|z, are perfectly simulated, this call

sets produced by the Sim; simulator for G/, and ¥ and ¥ are the inputs of G}/ in the evaluation

to Simg produces a perfect simulation of (AssignWires(Gﬁ-k), Wi, (z, @\),E\J].) where Z = G;k) (Z,79).
In order to get perfect simulations of the partial inputs Z|;, and ¥|,, the simulator proceeds as
follows. For the top layer of G*) gadgets (the ones processing the input shares) the shares Z|;, and
Y1, can directly be taken from the inputs Z*|r; and §*[s;. For the next gadgets the shares 7|, and
Y|1, match the shares z|; output from the call to Simy for a parent gadget. The only exception
occurs in case of a failure event.
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In that case the simulation needs the full input Z = (x1,...,2,) (and/or ¥ = (y1,...,Ypr)),
while we have set |I1| = n* —1 (and/or |I5] = n¥ — 1) to satisfy the RPE requirements of the parent
gadget in the first simulation phase. Nevertheless, for such cases a perfect simulation of the plain
value = LinDec(z) (and/or y = LinDec(¥)) is included to outpase by construction of Wh,se. We
can therefore perfectly simulate the missing share from the n* — 1 other shares and the plain value
x (or y). We thus get a perfect simulation of (AssignWires(G(.k’),V\/j7 (Z,9),%l4;) for all the level-k

J
(%)

gadgets G} which gives us a perfect simulation of (AssignWires(GE+D W* (7%, 5%)), 2] 7+ ).

Saturated case: J* = [n*11]. The saturated case proceeds similarly. The difference is that we
must simulate all n*T! output shares of the level-(k 4 1) gadget, except for one share index j* that
can be chosen by the simulator.

The simulator Sim?(kﬂ) is defined as previously. Since J* = [n**+1], we must define Jyase = [1, 7).

Moreover we have J; = [n*] for all 1 < i < n. This implies that for the gadgets ng) on the output
layer, the sets J; are all equal to [n*] as well. The set Wygse is defined as previously, and the

simulator SimlG(kH) returns (I, 15) as previously. The failure events Fy and Fj are still e;41-

mutually unlikely, as required by the (Si.1, f*+t1)-RPE property of G+,

The simulator Sim§<k+l) is defined as previously. In particular, from the running of the base
gadget simulator Simg, we obtain a perfect simulation of the output wires 2°| T for some Jj .

with |J{ .| = n — 1. Combined with the perfect simulation of the output wires corresponding to
(k)
J

J' of output wires for our level-(k + 1) gadget with [J’| = n**! — 1 as required. Eventually this

=k

gives us a perfect simulation of (AssignWires(G(kH), W (T, 7)), E\J/). This terminates the proof
of Theorem 2.

the output sets Jj’~ from the gadgets G on the output layer, with |.J j'\ = n* —1, we obtain a subset

C.3 Proposition 3

We give here the proof of Proposition 3.

Proof. Let Sim? be the simulator from the (¢, f)-wRPE property. This simulator outputs I; and
I5 such that

Pr(Fi)=e1<e, Pr(F)=c2<e and Pr(FiAF) =ep<e?, (29)

where F; = (|I1] > t) and Fy = (|I2] > t). We show how to construct Simf/ which outputs I and
I} such that

Pr(F;) = Pr(F}) =€ and Pr(F] A Fy) = (¢')? with ¢ =&+ 252 (30)
where F| = (|I}] > t) and F} = (|I4| > t) and such that Iy C I and I C I). In particular, the
latter implies that we can keep the same Simg simulator since it is always given the same input
shares plus additional input shares to achieve the same simulation as before.

The simulator Sim?, first calls the simulator Sim§{’ to get I and I,. Whenever |I;| and |I5| are
both lower than ¢, i.e. no failure event occurs, which happens with probability psycc = 1 — (61 +
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€9 — €12), Sim?/ outputs

([n],I2)  with probability p; = 1/Psuce
(1) = (I1,[n])  with probability ps = d2/Psuce

([n],[n]) with probability p12 = d12/Psucc

(I1,I)  with probability 1 — (p1 + p2 + p12)

for some 61, 2,012 > 0 such that d; + d2 + d12 < Psuce- We hence get

Pr(F]) = &1+ 61 + 012
Pr(F;) =2 + 62 + 612
Pr(f{ A fé) = £19 + 019

We must now fix 61,2, 612 > 0 to satisfy (30), with &' := ¢ + 3¢2/2 and &; + J2 + 512 < Psuce =
1— (g1 +e2 —€12). We fix §19 = (&)% — 12; this gives Pr(F] A F}) = (¢)?, and from (29) we obtain
012 > 0 as required. We let:

51 = El — &1 — (512

which gives Pr(F]) = &’ as required. Moreover we obtain using (29):

—_ — — — — — > — _

1 9
>52.<2_35_452> >0 fore<0.14.

We obtain similar conditions for dy := &’ — €9 — d12. Finally, we have

61 +02+012=¢"—e1— 12 +e —ea— 12+ 12
:26/—51 _52_(5/)2+512 :psucc+2€/_ (8/)2_1

< Psuce T 2" — 1 < Psucc for € < 0.14.

as required. O

D Instantiation

D.1 Verification functions

In this section, we give the whole set of coefficients obtained for gadgets in Section 6. When sets of
coefficients are completed with ..., then a bound of the subsequent function can be obtained from
the binomial coefficients as explained in Section 3. In such cases, the number of coefficients (as the
number of wires in the circuit) is given in a last column.

Verification timings are also given in the tables by running the tool a laptop computer (Intel(R)
Core(TM) i7-8550U CPU, 1.80GHz with 4 cores) using Ubuntu operating system.
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D.2 Addition Gadgets

Hereafter are the coefficients ¢; as defined in Section 3 for addition gadgets G;dd and szd defined
in Section 6.

gadget function | coefficient computed by our automatic tool # wires Verification
(8=5) Time (in s)
e {0, 3,150, 3649, 53830, . .. }
Y {0,3,116,2429, 34469, . .. }
Gaa £ {0,0,10,495,10959, . .. }
ny {0,3,144,3342,45611, ... } 36 148
3 {0,3,110,2208, 27580, . .. }
éz) {0,0,4,228,4933,...}
Y {0,3,118,2457,34998, ... }
£ {0,3,106,2035,27812, ... }
G2 3 {0,0,0,69,3034,...} 36 176
f1(2) {0,3,118, 2403, 29859, ... }
£ {0,3,106, 2007, 22079, ... }
5 {0,0,0,9,600,...}

D.3 Multiplication Gadgets

Hereafter are the coefficients ¢; as defined in Section 3 for multiplication gadget Gp,1¢ defined in
Section 6.

gadget function coefficient computed by our automatic tool # wires verification
(B=5) time (in s)
O {0,3,1232, 60940, 1653719, ... }
£ {0,7,1688, 74662, 2152087, ... }
Glnult {1 {0,0,62, 5300, 291603, ... } 97 5228
D 10,3, 1254, 42135, 1428624, ... }
£52 {0,11,2135,47322, 1437774, ... }
752 {0,0, 83,4248, 255461, ... }

D.4 Copy Gadgets
Hereafter are the coefficients ¢; as defined in Section 3 for the copy gadget Gcopy defined in Section 6.

gadget function coefficient computed by our automatic tool (8 = s = 33) # wires verification
time (in s)

10,33, 1137, 16812, 145288, 852472, 3750849, 13073855,
37574146,91573962, 192726070, 354263297, 572852089,
818662608, 1037103082, 1166786707, 1166799413,
fia 1037157725,818809139, 573166437, 354817320, 193536720,
92561040, 38567100, 13884156, 4272048, 1107568,
237336, 40920, 5456, 528, 33,1}
{0, 30, 1285, 19887, 166695, 951201, 4021599, 13567630,
38231896, 92255103, 193295461, 354654683, 573074084,
818765733,1037141693, 1166798076, 1166801950,
Geopy fr2 1037158129, 818809180, 573166439, 354817320, 193536720, 33 49
92561040, 38567100, 13884156, 4272048, 1107568,
237336, 40920, 5456, 528, 33,1}
fo1 same coefficients than fi o
{0,27,1433, 23538, 188460, 1016149, 4150387, 13760724,
38465921, 92491608, 193496624, 354798258, 573159259,
818807160, 1037157912, 1166803059, 1166803107,
f2,2 1037158320, 818809200, 573166440, 354817320, 193536720,
92561040, 38567100, 13884156, 4272048, 1107568, 237336,
40920, 5456, 528, 33,1}
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E Complexity of the MPC Protocol in the AIS Compiler

In the following we compute the complexity and the value of Ny in the instantiation of the AIS
compiler [2]. First, using this compiler, given a circuit C' to compile, each gate G is implemented
using a functionality F' associated to the MPC protocol. Such a functionality F' receives m shares
of each input and then reconstructs them to obtain original values. This reconstruction can be
done with 2(m — 1) addition gates. Then after computing the gate G, m additive shares of the
output are computed twice. This step consists of one gate for G, and 2(m — 1) gates for the additive
sharing along with 2(m — 1) random gates.® So each gate G to compile is replaced by 6m — 5 gates,
each computed jointly by the m parties in the MPC protocol. Next, we state the complexity of
the protocol from [22]. Each gate in a functionality F' is jointly computed by all m parties. In the
beginning, each party holds one share of each input.

The first step consists in a k-secret sharing of each input share where k = (T) For an input of
m shares, each party will hold a total of m(mgl) shares. For two inputs, this step has a complexity
of m(2k — 2).

The second step is either performing an addition or a multiplication, depending on the gate G
associated to the functionality. An addition simply means each party locally adding all its shares,
holding a complexity of m(m(jl). In case of a multiplication gate, each party will locally compute
the sum of the product of the shares of both inputs, and then share its local result using a secret
sharing scheme as in the first step. This procedure holds a complexity of (mc_l)Q for computing the
result, m(2k — 2) for the secret sharing, and 2k? copy gates. Clearly, the cost of the second step is
more important for the multiplication and can be upper bounded by?

~1\2
(m ) - (2 —2) + 22,
C

In the final step, every party broadcasts its shares to all other parties, and then adds all the
shares it receives. The complexity of this step is (Tg)

Considering the cost of replacing each gate GG in the circuit to compile by 6m — 5 gates, and the
cost to compute each of these gates using the protocol II, the total number of gates N, is upper

bounded by
~1\2
(6m —5) - ((m ) +m(2k — 2) +2k2> .
c

8 In [2], the authors only consider 2(m — 1) for the cost of this step, not counting the number of random gates

necessary to compute the additive sharing of the output.
m—1

. )2 +2mk, since they do not take into account the copy gates

9 The authors claim in their paper a complexity of (
needed to compute the product of input shares.
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