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ABSTRACT: Human activity causes vibrations that propagate into the ground as high-
frequency seismic waves. Measures to mitigate the COVID-19 pandemic caused widespread 
changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. 
The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic 
seismic noise reduction on record. While the reduction is strongest at surface seismometers in 
populated areas, this seismic quiescence extends for many kilometers radially and hundreds of 
meters in depth. This provides an opportunity to detect subtle signals from subsurface seismic 
sources that would have been concealed in noisier times and to benchmark sources of 
anthropogenic noise. A strong correlation between seismic noise and independent 
measurements of human mobility suggests that seismology provides an absolute, real-time 
estimate of population dynamics. 

 

 

 ONE SENTENCE SUMMARY: Global changes in social and economic activity following 
COVID-19 lockdown measures caused significantly lower anthropogenic seismic noise levels.  
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Seismometers record signals from more than just earthquakes; interactions between the 
solid Earth and fluid bodies, such as ocean swell and atmospheric pressure (1,2), are now 
commonly used to image and monitor the subsurface (3). Human activity is a third source of 
seismic signal. Nuclear explosions and fluid injection/extraction result in impulsive signals, but 
everyday human activity is recorded as near-continuous signal especially on seismometers in 
urban environments. These complicated signals are the superposition of a wide variety of 
activities happening at different times and places at or near the Earth’s surface, but are typically 
stronger during the day than at night, weaker on weekends than weekdays, and stronger near 
population centers (4,5,6,7). Seismometers in urban environments are important to maximize 
the spatial coverage of seismic networks and to warn of local geologic hazards (8), even though 
anthropogenic seismic noise degrades their capability to detect transient signals associated with 
earthquakes and volcanic eruptions. Understanding urban seismic sources is therefore vital. 
However, research studies have been limited to confined areas or distinct events, such as road 
traffic (9,10), public transport (11,7), and “football quakes” (11,12). Broad analysis of the long-
term global anthropogenic seismic wavefield has been lacking. The impact of large, coherent 
changes in human behavior on seismic noise is unknown, as is how far it propagates and whether 
seismic recordings offer a coarse proxy for monitoring human activity patterns. Answering these 
questions has proven challenging: datasets are large, monitoring network heterogeneous, and 
the many possible noise sources likely vary spatially and overlap in time (13). 

The COVID-19 outbreak was declared a global health emergency in January 2020 (14) and 
a pandemic in March by the World Health Organisation. The outbreak resulted in emergency 
measures to reduce the basic reproduction rate of the virus (R0) (15), beginning in China, Italy, 
and then followed by most countries. These measures disrupted social and economic behavior 
(16), industry (17), and tourism (18). In this paper, we use “lockdown" to broadly encompass 
many types of emergency measures, such as full quarantine (e.g. Wuhan, China (19,20,21)), 
enforced physical distancing (e.g. Italy; UK), travel restrictions (22), widespread closure of 
services and industry, or any other emergency measures. These drastic changes to daily life 
provide a unique opportunity to study their environmental impacts, such as reductions in nitrous 
oxide emissions in the atmosphere (23). Recordings of human-generated seismic vibrations that 
travel through the solid Earth provide insights into the dynamics of pandemic lockdowns.  

We assessed the effects of COVID-19 lockdowns on high-Frequency (4–14 Hz) Seismic 
Ambient Noise (hiFSAN; (24)). We compiled a global seismic noise dataset using vertical-
component seismic waveform data from 337 broadband and individually-operated citizen 
seismometer stations (24), such as Raspberry Shakes (RS), with a self-noise well below the ground 
motion generated by anthropogenic noise (25), and flat responses in the target frequency band 
(Fig. 1). For 268 seismic stations, we obtained usable data (e.g. no large data gaps, working 
sensors) and found significant reductions in hiFSAN during local lockdown measures at 185 
stations (Fig. 2). Periods that are often seismically quiet include weekends, and the Christmas / 
New Year holidays for those locations where these are celebrated. We found a near-global 
reduction in noise, commencing in China in late Jan 2020, then followed by Europe and the rest 
of the world in Mar to Apr 2020. The noise level we observe during lockdowns lasted longer and 
was often quieter than the Christmas to New Year period.  

In China (Fig. 3A), the COVID-19 outbreak and subsequent emergency measures occurred 
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during Chinese New Year (CNY). In Enshi city, Hubei province, where the outbreak began (26), 
hiFSAN in 2020 clearly diverges from the normal annual reduction during CNY. The hiFSAN level 
remained at a minimum for several weeks after CNY. This minimum was demarcated by the start 
and end of quarantine in Hubei. While such strict quarantine measures were not enforced in 
Beijing, local hiFSAN reductions are stronger and longer than recent years. As of the end date of 
our analysis, Beijing has still not reached the average hiFSAN level of previous years, suggesting 
the impact of COVID-19 is still restricting anthropogenic noise there. We noticed a later hiFSAN 
lockdown reduction in Apr 2020 in Heilongjiang, in NE China, near the Russian border. 

While we see seismic effects of lockdown in areas with low population density estimates 
(<1 person per km², Fig. 1), the strongest hiFSAN reduction occurs in populated environments. 
For a permanent seismic station in Sri Lanka, a 50% reduction in hiFSAN occurred after lockdown, 
the strongest we observed in the available data from that station since at least July 2013 (Fig. 
S2). In Central Park, New York, on Sunday nights, hiFSAN was 10% lower during the lockdown 
compared to before it (Fig. S3).  

Seismic networks in populated areas allow us to correlate hiFSAN with other human 
activity measurements, such as audible recordings and flight data (24). At a surface station in 
Brussels, Belgium (Fig. 3B), we found a 33% reduction in hiFSAN after lockdown. We compared 
this with data from a nearby microphone, located close to a major road, that mainly records 
audible traffic noise. We found a high correlation between pre-lockdown hiFSAN and audible 
noise, both showing characteristic diurnal and weekly changes. However, during lockdown, 
audible noise reductions are more pronounced, suggesting that seismometers are sensitive to a 
wider distribution of seismic sources, not solely to the nearby traffic. Audible and hiFSAN levels 
then gradually increase after Apr 2020. Independent mobility data (24) provide insights into what 
cause these changes. Mobility correlates with hiFSAN at lockdown, with correlation coefficients 
exceeding 0.8 (24), except for time spent at places of residence (Google’s “residential” category), 
which is expected given the increased number of people spending more time at home due to 
government restrictions. 

Citizen seismometers provide a different urban ground motion dataset, with denser 
coverage in some places. Large hiFSAN drops especially occurred at schools and universities 
following lockdown-related closures (e.g. in Boston and Michigan (US) and Cornwall (UK)), Fig. 
S4). The hiFSAN level is even 20% lower than during school holidays, indicating sensitivity to the 
environment outside of the school. 

The pandemic impacted tourism, for example, during the holiday season in the Caribbean. 
In Barbados (Fig. 3C), hiFSAN decreased by ∼45% following lockdown on 28 March 2020, through 
April 2020 and stayed ∼50% below levels observed in previous years for the same period. 
However, seismic noise levels started to decrease 1–2 weeks before a local curfew started. Local 
flight data (24) imply travel to Barbados started decreasing after 21 March 2020 and the overall 
reduction in hiFSAN might be due in part to tourists repatriating. We also observed noise 
reductions due to reduced tourist activity at ski resorts in Europe (Zugspitze) and the US 
(Mammoth Mountain) (Fig. S5). 

While we saw lockdown effects most strongly at surface stations, we also detected them 
underground. Seismometers installed in boreholes to minimize the effects of anthropogenic 
noise on the data monitor potential hazards associated with the Auckland Volcanic Field, New 
Zealand (27,8,6). Station HBAZ is 380 m below the city, while MBAZ is at 98 m depth, 14 km from 
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the city center on the uninhabited Motutapu island (Fig. 3D). The hiFSAN level at both stations 
varies between weekdays and weekends before the lockdown, suggesting that both are sensitive 
to anthropogenic activity. While the island station is quieter overall, the lockdown instigated a 
reduction in hiFSAN by a factor of two for both stations. We attribute the remaining hiFSAN 
maxima on the island (mid Apr 2020; early May 2020) to strong winds and high waves. On 27 
April 2020, New Zealand lifted restrictions, with hiFSAN increasing to the pre-lockdown levels. 

The reduction of hiFSAN is weaker in less populated areas, such as at Rundu which is 
located along the Namibia-Angola border (Fig. 3E). After COVID-19 was confirmed in Namibia, an 
emergency was declared on 17 Mar 2020 to restrict mobility, followed by full lockdown on 27 
Mar 2020. These measures are reflected in >25% hiFSAN reduction compared to pre-lockdown. 
Despite Rundu having a population roughly eight and five times less dense than Brussels and 
Auckland, respectively (28), we observed a similarly high correlation between seismic and 
mobility data. The Black Forest Observatory in Germany is an even more remote station, located 
150–170 m below the surface in crystalline bedrock. Considered a reference low-noise laboratory 
(29), even there we found a small hiFSAN reduction during lockdown nights (Fig. S6), 
corresponding to the lowest hiFSAN since at least 25 Dec 2015. 

We have provided a global-scale analysis of high-frequency anthropogenic seismic noise. 
Global median hiFSAN dropped by as much as 50% during March to May 2020 (Fig. 4). The length 
and quiescence of this period represents the longest and most coherent global seismic noise 
reduction in recorded history, highlighting how human activities impact the solid Earth. A globally 
high correlation exists between changes in hiFSAN and population mobility (24), with correlations 
exceeding 0.9 for many categories. 

This distinct low-noise period will help to optimize seismic monitoring (4). Analyzing the 
full spectrum of seismogenic behavior, including the smallest earthquakes, is essential for 
monitoring fault dynamics over seismic cycles, and for earthquake forecasting and seismic hazard 
assessment. Small earthquakes should dominate datasets (30), but typical operational catalogues 
using amplitude-based detection lack many of the smallest earthquakes (31). This detection issue 
is especially problematic in populated areas, where anthropogenic noise energy interferes with 
earthquake signals. This problem is exemplified by recordings of a M5.0 earthquake at 15 km 
depth SW of Petatlan, Mexico during lockdown (Fig. S7). An earthquake with this magnitude and 
source mechanism occurring during daytime could typically only be observed at stations in urban 
environments by filtering the signal. However, the reduction of seismic noise by ∼40% during 
lockdown made this event visible without any filtering required at a RS station in Querétaro city, 
380 km away. Low noise levels during COVID-19 lockdowns could thus allow detection of signals 
from new sources in areas with incomplete seismic catalogues. Such newly identified signals 
could be used as distinct templates (30) for finding similar waveforms in noisier data pre- and 
post-lockdown. This approach also works for tremor signals masked by anthropogenic noise, yet 
vital for monitoring potential volcanic unrest (6). Although broadband sensors in rural 
environments are impacted less by anthropogenic noise, any densification of and reliance on low-
cost sensors in urban areas, such as RS and low-cost accelerometers (32), will require a better 
understanding of anthropogenic noise sources to suppress false detections. As populations 
increase globally, more people become exposed to potential natural and induced geohazards 
(33). Urbanization will increase anthropogenic noise in exposed areas, further complicating 
seismic monitoring. Characterizing and minimizing anthropogenic noise is increasingly important 
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for accurately detecting and imaging the seismic signatures of potentially harmful subsurface 
hazards. 

Anthropogenic seismic noise is thought to be dominated by noise sources less than 1 km 
away (34,5,6,7,11). Because population mobility generates time-varying loads that radiate 
energy through the shallow subsurface as Rayleigh waves (11), local effects, such as construction 
sites, heavy machinery, can impact individual stations. However, the unique 2020 seismic noise 
quiet period reveals that when considering multiple stations or whole networks over longer time-
scales, the anthropogenic seismic wavefield affects large areas. With denser networks and more 
citizen sensors in urban environments, more features of the seismic noise, rather than just 
amplitude, will become usable and will help to identify different anthropogenic noise sources 
(35,10). Characterizing these sources will be useful for imaging the shallow subsurface in 3D in 
urban areas using high-frequency anthropogenic ambient noise (36,37). Our finding of a 
distributed noise field is supported by the strong correlations with independent mobility data 
(Fig. 4). In contrast to mobility data, publicly available data from existing seismometer networks 
provide an objective absolute baseline of human activity levels. Therefore, hiFSAN can serve as a 
near-real-time technique for monitoring anthropogenic activity patterns with fewer potential 
privacy concerns than mobility data. In addition, industrial activities may not be captured in 
mobility data, but leave a seismic noise signature. The 2020 seismic quiet period is a baseline for 
using seismic properties (34) to identify and isolate the sources contributing to the anthropogenic 
noise wavefield, especially when combined with data indicative of human behavior. The seismic 
observations of human activity during the COVID-19 lockdown allow us to assess the impact of 
mitigation policies on daily life, especially the time to establish and recover from lockdowns. As 
such, hiFSAN may provide important constraints for health and behavioral science studies.  
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Figure 1: Worldwide seismic station locations.  

Locations of the 268 global seismic stations with usable data (e.g. no long data gaps, working 
sensors) we analyzed. Lockdown effects are observed (red) at 185 out of 268 stations. Symbol 
size is scaled by the inverse of population density (28) to emphasize stations located in remote 

areas. The stations we labelled are discussed in detail in the text.  
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Figure 2: Global temporal changes in seismic noise.  

Global daily median hiFSAN based on displacement data (24), normalized to percentage 
variation of the baseline before lockdown measures, and sorted by lockdown date. Data gaps 
are colored white. Location and country code of the station are indicated, while Fig. S1 also 

includes the network and station code. 
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Figure 3: Regional examples of the 2020 seismic noise quiet period.  
Examples showing different features of the lockdown seismic signal changes in regional 

settings. We filtered the hiFSAN data between 4 and 14 Hz and present temporal changes 
either as displacement (A), acceleration (D) or as percentage change compared to the baseline 

before lockdown (B, C and E) with the panels in (A) also comparing to the baseline of 
corresponding time periods in prior years. Individual seismic stations are identified by 
network.station codes (IC.ENH, BE.UCCS, etc.). The legends of (B-E) include correlation 

coefficients r with mobility data (24). (A) Lockdown effects at three stations in China compared 
to the Chinese New Year holiday in previous years. (B) Lockdown effects in hiFSAN compared 

with audible environmental noise and independent mobility data in Brussels, Belgium. (C) 
Lockdown effect in Barbados compared to noise levels in the last decade (in grey) and 
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correlation with local flight data at the Grantley Adams International Airport (TBPB) (24). (D) 
Lockdown noise reduction recorded on borehole seismometers in Auckland, New Zealand. (E) 

Lockdown noise reduction in a region of low population density in Rundu, Namibia.  
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Figure 4: Global changes in seismic noise compared to population mobility trends.  
(A) Comparison between temporal changes in global daily median hiFSAN based on the 185 

stations that observed lockdown effects and population mobility changes (24). (B) Scatter plot 
to illustrate the correlation between the binned (10% bins) time series of seismic noise changes 

and all categories of mobility data in (A). Percentage changes are given relative to a pre-
lockdown baseline. All categories show a strong positive correlation, apart from time spent in 

residential premises, which is anti-correlated. 
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