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Abstract. Thermal stress on the biosphere during the ex-
treme warmth of the Paleocene–Eocene Thermal Maximum
(PETM) was most severe at low latitudes, with sea sur-
face temperatures at some localities exceeding the 35 ◦C at
which marine organisms experience heat stress. Relatively
few equivalent terrestrial sections have been identified, and
the response of land plants to this extreme heat is still poorly

understood. Here, we present a new record of the PETM from
the peak ring of the Chicxulub impact crater that has been
identified based on nannofossil biostratigraphy, an acme of
the dinoflagellate genus Apectodinium, and a negative car-
bon isotope excursion. Geochemical and microfossil prox-
ies show that the PETM is marked by elevated TEXH

86-based
sea surface temperatures (SSTs) averaging ∼ 37.8 ◦C, an in-
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crease in terrestrial input and surface productivity, salinity
stratification, and bottom water anoxia, with biomarkers for
green and purple sulfur bacteria indicative of photic zone eu-
xinia in the early part of the event. Pollen and plants spores in
this core provide the first PETM floral assemblage described
from Mexico, Central America, and the northern Caribbean.
The source area was a diverse coastal shrubby tropical forest
with a remarkably high abundance of fungal spores, indicat-
ing humid conditions. Thus, while seafloor anoxia devastated
the benthic marine biota and dinoflagellate assemblages were
heat-stressed, the terrestrial plant ecosystem thrived.

1 Introduction and geologic setting

The Paleocene–Eocene Thermal Maximum (PETM) was a
period of global warming associated with ocean acidifica-
tion, an intensified hydrological cycle, a reduction in marine
dissolved oxygen concentrations, eustatic sea level rise, and
major ecological shifts (e.g., Zachos et al., 2003; Gingerich
2006; Dickson et al., 2014; Sluijs et al., 2008; Carmichael
et al., 2017). Recent age estimates place the PETM at ap-
proximately 55.93–55.71 Ma (Westerhold et al., 2017; Hollis
et al., 2019). The onset of the PETM is marked by a global
negative carbon isotope excursion (CIE) (Dickens et al.,
1997; Gradstein et al., 2012). Possible sources of this isotopi-
cally light carbon include methane clathrates, combustion of
organic matter, thermogenic methane, and organic matter re-
leased from permafrost (e.g., McInerney and Wing, 2011).
Sea surface temperature (SST) during the PETM in some
low-latitude regions exceeded 35 ◦C, resulting in heat stress
for eukaryotic plankton (e.g., Frieling et al., 2018). In con-
trast, the few existing PETM records of low-latitude terres-
trial plant assemblages indicate an increase in diversity (e.g.,
Jaramillo et al., 2010; Srivastava and Prasad, 2015; Prasad
et al., 2018). Here, we established a new multiproxy record
of the response of marine and terrestrial biota to the PETM
in the western Caribbean and Gulf of Mexico at the Inter-
national Ocean Discovery Program (IODP) Expedition 364
Site M0077. This record includes the first published pollen
and spore PETM assemblage from tropical North America
(Smith et al., 2020a, b). These data allow us to determine the
extent of marine and terrestrial heat stress from the under-
studied region and determine how they compare with other
PETM sections.

International Ocean Discovery Program–International
Continental Scientific Drilling Program (IODP–ICDP) Site
M0077 is located on the peak ring of the Chicxulub impact
crater in the Yucatán Peninsula, Mexico (Fig. 1) (Morgan
et al., 2017). The crater was a marine basin in the Paleo-
gene, with mainly pelagic and outer-platform sediment de-
position (Lefticariu et al., 2006). Immediately after impact,
some of the rim may have been subaerially emergent (Mor-
gan et al., 1997) but if so would have been quickly eroded.
During the PETM, only isolated areas of the crater rim may

have been emergent, given the existence of an embayment
into the crater to the north and northeast (Gulick et al.,
2008). Although PETM records from the Gulf of Mexico are
scarce, another site in the Chicxulub crater, the Yaxcopoil-1
(Yax-1) core, contains a PETM section identified by a neg-
ative carbon isotope excursion, deposited during a period
of maximum flooding (Whalen et al., 2013) (Fig. 1). The
PETM has also been identified on the Mississippi paleo-shelf
(Fig. 1), where evidence indicates increased TEXH

86-based
SSTs, photic zone euxinia, and sea level rise (Sluijs et al.,
2014).

2 Methods

Quantitative palynological abundances are expressed in
terms of specimens per gram using a Lycopodium spike.
Species counts, descriptions, and paleoecological interpreta-
tions can be found in Smith et al. (2020a, b). The D /S ratio
between dinoflagellate cysts and pollen–plant spores is de-
scribed in Warny et al. (2003). The degree of bioturbation
has been quantified using the bioturbation index (BI) (Tay-
lor and Goldring, 1993), a descriptive classification ranging
from 0 (no bioturbation) to 6 (completely bioturbated). Sam-
ples for δ15N and δ13CTOC (n= 65) analyses were prepared
by acidifying approximately 0.5 g of powdered material with
an excess of 1 M HCl. The acid-insoluble residues were neu-
tralized, freeze-dried, and analyzed for their carbon and ni-
trogen contents as well as stable isotope compositions using
a Costech elemental analyzer (ECS 4010) and a Delta+XP
mass spectrometer. Typical instrumental precision of the iso-
tope measurements is < 0.2 ‰. δ15N is reported relative
to atmospheric N2, and δ13CTOC is reported relative to Vi-
enna Pee Dee Belemnite (VPDB). Clay mineral assemblages
were identified by X-ray diffraction on oriented mounts of
noncalcareous clay-sized particles (< 2 µm). SSTs based on
isoprenoidal glyceroldialkylglyceroltetraethers (isoGDGTs)
(Schouten et al., 2002) were reconstructed using the TEXH

86
calibration of Kim et al. (2010). Palynological sampling res-
olution is approximately 5 cm, and δ15N and δ13CTOC sam-
pling resolution approximately 0.5 cm, in the body of the
PETM section. Biomarker analysis in the late Paleocene sec-
tion was hampered by low total organic carbon (TOC), with
only one sample suitable for TEX86 measurement. Generally,
the sampling strategy was designed for high-resolution anal-
ysis of the body of the PETM section, which appears to be
bounded at the top and bottom by unconformities. Additional
methods are provided in the Supplement along with all data.

3 Results

IODP–ICDP drilling at Site M0077 recovered Paleocene to
early Eocene post-impact sedimentary rocks between 617.33
and 505.70 m below the seafloor (m b.s.f.). The PETM sec-
tion (607.27–607.06 mb.s.f., Core 37R-1) is a laminated
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Figure 1. Paleocene–Eocene Thermal Maximum (55.8 Ma) paleogeography of the Gulf of Mexico and surrounding regions (modified from
Scotese and Wright, 2018), with locations of Site M0077 (IODP 364), Yax-1 (Whalen et al., 2013), and the Harrell Core in east–central
Mississippi (Sluijs et al., 2014). The Harrell Core location has been adjusted to match the paleo-latitude and longitude at the PETM. Surface
ocean currents and summer wind fields are from Winguth et al. (2010).

black to dark gray shale separated from an upper Pale-
ocene carbonate hardground by an unconformity and uncon-
formably underlying a burrowed lower Eocene packstone at
the top of Core 37R-1 and through Core 36R-4 (Fig. 2).
The uppermost Paleocene, underlying the PETM interval,
is characterized by two significant disconformities. The
lower disconformity is atop a 6–8 cm thick gray claystone
(607.68 mb.s.f.) interpreted to be a bentonite, with an ero-
sionally scoured upper surface. It is overlain by a 7 cm thick
carbonate rudstone (607.68–607.61 mb.s.f.) that grades up-
ward into a 22 cm thick packstone (607.61–607.39 mb.s.f.).
The rudstone contains claystone and carbonate lithoclasts up
two 2 cm in diameter, foraminifera, and lime mud, and it
grades into a light gray foraminiferal packstone with wispy
stylolitic laminae. The packstone is overlain by a ∼ 4 cm
thick gray claystone (607.39–607.35 mb.s.f.). Both the con-
tact between the packstone and claystone and the claystone
itself are burrowed, and one burrow is infilled by material
from the overlying facies. The claystone is abruptly over-
lain by a carbonate grainstone (607.32–607.27 mb.s.f.) with

planktic and large benthic foraminifera, red algae, ostracods,
calcispheres, and black and gray carbonate lithoclasts. The
top of this unit (607.27 mb.s.f.) is a hardground and discon-
formity with about 1 cm of relief, which separates the Pale-
ocene and PETM sections. The lower contact of the grain-
stone with the underlying claystone (607.32 mb.s.f.) also ap-
pears to be unconformable, but no biozones are missing, so
it may represent a diastem rather than a significant hiatus.

The PETM interval (607.27–607.06 mb.s.f.) is about
21 cm thick. It has a sharp basal contact that drapes over the
relief atop the underlying hardground. The PETM interval
consists of dark gray to black shale that is laminated at the
millimeter scale. The base of the interval is slightly lighter-
colored gray shale and contains clay, organic matter, sand-
sized carbonate lithoclasts and foraminifera eroded from the
underlying unit, as well as rare green grains and spherules
that appear to be altered impact glass. The remainder of the
PETM interval consists of millimeter-scale laminae that are
usually dark gray at their base, black at the top, and con-
tain quartz, muscovite, rare plagioclase silt grains, and rare
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Figure 2. Stratigraphic column of Site M0077. Palynological concentrations (CC) are given as specimens per gram. δ15N is reported
relative to atmospheric N2, and δ13CTOC is reported relative to VPDB. BI: bioturbation index (Taylor and Goldring, 1993), CT: computed
tomography, D /S: dinoflagellate cyst to pollen and plant spore ratio (Warny et al., 2003), TOC /TN: total organic carbon / total nitrogen,
TOC: total organic carbon, χ : magnetic susceptibility. Lithological symbols: rectangular blocks – limestone, dashes – shale and claystone,
obround ovals – chert, red wavy lines – unconformities.

calcispheres. Laminae are commonly defined at their base
by quartz and muscovite silt and grade upward into clay
and organic-rich shale. The uppermost PETM shale is bio-
turbated, with burrows infilled with material from the over-
lying carbonate packstone. The interval directly overlying
the PETM (607.06–606.85 mb.s.f.) also contains abundant
reworked material, including several pebble-sized clasts of
limestone that appear to contain Cretaceous foraminifera.
Above the core gap, Cores 36R-3 and 36R-2 are composed
of a pale massive packstone with two black chert layers at
606.62–606.56 and 606.16–606.11 mb.s.f. (Fig. 2).

Bioturbation is absent to minimal in the PETM, with
rare Chondrites ichnofossils, except at the top of the inter-
val (607.11–607.06 mb.s.f.) where Planolites burrows are
observed, infilled with sediment from the overlying pack-
stone. The clay mineral assemblages are dominated by R0
random illite–smectite mixed layers (up to 90 %) and also
contain traces of chlorite, illite, and palygorskite. The latter
is rare in the upper Paleocene and increases in abundance
through the PETM, reaching a peak of 5 % relative abun-
dance at 607.08 m b.s.f. The PETM interval is characterized
by a marked increase in magnetic susceptibility (χ ), anhys-
teretic remanent magnetization (ARM), and isothermal re-
manent magnetization (IRM). The average values increase
by a factor of 15.7, 5.8, and 12.4 for χ , ARM, and IRM, re-

spectively, compared to the average values over the analyzed
pre-PETM interval (607.67–607.27 mb.s.f.) (see the Supple-
ment).

Total organic carbon (TOC) is low above and below
the PETM (Fig. 2), with high concentrations (> 6 % rock
weight) in the upper PETM section. Total organic car-
bon / total nitrogen (TOC /TN) ratios (e.g., Meyers and
Shaw, 1996) range from 0.6 to 6.8 in the upper Paleocene,
with higher values averaging 10.7 in the PETM section.
TOC /TN values in the post-PETM section range from
1.4 to 4.7. δ13CTOC (total organic carbon δ13C) ranges
from −27.5 ‰ to −25.8 ‰ in the upper Paleocene and
is −28.4 ‰ at the base of the PETM section, generally
becoming more negative up-section through the PETM,
with the most depleted value of −30.1 ‰ in the upper
PETM (607.12 mb.s.f.). Above 607.07 mb.s.f., δ13CTOC
values become more positive, then stabilize at −27.5 ‰ at
607.03 mb.s.f. δ15N ranges from 1.0 ‰ to 3.7 ‰ in the up-
per Paleocene and is 5.3 ‰ at the base of the PETM sec-
tion, with more depleted values through the PETM, reaching
a minimum of −2.0 ‰ at 607.21 mb.s.f. The PETM δ15N
record is marked by two negative excursions with values be-
low 0 ‰, separated by a brief interval of positive δ15N values
between 607.17 and 607.13 mb.s.f. Above 607.10 mb.s.f.,
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δ15N values become more positive, with a value of 0.9 ‰
at 607.02 mb.s.f. (Fig. 2).

TEXH
86-based SSTs and other biomarkers were difficult

to retrieve in the late Paleocene due to low organic mat-
ter content (TOC values often < 0.1 %), but a single sam-
ple at 607.33 mb.s.f. yielded a TEXH

86-based SST of 34.0 ◦C.
In the PETM interval, TEXH

86-based SSTs ranged 37.4–
38.0 ◦C, averaging 37.8 ◦C. Just above the PETM section, at
607.05 mb.s.f., the TEXH

86-based SST was 37.9 ◦C, followed
by a decrease in SSTs to 37.1 and 37.3 ◦C at 606.87 and
606.72 mb.s.f., respectively (Fig. 2). To verify the applica-
bility of the TEX86 proxy a series of complementary molec-
ular indicators, including the BIT (branched and isoprenoid
tetraether) index (Hopmans et al., 2004), MI (methane in-
dex), and fcren (relative abundance of the crenarchaeol regio-
isomer), were calculated, all of which passed the exclusion
criteria as summarized in O’Brien et al. (2017). Green and
purple sulfur bacteria biomarkers (chlorobactane, isorenier-
atane, and okenane) reach their highest concentrations near
the bottom of the PETM section, with low concentrations
through the rest of the event (Fig. 2).

Nannofossil abundances decrease through the PETM sec-
tion and become rare in the post-PETM section. Foraminifera
at Site M0077 are abundant in the upper Paleocene sec-
tion but are absent to very rare in the PETM section, with
evidence of reworking. Dinosteranes, biomarkers associated
with dinoflagellates (e.g., Summons et al., 1987), have rela-
tively high concentrations in the upper Paleocene and lower
PETM section, with decreased abundance in the PETM and
post-PETM sections. Organic-walled microfossils are absent
to rare in the Paleocene. Dinoflagellate cyst concentrations
peak at 607.26 mb.s.f., with a decreasing trend through the
rest of the PETM (Fig. 2). Relative abundances of Apecto-
dinium are highest at 607.26 mb.s.f. and decrease through
the PETM, while the highest relative abundances of Go-
niodomidae are found just above the event. Fungal spore con-
centrations peak in the middle of the PETM section (Fig. 2),
reaching concentrations much higher (> 400 specimensg−1)
than any other samples, including samples with a higher
overall palynomorph concentration and excellent preserva-
tion in the later Ypresian section near the top of the core
(520.79–505.88 m b.s.f.), indicating the fungal spike is not
a taphonomic artifact. The PETM fungal assemblage is dom-
inated by Nigrospora types, which are common leaf endo-
phytes on a variety of substrates, including soil, and are
commonly airborne (Wang et al., 2017). The PETM pollen
and plant spore assemblage is dominated by Malvacipollis
(Euphorbiaceae), Ulmipollenites (Ulmaceae), Bohlensipol-
lis (Eleagnaceae), and angiosperm pollen of unknown lower
botanical affinity, with rare gymnosperm pollen and lower
plant spores.

4 Discussion

4.1 Stratigraphy and depositional environment

As described earlier, the PETM section in the Site M0077
core is bracketed by unconformities and incomplete, with
the onset and recovery missing, and only part of the PETM
section is preserved. The fine-grained nature and lack of
sedimentary structures indicating current deposition indicate
that the PETM interval recovered was deposited in relatively
deep, quiet water with sediments largely settling from sus-
pension. The laminated black shale points toward low oxy-
gen conditions. However, the trace fossil assemblage implies
that anoxia and/or euxinia were likely intermittent. Water
depths for Site M0077 during most of the Paleocene were on
the order of 600–700 m (Lowery et al., 2018), but the facies
immediately underlying and overlying the PETM interval
contain numerous grains from shallow water environments,
like larger benthic foraminifera and red algae, which indi-
cate either relatively shallow water in the crater or extensive
reworking from the crater margin. Assigning a water depth
for the PETM interval is complicated by the complete lack
of obviously in situ depth-sensitive benthic foraminifera that
could provide such insight. However, the presence of deeper-
dwelling planktic foraminifera such as Subbotina spp. and
Globanomalina pseudomenardii, which occupied a thermo-
cline habitat (e.g., Aze et al., 2011), indicates that the water
was at least deep enough for the establishment of stratifica-
tion. The PETM is globally characterized by an eustatic sea
level rise (Sluijs et al., 2008), so water depths were likely
somewhat deeper during the PETM than during the times
when the units above and below were deposited. The re-
working observed in PETM age sediments in the Yaxcopoil-
1 core (Whalen et al., 2013) suggests that reworking in the
Chicxulub crater was common during the PETM, and the
shallow water foraminifera observed in the PETM section at
Site M0077 were likely reworked from the crater rim.

The PETM age of the shale interval at Site M0077
(607.27–607.06 mb.s.f.) has been confirmed by a negative
carbon isotope excursion (CIE) and biostratigraphy. The
earliest nannofossil PETM sample, at 607.25 mb.s.f., con-
tains Discoaster salisburgensis var. anartios, a characteristic
PETM excursion taxon (e.g., Bralower and Self-Trail, 2016).
The global negative CIE is also observed at Site M0077
(Fig. 2). In complete records of the PETM, the peak of the
negative CIE and highest temperatures are observed within
the first∼ 20 kyr of the event, followed by a gradual recovery
to more positive δ13CTOC values and lower SSTs (e.g., Hol-
lis et al., 2019). However, at Site M0077, the most depleted
δ13CTOC values are found in the upper part of the interval.
The onset and peak of the PETM CIE are thus missing due
to erosion or non-deposition. The abrupt shift to more posi-
tive δ13CTOC values at 607.06 mb.s.f. suggests that the later
PETM section and immediate recovery are also missing, with
another unconformity at the top of the PETM section. The
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trend towards more negative δ13CTOC values in the PETM
can be explained as the result of an increasing contribution
of terrestrial organic matter. This explanation is consistent
with the palynological D /S ratio, which shows the highest
relative abundance of terrestrial vs. marine palynomorphs at
approximately the same depth as the most negative δ13CTOC
values (Fig. 2). Increasing TOC /TN ratios are also consis-
tent with a higher input of terrestrial organic matter through
the PETM (e.g., Burdige, 2006). Lithologically, the PETM
section is clearly distinguished from the Paleocene section
by an abrupt switch from carbonate to siliciclastic clay depo-
sition and an abrupt increase in detrital input, as indicated by
increased magnetic parameters.

4.2 PETM environmental change

SSTs were estimated using the relative abundance of thau-
marchaeotal isoGDGTs. Here we used the TEXH

86 SST cal-
ibration of Kim et al. (2010) developed for the determina-
tion of SSTs in (sub)tropical oceans and low-latitude set-
tings. The uncertainties associated with TEX86 estimates
of SSTs exceeding the present-day SST maximum of 27–
29 ◦C have been addressed for Cretaceous (O’Brien et al.,
2017) and Paleogene (Frieling et al., 2017) strata. The con-
clusion is that during hyperthermals TEXH

86 delivers reliable
SST reconstructions, with an upper calibration limit occur-
ring at 38.6 ◦C (O’Brien et al., 2017). The TEX86 ratios in
the PETM section approach unity (0.96–0.98), nearing the
theoretical upper limit for temperature reconstruction using
this proxy. BAYSPAR (Tierney and Tingley, 2014) and linear
(Schouten et al., 2007) TEX86 calibrations yield extremely
high PETM SSTs in excess of 44 ◦C, which is above the heat
tolerance for most dinoflagellates, foraminifera, and other
eukaryotic plankton. GDGT abundance data are provided in
the Supplement so that alternative and possible future TEX86
calibrations can be applied to the dataset. In previous stud-
ies potential impacts on the TEX86 proxy have been identi-
fied and a series of validation criteria developed as summa-
rized in O’Brien et al. (2017). The application of these val-
idation proxies identified all samples as fulfilling the exclu-
sion criteria for the use of the TEXH

86 paleothermometer. The
thermal maturity as determined by the side chain isomeriza-
tion of the C29ααα steranes [20S / (20S+ 20R)] and C31αβ

hopanes [20S / (20S+ 20R)] is 0.13 and 0.34, respectively
(see the Supplement), which is indicative of a low maturity,
equivalent to a vitrinite reflectivity of 0.30 %–0.35 %. This
is supported by Rock-Eval Tmax values averaging 428 ◦C. A
maturity impact on the GDGT data is thus considered to be
minimal and affecting all samples to an equal extent. Preser-
vation of immature biomarkers is further supported by the
presence of thermally labile aromatic carotenoids.

TEXH
86-based SSTs increased by ∼ 4 ◦C between the late

Paleocene and PETM (Fig. 2), with average PETM SSTs
of 37.8 ◦C determined here, similar to values observed in
the eastern equatorial Atlantic (Frieling et al., 2018) and the

Dahomey Basin, western Africa (Frieling et al., 2017), and
∼ 3 ◦C higher than those observed in the Harrell Core (Sluijs
et al., 2014) on the northern Gulf of Mexico margin and
Wilson Lake core (Zachos et al., 2006) on the mid-Atlantic
North American margin. Jaramillo et al. (2010) estimated
late Paleocene SSTs of 28–31 ◦C and early Eocene SSTs
of 31–34 ◦C from Colombia using TEX86 measurements, al-
though no PETM age TEX86 measurements were available.
Frieling et al. (2017), investigating a tropical marine PETM
record from Nigeria, estimated latest Paleocene SSTs of 32–
34 ◦C, with average PETM SSTs of ∼ 36 ◦C. The tempera-
ture increase from the late Paleocene to PETM section at Site
M0077 is consistent with estimates of a 4–5 ◦C global mean
surface temperature anomaly for the PETM (Dunkley Jones
et al., 2013). SSTs decrease to 37.1 and 37.3 ◦C in the post-
PETM section at 606.87 and 606.72 mb.s.f., respectively.

Several lines of evidence indicate increased terrestrial in-
put during the PETM, including increased concentrations of
terrestrial palynomorphs, increased D /S and TOC /TN ra-
tios, and an increase in detrital ferromagnetic minerals. The-
oretically, this increase in terrestrial input could be the result
of a relative sea level fall, but this would not be consistent
with an interpreted PETM sea level rise in the Gulf of Mex-
ico and globally (Sluijs et al., 2014). Instead, the increase
in terrestrial input is interpreted to result from an intensified
hydrological cycle during the PETM, as noted in other stud-
ies (e.g., Crouch et al., 2003; Bowen et al., 2004; Schmitz
and Pujalte, 2007; Handley et al., 2012). The exceptionally
high abundance of fungal spores in the PETM section sug-
gests that increased humidity and terrestrial weathering re-
sulted in greater detrital and nutrient input to Site M0077.
BIT index values, which have been used as a proxy for ter-
restrial organic matter in sediments (Hopmans et al., 2004;
Weijers et al., 2006), are higher in the late Paleocene than
in the PETM section (Fig. 2). Low BIT values in samples
from the PETM section may indicate a source of terrestrial
organic matter lean in soil microbial matter (Huguet et al.,
2007; Schouten et al., 2013), possibly from low-lying car-
bonate terrain to the south (Fig. 1) and/or increased produc-
tivity of Thaumarchaeota.

The relative abundance of the clay mineral palygorskite
increases through the PETM section. Higher abundances of
palygorskite in other PETM sediments have been interpreted
as evidence for increased aridity (Carmichael et al., 2017),
as palygorskite commonly forms in coastal marine environ-
ments in which continental alkaline waters are concentrated
by evaporation (Bolle and Adatte, 2001). At Site M0077, the
palygorskite may have originally formed in hypersaline la-
goonal environments similar to other Eocene–Oligocene pa-
lygorskite deposits in the Yucatán Peninsula (de Pablo Galán,
1996). The increase in the relative abundance of palygorskite
through the PETM section may therefore be the result of in-
creased fluvial transport of sediments to Site M0077 from
lagoonal environments to the south rather than the result of
increased aridity.
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The near absence of bioturbation in the PETM section,
with preserved sedimentary lamination and high TOC, is
consistent with bottom water anoxia through much of the
PETM, and sulfur bacteria biomarkers are indicative of
photic zone euxinia (e.g., Summons and Powell, 1987; Grice
et al., 2005; Sluijs et al., 2014) in the earlier PETM record.
Depleted δ15N values similar to those observed during ocean
anoxic events (e.g., Jenkyns, 2010) can be explained by up-
welling of ammonium from anoxic deep waters during peri-
ods of high nutrient availability (e.g., Higgins et al., 2012) or
increased cyanobacterial N2 fixation (e.g., Bauersachs et al.,
2009). The transient positive δ15N excursion in the middle
of the PETM section at Site M0077 (Fig. 2) is similar to the
δ15N PETM record of Junium et al. (2018) from the northern
Peri-Tethys seaway, with depleted δ15N in the top and bot-
tom of the PETM section separated by an interval of more
enriched δ15N, which they interpreted to result from a more
oxic, less stratified water column, possibly due to reduced
freshwater influx.

4.3 Implications for life and climate

In the Paleocene interval at Site M0077, carbonate deposition
dominates and palynomorphs are nearly absent, probably due
to poor preservation of organic material (Lowery et al., 2018,
2020). Low values of TOC /TN (< 4) observed in the Pale-
ocene section are also an indication of degradation of organic
matter, the breakdown of nitrogenous compounds to ammo-
nia, and subsequent CO2 release via oxidation (Müller, 1977;
Meyers and Shaw, 1996). The late Paleocene palynologi-
cal samples in the carbonate hardground represent the old-
est dinoflagellate assemblages observed in abundances suf-
ficient for paleoecological interpretation. Dinoflagellate cyst
and dinosterane concentrations peak in the early PETM inter-
val, then decrease through the rest of the recovered PETM,
suggesting that the extreme warmth during the PETM re-
sulted in heat-stressed plankton within the Chicxulub im-
pact crater, similar to the eastern equatorial Atlantic (Friel-
ing et al., 2018). Dinoflagellate assemblages record a peak
in Apectodinium relative abundance in the lowermost PETM
sample and then a decrease in abundance through the rest
of the PETM. Increases in the relative abundance of Go-
niodomidae through the PETM likely indicate an intensifica-
tion in salinity stratification (e.g., Frieling and Sluijs, 2018).
In the later Ypresian dinoflagellate assemblages, Spiniferites
becomes the dominant genus and Apectodinium is nearly ab-
sent. The PETM nannoplankton assemblage contains mal-
formed Discoaster specimens, which may represent ecophe-
notypes that migrated to a deep photic zone refuge to escape
inhospitable SSTs and became malformed due to increased
organic matter remineralization and calcite undersaturation
(Bralower and Self-Trail, 2016).

A notable acme of fungal spores occurs in the middle part
of the PETM. This acme is dominated by aff. Nigrospora
sp., possibly suggesting increased moisture levels, which re-
sulted in increased fungal decomposition of herbaceous and
woody substrates on land (Dighton, 2016; Wang et al., 2017)
as well as increased terrestrial runoff. The release of soluble
nutrients by saprotrophic fungi such as Nigrospora may have
significantly contributed to increased marine productivity at
Site M0077 during the PETM. However, Nigrospora can also
be transported by dust storms (Wang et al., 2017) and lives in
marine environments (Dighton and White, 2017), including
deep-sea sediments (Singh et al., 2012) and microbial mats
in anoxic, hypersaline coastal environments (Cantrell et al.,
2006).

The PETM pollen and plant spore assemblage is broadly
similar to later Ypresian assemblages observed higher in the
core, with angiosperm pollen dominant, particularly reticu-
late tricolpate–tricolporate pollen of unknown lower botani-
cal affinity (e.g., Fraxinoipollenites spp. and Retitricolporites
spp.), Malvacipollis spp. (Euphorbiaceae), Psilatricolpites
sp. A, and Ulmipollenites krempii (Ulmaceae). The PETM
pollen and plant spore assemblage is distinguished from the
later Ypresian assemblages by higher relative abundances
of Boehlensipollis sp. A (Elaeagnaceae), Malvacipollis spp.,
and Scabratricolpites sp. A (Smith et al., 2020a, b), sug-
gesting that these may be thermophilic taxa. Lower plant
spores and gymnosperm pollen are rare in both the PETM
and later Ypresian assemblages. The main pollen source
area is interpreted as a lowland tropical forest and shrubland
(Smith et al., 2020a, b). Pollen with affinity to the Pinop-
sida and Ulmaceae may represent a contribution from more
upland pollen source areas based on their modern distribu-
tions in Mexico and Central America. High concentrations
of pollen in two PETM samples argue for a proximal pollen
source area from low-elevation carbonate terrain in the Yu-
catán Peninsula, consistent with modeled prevailing surface
currents and summer wind fields from the south (Fig. 2)
(Winguth et al., 2010). Globally, plant floras indicate shifts
in ranges and relative abundances with low rates of extinc-
tion (Wing and Currano, 2013). These shifts are broadly in-
dicative of warming during the PETM. Although plant as-
semblages in midlatitude continental interiors suggest dry-
ing during the PETM (e.g., Wing et al., 2005), PETM flo-
ral records from tropical South America (Jaramillo et al.,
2010) and India (e.g., Prasad et al., 2018) suggest high lev-
els of precipitation, whereas in tropical East Africa (Handley
et al., 2012) evidence suggests a decrease in overall humid-
ity but an increase in the intensity of precipitation events. The
proxy data from Site M0077 indicate that increased tempera-
ture and humidity in the Yucatán Peninsula region during the
PETM resulted in increased terrestrial input.
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5 Conclusions

The PETM in the Chicxulub impact crater was a time of ex-
tremely high SSTs (∼ 37.8 ◦C), increased terrestrial input,
high surface productivity, water column stratification, and
bottom water hypoxia–anoxia, with evidence for photic zone
euxinia in the bottom of the section. The observed increase
in terrestrial input is likely the result of increased weather-
ing and fluvial discharge due to moist, hyperthermal con-
ditions. This explanation is consistent with global evidence
of sea level rise during the PETM. Seafloor anoxia deci-
mated the marine benthos during the PETM, while high SSTs
caused heat stress in the dinoflagellate and likely other phy-
toplankton assemblages. In contrast, the pollen and spore as-
semblage indicates the presence of a proximal humid land-
mass with a diverse tropical shrubby forest, which produced
relatively high abundances of Euphorbiaceae pollen. These
results, in combination with previously described tropical
PETM floral assemblages (Jaramillo et al., 2010; Srivastava
and Prasad, 2015; Prasad et al., 2018), demonstrate that trop-
ical vegetation was highly resilient to hyperthermal condi-
tions.
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