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ABSTRACT

Polylactic acid (PLA) is an attractive environment-friendly thermoplastic that is bio-sourced and

biodegradable. PLA is industrially produced by the ring-opening polymerization of Lactide.

This reaction is sensitive to drifts in the operating conditions and impurities in the raw materials

that may affect the reaction rate as well as the polymer properties, which can be very costly in

continuous processes. It is therefore crucial to employ a control strategy that allows recovering

the nominal conditions and maintaining the desired properties and conversion level in case

of drift. Three control strategies are discussed in this paper: Proportional-Integral controller

(PI), dynamic optimization and Model Predictive Control (MPC). The proposed approaches

are validated by simulation of a continuous PLA process constituted of three cascade reactors

including one loop reactor in the middle. Besides the coupling of inputs and outputs, the process

model is highly nonlinear and the control is done only on the boundaries. The results show that

the open-loop optimization strategy provides better performance compared to the PI controller

if the disturbance is assumed to be measured. The MPC also shows superior performances

provided that the disturbance is first estimated. A polynomial model is developed to predict the

non-measured disturbance based on the measured outputs.
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1 Introduction

While most polymers are produced from oil or natural gas, the demand is increasing to pro-

duce polymers from natural resources. Moreover, there is a big number of applications where

biodegradable polymers are desired, for instance in order to reduce the plastic waste or in some

pharmaceutical formulations. Polylactic acid (PLA) is a thermoplastic synthesized from renew-

able resources (corn starch, cassava roots, sugarcane, etc). It is becoming competitive as a green

alternative of non-biodegradable polymers in various fields like fibers [1], medical implants [2]

and biomedical applications [3]. PLA is industrially produced by the ring-opening polymeriza-

tion (ROP) of lactide monomer to produce a polymer with high molecular weight as required

in most applications [4]. This reaction is extremely sensitive to impurities and variations in the

operating conditions. Indeed, the presence of impurities may affect the final conversion and

the polymer molecular weight. However, the lactide monomer may contain random amounts

of impurities [3]. Therefore, it is important to apply a control strategy to reject any disturbances

and to ensure the production of PLA with the desired quality and productivity.

A PI control strategy was employed by Costa and Trommsdorff (2016) to control a PLA process

constituted of two continuous reactors and one loop reactor [5]. The flow rates of catalyst and

co-catalyst at the inlet of the first reactor were considered as control inputs, and the monomer

conversion and the pressure at the outlet of the loop reactor as outputs. The pressure is indeed

directly correlated to the viscosity, and hence to the polymer molecular weight and polymer

content. Due to the high coupling between the inputs, the authors employed an interesting

modification of the PI error (i.e. the difference between desired and real outputs) in order to

account for this coupling. They compared this strategy with the classic PI and the proposed

strategy was found to weaken the coupling and overcome disturbances in the feed. However,

a closed loop PI control system reacts only after a deviation is already observed at the output.

Therefore, this control strategy has the intrinsic limitation that a delay time is unavoidable

before the desired process conditions are restored after a disturbance. Accordingly, in this work

we investigate alternative control strategies to mitigate this drawback.

In our previous work [6], an open-loop dynamic optimization strategy was proposed based on a

well-known process model and assuming the disturbances to be measured. The measurement

of the outputs is not required in this strategy. The optimization searches for the optimal input

flow rates (of catalyst and co-catalyst) necessary to keep the two outputs (estimated by the

model) close to their set-points. The performance of the optimization strategy was compared



with that obtained by the modified PI controller proposed by Costa and Trommsdorff (2016)

which assumes the outputs to be measured but not the disturbances. The simulations involved

scenarios with different levels of positive and negative disturbances on the inlet flow rates. The

optimization approach was able in all cases to restore the nominal operating conditions faster

than the PI controller.

Despite the good performance of the optimization, it assumes a perfect process model and that

the disturbances in the monomer feed are measured. However, other kinds of disturbances may

occur and the process model might not be perfectly known. Therefore, it is more interesting

to employ a strategy that is based on the measured process outputs which reflect the impact

of different types of disturbances. A more sophisticated controller, such as Model Predictive

Control (MPC), would be more appropriate to handle different types of disturbances as well

as modelling errors. Besides the fact that the inputs and the outputs are coupled, the model is

highly nonlinear and constitued of a distributed parameter system (DPS) including both ordinary

and partial differential equation (PDE) sets. Moreover, it has constraints on the inputs and

outputs, and the control is done only on the boundaries. The constraint nonlinear MPC is thus

employed in this work to control the PLA process.

MPC was found to operate successfully in a wide range of applications [7–10]. An overview of

the commercially available MPC technologies is provided by [11]. Well known for its capability

to handle multiple input and multiple output (MIMO) processes and aptitude to explicitly take

into account the constraints of both the manipulated and controlled variables, the MPC is also

appreciated for its control of time-delayed systems due to its predictive capability.

In this work, multivariable control of a continuous ring-opening polymerization of lactide pro-

cess is considered. The process is constituted of two tubular reactors and one loop reactor in the

middle. The process model is represented by sets of nonlinear PDEs. The main product quality

of interest here is the polymer molecular weight besides the productivity which is represented

by the monomer conversion. The polymer molecular weight is correlated with the viscosity

of the medium and therefore with the pressure drop. For the purpose of feedback PI and MPC

controllers, the monomer conversion and pressure drop are assumed to be measured at the outlet

of the loop reactor, but not the disturbances, while for the purpose of the optimization only the

disturbances are assumed to be measured. The control inputs are the catalyst and co-catalyst

flow rates. Note that the control acts at the inlet of the first reactor while the outputs are avail-

able at the outlet of the loop reactor. The objective of the controller is to maintain the outputs



Figure 1: The PLA polymerization process constituted of two tubular reactors and one loop
reactor.

close to the set-points, even in presence of disturbances of different levels.

The present paper is structured as follows: In section 2, the nonlinear process model is pre-

sented. Section 3 summarizes the control objectives and presents the MPC strategy. For the

purpose of comparison, the method based on the PI control proposed by Costa and Tromms-

dorff to weaken the system coupling [5] and the optimization strategy proposed in our previous

work [6] are briefly presented. Section 4 presents the simulation results, with a comparison

between the PI controller, the optimization strategy and the MPC. Finally, conclusions and per-

spectives are given in the last section.

2 Process models

The process design comprises several sections and reactor types. As depicted in Figure 1, the

reactor train consists of three sections: a first pre-polymerization tubular reactor (R1), a loop

reactor (R2) and a final tubular reactor (R3). The loop reactor (with recirculation rate r = 10)

allows mixing, and increasing the yield as well as the polymer molecular weight. The mixing

quality and residence time of this reactor are similar to a continuous stirred tank reactor (CSTR),

but with improved heat exchange. The average residence time in the loop reactor is tR2 = 1h [6].

2.1 Material balances

The tubular reactors are modeled as isothermal units with radial flat concentration profiles and

the loop reactor is modelled as an isothermal CSTR (i.e. one section). The reaction is taking

place in bulk. Using the kinetic scheme of the ROP of lactide [5], [12], [13], the material balances

of the reacting species, the catalyst C, the acid A, and the monomer M, can be described by



Equations (1)-(3) respectively:

∂C
∂ t

=−ν
∂C
∂x
− ka1µ0C+ ka2λ0A (1)

∂A
∂ t

=−ν
∂A
∂x

+ ka1µ0C− ka2λ0A (2)

∂M
∂ t
∼=−ν

∂M
∂x
− kPλ0M+ kdλ0 (3)

By applying the method of moments to the distributions of chain lengths of living and dormant

polymer chains, the first four moments of dormant (µi) and active (λi) chains can be described

by Equations (4) - (11):

∂ µ0

∂ t
=−ν

∂ µ0

∂x
− ka1µ0C+ ka2λ0A (4)

∂ µ1
∂ t = −ν

∂ µ1
∂x − ka1µ1C+ ka2λ1A+ ksλ1µ0− ksλ0µ1

+ktλ1(µ1−µ0)− 1
2ktλ0(µ2−µ1)

(5)

∂ µ2
∂ t = −ν

∂ µ2
∂x − ka1µ2C+ ka2λ2A+ ksλ2µ0

−ksλ0µ2 + ktλ2(µ1−µ0)

+ktλ1(µ2−µ1)+
1
6ktλ0(−4µ3 +3µ2 +µ1)

(6)

∂λ0

∂ t
=−ν

∂λ0

∂x
+ ka1µ0C− ka2λ0A (7)

∂λ1
∂ t = −ν

∂λ1
∂x + ka1µ1C− ka2λ1A+2kPλ0M−2kdλ0

−ksλ1µ0 + ksλ0µ1

−ktλ1(µ1−µ0)+
1
2ktλ0(µ2−µ1)

(8)



∂λ2
∂ t = −ν

∂λ2
∂x + ka1µ2C− ka2λ2A+4kP(λ0 +λ1)M

+4kd(λ0−λ1)− ksλ2µ0

+ksλ0µ2 +
1
3ktλ0(λ1−λ3)+ ktλ1(λ2−λ1)

−ktλ2(µ1−µ0)+
1
6ktλ0(2µ3−3µ2 +µ1)

(9)

λ3 =
λ2(2λ2λ0−λ 2

1 )

λ1λ0
(10)

µ3 =
µ2(2µ2µ0−µ2

1 )

µ1µ0
(11)

where ν is the linear velocity (assumed constant), ka1 and ka2 are the rate constants of catalyst

activation and deactivation reactions respectively, kd , kP, ks and kt are the rate constants of de-

propagation, propagation, reversible chain transfer and transesterification reactions respectively.

The polymer average molecular weight, Mw, can be calculated from the moments of active and

dormant chain distributions as follows (the dead chains have a negligible effect):

Mw =
MM

2
λ2 +µ2

λ1 +µ1
(12)

where MM is the monomer molecular weight.

The reactor adimensional pressure, Φ, is given by:

∂Φ

∂x
=−1

L
η

ηre f
. (13)

Where the ratio of the viscosity, η , to the reference viscosity, ηre f , is given as follows [14]:

η

ηre f
=−1

L
Xc1

(
Mw

Mw,re f

)c2

exp
(

E
R

(
1
T
− 1

Tre f

))
(14)

where L is the reactor length, c1 and c2 are parameters, Mw,re f the reference polymer molecular

weight, R the universal gas constant, T the temperature, Tre f is the reference temperature and X

is the monomer conversion.



2.2 Initial and boundary conditions

The reactors are assumed to be initially full with monomer, which gives an initial monomer

concentration of M(x, t = 0) = ρM/MM and all the other concentrations are equal to zero.

The boundary conditions consist of the inlet flow rates of monomer, catalyst, co-catalyst, and as

contaminates the acid and hydroxyl functions, fed to the first reactor. The catalyst concentration

at the inlet is [5]:

C(x = 0, t) =
2 ppmcat ρcat

106 Mcat
(15)

where ppmcat is the parts per million of stannous octoate catalyst in the feed, Mcat the catalyst

molecular weight and x is the axial coordinate.

The acid concentration in the inlet of lactide monomer is given by (the lactide impurities):

A(x = 0, t) =
meqCOOHρM

106 (16)

where meqCOOH is the millimoles of acid functional groups per kg in the feed.

It is assumed that the monomer can contain both acidic and hydroxylic impurities, with the

fraction of hydroxylic to acidic impurities equal to α (α=0.5). These impurities contribute to

the formation of dormant species as follows:

µ0(x = 0, t) =
(meqROH +α meqCOOH)ρM

106 (17)

where meqROH is the concentration of OH-bearing species acting as a co-catalyst.

The control variables are therefore u = [u1,u2] = [ppmcat ,meqROH ] and the main distrubances

are due to d = meqCOOH .

3 Controller design

3.1 Control objectives

The main industrial requirements in the PLA process consist of a predefined polymer molecular

weight and monomer conversion. As the main production occurs in the loop reactor, these

two variables are to be regulated at the output of the loop reactor. As mentioned above, these

variables are highly coupled since increasing the conversion is correlated with an increase in

the polymer molecular weight (Equation (14)). Therefore, it is important to account for this



Figure 2: Nonlinear MPC with estimator.

coupling in the controller design. Based on the kinetic scheme, these outputs can be controlled

by using the catalyst (ppmcat) and co-catalyst (meqROH) as manipulated variables [5].

In terms of sensors, the online measurement of the monomer conversion can be performed by

either Raman, near infrared or Fourier transform infrared spectroscopy [15], whereas the polymer

molecular weight is indirectly measured by correlation with the viscosity (Equation (14)). The

viscosity can be locally determined using a viscometer [16] or by correlation to the pressure drop

(Equation (13)). The process outputs thus become the conversion at the outlet of the loop reactor

(X2), and the pressure difference between the inlet and the outlet of the loop reactor (∆Φ2).

3.2 Model predictive control

The block diagram of the model predictive control is given in Figure 2 [17], with the following

components:

P is the process. For the purpose of the simulation, it is replaced by nonlinear model given by

Equations (1)-(6).

M is the nonlinear model of the process P.

MPC is the model predictive control algorithm.

From the control structure, it can be written:

e = yp− ym (18)

yr = yset− e (19)

where the set-point signals are given by yset = [X2set ∆Φ2set ]
T . The objective of the controller

is therefore to maintain the output of the nonlinear process yp at its set-point yset , and thus to



bring the output ym of the block M to its set-point yr.

In the MPC framework this is done by computing a set of Nc future manipulated variables

(where Nc is the control horizon) that minimizes the error between the future predicted process

behavior and the reference, over the prediction horizon (Np). The general form of the MPC

cost function, involving constraints on the inputs, outputs and the variation of the input, is given

by [17–19]:

min
U

Jk =
k+Np

∑
i=k+1

[(yr(i)− ym(i))T Q(yr(i)− ym(i))]

+
k+Nc

∑
j=k+1

[(u( j)−u( j−1))T R(u( j)−u( j−1))]

subject to Ulb ≤U ≤Uub

Ylb ≤ Ym ≤ Yub

∆Ulb ≤ ∆U ≤ ∆Uub

(20)

where Q is a positive definite matrix, R is a positive semi-definite matrix and both matrices are

of dimension 2×2.

Ulb and Uub are respectively the upper and lower bounds of the input and U = [u(k+1), · · · ,u(k+

Nc)]. Similarly, Ylb and Yub are respectively the upper and lower bounds of the outputs and

Ym(k) = [(ym(k+1), · · · ,ym(k+Np)].

In this work, the following cost function was employed (with only constraints on the inputs,

R = 0, and Nc = 1):

min
u

Jk =
k+Np

∑
i=k+1

‖yr(i)− ym(i)‖2
Q

subject to Ulb ≤ u≤Uub.

(21)

In this work, this criterion is used to determine the inputs u = [ppmcat meqROH ] (respectively

the catalyst and co-catalyst flow rates) that minimize the difference between the two model

predictions ym = [X2 ∆Φ2] and their set-points. It is assumed that Nc = 1 (i.e. the control inputs

are constant over Np), R = 0 (i.e. without any constraints on the inputs), and at each sampling

time NS a new control value is implemented to the process (with NS=5 min). It should be noted

that it is necessary to have a prediction horizon longer than the residence time of the PLA

process, i.e. Np > (tR2 + tR1). Indeed, with the distributed nature of the process, there is a delay

in the process response to any change in the input. If we change an input without simulating

for a long period of time, the MPC optimization will be inefficient because the changes in the



Figure 3: Modified PI strategy to weaken the coupling between the two control loops [5].

input will not have a significant impact on the outputs that need to be optimized. However,

as the residence time is also distributed, an impact on the output can be detected before the

mean residence time of tR2 + tR1. As a compromise, Np is fixed at 40 min. The MATLAB

optimization function, ”lsqnonlin” is used. The initial guess of u(t) is set equal to the last MPC

optimal solution for every new MPC optimization in the loop.

3.3 A control strategy based on the modified PI

In order to assess the quality of the proposed MPC strategy, it is compared to the strategy

developed by [5] which is based on the classic PI controller but with a modified form of the error

that allows to take into account the coupling between the inputs as follows (Figure 3):

εX = Xset−X2 (22)

εΦ = ∆Φ2−∆Φset

(
X2

Xset

)(c1+c2)

(23)

With this choice, ∆Φset becomes the set-point only if X2 =Xset . The PI controller is not based on

a process model. It assumes the outputs to be measured online without delay (feedback control)

but it does not require the measurement of the disturbances. The calculated input is assumed to

be implemented every minute.



Figure 4: Scheme of an open-loop dynamic optimization [6].

3.4 Dynamic optimization strategy

In this section, an open-loop optimization strategy [6] is presented to highlight the shortcomings

of this strategy and thus the need to use the MPC.

The dynamic optimization aims to find the control profile which minimizes (or maximizes) an

objective function defined under constraints. The following criteria is used to determine the

inputs u = [ppmcat meqROH ] which minimize the difference between the two model predictions

ym = [X2 ∆Φ2] and their set-points yset = [X2set ∆Φ2set ]:

min
u

Jk = [
|ym1(k+Np)− y1set |

y1set
+
|ym2(k+Np)− y2set |

y2set
]

subject to Ulb ≤ u≤Uub.

(24)

A constant value of u is employed over the prediction horizon. Note that only the difference

between output obtained at the end of the prediction horizon and the set-point is minimized,

which is equivalent to optimizing over all the horizon because the same input is used over the

horizon and the system is stable. For each sampling period NS, the optimization strategy is

solved over a prediction horizon [t t +NP] (Figure 4). The optimization strategy is based on

the nonlinear process model (Equation (1)-(14)). The disturbances in the monomer feed are

assumed to be measured precisely with a delay of 10 min, but the outputs are not required

(open-loop optimization).



4 Results and discussion

The values of the model parameters are listed in Table 1. The set-points are fixed as follows: the

monomer conversion at the outlet of the loop reactor, Xset = 0.6887 and a final molecular weight

at the outlet of the last continuous reactor of Mw3,out = 2 105g.mol−1. These two conditions

are equivalent to a pressure drop in the loop reactor of ∆Φset = 0.1419. These values were

already defined in the cited literature, but they can be changed if other set-points are required.

The following lower and upper limits are explicitly imposed on the input values, u1 and u2, for

both the dynamic optimization and the MPC (while the PI controller is only constraint after

calculation):

0.1≤ ppmcat ≤ 150 ppm (25)

0.1≤ meqROH ≤ 15 mmol kg−1 (26)

In the following section, the figures are plotted as a function of τ , the adimensional ratio of the

actual time t to the residence time in the loop reactor, i.e. τ = t/tR2. In all scenarios, the model

is first simulated over 20τ to reach the nominal steady-state, then a step-change is done in the

level of the acid impurities in the feed ∆meqCOOH , to mimic a sudden impurity disturbance in

the monomer concentration (positive or negative).

The PI controller is compared first to the open-loop optimization and then to the MPC :

First a comparison between the optimization strategy and the modified PI controller (Equations

(22)-(23)) [5] is considered. It is assumed that the disturbance is perfectly measured with 10

minute delay by the optimization; the calculated inputs are implemented every 10 min (NS =

10min); and the simulation was done over a prediction horizon of 60 min (NP = 60min). For the

implementation of the modified PI controller, it is assumed that the outputs are measured online

every 5 minutes (NS = 5min) and the calculated inputs are implemented every one minute.

Second, a comparison between the MPC and the modified PI controller is considered. The

MPC assumes the outputs to be measured online and implements a new control value every 5

minuts. The MPC is not based on the measured disturbances like the dynamic optimization

strategy. Therefore, a method is first developed to estimate the disturbances that can then be

implemented to improve the MPC behavior.

The corresponding PI controller parameters were determined by Costa and Trommsdorff (2016) [5].



Table 1: Parameters values of the ROP process [5]

Parameter Value and Unit

kp 2.06 108 [Lmol−1s−1] exp
(
−63 244 [Jmol−1]

RT

)
kt 9.39 107 [Lmol−1s−1] exp

(
−83 256 [Jmol−1]

RT

)
kd kp

Meq
ρ

MM
exp

(
∆H
RT −

∆S
R

)
ka1 1 000 kp

ka2
ka1
keq

keq 1.45 105 exp
(
−50 125 [Jmol−1]

RT

)
ks 1 000 kp

MM 144.13 [g mol−1]
∆H –23 300 [J mol−1]
∆S –22 [J mol−1K−1]

c1, c2 8, 3.4
E 77 900 J mol−1

tR2 3 600 [s]
VR1 0.25 VR2
tR1 0.25 tR2
VR3 VR2
tR3 tR2
TR1 448.14 [K]
TR2 448.14 [K]
TR3 463.14 [K]
Tre f 448 [K]

MW,re f 100 000 [g mol-1]

4.1 Assessment of the open-loop optimization strategy

Different levels of positive and negative disturbances were assumed to appear in the inlet flow

rates [6]. The nominal value is d = meqCOOH = 5 mmol kg−1, to which positive disturbances

of order 1 to 14 mmol kg−1 were added as well as various levels of negative disturbances (-

1 to -5 mmol kg−1). The responses of both the PI controller (Equations (22)-(23)) [5] and the

optimization strategy to these disturbances were investigated.

Figure 5 shows the results of the monomer conversion X2 obtained by both strategies. A slightly

better performance of the optimization strategy compared to the PI controller is obtained in

these simulations as it rejects the disturbances better and recovers the nominal state faster. Much

higher disturbances were considered in Figure 6, leading to a higher impact on the pressure drop

∆Φ2, and a greater time required to reach the nominal state. The optimizing strategy allows to



obtain a much better behavior than the PI controller. The two strategies were evaluated in terms
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Figure 5: Time evolution of X2 in the presence of different disturbances. d = meqCOOH =
5+∆meqCOOH

of their capability in minimizing the off-spec time, i. e. the time period over which Mw3

(the molecular weight of the polymer at the process outlet) is greater than 2.5% at a desired

Mw3set value, if a disturbance takes place. The optimization has always been faster to recover

the nominal conditions than the PI controller, which reflects its greater robustness against the

disturbances (Figure 7).
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Figure 6: Time evolution of the pressure drops ∆Φ2 in the presence of different disturbances.



4.2 Assessment of the MPC strategy

4.2.1 Estimation of the disturbance

In the second scenario, the presence and level of the disturbance is first estimated and imple-

mented in the MPC. To do so, the nonlinear process model is used to generate input-output data

while varying the values of the disturbance ∆meqCOOH as an input in the positive and negative

directions and recording the variation in the outputs X2 and ∆Φ2. The variation in ∆Φ2 was

found to be more significant than X2 when varying ∆meqCOOH , and was thus chosen to estimate

the disturbance. The two curves of ∆meqCOOH as a function of the variation of ∆Φ2 in the

case of the positive and negative disturbance are given respectively in Figure 8 and Figure 9.

The routine cftool of MATLAB was used to get an equation that describes these curves. The

function led to a polynomial of order 5 in the case of a positive disturbance and to a polynomial

of order 4 in the case of a negative disturbance. Figure 8 and Figure 9 clearly show that each

proposed equation perfectly fits the data points previously generated by the complete kinetic

model. This equation was used to estimate the disturbance when a change in the outputs occurs,

which was then implemented within the MPC optimization.
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Figure 7: Comparison between optimization strategy and modified PI controller in terms of
off-spec time, τo f f , with different levels of disturbances, optimization (triangles), PI (circles).

4.2.2 Implementation of the MPC

It is assumed that the disturbance can only be estimated after 15 min of its occurrence. Indeed,

before 15 min, no impact on the slopes of the outputs could be perceived. Therefore, during
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Figure 8: The ∆Φ2 variation slope as a function of a positive disturbance variation

the first 15 min, u1 and u2 were set to their nominal values. Then, starting from t = 15min, the

MPC optimization is performed (Equation (21), where Nc = 1, Np = 40 and NS = 5 min) using

the estimated disturbances.

• Response to positive disturbances

It is assumed that various levels of positive disturbances may occur in the inlet flows. Figure 10

shows a comparison of the results of the monomer conversion X2 obtained by the MPC and the

modified PI controller [5]. From these simulations, the MPC strategy appears to have a slightly

better performance than the PI controller. The MPC is able to better reject the disturbances

and recover the nominal state in a shorter time, even without a direct measurement of the dis-

turbances. Significantly higher levels of disturbances were assumed in Figure 11. The figure
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Figure 9: The ∆Φ2 variation slope as a function of a negative disturbance variation
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Figure 10: Time evolution of the X2 in the presence of different positive disturbances.

shows that the larger the disturbance, the greater the impact on the pressure drop, ∆Φ2, and the

longer is the recovery of the nominal state. In this case, the MPC strategy allows to obtain a

much better behavior than the PI controller.

• Response to negative disturbances

The PI controller and the MPC response to a variety of negative disturbance levels was also

investigated. In this case, Figure 12 shows that the MPC and the PI controller have almost a

similar behavior in terms of the monomer conversion X2. Both strategies can reject the distur-

bance in a reasonably short period of time. The results of the obtained ∆Φ2 by the MPC and

the PI controller for the same levels of negative impurities are compared in Figure 13. The

drift of the modified PI controller is clearly more significant than that of the MPC strategy. It

is important to note that the inputs obtained by the MPC were implemented every 5 min while

the PI inputs were implemented every 1 min. This is due to the fact that the PI controller runs

faster and is based on measurements supposed available every minute. For the MPC, a con-

straint optimization must be solved at each sampling period (Ns = 5 min). However, the faster

implementation of the PI controller was not sufficient to compensate the deviation as done by

the MPC.

• Off-spec time

A comparison of the two strategies was made in terms of their ability to minimize the off-spec

time (Figure 14). It is found that the MPC always recovers the nominal conditions faster than

the PI controller. This reflects a greater robustness against disturbances, thus leading to a lower

τo f f .
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Figure 11: Time evolution of the pressure drops ∆Φ2 in the presence of different positive dis-
turbances.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

τ

X
2[−

]

 

 

X
2

set

X
2

PI

X
2

MPC

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

τ

X
2[−

]

 

 

X
2

set

X
2

PI

X
2

MPC

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

τ

X
2[−

]

 

 

X
2

set

X
2

PI

X
2

MPC

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

τ

X
2[−

]

 

 

X
2

set

X
2

PI

X
2

MPC

∆meq
COOH

= −3
∆meq

COOH
= −5

∆meq
COOH

= −1 ∆meq
COOH

= −2

Figure 12: Time evolution of X2 in the presence of different negative disturbances.

5 Conclusions

Three control strategies were employed to control a nonlinear process of Lactide ROP in this

work. The reaction is extremely sensitive to impurities (mainly present in the monomer feed),

and therefore it is required to develop a control strategy to recover the nominal operating condi-

tions in the case of disturbances. The control objectives are related to the process productivity

(monomer conversion) and product quality (polymer molecular weight). These outputs can be

controlled by manipulating the feed rates of catalyst and co-catalyst. As the inputs/outputs are

correlated and the process has different constraints, a model-based controller such as dynamic

optimization and MPC is required. These strategies were compared to a PI controller that was

modified to account for the coupling [5]. Both of the model-based strategies were found to allow
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Figure 13: Time evolution of ∆Φ2 in the presence of different negative disturbances.
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recovering the nominal conditions faster than the PI controller.

The employed strategies have different advantages and limitations. The PI controller has the

advantage of being fast to implement, independent of the process model and it only requires

online measurement of the outputs. The proposed modification in the error was found to handle

in a good way the coupling. However, the PI control strategy, despite effective, still provides

quite some off-spec time, especially for high level of disturbances. The proposed dynamic op-

timization strategy is open-loop, and requires a precise knowledge of the process model and the

inputs (including disturbances), but it does not require the measurement of the output. It has the

advantage of accounting for the coupling, nonlinearity and constraints. However, it is not robust

to modelling errors or unmeasured disturbances. The nonlinear MPC is based on the process



model and outputs. It can handle coupling, nonlinearity and contraints. It has the advantage

of being more robust to modelling errors and disturbances than open-loop optimization, thanks

to the use of the measured outputs. However, in this work, it was found that an estimation of

the disturbance is required to improve the MPC behavior. But, both the open-loop dynamic

optimization and the constraint nonlinear MPC are based on a time consuming optimization,

which allows implementing a new input in this system only every 10 minutes in the case of the

dynamic optimization and 5 minutes in the case of the MPC controller. So the measurements

are only required at these times (i.e. at a lower frequency than the PI). It can be concluded that

the measurement or the estimation of the disturbance is the main parameter combined to the

model makes the optimization and the MPC behave better than the PI controller. Although the

MPC is longer to run than the dynamic optimization and PI controller, since the simulation time

is between 761s and 1916s depending on the disturbance, it can still be performed online.

While the main objective of this work was to propose a control strategy for the PLA process

underhand, the estimation method of the disturbance and the method of tuning the parameters

of the MPC (mainly the prediction horizon length based on the residence time) can be useful

for other systems.
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