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Spin-orbit interactions in ultrafast molecular processes
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We investigate spin-orbit interactions in ultrafast molecular processes employing the exact factor-
ization of the electron-nuclear wavefunction. We revisit the original derivation by including spin-orbit
coupling, and show how the dynamics driven by the time-dependent potential energy surface allevi-
ates inconsistencies arising from different electronic representations. We propose a novel trajectory-
based scheme to simulate spin-forbidden non-radiative processes, and we show its performance in
the treatment of excited-state dynamics where spin-orbit effects couple different spin multiplets.

PACS numbers:

Spin-orbit (SO) interactions are responsible for fas-
cinating phenomena that often have direct implica-
tions for technological advances. SO coupling makes it
possible to tune magnetic properties of materials with
light [1, 2], whereas the interaction between electronic
charge and spin is exploited in the field of spintron-
ics [3, 4] and molecular spintronics [5]; in organic light-
emitting diodes SO effects allow to harness both singlet
and triplet excitations for achieving high efficiency [6, 7];
the possibility of controlling spins in molecular assem-
blies has even found its way towards quantum infor-
mation [8, 9]. Assessing a priori the importance of
SO coupling is difficult. Being a relativistic effect, it
is essential in describing intersystem crossings (ISCs) in
systems with heavy transition metals [10–15]. ISC de-
notes a spin-forbidden non-radiative electronic transi-
tion between states of different spin multiplicity, to be
distinguished from the ubiquitous internal conversion
(IC) that takes place between states of the same spin
multiplicity. Nonetheless, ISCs have been observed in
processes involving light-element species [16–24], thus
proving that the strength of SO interactions depends on
the molecular geometry. Therefore, a theory that is able
of treating IC and ISC on equal footing, without an a
priori knowledge of the relative importance of the two
effects, is highly desirable, especially for the study of
(photo-induced) ultrafast dynamics in complex molec-
ular systems.

The most common strategy to simulate ISC is to adapt
molecular-dynamics schemes designed for IC: quantum
wavepackets propagation techniques and trajectory-
based approaches become, thus, readily available.
Wavepacket propagation [16, 21, 25, 26] requires to pre-
compute electronic potentials as functions of nuclear
configurations, whereas trajectories evolve under the
effect of forces [27–32] determined based on on-the-
fly electronic-structure calculations – for this reason are
suited to access complex systems. Nowadays, a widely-
used technique for the treatment of IC/ISC is trajectory
surface hopping [33, 34]. For IC, classical trajectories
evolve “on” electronic potential energy surfaces, and
hop from one surface to another to mimic an electronic

transition preserving spin multiplicity. The extension of
surface hopping to ISC has been proposed by different
authors about a decade ago [28–31]. However, its use in
this context remains still highly debated, concerning the
choice of the most appropriate electronic representation
to be used [35], physically problematic, exhibiting issues
in preserving rotational invariance of the coupling with
states in the same multiplet [35, 36], and subject to in-
consistencies, in the use of different hopping rules for
IC and ISC [28]. An intriguing and timely question thus
arises, as to whether IC and ISC can be described within
the same trajectory-based approach without incurring in
the above-mentioned issues.

In the present Letter, we positively answer this ques-
tion by employing the exact factorization (EF) of the
electron-nuclear wavefunction [37, 38], and we show
how IC/ISC can be addressed, in a consistent way,
within the same theoretical construction. The EF will be
formulated accounting for relativistic SO interactions in
the time-dependent Schrödinger equation (TDSE), and a
numerical procedure for trajectory-based on-the-fly cal-
culations will be derived to simulate ultrafast IC/ISC
processes. EF implies a very simple decomposition
of the interacting electron-nuclear quantum-mechanical
problem, that has led to profound physical insights into
electronic and nuclear interactions underlying excited-
state processes in the non-relativistic limit [37–47]. Here,
our goal is to initiate a new chapter for the EF, and to
demonstrate how such theoretical construction can be
employed for numerical simulations including impor-
tant effects due to SO interactions.

We consider the Hamitonian Ĥ(x,R) = T̂n(R)+
ĤBO(x,R) + ĤSO(x,R), with x = r, s indicating
Nel electronic positions and spins, and R Nn nu-
clear positions. T̂n(R) is the nuclear kinetic en-
ergy, ĤBO(x,R) the Born-Oppenheimer (BO) Hamil-
tonian, containing the electronic kinetic energy and
the position-dependent interactions, ĤSO(x,R) the SO
interaction [28, 48, 49]. The solution of the TDSE
i~∂tΨ(x,R, t) = Ĥ(x,R)Ψ(x,R, t) can be exactly fac-
tored as Ψ(x,R, t) = ΦR(x, t)χ(R, t), with χ(R, t) the
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nuclear wavefunction, and ΦR(x, t) the electronic con-
ditional factor. Coupled electronic and nuclear equa-
tions,

i~∂tΦR =
[
ĤBO + ĤSO + Ûen[ΦR, χ]− ε(R, t)

]
ΦR (1)

i~∂tχ =

[
Nn∑
ν=1

[−i~∇ν + Aν(R, t)]2

2Mν
+ ε(R, t)

]
χ, (2)

can be derived under the condition
∫
dx|ΦR(x, t)|2 =

1 ∀R, t. The integration over the variable x stands
for an integration over r and a sum over s. The
time-dependent vector potential, Aν(R, t) = 〈ΦR(t)| −
i~∇νΦR(t)〉x, and the electron-nuclear coupling opera-
tor, Ûen =

∑
ν [−i~∇ν−Aν ]2/(2Mν)+(−i~∇νχ/χ+Aν)·

(−i~∇ν −Aν)/Mν , are defined as in the original deriva-
tion [50]. We have used here the index ν to label Nn nu-
clei, and the symbol 〈 · 〉x to indicate the integration over
x. In this formulation of EF, the expression of the time-
dependent potential energy surface (TDPES) contains
the SO interaction: ε(R, t) = 〈ΦR(t)|ĤBO+ĤSO+ Ûen−
i~∂t|ΦR(t)〉x. Under a (R, t)-dependent phase transfor-
mation of the electronic and nuclear wavefunctions, the
EF product remains unchanged, but the potentials trans-
form as standard gauge potentials [50, 51]. In particular,
the TDPES can be decomposed as the sum of a gauge-
invariant (GI) and gauge-dependent (GD) contributions,
namely εGI(R, t) = 〈ΦR(t)|ĤBO + ĤSO + Ûen|ΦR(t)〉x
and εGD(R, t) = 〈ΦR(t)| − i~∂t|ΦR(t)〉x.

This formulation of EF with SO coupling, while
formally similar to the original derivation of non-
relativistic EF, is able to clearly indicate the route to-
wards a consistent trajectory-based approach to IC/ISC.

Let us first answer the question: What is the appropri-
ate electronic representation to describe ISC, and what
forces are to be used to propagate classical trajectories?
Usually, two “viewpoints” are proposed in the litera-
ture: spin-diabatic and spin-adiabatic. The spin-diabatic
(sd) basis is the set of eigenstates of ĤBO,

ĤBO(x,R)ϕ
(J,MSJ

)

R (x) = ε
(J,MSJ

)

sd (R)ϕ
(J,MSJ

)

R (x), (3)

which are also eigenstates of Ŝ2, Ŝz (with eigenvalues
~2SJ(SJ + 1) and ~MSJ

). The index J labels the mul-
tiplets, each including 2SJ + 1 states, and ε

(J,MSJ
)

sd (R)
indicates the energy eigenvalue. The spin-adiabatic (sa)
representation is defined as[
ĤBO(x,R) + ĤSO(x,R)

]
ϕ
(j)
R (x) = ε(j)sa (R)ϕ

(j)
R (x),

(4)

where ε
(j)
sa (R) indicates the energy eigenvalue corre-

sponding to state j. The spin-diabatic basis is often pre-
ferred for interpreting spectroscopic results, since states
can be labelled depending on their spins, e.g., singlets,

or triplets; the spin-adiabatic states are, instead, combi-
nations of different spin multiplicities. In an approxi-
mate trajectory-based treatment of the dynamics, using
one or the other representation is not always equiva-
lent [28, 32, 34].

To analyze this point further, we introduce a model
Hamiltonian [65] describing the interaction of a singlet
(S) with a triplet (T ) in 1D nuclear space [35],

Ĥ = T̂n(R) +


ES(R) z(R) ib(R) z∗(R)
z∗(R) ET (R) 0 0
−ib(R) 0 ET (R) 0
z(R) 0 0 ET (R)

 .

(5)

The details of the model are given in the Support-
ing Information (Section SI.1). The electronic matrix
is given in the spin-diabatic basis, with diagonal el-
ements 〈ϕ(J,MSJ

)

R |ĤBO|ϕ
(J,MSJ

)

R 〉, and off-diagonal ele-

ments 〈ϕ(J,MSJ
)

R |ĤSO|ϕ
(K,MSK

)

R 〉.
If trajectory-based calculations are performed in the

spin-diabatic basis, (i) the forces are computed from the
diagonal elements of the electronic matrix in Eq. (5), and
(ii) the coupling among electronic states is mediated by
the nuclear kinetic energy and by the SO coupling. The
kinetic coupling is often called nonadiabatic, and is re-
sponsible for IC. Nonadiabatic and SO couplings might
be of very different nature, the former spatially localized
in regions of nuclear configuration space where elec-
tronic states are close in energy or degenerate, the latter
extremely delocalized (see Section SI.1 of the Supporting
Information). For this reason, the algorithms designed
for IC usually cannot be directly applied to ISC and need
to be revisited [27, 28, 30, 32, 35].

If calculations are performed in the spin-adiabatic ba-
sis, SO interactions do not explicitly appear in the prob-
lem, since (i) classical forces are determined from the en-
ergy eigenvalues of ĤBO + ĤSO, and (ii) the coupling
among the states becomes fully kinetic. In this case, IC
and ISC can be treated fully consistently within the same
schemes. Apart from preventing the labelling of the spin
states for interpretation purposes, using a spin-adiabatic
representation presents a practical drawback: quantum-
chemistry codes widely used for on-the-fly dynamics do
not provide efficient ways for computing gradients of
the SO coupling (that are needed for the forces) [30, 52],
unless simplifications in the electronic-structure theory
are invoked [53].

With the EF, instead: (i) classical forces that drive
nuclear dynamics are determined from the time-
dependent vector potential and TDPES of Eq. (2) [51, 54–
61], whose expressions are invariant if different repre-
sentations are used, i.e., either spin-adiabatic or spin-
diabatic; (ii) the coupling among electronic states is fully
accounted for by ĤBO+ĤSO and by the electron-nuclear
coupling operator Ûen of Eq. (1). To illustrate how ISCs
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FIG. 1: Singlet and triplet energy curves (black lines) com-
pared with εGI(R, t) at t = 0, 129, 248 fs (colored dots). The
nuclear densities – divided by 10 – at the same times are shown
as colored lines. Rσ = 8.0 bohr is the position where the SO
coupling changes sign.

are treated within the EF, we compute the exact TDPES
for the model Hamiltonian (5), by initializing the dy-
namics in the singlet state, as described in the Support-
ing Information (Section SI.2). The gauge is set by im-
posing that the vector potential potential is identically
zero [51]. Figure 1 shows three snapshots along the dy-
namics of εGI(R, t) (colored dots), superimposed to the
spin-diabatic curves (black lines). The nuclear densities
at the corresponding times are shown as well (colored
lines). We recall here that the GI part of the TDPES is
the only term containing SO interaction. In Fig. 1 it is
clear that εGI(R, t) adapts its shape along the dynamics,
and in particular in the region where ES(R) and ET (R)
cross, the TDPES slightly follows the (spin-diabatic)
shape of the singlet before smoothly switching to the
triplet. For completeness, we mention that εGD(R, t) is
either constant or piecewise constant as function of R,
such that it does not alter the slope of εGI(R, t) and it
only reduces the height of its step [51, 62, 63].

A second question naturally arises at this point:
Is it possible to employ the EF to derive a prac-
tical trajectory-based scheme to simulate ISCs? A
coupled-trajectory mixed quantum-classical (CT-MQC)
algorithm [64] has been derived previously from Eqs. (1)
and (2), and applied to describe ultrafast IC in
molecules [55, 56, 58]. As the approximations of the
original CT-MQC rely on the adiabatic representation,
the extension of this method to the inclusion of SO
effects in the spin-adiabatic basis is straightforward.
However and as mentioned earlier, electronic-structure
methods usually provide quantities in the spin-diabatic
representation. Capitalizing on the representation-free
nature of the EF quantities, we show here that CT-MQC
can be used in any representation by expressing it also
in a spin-diabatic basis. Therefore, we show in the

following that, within the EF formalism, IC and ISC
can be treated fully consistently even in the approxi-
mate, trajectory-based formulation. The gauge freedom
allows us to avoid calculation of gradients of the SO
Hamiltonian.

A classical limit performed on the nuclear equation (2)
allows us to define the force used to propagate the tra-
jectories employing the TDPES, with inclusion of SO
coupling, and the time-dependent vector potential. If
P (α)
ν (t) denotes the momentum of the nucleus ν along

the trajectory α at time t, the expression of the force is

Ṗ
(α)

ν (t) = F
(α)
ν,Eh(t) + F

(α)
ν,deco(t) + F

(α)
ν,SO(t). (6)

The first two terms on the right-hand side are the same
as in CT-MQC, namely a mean-field-like term – indi-
cated as “Ehrenfest” (Eh) – and a term accounting for
quantum decoherence – labelled “deco” [42]. The addi-
tional term accounts for SO interactions, and its expres-
sion will be given below. The electronic wavefunction
ΦR(x, t) is expanded in the spin-diabatic basis of Eq. (3),
and we indicate with the symbol CJ,MSJ

(R, t) the ex-
pansion coefficients. Evolution equations for the coeffi-
cients can be derived from Eq. (1). When the classical
limit is performed, the dependence on R is transformed
into a dependence on the trajectory α, such that

Ċ
(α)
J,MSJ

(t) = Ċ
(α)
J,MSJ

,Eh(t) + Ċ
(α)
J,MSJ

,deco(t) + Ċ
(α)
J,MSJ

,SO(t).

(7)

As in Eq. (6) the mean-field-like and the quantum-
decoherence terms are the same as in the original deriva-
tion of CT-MQC. SO effects are accounted for in the ad-
ditional term.

The detailed procedure yielding the SO terms in
Eqs. (6) and (7) follows the same steps as for the non-
relativistic terms of the original CT-MQC (see Refs. [42,
58, 60]). Those additional terms are

F
(α)
ν,SO(t) =

2

~
∑
J,K

∑
MSJ

,MSK

f
(α)
ν,JMSJ

(t)× (8)

Im
[
H

(α)
SO,JK,MSJ

MSK
(t)C

(α) ∗
J,MSJ

(t)C
(α)
K,MSK

(t)
]

Ċ
(α)
J,MSJ

,SO(t) = − i
~
∑

K,MSK

H
(α)
SO,JK,MSJ

MSK
(t)C

(α)
K,MSK

(t),

(9)

with f
(α)
ν,JMSJ

(t) =
∫ t−∇νε(J,MSJ

),(α)

sd dτ the (spin-
diabatic) force accumulated along the trajectory α.
Eqs. (6) and (7) have been derived by imposing that the
scalar potential in the nuclear equation is fully absorbed
into the vector potential [60].

We test the new algorithm on the model system de-
fined in Eq. (5). The TDSE has been solved exactly to
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FIG. 2: Left: Singlet and triplet potential curves (black lines)
compared to the spin-adiabatic curves (colored lines) for dif-
ferent strengths of the SO coupling. Right: Exact (gray lines)
and CT-MQC-SO (colored lines) populations of the singlet
(blue) and triplet (light-blue) states.

provide benchmark data for the trajectory-based solu-
tion. To demonstrate the robustness of the new algo-
rithm, the time trace of electronic populations is shown
in Fig. 2 (right panels) for different strengths of the SO
interaction (left panels). The agreement between ex-
act (gray lines) and trajectory-based (blue, singlet, and
light-blue, triplets, lines) results is remarkable in all
regimes. As it is clear from Fig. 2 the components of
the triplet can be treated separately in the new scheme,
which we will refer to as CT-MQC-SO, and it is not
necessary to introduce ad hoc schemes to estimate a
“group” SO coupling [31, 35, 36] as in surface hopping.

Note that, due to the delocalized nature of the SO
coupling, Eqs. (8) and (9) can only go to zero via a
decoherence process, namely if a given trajectory “col-
lapses” to a single electronic state at long times. In this
case, the coefficient corresponding to that state becomes
unity, while all others are zero. Therefore, the quantum-
decoherence terms in Eqs. (6) and (7), signature of a
coupled-trajectory scheme such as CT-MQC-SO [60], are
essential to avoid spurious population transfers.

The final point to be addressed relates to the ques-
tion: Is the dynamics generated based on CT-MQC-SO
really consistent for IC and ISC? As we have stated pre-
viously, the treatment of IC and ISC is really consistent
only in the spin-adiabatic basis, because kinetic and SO
couplings are treated in the same way. To prove con-
sistency within CT-MQC-SO, we will compare results
of the trajectory-based calculations in the spin-adiabatic
and spin-diabatic basis. To this end, we introduce the
transformation presented in Ref. [35], and we reduce the
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MQC-SO (red and orange) calculations for two values of Rσ .
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4-states Hamiltonian of Eq. (5) to a 2-states problem

Ĥ = T̂n(R) +

(
ES(R) α(R)
α(R) ET (R)

)
, (10)

whose details are given in the Supporting Information
(Section SI.1). We solve exactly the TDSE and we com-
pute the populations of the two spin-adiabatic states.
They are compared to the trajectory-based results in
Fig. 3 [66]. Together, Fig. 2 and 3 show perfect agree-
ment between exact and CT-MQC-SO results in both
spin-diabatic and spin-adiabatic basis, and thus consis-
tency between propagation in the two representations.
For completeness, and since in the asymptotic t → +∞
region spin-diabatic and spin-adiabatic states are the
same, we indicate with an arrow the final populations
of the singlet/triplet states in Fig. 3.

To investigate further the differences between CT-
MQC-SO in the two representations for the model
Hamiltonian (10), we compare in Fig. 4 the spatial distri-
butions of trajectories at t = 0, 129, 248 fs, and we com-
pute the value of the GI part of the TDPES at the posi-
tion of each trajectory. As reference, we also show the
exact value of the TDPES. In the simulation performed
in the spin-adiabatic representation (colored dots), the
shape of εGI(R, t) (purple lines) is closely reproduced.
By contrast, the trajectories evolving in the spin-diabatic
representation (gray dots) seem to evolve slightly faster
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in comparison to the spin-adiabatic trajectories. The
reason for this discrepancy is twofold: (i) the approxi-
mations underlying CT-MQC-SO, in particular the ne-
glect of spatial derivatives of the expansion coefficients
CJ,MSJ

(R, t), and (ii) the difficulty in accurately cap-
turing oscillating terms of the TDPES when the spin-
diabatic basis is employed (see Section SI.3 of the Sup-
porting Information). Figure 3 proves that CT-MQC-
SO is robust, for instance, to predict electronic popula-
tions, but not all observables might be estimated with
the same level of accuracy as shown in Fig. 4.
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It is worth stressing again, that EF is a representation-
free formulation of the TDSE, thus the quantum-
classical limit performed on Eqs. (1) and (2) is
representation-independent. The actual implemen-
tation of the quantum-classical equations, i.e., the
“quantum-classical algorithm”, relies on combinations
of electronic-structure information that depend on the
representation. In CT-MQC-SO, we succeeded in com-
puting TDPES and time-dependent vector potential
without altering the original algorithm. This feature
is a strength, especially since we showed that nuclear
dynamics in different representations are very similar.
However, discrepancies might be encountered, and only
systematic studies under different conditions might pro-
vide information of general validity.

To conclue, in this work we have proposed an exact-
factorization formulation of the quantum-mechanical
electron-nuclear problem including spin-orbit inter-
actions. The aim is to be able to address ultrafast
intersystem crossings by employing the theoretical
framework previously develop to investigate internal
conversions. Starting with the exact factorization,
we have briefly described the procedure leading to a
trajectory-based algorithm readily suitable for on-the-
fly molecular dynamics. We have applied the algorithm,

dubbed CT-MQC-SO, to simulate the dynamics in a
1D model system representing interacting singlet and
triplet states. Comparisons between CT-MQC-SO
and exact dynamics have highlighted the extremely
good performance of the new algorithm in both the
spin-adiabatic and spin-diabatic representations.
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