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Abstract Using a self-generated hypoxic assay, we show that the amoeba Dictyostelium

discoideum displays a remarkable collective aerotactic behavior. When a cell colony is covered,

cells quickly consume the available oxygen (O2) and form a dense ring moving outwards at constant

speed and density. To decipher this collective process, we combined two technological

developments: porphyrin-based O2 -sensing films and microfluidic O2 gradient generators. We

showed that Dictyostelium cells exhibit aerotactic and aerokinetic response in a low range of O2

concentration indicative of a very efficient detection mechanism. Cell behaviors under self-

generated or imposed O2 gradients were modeled using an in silico cellular Potts model built on

experimental observations. This computational model was complemented with a parsimonious ‘Go

or Grow’ partial differential equation (PDE) model. In both models, we found that the collective

migration of a dense ring can be explained by the interplay between cell division and the

modulation of aerotaxis.

Introduction
Oxygen is the main electron acceptor for aerobic organism to allow efficient ATP synthesis. This

high-energy metabolic pathway has contributed to the emergence and diversification of multicellular

organism (Chen et al., 2015). While high O2 availability in the environment seems a given, its rapid

local consumption can generate spatial and temporal gradients in many places, including within mul-

ticellular organism. Oxygen level and gradients are increasingly recognized as a central parameter in

various physiopathological processes (Tonon et al., 2019), cancer and development. The well-known

HIF (hypoxia-inducible factor) pathway allows cells to regulate their behavior when exposed to hyp-

oxia. At low O2 levels, cells accumulate HIFa leading to the expression of genes that support cell

functions appropriate to hypoxia (Pugh and Ratcliffe, 2017).

Another strategy used by organisms facing severe oxygen conditions is to move away from hyp-

oxic regions, a mechanism called aerotaxis and first described in bacteria (Engelmann, 1881;

Winn et al., 2013). Aerotaxis will occur at the interface between environments with different oxygen

content, such as soil/air, water/air or even within eukaryotic multicellular organisms between differ-

ent tissues (Lyons et al., 2014). In such organisms, oxygen was proposed to be a morphogen as in

placentation (Genbacev et al., 1997) or a chemoattractant during sarcoma cell invasion
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(Lewis et al., 2016). Aerotaxis may also play a role in morphogenesis. The notion that gradients of

O2 and energy metabolism govern spatial patterning in various embryos dates back to the classic

work of Child, 1941. Such notions have mostly been abandoned due to the inability to visualize such

a gradient or clarify whether they are the result or the cause of developmental patterning

Figure 1. Formation and dynamics of a dense ring of cells after vertical confinement. (A) Snapshots of early

formation, scale bars: 500 mm. (B) Snapshots at longer times imaged under a binocular, scale bars: 1 mm. (C) Close

up on a ring (band with a higher density on the right hand side) already formed moving rightward and showing

different cellular shapes in the ring and behind it, scale bar: 100 mm. (D) Kymograph of cell density over 20 hr

showing the formation and migration of the highly dense ring. (E) Cell density profiles in the radial direction at

selected time points.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Raw data for Figure 1.

Figure supplement 1. Measurement of the confinement height 105 min after covering a cell colony with ~1000
cells plated on plastic with a coverglass using.

Figure supplement 2. Ring formation time decreases with cell number.

Figure supplement 2—source data 1. Raw data for Figure 1—figure supplement 2.

Figure supplement 3. Morphological properties of a propagating ring.

Figure supplement 3—source data 1. Raw data for Figure 1—figure supplement 3.

Figure supplement 4. Effective cell diffusion constant and instantaneous speeds as a function of distance to the
center.

Figure supplement 4—source data 1. Raw data for Figure 1—figure supplement 4.

Figure supplement 5. Cell velocity bias in the spot assay as a function of distance to the center.

Figure supplement 5—source data 1. Raw data for Figure 1—figure supplement 5.
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(Coffman and Denegre, 2007). Even at the single-cell level, in vitro experimental studies on aero-

taxis are rare. One reason might be technical: gradient control and live monitoring of oxygen con-

centrations at the cellular level are difficult. More recently, Chang et al. found an asymmetric

distribution of hypoxia-inducible factor regulating dorsoventral axis establishment in the early sea

urchin embryo (Chang et al., 2017). Interestingly, they also found evidence for an intrinsic hypoxia

gradient in embryos, which may be a forerunner to dorsoventral patterning.

Self-generated chemoattractant gradients have been reported to trigger the dispersion of mela-

noma cells (Muinonen-Martin et al., 2014; Stuelten, 2017), Dictyostelium cells (Tweedy et al.,

2016) or the migration of the zebrafish lateral line primordium (Donà et al., 2013;

Venkiteswaran et al., 2013). The mechanism is simple and very robust: the cell colony acts as a sink

for the chemoattractant, removes it by degradation or uptake creating a gradient that, in turn,

attracts the cells as long as the chemoattractant is present in the environment. Physiologically speak-

ing, self-generated gradients have been demonstrated to increase the range of expansion of cell col-

onies (Cremer et al., 2019; Tweedy and Insall, 2020) and to serve as directional cues to help

various cell types navigate complex environments, including mazes (Tweedy et al., 2020). Recently,

it was demonstrated that after covering an epithelial cell colony by a coverglass non permeable to

O2, peripheral cells exhibit a strong outward directional migration to escape hypoxia from the center

of the colony (Deygas et al., 2018). This is a striking example of a collective response to a self-gen-

erated oxygen gradient by eukaryotic cells. Oxygen self-generated gradients could therefore play

important roles in a variety of contexts, such as development, cancer progression, or even environ-

mental navigation in the soil.

Dictyostelium discoideum (Dd) is an excellent model system to study the fairly virgin field of aero-

taxis and of self-generated gradients. Dd is an obligatory aerobic organism that requires at least 5%

O2 to grow at optimal exponential rate (Cotter and Raper, 1968; Sandonà et al., 1995) while

slower growth can occur at 2% O2. However, its ecological niche in the soil and around large amount

of bacteria can result in reduced O2 availability. During its multicellular motile stage, high oxygen

level is one of the signal used to trigger culmination of the migrating slug (Xu et al., 2012). For

many years, Dd has been a classical organism to study chemotaxis and has emulated the develop-

ment of many models of emergent and collective behavior since the seminal work of Keller and

Segel (Hillen and Painter, 2009; Keller and Segel, 1970). An integrated approach combining bio-

logical methods (mutants), technological progress, and mathematical modeling is very valuable to

tackle the issue of aerotaxis.

In this article, we study the influence of O2 self-generated gradients on Dd cells. Using a simple

confinement assay, microfluidic tools, original oxygen sensors and theoretical approaches, we show

that oxygen self-generated gradients can direct a seemingly collective migration of a cell colony.

Our results confirm the remarkable robustness

and long-lasting effect of self-generated gra-

dients in collective migration. This case where

oxygen is the key driver also suggests that self-

generated gradients are widespread and a pos-

sible important feature in multicellular

morphogenesis.

Results

Confinement triggers formation
and propagation of a self-
sustained cell ring
To trigger hypoxia on a colony of Dd cells, we

used a vertical confinement strategy

(Deygas et al., 2018). A spot of cells with a

radius of about 1 mm was deposited and cov-

ered by a larger glass coverslip with a radius of 9

mm. We measured the vertical confinement

through confocal microscopy and found the

Video 1. Initial phase (0–4 hr) of ring formation and

migration. Scale bar: 500 mm.

https://elifesciences.org/articles/64731#video1
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height between the bottom of the plate and the coverslip to be 50 mm (Figure 1—figure supple-

ment 1).

Using spots containing around 2000 cells (initial density around 103 cells/mm2), the formation of a

dense ring of cells moving outwards was observed as quickly as 30 min after initiation of the confine-

ment (Figure 1A and Video 1). This formation time however depended non-linearly on initial cell

density (the denser, the faster, Figure 1—figure supplement 2). Once triggered, this collective

migration was self-maintained for tens of hours, even days and the ring could, at these points, span

centimeters (Figure 1B).

Notably, as the ring expanded outwards, it left a trail of cells behind. This led to the formation of

a central zone populated by cells which did not contribute directly to the migration of the ring

(Figure 1B) but were still alive and moving albeit a clear elongated phenotype resembling pre-

aggregative Dd cells (Figure 1C and Video 2). In comparison, cells in the ring or outside the colony

were rounder, as usual vegetative cells (Delanoë-Ayari et al., 2008).

To study the properties of the ring, we computed density profiles using radial coordinates from

the center of the colony to study cell density as a function of time and distance to the center

(Figure 1D–E). We found that after a transitory period corresponding to the ring passing through

the initial spot, the density in the ring, its width and its speed all remained constant over long time

scales (Figure 1—figure supplement 3). The speed and density of the ring were found to be 1.2 ±

0.3 mm/min (mean ± std, N=9 independent experiments) and 1.9 103 ± 0.3 103 cells/mm2 (mean ±

std, N=4 independent experiments, that is fourfold higher than behind it, Figure 1E) respectively.

The density of cells left behind the ring was also found to remain constant after a transient regime

(Figure 1D). As the diameter of the ring increased over time, the absence of changes in morphology

implies an increase of the number of cells and thus an important role of cell division.

Overall, this self-sustained ring propagation is very robust and a long lasting collective phenotype

that can easily be triggered experimentally. This shows that the spot assay is an excellent experimen-

tal system to study the response of a variety of cell types to vertical confinement and its physiologi-

cal consequences (Deygas et al., 2018).

Cell dynamics in different regions
Following the reported shape differences, we questioned how cells behaved dynamically in different

regions. To do so, we performed higher resolution, higher frame rate experiments to allow cell track-

ing over times on the order of tens of minutes. Both the cell diffusion constant and instantaneous

cell speeds were fairly constant throughout the entire colony (Figure 1—figure supplement 4). Cell

diffusion was 28.2 ± 1.4 mm2/min (N=3 indepen-

dent experiments, each containing at least 2000

cells), comparable to our measurement of activ-

ity at very low oxygen level in the microfluidic

device (see below). To test the influence of

motion bias, we projected cell displacements on

the radial direction and computed mean speeds

in this direction as a function of distance to the

center. Random motion, either persistent or not,

would lead to a null mean radial displacement

whereas biased migration would be revealed by

positive (outward motion) or negative (inward

motion) values. Here, we found that significantly

non-zero biases were observed only in a region

spanning the entire ring and a few tens of

microns behind and in front of it with the stron-

gest positive biases found in the ring (Figure 1—

figure supplement 5).

Overall, our results show that the different

regions defined by the ring and its dynamics can

be characterized in terms of cell behavior: (i)

behind the ring in the hypoxic region: elongated

Video 2. High framerate, high-resolution imaging of

cell dynamics in and behind the ring over 15 min. Time

is in min:s and the scale bar represents 100 mm.

https://elifesciences.org/articles/64731#video2
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shape, normal speeds, and low bias; (ii) in the ring: round shape, normal speeds and high bias.

Response of Dd cells to controlled oxygen gradients
The spot assay is experimentally simple but is not ideally suited to decipher the response of Dd cells

to hypoxia since local concentrations and gradients of oxygen are coupled to cell dynamics and thus

very difficult to manipulate. We hence designed a new double-layer PDMS microfluidic device allow-

ing to quickly generate oxygen gradients in a continuous, controlled manner (Figure 2A). Briefly,

cells were seeded homogenously within a media channel positioned 500 mm below two gas channels

continuously perfused with pure nitrogen on one side and air on the other. As PDMS is permeable

to these gases, the gas flows imposed hypoxic conditions on one side of the media channel while

the other was kept at atmospheric oxygen concentration. Of note, the distance between the two

gas channels, thereafter called the gap, varied from 0.5 mm to 2 mm in order to modify the steep-

ness of the gradients in the median region of the media channels (Figure 2A and

Materials and methods).

To make sure that the gas flows were sufficient to maintain a constant O2 distribution against lea-

kages and against small variation in the fabrication process, we also developed O2-sensing films to

be able to experimentally measure O2 profiles both in the microfluidic devices and in the spot assay.

These films consisted of porphyrin based O2 sensors embedded in a layer of PDMS. As O2 gets

depleted, the luminescence quenching of the porphyrin complex is reduced leading to an increase

in fluorescence intensity (Ungerböck et al., 2013). Quantitative oxygen measurements were then

extracted from this fluorescent signal using a Stern-Volmer equation (see Materials and methods

and Figure 2—figure supplements 1–4 for details).

Within 15 min, we observed the formation of a stable O2 gradient in the devices closely resem-

bling numerical predictions with or without cells (Figure 2B and Figure 2—figure supplements 5–

7).

We then turned our attention to the reaction of the cells to this external gradient. We first noticed

that depending on local O2 concentrations, cell motility was remarkably different. Using cell tracking,

we found that cell trajectories seemed much longer and more biased in hypoxic regions (Figure 2C).

These aerokinetic (large increase in cell activity) and aerotactic responses were confirmed by quanti-

fying the mean absolute distance travelled by cells (Figure 2D top), or the mean distance projected

along the gradient direction (Figure 2D bottom) in a given time as a function of position in the

device (Figure 2D). Since cells in the microfluidic devices were also experiencing oxygen gradients,

we further tested if the observed was true aerokinesis. To do so, we compared cell motility in

homogenous environments of either 20.95% or 0.4% O2. We found cell diffusion constant to be

D=40.2±9.6 mm2/min (mean ± std) at 0.4% (Figure 2—figure supplement 8), comparable to our

measurements in the center of the spot (Figure 1—figure supplement 4). At atmospheric oxygen

concentrations though, this effective diffusion was clearly reduced as we measured it to be

D=19.2±8.8 mm2/min (Figure 2—figure supplement 8). The very significant difference (p<0.0001)

demonstrates that Dd cells show an aerokinetic positive response to low oxygen, even in the

absence of gradients. The second important observation stemming from the microfluidic experi-

ments is an accumulation of cells at some midpoint within the cell channel (Figure 2E). Naively, one

could have expected cells to follow the O2 gradient over its entire span leading to an accumulation

of all cells on the O2 rich side of the channel. This did not happen and, instead, cells seemed to stop

responding to the gradient at a certain point. Similarly, we observed a strong positive bias in hypoxic

regions but the bias quickly fell to 0 as cells moved to oxygen levels higher than about 2%

(Figure 2D), confirming that the observed cell accumulation was a result of differential migration

and not, for example, differential cell division. In addition, if we inverted the gas channels halfway

through the experiment, we observed that the cells responded in around 15 min (which is also the

time needed to re-establish the gradient, see Figure 2—figure supplement 6) and showed the

same behavior, albeit in reverse positions. We measured the bias for the different gaps and for the

situation of reversed gradient and obtained a value of 1.1 ± 0.4 mm/min (N=6, three independent

experiments and for each, both directions of the gradient, each value stemming from a few hundred

cells).

Of note, the position at which cells accumulated and stopped responding to the gradient was still

in the region were the gradient was constantly increasing. This led to the hypothesis that, in addition
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Figure 2. Dictyostelium single cells are attracted by an external O2 gradient when O2 level drops below 2%. (A) Schemes of the new double-layer

PDMS microfluidic device allowing the control of the O2 gradient by the separation distance (gap) between two gas channels located 0.5 mm above

the three media channels and filled with pure nitrogen, and air (21% O2). (B) Measured O2 concentration profiles 30 min after N2-Air injection to the left

and right channels respectively (0–21% gradient) as a function of the position along the media channel for the three gaps. Error bars (see Methods) are

reported only for gap 1 mm for clarity. The inset shows the 0–2.5% region under the nitrogen gas channel (arrows, see E). (C) Trajectories lasting 1 hr

between 3 hr and 4 hr after establishment of a 0–21% gradient. Cells are fast and directed toward the air side in the region beyond the �1000 mm limit

(O2<2%). (D) Cell net displacement over 30 min (end to end distance, top kymograph) and 30 min displacement projected along gradient direction

(bottom kymograph). Cells are fast and directed toward O2, where O2<2%, within 15 min after 0–21% gradient establishment at t=0. At t=180 min, the

gradient is reversed to 21–0% by permuting gas entries. Cells within 15 min again respond in the 0–2% region. (E) Relative cell density histogram

(normalized to t=0 cell density) as a function of the position along media channel. Top panel: long term cell depletion for positions beyond �1600 mm

(O2<0.5%, see inset of B) and resulting accumulation at about �1200 mm for gap 1 mm channel. The overall relative cell density increase is due to cell

divisions. Bottom panel: cell depletion and accumulation at 10 hr for the three gaps. The empty and filled arrows pointing the limit of the depletion

region, and max cell accumulation respectively are reported in the inset of B.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Raw data for Figure 2.

Figure supplement 1. Oxygen profile measurements inside the microfluidic gradient generator device with a sensing film mounted on the bottom of
the media channel.

Figure supplement 1—source data 1. Raw data for Figure 2—figure supplement 1.

Figure supplement 2. Typical calibration data of sensing films mounted on a microfluidic device.

Figure supplement 2—source data 1. Raw data for Figure 2—figure supplement 2.

Figure supplement 3. Typical calibration data and oxygen profile measurement with covered sensing films for the spot assay.

Figure supplement 3—source data 1. Raw data for Figure 2—figure supplement 3.

Figure supplement 4. Image analysis pipeline to quantify oxygen map from O2 sensitive sensing films.

Figure supplement 5. Numerical simulations of oxygen profiles.

Figure supplement 5—source data 1. Raw data for Figure 2—figure supplement 5.

Figure supplement 6. Experimental oxygen gradient establishment in the microfluidic device (gap 0.5 mm).

Figure supplement 6—source data 1. Raw data for Figure 2—figure supplement 6.

Figure supplement 7. Influence of plated cells on the steady oxygen tension in the microfluidic device (Computational results).

Figure supplement 7—source data 1. Raw data for Figure 2—figure supplement 7.

Figure supplement 8. Aerokinesis of Dd cells in homogenous environments.

Figure supplement 8—source data 1. Raw data for Figure 2—figure supplement 8.

Cochet-Escartin, Demircigil, et al. eLife 2021;10:e64731. DOI: https://doi.org/10.7554/eLife.64731 6 of 34

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.64731


to gradient strength, O2 levels also play an important role in setting the strength of aerotaxis dis-

played by Dd cells.

Furthermore, when we compared experiments performed with different gaps, we found that the

position of cell accumulation varied from one channel to another (Figure 2E). However, our O2 sen-

sors indicated that the accumulation occurred at a similar O2 concentration of about 1% in all three

channels (inset of Figure 2B) thus strongly hinting that the parameter controlling the aerotactic

response was O2 levels.

Overall, these experiments in controlled environments demonstrated two main features of the

response of Dd cells to hypoxia: a strong aerokinetic response and a positive aerotactic response,

both modulated by local O2 levels regardless of the local gradient. These results reveal a subtle

cross talk between O2 concentrations and gradients in defining cell properties and it would be very

informative, in the future, to study in details the reaction of Dd cells to various, well defined hypoxic

environments where O2 concentrations and gradients can be independently varied.

Figure 3. Interplay between ring dynamics and O2 profiles. (A) (i) Treated image showing cell distribution at t=10h, (ii) raw fluorescent signal indicative

of strong O2 depletion, (iii) reconstructed image showing the center of mass of all detected cells and quantitative O2 profiles (colorbar, in % of O2),

scale bars: 1 mm. (B) O2 profiles averaged over all angles and shown at different times. (C) Radial profile of cell density and O2 concentration at t=10h

showing the position of the ring relative to the O2 profile. (D) Kymograph of O2 concentration (colorbar in %) with the position of the ring represented

as a red line. The colormap is limited to the 0–2% range for readability but earlier time points show concentrations higher than the 2% limit. (E) O2

concentration as measured at the position of the ring as a function of time showing that the ring is indeed following a constant concentration after a

transitory period.

The online version of this article includes the following source data for figure 3:

Source data 1. Raw data for Figure 3.
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Coupled dynamics between oxygen profiles and collective motion
Thanks to these results, we turned our attention back to the collective migration of a ring of cells

and asked whether similar aerotactic behaviors were observed under self-generated gradients. To

do so, we performed spot experiments on the O2-sensing films described above which allowed us to

image, in parallel, cell behavior and O2 distribution (Figure 3A, Figure 2—figure supplement 3 and

Video 3).

In a first phase, preceding the formation of the ring, cell motion was limited and the structure of

the colony remained mostly unchanged. As O2 was consumed by cells, depletion started in the cen-

ter and sharp gradients appeared at the edges of the colony (Figure 3B–C).

Then, the ring formed and started moving outwards, O2 depletion continued and the region of

high O2 gradients naturally started moving outwards (Figure 3B). At this point, coupled dynamics

between the cells and the O2 distribution appeared and we observed that the position of the ring

closely followed the dynamics of the O2 field (Figure 3D), that is it followed a constant concentration

of oxygen of 0.25% (Figure 3C).

In the process, three distinct regions were created. Behind the ring, O2 was completely depleted

and thus no gradient was visible. In front of the ring, the O2 concentration remained high with high

gradients. Finally, in the ring region, O2 was low (<1%) and the gradients were strong. Based on our

results in externally imposed gradients, we would thus expect cells to present a positive aerotactic

bias mostly in the ring region which is indeed what we observed (Figure 1—figure supplement 5).

Minimal cellular Potts model
Based on these experimental results, we then asked whether this subtle response of Dd cells to com-

plex oxygen environments was sufficient to explain the emergence of a highly stable, self-maintained

collective phenomenon. To do so, we developed cellular Potts models based on experimental obser-

vations and tested whether they could reproduce the observed cell dynamics. Briefly, the ingredient

underlying the model are as follows (details can be found in the Materials and methods section).

First, all cells consume the oxygen that is locally available at a known rate (Torija et al., 2006). Cell

activity increases at low O2. Cells respond positively to O2 gradients with a modulation of the

strength of this aerotaxis based on local O2 concentrations, as observed in our microfluidic experi-

ments. Finally, all cells can divide as long as they sit in a high enough O2 concentration (chosen at

0.7%) since it was demonstrated that cell division slows down in hypoxic conditions (Schiavo and

Bisson, 1989; West et al., 2007). Of note, all parameters were scaled so that both time and length

scales in the Potts models are linked to experi-

mental times and lengths (see

Materials and methods).

Although this model is based on experimental

evidence, some of its parameters are not directly

related to easily measurable biological proper-

ties. Therefore, we decided to fit our parameters

to reproduce as faithfully as possible the results

of our microfluidic experiments. Through a trial

and error procedure, we managed to reproduce

these results qualitatively and quantitatively

(Video 4) in terms of collective behavior, cell

accumulation, and individual cell behavior (Fig-

ure 4—figure supplement 1).

We then applied this model and added O2

consumption by cells, with initial conditions mim-

icking our spot assay and other ingredients mim-

icking the vertical confinement. We observed

the rapid formation and migration of a ring

(Figure 4A–B, Video 5). This ring was remark-

ably similar to that observed in experiments. In

particular, we found its speed to be constant

after an initial transitory period (Figure 4C,

Video 3. Reconstruction of cell and oxygen dynamics

from a spot experiment on an oxygen sensor. Cell

positions are shown as black dots, oxygen in colors

(scale bar in %). The entire movie spans 15 hr of

experiment.

https://elifesciences.org/articles/64731#video3
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Figure 4—figure supplement 2). This speed

was also comparable to experimental ones. Simi-

larly, the morphology of these simulated rings

was constant over time with a fixed cell density

and width (Figure 4—figure supplement 2).

Finally, cell behavior was qualitatively well repro-

duced by this model (Figure 4—figure supple-

ment 3).

In terms of coupled dynamics between cell

density and O2 profiles, we found here too that

the driving force behind this collective phenome-

non was the fact that the ring followed a con-

stant O2 concentration (Figure 4D–E).

We then asked what were the key ingredients

in the model to trigger this phenomenon, a

question we explored by tuning our original

Potts model. We started by dividing cell con-

sumption of oxygen by a factor of 3 (Figure 5A)

and found that it did not significantly change the

ring speed but could change the aspect of cell

density in the central region. We then turned our

attention to other key elements in the model.

If we turned off cell division in our models,

the formation of the ring was mostly unchanged

but after a short time, the ring started slowing

down and even stopped as cell density was no

longer sufficient to reach highly hypoxic condi-

tions (comparing Figure 5A and B). Second, we

asked whether the observed and modeled aero-

kinesis was necessary to reproduce the collective

migration. We found that it wasn’t as models ran

at different effective temperatures applied to all

cells regardless of local O2 concentrations all

showed qualitatively similar behavior (see for

example Figure 5C). Of note though, lower

effective temperatures led to less dense rings as

fewer cells were able to start in the ring (Fig-

ure 5—figure supplement 1). Finally, we found

that modulation of aerotaxis by local O2 concen-

trations was essential. Indeed, as we increased

the range of O2 concentration at which aerotaxis

is at play (Figure 5G–H), we found that forming

rings became wider and less dense (Figure 5D–E) to the point where no actual ring could be distin-

guished if aerotaxis was kept constant for all cells (Figure 5I).

These numerical simulations based on cellular Potts models provide a good intuition of the phe-

nomenon and reveal that cell division and aerotactic modulation are the two key ingredients to

reproduce the ring of cells. Because of their versatility, they can also be used to make some predic-

tions on the observed phenomenon. Experimentally, we tested two such predictions to demonstrate

the relevance of the underlying assumptions.

First, we show in Figure 5B the effect of turning cell division off in the simulated spot. A similar

result can be achieved by placing cells in a phosphate buffer medium, lacking nutrients and thus

blocking cell division (Kelly et al., 2021). In this situation, at short time scales, a ring of cells started

forming and expanding outwards in a similar fashion as in nutritive medium (Figure 5—figure sup-

plement 2). After a few hours, however, the ring started slowing down until it completely stopped

and cells started dispersing again. This is in complete agreement with the predictions of the Cellular

Potts Model, as one can see by comparing the density kymographs (Figure 5A and Figure 5—figure

Video 4. Dynamics of the Potts model reproducing

microfluidic experiments. Low oxygen regions are on

the left and high oxygen on the right. Cell positions are

shown as black dots and the entire movie represents

the equivalent of 10 hr of experiments.

https://elifesciences.org/articles/64731#video4

Cochet-Escartin, Demircigil, et al. eLife 2021;10:e64731. DOI: https://doi.org/10.7554/eLife.64731 9 of 34

Research article Computational and Systems Biology Physics of Living Systems

https://elifesciences.org/articles/64731#video4
https://doi.org/10.7554/eLife.64731


Figure 4. Minimal Potts model of ring formation and migration. (A) Snapshots of a simulated colony of cells

showing the formation of highly dense ring of cells. (B) Cell density profiles averaged over all angles for four

different times. (C) Corresponding kymograph of cell density (colorbar in cells/mm2) as a function of time and

distance to the center. Quantification in terms of microns and hours is described in the Materials and methods

section. (D) Kymograph of O2 concentration (colorbar in %) with the position of the ring represented as a red line.

The colormap is limited to the 0–10% range for readability but earlier time points show concentrations higher than

the 10% limit. (E) O2 concentration at the ring position as a function of time showing that, here too, the ring

follows a constant O2 concentration.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Raw data for Figure 4.

Figure supplement 1. Adjusting Potts model (right) to microfluidic experiments (left).

Figure supplement 1—source data 1. Raw data for Figure 4—figure supplement 1, experiments corresponding
to the left column.

Figure supplement 1—source data 2. Raw data for Figure 4—figure supplement 1, simulations corresponding
to the right column.

Figure supplement 2. Potts model ring features with parameters adjusted from the microfluidic experiments
(Figure 4—figure supplement 1).

Figure supplement 2—source data 1. Raw data for Figure 4—figure supplement 2.

Figure supplement 3. Comparison of cell behavior in spot experiments (left) and Potts models (right).

Figure supplement 3—source data 1. Raw data for Figure 4—figure supplement 3, experiments corresponding
to the left column.

Figure supplement 3—source data 2. Raw data for Figure 4—figure supplement 3, simulations corresponding
to the right column.
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supplement 2) and firmly demonstrates the

importance of cell division in this behavior. At

longer time scales though (t>10h), Dd cells

started forming aggregates and entering a devel-

opmental phase (Video 6). This aggregation is

presumably due to the concomitant expression of

cell adhesion molecules and, apparition of self-

organizing secreted cAMP pulses whose timing

agrees with the one reported in classical free cell

spot aggregation assays (Gregor et al., 2010).

Cell-cell adhesion and cAMP signaling are not

included in our models or numerical simulations

that hence cannot predict the long times in

Video 6. However, the timing is well separated

from the end of the ring expansion period

(t<3.5h). This still demonstrates that the phenom-

enon observed here is relevant for both the sin-

gle cell and collective stages of Dd life cycle.

Second, we used these numerical simulations

to predict the behavior of cells in more complex

environments. One can see the expansion of the

ring as a way for each cell to optimize its own

resources. This begs the question of what hap-

pens when more than one colony is present in

the environment, a problem more directly relevant for real life situations. Can the different colonies

sense their respective presence and adapt accordingly by migrating preferably away from one

another or, on the other hand, will the depletion of oxygen induced by a neighboring colony

increase hypoxia on this side and therefore accelerate migration? In this case, what would happen

when two rings come in contact? We started exploring this question by simulating two colonies put

in close proximity. These simulations predict that the formed rings do not repel each other, instead

they tend to rush toward one another and, when they meet, they fuse together to make an elliptical

front which then relaxes towards a more circular shape (Video 7). We then performed the corre-

sponding experiment and found very similar behavior (Video 7).

Overall, these results show that the cellular Potts model indeed recapitulates all the major experi-

mental observations with only two key ingredients (cell division and aerotactic modulation). How-

ever, they fall short of giving an in-depth quantitative description because they rely on many

parameters and are not amenable to theoretical analysis per se.

’Go or Grow’ hypothesis: a Mean-field approach
In order to complement the methodology of the cellular Potts model, we developed a mean-field

approximation of the latter: the cell density � is subject to a reaction-advection-diffusion partial dif-

ferential equation (PDE):

q�

qt
¼Dr� r�ð Þ�r � a C;rCð Þ�ð Þþ r Cð Þ� (1)

C is the oxygen concentration, a C;rCð Þ corresponds to the aerotactic advection speed and

r Cð Þ to the cell division rate. By assuming radial symmetry in agreement with the experiments, we

propose a C;rCð Þ ¼ a C;qrCð Þ ¼ laero Cð ÞqrC, where laero Cð Þ is the already mentioned aerotactic

strength fitting the microfluidic experiments with an upper O2 concentration threshold C0=0.7%

(Figure 5G and Material and Methods) and r Cð Þ ¼ r0; if C>C0

0; if C<C0

�

is the division rate. When not speci-

fied, we use the same threshold C0 for cell division and aerotaxis as for the cellular Potts model.

Below, this assumption is coined as the ‘Go or Grow’ hypothesis. We thereby revisited the ‘Go or

Grow’ model for glioma cells (Hatzikirou et al., 2012) with the transition between division and

directional motion being mediated by oxygen levels rather than cell density in the mentionned

Video 5. Dynamics of the Potts model reproducing the

spot experiments. Cell positions are shown as black

dots and the oxygen is in colors (in %).

https://elifesciences.org/articles/64731#video5
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study. Congestion effects such as they may arise in the cellular Potts model or in experiments have

been ignored.

Oxygen is subject to a simple diffusion-consumption equation, with b Cð Þ the consumption rate of

oxygen per cell (see Materials and methods):

qC

qt
¼Doxyr� rCð Þ� b Cð Þ� (2)

The results obtained by numerical simulation of this mean-field model are comparable to the

ones already obtained by the cellular Potts model: emergence of a high cell density area traveling at

constant speed s»1:0 mm/min, leaving behind a trail of cells (Figure 6A-B).

Figure 5. Key ingredients of the Potts model by density kymograph (DK) evaluation. (A) DK for the full model with reduced oxygen consumption as a

basis for comparison. (B) DK in the absence of cell division, note the difference in length scale showing a clear limitation of motion in that case. (C) DK

in the absence of aerokinesis (cell activity is not modulated by local oxygen concentrations). (D) DK with a modulation of aerotactic strength as shown in

(G), note the wider ring. (E) DK with a modulation of aerotactic strength as shown in (H). (F) DK with a modulation of aerotactic strength as shown in (I),

no ring appears and cells quickly migrate outwards as shown by the difference in time scales. (G–I) Three different aerotactic modulations, in blue,

compared to the one used in the full model, shown in (A), drawn here as a red dashed line.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Raw data for Figure 5.

Figure supplement 1. Effect of temperature on ring migration in Potts models.

Figure supplement 1—source data 1. Raw data for Figure 5—figure supplement 1.

Figure supplement 2. Ring formation in a phosphate buffer.

Figure supplement 2—source data 1. Raw data for Figure 5—figure supplement 2.
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A general framework for traveling
waves in cells undergoing
aerotaxis and division
From there onwards, we propose a mathematical

framework that investigates general conditions

under which collective behavior of cells undergo-

ing cell division and aerotaxis is triggered. The

aim was to confirm conclusions already obtained

experimentally or through the cellular Potts

model and to decipher the contribution of cell

division to the collective behavior, while also

keeping the framework relatively general such

that it may be applied to other types of collective

cellular behavior.

We first considered models of the form given

by (Equations 1 and 2), independently of the

exact shape of the advection term a C;rCð Þ or

division term r Cð Þ. Because of its relevance for

the study of planar front propagation, we studied

these models in a planar symmetry

(� ¼ � t; xð Þ,C ¼ C t; xð Þ) instead of a radial symme-
try (� ¼ � t; rð Þ,C ¼ C t; rð Þ), neglecting thereby

any curvature effects. We were interested in the

study of a single front moving from left to right.

Introducing the front speed s, the front corre-

sponds to a stationary solution in the moving

frame z ¼ x� st, that is, a traveling wave profile,

satisfying:

�s
q�

qz
¼D

q
2�

qz2
� q

qz
a C;qzCð Þ�ð Þþ r Cð Þ� (3)

In the general case, the theoretical analysis of

such profiles and the determination of the front

speeds s seem out of reach due to the coupling

with the reaction-diffusion equation on the O2

concentration. Nonetheless, it is possible to

derive simple relations between the shape of the

wave and the speed of propagation. By integrat-

ing (Equation 3) over the line, we obtain:

s� a C �¥ð Þ;qzC �¥ð Þð Þð Þ� �¥ð Þ
¼
R

r C zð Þð Þ� zð Þdz (4)

This equation balances the net flux of cells to

the far left-hand with the amount of mass cre-

ated by heterogeneous (oxygen-dependent) cell

division. We illustrated this relationship with the

experimental data from Figure 1E. In order to

approximate the term
R

r C zð Þð Þ� zð Þdz, we used

an observation that we made through numerical

simulations: cell division stops roughly at half of

the peak, meaning that cells left to the peak do

not divide, while cells right to the peak continue

dividing (see Figure 4E and Figure 6— figure

supplement 1). Therefore, we approximated by

Video 6. Spot assay in phosphate buffer. Left: cell

dynamics show the formation and migration of a ring of

cells up to 4 hr at which point it started disintegrating

and aggregates started forming around 10 hr. Right:

polar visualization of cell dynamics with angles shown

vertically and distance to the center horizontally. This

visualization clearly shows the early propagation of a

ring of cells.

https://elifesciences.org/articles/64731#video6

Video 7. Ring fusion during experiments (top) and as

predicted by the Potts model (bottom). Note that this

Potts model is a non-quantitative version and, as a

result, space and time are in arbitrary units and thus

not shown.

https://elifesciences.org/articles/64731#video7

Cochet-Escartin, Demircigil, et al. eLife 2021;10:e64731. DOI: https://doi.org/10.7554/eLife.64731 13 of 34

Research article Computational and Systems Biology Physics of Living Systems

https://elifesciences.org/articles/64731#video6
https://elifesciences.org/articles/64731#video7
https://doi.org/10.7554/eLife.64731


a rectangle method
R

r C zð Þð Þ� zð Þdz¼ �r0L=2, where L is the length spanned by the ring and � is the

average cell density in the ring. As there is supposedly no advection a C;qzCð Þ�¼ 0 at z¼�¥ this

yields the approximation s»

r0L�
2� �¥ð Þ. Quantitatively, we assume L to be on the order of 300mm

(Figure 1E) and �
� �¥ð Þ, the ratio between cell densities in the ring and in the bulk of cells, to be on

the order of 4 (Figure 1E). This yields an estimate of the wave speed, based solely on the shape of

the cell density profile, of s»0:9 mm/min.

Mathematical analysis of the ‘Go or Grow’ hypothesis
The difficulty to study (Equation 3) analytically led us to propose a simpler version of the mean-field

model that recapitulates the two key ingredients, cell division and aerotaxis, in an original way.

Although it deviates from the reference Potts model in the details, it has the advantage of being

analytically solvable. Cells have two distinct behaviors, depending on the O2 concentration. Below a

certain threshold C0 cells move preferentially upward the oxygen gradient (go), with constant advec-

tion speed a0, but they cannot divide. Above the same threshold they divide (grow) and move ran-

domly without directional bias. This model may be considered as a strong simplification of

(Equation 1), here restricted to the one-dimensional space, where:

a C;qxCð Þ ¼ a Cð Þsign qxCð Þ; witha Cð Þ ¼ 0; if C>C0

a0; if C<C0

�

and r Cð Þ ¼ r0; if C>C0

0; if C<C0

:

�

(5)

The coupling between (Equations 1 and 2) then goes merely through the location of the oxygen

threshold C0. This elementary ‘Go or Grow’ model was meant to 1- demonstrate that its simple

ingredients suffice to trigger a collective motion and 2- determine the relative contributions of cell

division and aerotaxis on the speed of the ring in a general framework.

Interestingly enough, in this case (Equation 3) admits explicit traveling wave solutions (see more

details in the Materials and methods section). Moreover, an explicit formula for the wave speed was

obtained (Figure 6C and Materials and methods for a detailed derivation):

s¼
a0 þ r0D

a0
; if a0 �

ffiffiffiffiffiffiffiffi

r0D
p

2
ffiffiffiffiffiffiffiffi

r0D
p

; if a0 �
ffiffiffiffiffiffiffiffi

r0D
p

(

(6)

To the best of our knowledge, this analytical formula is new and captures basic features of a wave

under a single self-generated gradient. It is remarkable that Formula (Equation 6) does not depend

on the dynamics of oxygen consumption and diffusion. Furthermore, Formula (Equation 6) presents

a dichotomy according to the relative size of aerotaxis strength a0 and the quantity
ffiffiffiffiffiffiffiffi

r0D
p

: in the case

of small-bias (i.e. a0 �
ffiffiffiffiffiffiffiffi

r0D
p

), the wave speed s is independent of aerotaxis and coincides with the

so-called Fisher’s wave speed 2
ffiffiffiffiffiffiffiffi

r0D
p

. This speed is related to the Fisher-KPP equation (Aronson and

Weinberger, 1975; Fisher, 1937; Kolmogorov et al., 1937), which describes front propagation

under the combined effects of diffusion and growth (without advection). However, in the case of

large-bias (i.e., a0>
ffiffiffiffiffiffiffiffi

r0D
p

), aerotaxis is strong enough to contribute to the speed and the wave speed

increases s>2
ffiffiffiffiffiffiffiffi

r0D
p

.

Based on these observations, we propose the fraction ’ ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

=s as a measure of the relative

contribution of cell division and diffusion to the overall wave speed. Indeed, when aerotaxis is absent

(or as in the small-bias case not contributing to the wave speed), the value of ’ is 1 and the wave is

driven by cell division and unbiased random motion, that is, a reaction-diffusion wave. In the large-

bias case, 1=’ describes how much faster the wave travels, compared to if it were only driven by dif-

fusion and division. We illustrated the behavior of ’ with a heatmap (Figure 6D) as a function of the

parameters a0 and ln 2ð Þ=r0 (the doubling time of the cell population), the diffusion coefficient being

fixed to its experimental value D=30 mm2/min.

We confront this reasoning with the experimental data: as a rough approximation with a0 ¼ 1 mm/

min in experiments, assuming a doubling time of 8 hr for Dd cells, r0 ¼ ln2=480 min�1, we are clearly

in the case of large bias (
ffiffiffiffiffiffiffiffi

r0D
p ¼ 0:2 mm/min) and (Equation 4) yields s ¼ 1:04 mm/min while the

fraction ’ ¼ 40%. The wave travels 2.5 times faster than a wave merely driven by cell division, show-

ing that in this case the dominant ingredient to set the wave speed is aerotaxis. Still, our results can

similarly be applied to other systems in which this balance could be different. Finally, note that the

Cochet-Escartin, Demircigil, et al. eLife 2021;10:e64731. DOI: https://doi.org/10.7554/eLife.64731 14 of 34

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.64731


density profile of the model (Figure 6E) does not present a sharp front peak as in experiments

(Figure 1D,E), Potts simulations (Figure 3B,C) or in the mean field model (Figure 6A,B). We will

show below that it can be slightly modified to change the profile of the fronts while keeping the ana-

lytical results relevant thus describing a whole class of systems (Figure 6E and Figure 6—figure sup-

plement 1).

Inside dynamics of the wave front
The wave speed of the elementary ‘Go or Grow’ model coincides with Fisher’s speed,

that is s ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

, in the regime of small bias (a0<
ffiffiffiffiffiffiffiffi

r0D
p

). This is the signature of a pulled wave,

Figure 6. Variations on the ‘Go or Grow’ hypothesis. (A) Cell density and O2 concentration profiles for the mean-field model (Equations 1 and 2). (B)

Corresponding kymograph of cell density (colorbar in cells/mm2) as a function of time and distance to the center. (C) Comparison of wave speeds for

the elementary ‘Go or Grow’ model, given by Formula Equation 6, and the ‘Go or Grow’ model with a second threshold, obtained by numerical

simulation (solid and dotted lines respectively). The relative difference between the speeds of the two models is represented by crosses. (D) Heatmap

of ’ ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

=s as a measure of the relative contribution of cell division to the overall wave speed s in the space parameter ln 2ð Þ=r0 and a0 for the ‘Go

or Grow’ model (Equation 5), where s is given by Formula Equation 6. The curve a0 ¼
ffiffiffiffiffiffiffiffi

r0D
p

is depicted in black. (E) Cell density and O2 concentration

profiles for the ‘Go or Grow’ model with a0 ¼ 1�m=min,r0 ¼ ln2=480min�1 and C0 ¼ 0:7%. (F) Cell density and O2 concentration profiles for the ‘Go or

Grow’ model with two thresholds: cells undergo aerotaxis with a constant advection speed a0 ¼ 1�m=min when the O2 concentration is in the

range C
0
0
;C0

� �

with C0 ¼ 0:7%, C0
0
¼ 0:1%. In both cases, thresholds coincide with the cusps in the profiles.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Zip file containing raw data for Figure 6 and associated Python code for simulations.

Figure supplement 1. Structural variations of (Equation 1).

Figure supplement 1—source data 1. Zip file containing raw data for Figure 6—figure supplement 1 and associated Python code for simulations.
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meaning that the propagation is driven by the division and motion of cells at the edge of the front,

with negligible contribution from the bulk, and little diversity in the expanding population. In con-

trast, when the bias is large (a0>
ffiffiffiffiffiffiffiffi

r0D
p

) then the wave speed in (Equation 6) is greater than Fisher’s

speed. This is the signature of a pushed wave, meaning that there is a significant contribution from

the bulk to the net propagation, with an expanding population maintaining diversity across expan-

sion, see Birzu et al., 2018; Stokes, 1976 for insights about the dichotomy between pulled and

pushed waves. In particular, it was conjectured that the ratio ’ ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

=s proposed above controls

the transitions between different regimes of diversity loss in a wide class of reaction-diffusion models

(Birzu et al., 2018; Birzu et al., 2019).

In order to explore this dichotomy between pulled and pushed waves, we used the framework of

neutral labeling (Roques et al., 2012) in the context of PDE models. We colored fractions of the

density profile during wave propagation to mimic labeling of cells with two colors. Then, we fol-

lowed numerically the dynamics of these fractions, and quantified the mixing of the two colors. Our

results were in perfect agreement with (Roques et al., 2012), extending their results beyond classi-

cal reaction-diffusion equations to equations which also include advection (see Materials and meth-

ods). In the case of large bias (Figure 7A–C), the wave is pushed and the profile is a perfect mixture

of blue and yellow cells at long times. Contrarily, the wave is pulled in the regime of small bias: only

cells that were already initially in the front, here colored in blue (Figure 7B–D), are conserved in the

front, whilst yellow cells at the back cannot catch up with the front.

In the absence of associated experimental data, we explored the cellular Potts model with such

neutral labeling. The results were in agreement with the PDE simulations (Figure 7—figure supple-

ment 1) showing a clear, rapid mixing of the two cell populations under the propagation of a

pushed wave in the regime of experimental parameter values.

Robustness of the conclusions to structural variations of the model
We voluntarily defined our elementary ‘Go or Grow model’ as a rough simplification of our original

mean-field model in order to keep it solvable and extract a general formula for the front speed and

an analysis of the relative contribution of diffusion/division and aerotaxis in that respect. However,

many experimental systems will not conform to the hypothesis underlying this model (in particular

the shapes of the aerotactic response and cell division modulation). In order to investigate whether

the conclusions drawn from the elementary ‘Go or Grow’ model extend to more general situations,

we decided to submit it to structural variations and check if the results obtained above still held.

First, we made the hypothesis of a second oxygen threshold C0
0
<C0, below which cells are not sensi-

tive to gradients any longer (Figure 6F). In the general case, we were not able to do a thorough

analysis of this model, but through numerical exploration we found that the propagation speed

remained close to the value given by formula (Equation 6) (at most 15% of relative difference in a

relevant range of parameters, Figure 6C). Intuitively, the main contribution to the collective speed is

the strong bias inside the high-density area at intermediate levels of O2, whereas cells at levels

below the second threshold C0
0
, where the dynamics of both models diverge, do not contribute

much to the collective speed. We also noticed that cell density profiles (Figure 6F) were much closer

to experimental observations and results obtained through the cellular Potts model or the original

mean-field approach. Moreover, the wave speed is no longer independent of the oxygen dynamics.

In the Materials and methods section, we pushed further the analysis with a specific form of oxygen

consumption and developed a specific case of such a ‘Go or Grow’ model with a second threshold,

where we were able to conduct its complete analysis. Figure 7—figure supplement 2 shows that

the conclusions concerning the contribution of growth to the wave speed are robust. Finally, we

show on this modified ‘Go or Grow’ model that our conclusions regarding how the behavior can

switch from a pulled to a pushed wave remain true as well (Figure 7—figure supplement 3) demon-

strating that our results can be generalized to a variety of different systems showing the propagation

of a front in response to a single self-generated gradient.

To go beyond this first variation with two oxygen thresholds, we also investigated the influence

of the shape of the aerotactic response such as linear or logarithmic gradient sensitivity. Figure 6—

figure supplement 1 shows the qualitative outcomes of these different models. This numerical

exploration indicates that a wide combination of the two key ingredients, aerotaxis and cell division,

can drive the propagation of a stable wave with various density profiles. Cell division at the edge
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yields a net flux of cells, backward in the moving frame, that sustains the wave propagation in the

long term, but may have a relatively small contribution to the wave speed.

Discussion
Overall, our results demonstrate the ability of Dd cells to respond to hypoxia through both aerotac-

tic and aerokinetic responses. Both of these behaviors could be very important to help Dd cells to

navigate complex hypoxic environments they encounter in the soil. In addition, our results are a con-

firmation of the ability of self-generated gradients to serve as very robust, long-lasting directional

cues in environmental navigation, a property which has recently emerged in a variety of systems

(Cremer et al., 2019; Tweedy and Insall, 2020). Finally, our work goes beyond theses results as it

demonstrates that oxygen can play the role of the attractant in self-generated gradients therefore

potentially extending the physiological relevance of the use of such cues in collective migration.

In addition, although our experimental results were obtained on simple, 2d experiments, our find-

ings can generalize to more complex cases. The fact that the dense front of cells follows a constant

oxygen concentration (Figure 3E, Figure 4E) provides a hint that any situation in which cell density

Figure 7. Classification of the expansion type in the ‘Go or Grow’ model. Cells initially on the left-hand side or right-hand side of the peak get labeled

differently (A and B). The labeling is neutral and does not change the dynamics of the cells. We let evolve the two colored population for some time

and observe the mixing of the colors (C and D). (A and C) With a0 ¼ 1m � min�1, the wave is pushed wave and after some time the front undergoes a

spatially uniform mixing. (B and D) With a0 ¼ 0:1�m � min�1, the wave is pulled and only the fraction initially in the front is conserved in the

front. r0 ¼ ln2=480min�1 and C0 ¼ 0:7% for all conditions.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Zip file containing raw data for Figure 7 and associated Python code for simulations.

Figure supplement 1. Mixing in Potts models.

Figure supplement 1—source data 1. Raw data for Figure 7—figure supplement 1.

Figure supplement 2. Heatmap of ’ ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

=s as a measure of the relative contribution of cell division to the overall wave speed s in the space
parameter 1=r0 and a0 for the ‘Go or Grow’ model with a second threshold, under the specific condition that O2 consumption term be b Cð Þ ¼ b0 and
that O2 concentration may be negative (see Materials and methods).

Figure supplement 2—source data 1. Zip file containing raw data for Figure 7—figure supplement 2 and associated Python code for simulations.

Figure supplement 3. Classification of the expansion type in the ‘Go or Grow’ model with a second-threshold.

Figure supplement 3—source data 1. Zip file containing raw data for Figure 7—figure supplement 3 and associated Python code for simulations.

Cochet-Escartin, Demircigil, et al. eLife 2021;10:e64731. DOI: https://doi.org/10.7554/eLife.64731 17 of 34

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.64731


is locally high enough to trigger hypoxic conditions will also lead to a similar behavior. Then,

depending on the dimensionality of the system, its architecture and the position of possible oxygen

sources, we hypothesize that a similar front will develop and follow isoconcentration lines. Indeed,

the original experiments of Adler (Adler, 1966) and more recent developments (Cremer et al.,

2019; Fu et al., 2018; Saragosti et al., 2011) on bacteria demonstrated that similar ingredients as

the ones presented here can lead to front propagation in both 1d and 2d situations. Similarly, using

an under agarose assay, it was demonstrated that self-generated gradients of degraded folate

induce a group migration of cells in bands (in 1D) or rings (in 2D spots) up to 4 mm (Tweedy and

Insall, 2020). Beyond the dimensionality of the system, it was also shown that self-generated gra-

dients allow cells to solve mazes by locally degrading an attractant that has a source at the exit of

the maze (Tweedy et al., 2020). Our results are in total agreement with these past examples. To fur-

ther show the generality of the underlying principles, we ran some 3D Potts simulations using a qual-

itative version of our model. Briefly, we show that in three dimensions, if oxygen is provided on all

sides, a spherical front of cells starts moving outwards (Video 8). However, if we assumed that the

bottom of the space was completely deprived of oxygen (i.e. a symmetry breaking situation that can

be encountered in various physiological situations), this front was migrating upwards only in a half-

spherical shape (Video 8). Our 2d results can therefore be extended to any other situations and they

show that the key to proper steering are high enough cell densities and the creation of robust self-

generated gradients.

While aerotaxis is well established for bacteria, its role is often invoked in multicellular organisms

to explain various processes in development or cancer progression but very few in vitro studies were

conducted to prove it is an efficient and operating mechanism or to understand the molecular mech-

anisms at play during aerotaxis. Deygas et al. showed that confined epithelial colonies may trigger a

self-generated O2 gradient and an aerotactic indirect response through a secondary ROS self-gener-

ated gradient (Deygas et al., 2018). Gilkes et al. showed that hypoxia enhances MDA-MB231 breast

cancer cell motility through an increased activity of HIFs (Gilkes et al., 2014). HIFs activate transcrip-

tion of the Rho family member RHOA and Rho kinase 1 (ROCK1) genes, leading to cytoskeletal

changes, focal adhesion formation and actomyosin contractions that underlie the invasive cancer cell

phenotype. This study suggests a role for aerotaxis in tumor escape, but it only demonstrates aeroki-

nesis as O2 gradients were not imposed to probe a directed migration toward O2. Using a microflui-

dic device, the same cancer cell line was submitted to various oxygen levels as well as oxygen

gradients (Koens et al., 2020) but the observed aerotactic response was not clear.

By contrast, the experimental results presented here with Dd show a strong response to hypoxia.

Within 15 min, cells exhibit an aerokinetic and

aerotactic response when exposed to externally

imposed O2 gradients (Figure 2). Self-generated

O2 gradients are produced within 20 min (Fig-

ure 3 and Figure 1—figure supplement 2). But

this cellular response is within the equilibration

time of the oxygen distribution (Figure 2—fig-

ure supplement 6). Hence we can consider the

cellular response as almost instantaneous with

Dd. The difference with previously studied cells

is probably due to the extreme plasticity of the

rapidly moving amoeboid cells (Dd) and their

almost adhesion independent migration mecha-

nism (Friedl et al., 2001) while mesenchymal

cancer cells move slower by coordinating cyto-

skeleton forces and focal adhesion

(Palecek et al., 1997).

The quick response of Dd in directed migra-

tion assays has been largely exploited to deci-

pher the molecular mechanisms at play during

chemotaxis (Nakajima et al., 2014). The molecu-

lar mechanisms used for O2 sensing and its

transduction into cellular response are for the

Video 8. 3D Potts simulations. Top : with oxygen

sources on all sides. Bottom: with oxygen sources on

all sides except on the bottom. The left column shows

the behavior of the whole cell assembly in 3D (original

cells are in blue, cells created during the process are

shown in green). The middle column is an xz slice of

the cell behavior to show that the 3d structures are

indeed spheres or pseudo-spheres. The right column is

the same slice as in the middle but showing oxygen

profiles as a colormap.

https://elifesciences.org/articles/64731#video8
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moment unknown but we can expect that the O2 molecular sensors modulate cytoskeleton organiza-

tion, particularly localized actin polymerization/depolymerization through some of the molecular

components involved in classical chemotaxis toward folate or cAMP (Pan et al., 2016; van Haastert

et al., 2017). However, new and unexpected mechanisms cannot be excluded.

The finding that migrating cells can influence the direction of their own migration by building che-

moattractant gradients is not new. Several species of bacteria can move preferentially toward oxy-

gen or nutrient as reported by Adler, 1966. However, this mechanism was only recently reported in

eukaryotes (Stuelten, 2017): melanoma cells that break down lysophosphatidic acid (LPA) and gen-

erate a LPA gradient in the vicinity of the tumor (Muinonen-Martin et al., 2014), Dd colonies that

generate folate gradients (Tweedy et al., 2016) or for the migration of the zebrafish lateral line pri-

mordium through a self-generated chemokine gradient (Donà et al., 2013; Venkiteswaran et al.,

2013). The dispersal of melanoma cells is particularly instructive. The stroma surrounding the tumor

acts as a source of LPA. The tumor cells act as a sink for LPA. As long as LPA is present in the envi-

ronment a steady wave of migrating melanoma cells propagates away from the initial tumor over

long distances and long time periods.

The self-generated LPA (melanoma) and folate (Dd) gradients were modeled with a simple

numerical model that was able to predict the steady wave. In particular, it predicted an invasive front

where cells are exposed to a steep chemoattractant gradient, followed by a ‘trailing end’ where the

gradient is shallow and fewer cells migrate with poor directionality (Tweedy and Insall, 2020). It

also predicted that the wave may have a less marked front, and/or a smaller speed, or even vanishes

if the cell density was too low due to insufficient chemoattractant removal. All these features are sur-

prisingly similar to our experimental measurements of cell density and O2 profiles (Figure 1E,

Figure 3C). The atmospheric O2 that diffuses through the culture medium and eventually the plastic

surfaces is the chemoattractant. The O2 consumption triggers hypoxia that in turn generate an aero-

tactic response toward O2 in a very narrow range of O2 concentrations (0–1.5%) (Figure 3C). The

exact value of the lower O2 threshold value will deserve future investigations. The exact nature of

the cellular response at these extremely low O2 levels, and in a very shallow gradient, also has yet to

be clarified.

Our different models unveil a set of basic assumptions which are sufficient for collective motion

of cells without cell-cell interactions (attractive or otherwise), in contrast with (Sandonà et al., 1995).

Cell growth is necessary to produce a long-standing wave without any damping effect. However, it

may not be the main contribution in the wave speed, depending on the relative ratio between direc-

tional motion (the bias a0), and reaction-diffusion (the Fisher half-speed
ffiffiffiffiffiffiffiffi

r0D
p

). In the case where the

former is greater than the latter, the wave is due to the combination of growth and directional

motion and it is pushed. This result differs particularly from the Fisher-KPP equation with constant

advection (meaning with uniform migration and division) where the wave speed is a0 þ 2
ffiffiffiffiffiffiffiffi

r0D
p

and

the wave is pulled. In the experiments under study, we estimate directional motion to contribute the

most to the cell speed, ruling out the possibility of seeing a pulled wave driven by cell division and

diffusion at the edge of the front.

In conclusion, we demonstrate the remarkable stability of collective motion driven by self-gener-

ated gradients through depletion of oxygen. Through coupled dynamics, these gradients give rise

to long lasting, communication-free migrations of entire colonies of cells which are important both

from ecological and developmental points of view. In the case presented here where oxygen plays

the role of the depleted attractant, this could prove to be a very general mechanism as oxygen is

ubiquitous and always consumed by cells.

Materials and methods

Cell preparation
The AX2 cell line was used and cultured in HL5 media (Formedium, Norfolk, UK) at 22˚C with shaking

at 180 rpm for oxygenation (Sussman, 1987). Exponentially growing cells were harvested, counted

to adjust cell density to the desired one, typically 2000 cells/mL.
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Observations and analysis of self-generated aerotaxis by cell
confinement (spot assay)
For the spot assay, 1 mL of cell suspension containing 1000–8000 cells (typically 2000) was carefully

deposited on a dry surface using a 1 mL syringe (Hamilton, Reno, NV, USA). The dry surface was

either the nunclon treated surface of Nunc six wells polystyrene plates for usual experiments (Ther-

moFisher Scientific, Waltham, MA, USA) or polydimethylsiloxane surface (PDMS, Sylgard 184, Dow

Corning, Midland, MI, USA) for experiments on oxygen-sensing films. The drop was incubated for 5

to 7 min in humid atmosphere at 22˚C before gently adding 2 ml of HL5 medium without detaching

the spotted cells forming a micro-colony. A 14 mm or 18 mm diameter round glass coverslip cleaned

in ethanol, thoroughly rinsed in HL5 was kept wet and deposited on top of it. In some experiments,

fluorescein FITC at 16 mM was added to the HL5 medium and confocal slices were taken, showing

that confined Dictyostelium cells were not compressed by the coverglass but separated from it by a

layer of medium of about 50 mm (Figure 1—figure supplement 1).

The outward spreading of the Dictyostelium micro-colony was observed at 22˚C in transmission

with three types of microscope: (i) a TE2000-E inverted microscope (Nikon, Tokyo, Japan) equipped

with motorized stage, a 4x Plan Fluor objective lens (Nikon) and a Zyla camera (Andor, Belfast,

Northern Ireland) using brightfield for most of the experiments lasting 16 hr (Figure 1A), (ii) a binoc-

ular MZ16 (Leica, Wetzlar, Germany) equipped with a TL3000 Ergo transmitted light base (Leica)

operated in the one-sided darkfield illumination mode and a LC/DMC camera (Leica) for experi-

ments over days (Figure 1B) and finally (iii) a confocal microscope (Leica SP5) with a 10x objective

lens for a few larger magnification experiments (Figure 1C).

For computing densities, cell positions were determined using the built-in Find Maxima plugin in

ImageJ (National Institutes of Health, Bethesda, MD, USA) through a custom made routine. Data

analysis and plotting was performed in Matlab (Mathworks, Natick, MA, USA). For density profiles

(Figure 1E) and kymographs (Figure 1D), the center of the colony was defined as the center of mass

of all cells detected at all times. Cell positions were then turned into radial coordinates and cells

were counted within concentric crown regions. Densities were calculated by dividing this count by

the area of each crown.

Density profiles such as the ones showed in Figure 1E were treated to automatically extract the

position, width and density of a ring in various experiments and at various time points. Density pro-

files were first stripped of values lower than 500 cell/mm2 in order to avoid asymmetric baselines

behind and in front of the ring. Resulting profiles were then fitted in Matlab by a Gaussian function

with a non-zero baseline. The non-zero baseline corresponds to density in the bulk, the maximum of

the Gaussian gives ring position, its height added to the non-zero baseline gives the cell density in

the ring and its width the width of the ring.

Cell tracking, diffusion coefficients, and aerotactic biases
After retrieving cells’ positions with optimized ImageJ macros based on Find Maxima, the individual

trajectories were reconstructed with a squared-displacement minimization algorithm (http://site.

physics.georgetown.edu/matlab/). Data were analysed using in-house Matlab programs. Timelaspse

microscopy experiments devoted to cell tracking in the spot assay experiments was acquired at a

high frame rate (1 frame every 15 s) (Figure 1—figure supplements 4–5) due to the very high cell

density in the ring region (up to 2000 cells/mm2, Figures 1E and 3C). For the microfluidic experi-

ments, as cells were plated at a lower density (less than 200 cells/mm2), 1 min time intervals was

used to track cell trajectories (Figure 2C). In order to highlight aerotactic biases, cells displacements

over various time lags dt (dt up to 60 min) were projected in the radial direction for spot assays and

in the gradient direction X for microfluidic experiments and eventually divided by dt to obtain veloc-

ity biases. Individual biases were then averaged within bins of equal distance (Figure 2D, Figure 1—

figure supplement 5, Figure 4—figure supplement 1). Individual effective cell diffusion constants

were measured as the square of their displacement over their entire trajectory divided by the trajec-

tory time length and divided by 4. These measurements were then similarly averaged over bins (Fig-

ure 1—figure supplement 4).
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Microfluidic-based oxygen gradient generator: design, fabrication, and
cell injection
A schematic of the present double-layer microfluidic device is shown in Figure 2A. It is made of sev-

eral layers of PDMS mounted on a bottom glass coverslip. The overall diameter D of the microfluidic

device is 27 mm and the overall thickness H is 4 mm. Three parallel media channels are positioned

for cell culture, and two gas channels are positioned at a height Hg=0.5 mm above the media chan-

nels to allow gas exchange between the channels during cell culture. The horizontal distance

between the two gas channels narrows step-by-step (2 mm, 1 mm, and 0.5 mm gaps, respectively),

thus yielding to generate different gradients of oxygen concentration along the media channels

simultaneously. All channels are 125 mm high and 2 mm wide, and therefore, the media and gas

channels are separated by a PDMS wall of 375 mm thickness. A polycarbonate (PC) film (26 mm in

diameter and 0.5 mm thickness) is embedded inside the device at a height Hf=1 mm from the bot-

tom coverslip to prevent oxygen diffusion from the atmosphere. The cartesian coordinate origin was

set at the center of the media channel (median axis), and the x and y-directions were defined as par-

allel to media and gas channels respectively (Figure 2A). The z-direction was set to the vertical direc-

tion from the top of the bottom coverslip.

The manufacturing steps are as follow. The media channel and gas channels were drawn with

AutoCAD (Autodesk, Mill Valley, CA, USA) and replicated in SU-8 photoresist using classical photoli-

thography techniques. These SU8 molds were silanized to make it non-adherent and reusable.

PDMS was mixed at a 10:1 ratio of base:curing agent, poured over each mold to a thickness of Hg,

and cured in an oven at 60˚C for more than four hours. On top of the cured PDMS layer of the gas

channels, the above-mentioned PC film with 3 mm port holes punched at the locations of the media

and gas channel ports was positioned. Additional PDMS was then poured over the PC film until the

total PDMS layer became 3.5 mm thick, then the PDMS layer was cured in an oven at 60˚C overnight.

The PDMS layers of the media and gas channel patterns were peeled off the silicon wafers and cut

into 27 mm diameter circles. The PDMS layer with the gas channel pattern was punched to form

inlets and outlets 2 mm in diameter to allow the infusion of gas mixtures. The channel-patterned sur-

face of the PDMS layer with the gas channels and the top surface of the other PDMS layer with the

media channels were plasma treated (PDC-001-HP; Harrick Plasma Inc, Ithaca, NY, USA) to bond

with each other. After incubating the bonded PDMS mold overnight in an oven at 60˚C, 2 mm diam-

eter inlets were punched to allow access to the media channels, respectively. Finally, the channel-

patterned side of the PDMS mold and a 35 mm-diameter glass bottom dish with or without covered

by an oxygen sensing film were plasma treated and bonded each other.

Measurements of aerokinesis in homogenous environments were performed using a homemade

glass-duralumin environmental chamber to perform random motility assays (d’Alessandro et al.,

2018; Golé et al., 2011).

Dictyostelium cells were seeded in the media channels at density of 2x106 cells/ml, and the cell

culture medium was filled in the glass bottom dish up to the height covering the PDMS mold. Cells

were allowed to adhere to the bottom surface (bare glass or coverglass covered with a sensing film)

for 15 min.

Gas control and injection
We used a controlled oxygen concentration for three types of experiments: (i) to calibrate oxygen

sensing films (see below), (ii) to create the oxygen gradients within microfluidic devices (see below)

or (iii) to insure a pure hypoxic condition (pure N2) at the end of the spot assay experiment. The gas

mixture (0% to 21% O2 in N2) was prepared in a gas mixer (Oko-lab 2GF-MIXER to mix compressed

AIR with 100% N2 or HORIBA STEC MU-3405, Kyoto, Japan to mix pure O2 and N2) by mixing pure

O2 (or air) and pure N2. Free sensing films for calibration (i) or for the spot assay (iii) were placed

inside 6-wells plates and the multiwells were placed in an environmental chamber fitting our micro-

scope stage (H301-K-frame, Okolab, Pozzuoli, Italia). Gas was injected at about 500 mL/min in this

chamber. Eventually, multi-wells were drilled to a diameter of 25 mm and the sensing films were

glued with a silicone adhesive on the plate bottom to reduce the background noise from fluores-

cence. For microfluidic experiments, the tubes from the mixer were connected to the gas channels

and gas was injected at a controlled flowrate (between 60 and 180 mL/min) into the device.
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Oxygen-sensing film preparation
Oxygen-sensing films were prepared by inserting the luminescent O2-sensitive dye 5,10,15,20-Tetra-

kis-(2,3,4,5,6-pentafluorophenyl)-porphyrin-Pt(II) (PtTFPP, Por-Lab, Porphyrin-Laboratories, Schar-

beutz, Germany) in a 4:1 PDMS:curing agent thin layer spin-coated on 30 mm to 35 mm rounded

coverglasses. Briefly, 17 mg of PtTFPP was dissolved in 5 mL chloroform and thoroughly mixed with

2.8 mg of PDMS and 0.7 mg curing agent. The mixture was degassed in a vacuum chamber for 5 hr.

About 0.5 mL to 1 mL of this solution was spread on the coverglass and spin-coated for 2 min at 500

rpm with a final speed of 2000 rpm during 10 s to flatten the edge bead. Chloroform was allowed to

evaporate overnight while the polymer cured at 60˚C. The final PtTFPP sensor film had a dye concen-

tration of 4 mmol/L and was 25 mm thick. This thickness was measured using a ContourGT-K 3D

Optical microscope (Bruker, Billerica, MA, USA) after removing a piece of film with a surgical blade.

Sensing films were stored in dark. They were used to measure the oxygen concentration in self-gen-

erated O2 gradients (spot assay) and for microfluidic experiments with controlled O2 gradients.

Fluorescence microscopy for oxygen measurements
Fluorescence images of O2-sensing films (either for film calibration or for in situ oxygen measure-

ments in the spot assay or in microfluidic devices) were taken with two inverted epifluorescence

microscopes: (i) a TE2000-E inverted microscope (Nikon) equipped with motorized stage, a 4x Plan

Fluor objective lens (Nikon), a X-Cite Series 120PC illumination lamp, a TRITC bandpass filter cube

and a Zyla camera (Andor) (Figure 3Aii, Figure 2—figure supplement 3), (ii) a IX83 inverted micro-

scope (Olympus, Tokyo, Japan) equipped with a motorized stage, a UPlanSApo 4x objective lens

(Olympus), a U-HGLGPS lamp (Olympus), a RFP bandpass filter and a Zyla camera (Andor). This sec-

ond microscope was used for mosaic imaging, in order to scan the whole dimension of the three

media channels (about 1 cm in length) thanks to the dedicated imaging software cellSens (Olympus)

(Figure 2—figure supplement 1).

Oxygen-sensing film calibration
Calibration was carried out with the sensing films in air, in water or in HL5 culture medium. We

applied gas concentration ramps with steps of 5 min for calibration in air (time to exchange fully the

gas composition of the chamber and tubes, as O2 almost instantaneously diffuses within the 25 mm

thick sensing film) and with much longer steps (i.e. 2–4 hr) for calibrations in liquid. There is indeed

an additional diffusion time in the PDMS intermediate layer of our microfluidic devices or in the

medium height of a Petri dish: typically, a few minutes for a 0.5-mm-thick PDMS layer and 1h30 for a

2.7-mm-thick liquid layer in a dish.

Timelapse fluorescence images we recorded and signal intensity I was measured in ROIs of typi-

cally 64x64 pixels in various positions of the image, especially along a line scanning the middle of

the image (Figure 2—figure supplement 1B, Figure 2—figure supplement 3A). The response of

the sensing film in the presence of oxygen can be modeled by a linear Stern-Volmer relationship:

I0 �Bg

I Cð Þ�Bg

¼ 1þKC

where C is the oxygen concentration expressed as a percentage of oxygen in the injected gas phase

(nearly 21% for atmospheric conditions), I0 is the reference intensity in the absence of oxygen, Bg is

the background intensity independent from the oxygen sensitive signal of the PtTFPP molecules and

K is the Stern-Volmer constant used as an indicator of the sensing film sensitivity.

Notice that the background is usually not included in the Stern-Volmer relationship but a repre-

sentative background image (O2 independent) is subtracted prior to intensity measurements

(Nock et al., 2008; Thomas et al., 2009). This O2-independent background value can be deduced

from the fluorescence of a plain PDMS film prepared in the same conditions than the sensing film

but devoid of PtTFPP molecules (i.e. a standard) (Thomas et al., 2009). We tested that procedure

that is basically working but we choose to include the background as a fitting parameter because

illumination conditions may change between the sample and the standard (especially the focus plane

that affects the focused height of autofluorescent medium above the surface). The slight changes in

thickness and PtTFPP composition of sensing films at the large spatial scales we are interested here

(3–6 mm wide images, Figure 2—figure supplement 1A–D, Figure 2—figure supplement 3A–C)
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are another source of heterogeneity especially for the K value. For those reasons, we apply the

Stern-Volmer relation with K and Bg as a fitting parameters in many different small regions of interest

(ROI) of the surface. For each ROI, we found that the measured intensities follow perfectly the

Stern–Volmer relation (i.e. C linearly increases with the Stern-Volmer parameter (I0-Bg)/(I(C)-Bg)�1,

Figure 2—figure supplement 2B) and that K and Bg are clearly uncorrelated, in particular Bg

depends on the illumination pattern but not K.

The illumination pattern is clearly visible on fluorescence images at 21% O2. For instance, the

large field of view of Figure 2—figure supplement 1B reconstituted by the multi-area module of

the microscope displays an up and down landscape in the 21% intensity (Figure 2—figure supple-

ment 2C) due illumination changes in the periphery of each overlapped area but also due to the

slightly different fluorescence in the gap region of the microfluidic device and especially at its inter-

faces. The single large field of view of Figure 2—figure supplement 3A taken with our second

microscope setup displays a dome shaped pattern with 20% intensity difference between the center

and borders (Figure 2—figure supplement 3D). The background value Bg is very correlated with

the 21% signal variations in both imaging configurations (Figure 2—figure supplement 2C, Fig-

ure 2—figure supplement 3D) and we can for each experiment calibrate a linear relationship

between between Bg and I(21%) (Figure 2—figure supplement 2D, Figure 2—figure supplement

3F).

As already stated, the background is due to the autofluorescence of the various media (PDMS

layer and coverglass for the sensing film, bottom plastic dish if any, and surrounding fluid). For Fig-

ure 2—figure supplement 1, the microfluidic device was filled with pure water and for Figure 2—

figure supplement 3, the calibration was performed in the autofluorescent HL5 medium before

spotting the cells. Sometimes the sensing film was placed in a non-drilled well and in that case the

strong autofluorescence of the plastic bottom of the plate becomes a major source of background

(not shown). Finally, Bg also includes the read noise RN of the camera which is a constant indepen-

dent of the light output or exposure time. For Figure 2—figure supplement 2, we measured

RN=108 A.U. and hence a light background Bg* = Bg-RN=15 A.U. which is half the ‘true oxygen

dependent signal’ at 21% O2, I(21%)-RN=30 A.U. The maximum deviation of Bg from the linear fit in

Figure 2—figure supplement 5D is about 1.5 A.U. Hence a relative error 1.5/15=10% for Bg* will

be taken in the following. For Figure 2—figure supplement 3, we measured RN=100 A.U. and at

the top of the bell curve, Bg*=1400–100=1300 A.U. while I(21%)*=1600–100=1500 A.U. (Figure 2—

figure supplement 3D). Hence, the background is nearly 87% of the signal due to the HL5 autofluor-

escence. Nevertheless, the maximum relative deviation from the linear fit is smaller at about 25/

1300» 2% of Bg*. All these values will be used for the error analysis of the oxygen profiles below.

For uncovered (free) sensing films the sensibility K ranges between 3 and 5 %�1 and is very con-

stant, weakly dependent on the illumination pattern (Figure 2—figure supplement 2D and blue

points in Figure 2—figure supplement 3E). When films are covered with a coverglass, the fluores-

cence under hypoxic conditions (0%) increases significantly on the covered region (Figure 2—figure

supplement 3C) but not at 21% (Figure 2—figure supplement 3B). As a results, K, which is propor-

tional to this ratio, increases significantly (Figure 2—figure supplement 3E) but not Bg and I(21%)

(Figure 2—figure supplement 3D) confirming that K and Bg are independent. This increase in K is

probably due to a local temperature increase: the coverglass adsorbs more heat from the micro-

scope illumination light and this heat is difficult to evacuate due to the confinement. In principle, for

the spot assay experiment, it would be necessary to perform an independent calibration with the

Stern-Volmer relation in the covered situation. However, this is difficult due to the very long time

required to equilibrate the oxygen level under the confinement far from the coverglass boundary

(this is why we started the Stern-Volmer fit at ROI7 in Figure 2—figure supplement 3B,D,E). A too

long procedure causes other problems such as medium evaporation, stage or focus drift. . . To avoid

that, we decided to apply the protocol described in the image analysis pipeline of Figure 2—figure

supplement 4. First, we perform a gas calibration ramp and do a Stern-Volmer analysis in various

points of an uncovered sensing film (the subscript U is for uncovered) where I0U is reliable in order to

get the linear background relation BgU=a I(21%)U +b and to measure the measure the ratio R=I0U/I

(21%)U. Reliable means here any point if gas mixture is applied uniformly when calibrating in a dish

or just underneath the gas channel in microfluidic devices. Second, we choose the reference fluores-

cence image I(21%) immediately before starting any experiment (i.e. just after covering the spot, or

just before applying the gradient in the gas channels). From that image, we build a Bg image as a I

Cochet-Escartin, Demircigil, et al. eLife 2021;10:e64731. DOI: https://doi.org/10.7554/eLife.64731 23 of 34

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.64731


(21%)+b (as Bg is the same for uncovered and covered case) and eventually we build a reconstituted

I0 image as R I(21%). Finally, we subtract and divide images with the ‘Image calculator’ of ImageJ

(i.e. pixel by pixel) following the Stern-Volmer model and hence get a K-value image map and subse-

quently an oxygen map (Figure 2—figure supplement 4C–D). This enables to correct non-homoge-

neous illumination conditions or non-homogeneous sensing film properties as well to quickly

estimate error bars on the oxygen map from the estimated errors on Bg, I(21%) and I0 detailed

below.

We already discussed the error on the background. In principle, I(21%) is a reference image

(hence error free), however as an experiment (especially the spot assay) may run overnight we need

somewhere to evaluate drift in the absolute intensity for instance by running an overnight timelapse

experiment with a sensing film under ambient gas conditions. This error is added on I(21%) and was

estimated as 2% of the true fluorescence signal corrected from read noise I(21%)-RN. Error on I0
could be much larger. As the intensity I(C) is strongly nonlinearly increasing with the oxygen concen-

tration C, if we measure an intensity I0* corresponding to a residual small oxygen level C0*, we need

to correct the true I0 value using the relation I0 � Bg » I0 » I0 1þ KC
0

� �

. Due to oxygen leakage along

tubes and within our environmental chamber, when applying 100% N2, we measured a residual

C
0
» 0:15 O2 in a culture medium dish using a bare fiber oxygen sensor coupled to its commercial

oxymeter (Firesting, Pyroscience, Aachen, Germany). Hence with a typical K=5 value, we obtain a

very large discrepancy between the measured fluorescence I0* and the ideal one: I0 » 1:75I0, but

finally this discrepancy is not really dramatic on the measured error again due to the non-linearity.

The effect of these different error sources on the measured oxygen map is presented in Fig-

ure 2—figure supplement 1E and Figure 2—figure supplement 3H for a typical microfluidic and

spot experiments. Even if we make a 1.75 error on I0, this has little effect on the profiles except in

the very hypoxic region when C<0.25% where the error exceed 50%. But even in the region around

C=1%, the error is less than 10%. The error on I(21%) on the other hand has a significant effect on

the high oxygen regions but less on the hypoxic regions. Finally, the background error is relatively

visible in the intermediate oxygen concentration region (very visible on the side of the spot in Fig-

ure 2—figure supplement 3H, but also to some extend around the median axis at C~10% in the

microfluidic experiment, Figure 2—figure supplement 1E). Finally, we defined error bars with (max-

min)/2 values of the calculated C when exploring the estimated errors discussed above. In the 0.5–

1.5% region were we observe most of the interesting aerotactic behaviors with Dictyostelium cells,

the precision on the oxygen concentration DC/C is less than 0.3. For the purpose of this paper, we

can conclude that aerotaxis and aerokinesis occurs undoubtedly between C=0% and C=2%

(Figure 2).

Numerical simulation of oxygen tension. Oxygen tension inside the device was computed using

commercial finite element software (COMSOL Multiphysics 5.5; COMSOL, Inc, Burlington, MA,

USA). The gas flow in the individual channels were simulated by solving the Navier-Stokes equations

coupled with mass continuity for an incompressible fluid:

�Gðu �rÞu¼ �GDu�rp;
�Gr�u¼ 0;

where u is the velocity vector, p is the pressure, and �G and �G are the gas density and viscosity

(taken as 1 kg/m3 and 10�5 Pa.s, respectively). The spatial and temporal distribution of oxygen

inside the device was then calculated by solving the convection-diffusion equation:

qc

qt
¼Dc�u �rc;

where c is the oxygen concentration, D is the diffusion coefficient of oxygen, and T is the time.

The device was assumed to be in an atmosphere containing 21% O2. Medium at 21% O2 concen-

tration was supplied to media channels. Gases containing 0% and 21% O2 were respectively sup-

plied to the left-hand and right-hand side gas channels at 30 ml/min to generate an oxygen

gradient. Zero pressure and convection flux conditions were set at the outlets of the gas channels,

and a no-slip condition was applied on the channel walls for fluid flow analysis. Boundary conditions

for oxygen concentration were set according to Henry’s law. Oxygen concentration at the interfaces

between the PDMS and gas phase (atmosphere and gas mixture in the gas channel) was set
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correspondingly to the product of the solubility coefficient of oxygen in PDMS and the partial pres-

sure of oxygen. At the interfaces between PDMS and media or gel, a partition condition was

applied, which balanced the mass flux of oxygen to satisfy continuity of partial pressure of oxygen:

cPDMS

SPDMS

¼ cchannel

Schannel
;

where cPDMS and SPDMS are the oxygen concentration and the solubility of oxygen in the PDMS,

respectively, and cchannel and Schannel are those in the media and gel channels. Moreover, oxygen

consumption by cells was considered by setting an outward flux of oxygen of 6x10�8 [mole/(m2.s)]

on the bottom of the media channels (calculated as b�* where b=1.2.10�16 mole/(cell.s) is the oxy-

gen molar consumption per Dd cell per unit of time (Torija et al., 2006) and �*=500 cell/mm2 is the

highest density used in the device).

The diffusion constants of oxygen in the various media were taken to be 2.10�9, 4.1.10�9 and

2.10�12 m2/s for culture medium, PDMS and PC, respectively. Oxygen solubility at 1atm were taken

to be 219 (close to the measured value, see below), 1666 and 1666 mM for culture medium, PDMS

and PC, respectively (PDMS and the PC values were assumed to be the same since they are report-

edly within the same range Merkel et al., 2000; Moon et al., 2009). The computational models con-

sisted of approximately 1,135,000 computational elements. The initial condition of oxygen

concentration in each material was set to 21% O2 everywhere (219 mM).

Potts models
Potts model simulations were run using CompuCell3D (Swat et al., 2012) with a mix of prebuilt

modules and home-made Python steppables in particular to implement the modulation of aerotactic

strength by local oxygen levels. Most parameters were fitted to experimental measurements and

both time and length scales were also adapted to achieve quantitative simulations. In all simulations,

we used Compucell’s Volume module which applies to all cells a Hamiltonian of the form:

Hvolume ¼ lv V �Vcellð Þ

where V is the volume of a cell and Vcell a target volume set to 2 pixels. This already set the length

scale of our simulations to 1pixel = 10mm. lv was set to 800. These values were adapted to repro-

duce the cell speeds observed in the microfluidic experiments. To achieve this relationship, we also

decided to fix that one step of the simulation (Monte Carlo Step) was meant to represent 0.1s.

Aerotaxis was modeled using CompuCell’s built-in chemotaxis plugin. This leads to a new term in

the Hamiltonian of the form

Hchemotaxis ¼ laeroDC

where DC is the difference in oxygen concentration C between the source and target pixels of a flip

and laero is the aerotactic strength. Key to our model is thus the fact that we made laero different for

each cell and dependent on the local oxygen concentration. This modulation was fitted to the micro-

fluidic experiments and set, in the general model as:

laero Cð Þ ¼ 800

1þ e
C�0:7
0:2

where C is the oxygen concertation at the center of mass of a cell. Figure 5 shows variations on that

relationship which are:

laero Cð Þ ¼ 1225

1þ e
C�0:7
1:5

Based on experimental observations, we also made the effective temperature of the model differ-

ent for each cell and dependent on local oxygen concentrations. This allowed us to reproduce the

aerokinetic effect and the modulation of the temperature was fitted to reproduce the cell diffusion

constants measured in the microfluidics experiment. The main model thus uses the following rela-

tionship for temperature T
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T Cð Þ ¼ 85þ 105

1þ e
C�0:7

1

Figure 5 and Figure 5—figure supplement 1 show variations on this relationship, which is simply

replaced by a constant value of T (115, 135 or 155).

Another key aspect of the models is the oxygen field, which is implemented using CompuCell’s

DiffusionSolverFE module. In the case of the microfluidics experiments, the oxygen field was made

to be constant (no diffusion, no consumption by cells) and fitted on experimental measurements of

this gradient shown in Figure 2B. The oxygen concentrations were expressed in % giving 0 and 21

as natural boundaries. The actual oxygen profile varied in the x direction only as:

C xð Þ ¼ 21:38

1þ e0:031� x�200ð Þ

where x is the position in pixels in the simulation which was run on a 400 by 800 xy grid.

For spot assays, oxygen was allowed to diffuse freely. In our time and length units, the diffusion

constant of oxygen in liquids (2.103 mm2.s�1) is two pixel2 step�1.

In terms of consumption, we took the oxygen consumption by Dicty cells to be 1.2.10�16 mole/

(cell.s) (Torija et al., 2006) and we measured the oxygen solubility in HL5 medium as 250 mM (mea-

surement with a bare fiber sensor plugged to a a Firesting oximeter, Pyroscience, Germany). Taking

the measured vertical confinement of 50 mm (Figure 1—figure supplement 1), the amount of oxy-

gen available, at maximum, above a single pixel of the simulation is 1.25.10�15 moles, which we

define, in arbitrary units, to be 21. We can then turn the consumption of a single cell into a consump-

tion per pixel given that the typical size of a cell is two pixels and per time step, each representing

0.1 s. We end up with a consumption, in our arbitrary units of 0.1 pixel�1 step�1 which is only

applied to pixels occupied by a cell. Of note, in case an occupied pixel had a remaining oxygen level

of less than this values, then consumption was set at this oxygen level so that all oxygen was con-

sumed. The last ingredient in oxygen dynamics is the leak of oxygen coming from the bottom of the

multiwall plate. Assuming complete hypoxia on the cells’ side, this would lead to a net flux of oxygen

of DC/e where D is the oxygen diffusion constant in polystyrene, C is the oxygen concentration on

the outside and e is the thickness of the polystyrene bottom. This leads to a flux by unit surface, in

our Potts units of 0.001 pixel�1.step�1. We therefore implement a source of oxygen for all pixels in

the simulation, whether they are occupied by a cell or not, of the form:

secretion Cð Þ ¼ 0:001
21�C

C

where C is the local oxygen concentration at the considered pixel.

This was sufficient to faithfully reproduce the formation time of the rings. Finally, the spot simula-

tions were run on a 500 by 500 pixels grid and we imposed boundary conditions to the oxygen field

as a constant concentration of 21, the borders acting as a source of oxygen just like the edges of the

coverslip in the experiments.

Cell division was also set to experimental observations. Given a doubling time of 8 hr, we imple-

mented random divisions at each time point, each cell having a 1/ (8h * 3600 s/h * 10step/s) =

3.10�6 chance of dividing. However, cell division was turned off at low oxygen concentrations

(<0.7%). In Figure 5, a simulation is shown were this probability was set to 0 for all cells in all

conditions.

In terms of initial conditions, the microfluidic simulations were started from a homogenous cell

density, each cell being initialized on a grid: two pixels per cells and a six pixel gap to the next

neighbor in all directions. For the spot simulations, cells were seeded in three circular, concentric

regions of decreasing density. The first region was set to be 30 pixels (300 mm) in radius with a gap

of 1 pixel between each cell, the second one spanned the radii between 30 and 60 pixels with a gap

of two pixels between each cell and the last one spanned between 60 and 90 pixels with a gap of 3

pixels. This lead to an initial colony with a radius of 900 mm and between 1900 and 2000 cells, both

very similar to experiments.
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Mean-field model, Go or Grow model and simulations
Both diffusion equations (Equations 1 and 2) were discretized through a time-backward space-cen-

tered difference scheme with an upwind discretization for the advection operator. In the case of the

mean-field model, we were considering (Equations 1 and 2) in a radial symmetry, which lead to the

following discretization for �:

�
nþ1

2

i
��

n�1

2

i

Dt
�D

RiþDx
2ð Þ �

nþ1

2

iþ1
��

nþ1

2

i

� �

� Ri�Dx
2ð Þ �

nþ1

2

i
��

nþ1

2

i�1

� �

RiDx2

þ 1

RiDx
� cRia

n
i �

nþ1

2

i �Ri�1a
n
i�1

�
nþ1

2

i�1
if Cn

i �Cn
i�1

Ria
n
i �

nþ1

2

i �Riþ1a
n
iþ1

�
nþ1

2

iþ1
if Cn

i <C
n
i�1

( )

¼ rni �
nþ1

2

i

, where ani ¼ l Cn
i

� �Cn
i
�Cn

i�1

Dx
; rni ¼ r Cn

i

� �

and Ri the distance from the center.

In the case of the Go or grow model with its planar symmetry, the discretization for � was:

�
nþ1

2

i
��

n�1

2

i

Dt
� D

�
nþ1

2

i�1
�2�

nþ1

2

i
þ�

nþ1

2

iþ1

Dx2
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� ani �

nþ1

2
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2

i � aniþ1
�
nþ1

2

iþ1
if Cn

i <C
n
i�1

( )

¼ rni �
nþ1

2

i , with ani ¼ a Cn
i

� �

.

Concerning the equation on Oxygen concentration Equation 2, the consumption term

�b Cð Þ� was expressed in two different manners: either b Cð Þ ¼ b0 and a non-negativity constraint was

added on the Oxygen concentration, just as it was the case in the cellular Potts model, or

b Cð Þ ¼ min b0; b0
C
C0
0

� �

which leads to an oxygen consumption that goes to zero in the region of very

low concentration C<C0
0
and therefore ensures non-negativity for C under a sufficiently small time

step Dt. Both expressions led to qualitatively similar results, but we opted for the latter in all the sim-

ulations presented here. Finally, the discretization scheme for C in the planar symmetry was:
Cnþ1

i
�Cn

i

Dt
� Doxy

Cnþ1

i�1
�2Cnþ1

i
þCnþ1

iþ1

Dx2
¼ �bni �

nþ1

2

i , with bni ¼ b Cn
i

� �

. For the radial symmetry:

Cnþ1

i �Cn
i

Dt
�D

Riþ Dx
2

� �

Cnþ1

iþ1
�Cnþ1

i

� �

� Ri� Dx
2

� �

Cnþ1

i �Cnþ1

i�1

� �

RiDx2
¼�bni �

nþ1

2

i

The schemes were coded in Python language. All simulations of (Equations 1 and 2) shown in

this article were carried out with a mesh size Dt¼ 0:02min and Dx¼ 1�m. The values used for the con-

stants are: D¼ 30�m2 �min�1 (effective cellular diffusion constant), C0 ¼ 0:7%O2 (threshold for cell divi-

sion), C0
0
¼ 0:1%O2 (lower threshold in the two threshold ‘Go or Grow’ model, below which cells stop

aerotaxis), Doxy ¼ 1:2 � 105�m2 �min�1 (oxygen diffusion constant in medium), r0 ¼ ln2=480min�1 (rate of

cell division) and b0 ¼ 0:01%O2min
�1cell�1 (using the equivalence 1.25.10�15 moles = 21 %O_2 dis-

cussed above in Potts model section).

The scheme on C was supplemented with the boundary condition C Lð Þ ¼ 21%O2. We have chosen

L ¼ 9mm for the Go or grow model to match experimental conditions. For the mean-field model, we

have chosen L ¼ 2:5mm in order to match the cellular Potts model for which size was a concern for

computation time.

In the mean-field model, the initial condition for � was taken the same as in the cellular Potts

model. For the other simulations, initial conditions for � and C were chosen such that they were

already close to the expected stationary profile.

We measured the speed of the wave s, once the wave profile was qualitatively stable, by consid-

ering the evolution of the point �x tð Þ such that C t;�x tð Þð Þ ¼ C0.

Mathematical analysis of the ‘Go or Grow’ model
We present below a preliminary analysis of the ‘Go or Grow’ model. A more detailed mathematical

investigation of this model will be carried out in a separate article.

1.The ‘Go or Grow’ model admits explicit traveling wave solutions.

We recall that z ¼ x� st is the spatial variable in the moving frame at (unknown) speed s>0. We

seek a pair of stationary profiles, resp. the density � zð Þ and the oxygen concentration C zð Þ. We

assume that C zð Þ is an increasing function. By translation invariance, we set without loss of generality

that C 0ð Þ ¼ C0, so that Equation 3 becomes:
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�s
q�
qz
¼D

q
2�
qz2

� a0
q�
qz
; if z<0

�s
q�
qz
¼D

q
2�
qz2

þ r0�; if z>0

8

<

:

(7)

Furthermore, the function � zð Þ must satisfy at z¼ 0 the following relation (i.e. the continuity of the

flux) :

s
q�

qz
ð0þÞ�s

q�

qz
ð0�Þ ¼�a0

D
�ð0Þ (8)

Thus the equation becomes a second order differential equation with piecewise constant coeffi-

cients on each half-line, that can be solved explicitly.

For z<0, the solution is of the form Aþ Be
a0�s

D
z. From Equation 4 we observe that

s � a0 equivalently
a0�s
D

� 0 and as � is bounded, it implies that B ¼ 0.

For z>0, we look at the roots of the characteristic polynomial P �ð Þ ¼ D�2 þ s�þ r0. We note that

to yield a nonnegative solution, we need s2 � 4r0D.

If s ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

, then the solution is of the form Czþ Dð Þe�
ffiffiffi

r0
D

p
z and with relation Equation 8, we

obtain � zð Þ ¼ A
ffiffiffiffiffiffi

Dr0
p �a0

D
zþ 1

� �

e�
ffiffiffi

r0
D

p
z and observe that in this case, we necessarily have a0 �

ffiffiffiffiffiffiffiffi

r0D
p

.

If s>2
ffiffiffiffiffiffiffiffi

r0D
p

, the solution is of the form A0e�z þ B0e�þz, with � ¼ �s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2�4r0D
p
2D

. By arguments exposed

in Van Saarloos, 2003, solutions with initial datum localized cannot decrease exponentially at a

rate �>�
ffiffiffi

r0
D

p

, where �
ffiffiffi

r0
D

p

corresponds to the exponential decay parameter when s ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

. This

leads to B0 ¼ 0, as �þ>�
ffiffiffi

r0
D

p

. Then A ¼ A0, but in order to satisfy the C1-discontinuity jump relation

Equation 7, it must be that :

�� ¼�a0

D
(9)

Equation 9 can be solved algebraically for s, which yields s¼ a0 þ Dr0
a0
. Furthermore, we can

rewrite Equation 9 as follows 2a0 �sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 4r0D
p

, multiplying by 2a0þs, we find

that 4a2
0
�s2

� �

¼ 2a0 þsð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 4r0D
p

>0, which leads to a2
0
>s2

4
>r0D.

Thus, we have disclosed all possible profiles. In the case a0 �
ffiffiffiffiffiffiffiffi

r0D
p

the profile travels at

speed s ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

, whilst for a0>
ffiffiffiffiffiffiffiffi

r0D
p

the profile travels at speed s ¼ a0 þ r0D
a0
.

One needs to verify that each of these profiles admits an associated oxygen profile that satisfies

the condition C 0ð Þ ¼ C0, but the preceding profiles were defined up to the multiplicative constant A,

by linearity of Equation 7. The differential equation on C becomes with �
~

the solution given above

for A ¼ 1:

�s
qC

qz
¼Doxy

q
2

qz2
� b A�

~

� �

C (10)

One concludes by checking that by monotonicity there exists a unique constant A such that the

solution to the differential Equation 10 equation satisfies C 0ð Þ ¼C0.

2. The wave is pushed in the case a0>
ffiffiffiffiffiffiffiffi

r0D
p

.

A neutral fraction vk is defined as satisfying the following linear equation in the moving

frame z ¼ x� st:

qvk

qt
þLvk:¼ qvk

qt
�s

qvk

qz
�D

q
2vk

qz2
þ q

qz
a zð Þvk
� �

� r zð Þvk ¼ 0; (11)

with vk 0; zð Þ ¼ vk
0
zð Þ where we identify a zð Þ ¼ a C zð Þð Þ and r zð Þ ¼ r C zð Þð Þ for the sake of clarity. This cor-

responds biologically to staining the cells given by the initial distribution vk
0
at time t¼ 0 with a neu-

tral label (Roques et al., 2012).

Defining U zð Þ: ¼ s�a zð Þð Þ
D

z, then we note that Lf ¼ �D q

qz
e�U q

qz
eU fð Þ

� �

� r zð Þf . This leads to setting

w: ¼ e
U
2vk that satisfies the parabolic equation qw

qt
þ L

~

w ¼ 0,
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with L
~

g: ¼ �De
U
2
q

qz
e�U q

qz
e
U
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� �� �

� r zð Þg ¼ �D
q
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qz2
þ U02
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g. The operator L
~

is self-adjoint

in L2 R; dzð Þ on the appropriate domain. Then by setting g: ¼ min inf U02

4
� r zð Þ

n o

; r0D
a0

� �2
� �

>0, one can

first show that every element of the spectrum of l 2 s L
~

� �

such that l<g is an eigenvalue of L
~

. Sec-

ond, one shows that the only eigenvalue l of L
~

such that l<g is l ¼ 0. Finally by standard theory of

self-adjoint operators and semi-group theory, one obtains that w tð Þ ¼ Pw0 þ e�tL
~

I � Pð Þw0,

where ke�tL
~

I � Pð Þw0kL2 R;dzð Þ< e�gtkw0kL2 R;dzð Þ. Translating these properties onto the neutral fraction vk,

we have that vk tð Þ !
vk
0
;�h i

L2 R;eU dzð Þ
�;�h i

L2 R;eUdzð Þ
� at an exponential rate, where � is the traveling wave profile calcu-

lated in the previous section. Therefore, each fraction converges to a fixed proportion of the whole

population. We conclude that after some time the wave becomes a perfect mix of each neutral frac-

tion. This corresponds to the definition of a pushed wave according to Roques et al., 2012.

3. The wave is pulled in the case a0 �
ffiffiffiffiffiffiffiffi

r0D
p

.

The preceding reasoning does not apply to this case and the intuition is clear, as the wave speed

coincides with Fisher’s s ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

, which is typically the signature of a pulled reaction- diffusion

front. In order to prove the pulled nature of the front, we consider wk ¼ vk

� , where � is the corre-

sponding wave profile. By computation, wk then satisfies the following PDE:

qwk

qt
� b zð Þ qwk

qz
� D q

2wk

qz2
¼ 0 with b zð Þ ¼

2
ffiffiffiffiffiffi

r0D
p

�a0
D

; ifz<0

2

ffiffiffiffiffiffi

r0D
p

�a0
ffiffiffiffiffiffi

r0D
p

�a0ð Þzþ1
; ifz � 0

8

<

:

and set h a positive solution to the

differential equation h0 ¼ bh. As b zð Þ � 0 and b0 bounded above, it can be shown by arguments simi-

lar to Roques et al., 2012, that under the integrability condition
R

wk
0
zð Þ

� �2
h zð Þdz<¥, the neutral frac-

tion goes extinct, that is
t¼þ¥
lim k wk

� �2
hk

¥
¼ 0, which characterizes a pulled wave in the framework of

neutral fractions.

Mathematical analysis of a specific ‘Go or Grow’ model with a second
threshold
We present quickly a specific case for a ‘Go or Grow’ model with a second threshold, that is

completely analytically solvable. We consider the advection term of the form

a Cð Þsign qxCð Þ with a Cð Þ ¼ a0; if C0
0
<C<C0

0; otherwise

�

, the division rate r Cð Þ ¼ r0; if C>C0

0; if C<C0

�

and the O2

consumption rate per cell b Cð Þ ¼ b0, without including the constraint that the O2 concentration C be

non-negative. Although this hypothesis seems physically non relevant, it is consistent with the fact

that cells are not sensitive to O2 concentration gradients below the threshold C0
0
.

Given a traveling wave profile �;C and the corresponding front speed s, we suppose

C 0ð Þ ¼ C0 and we introduce the spatial gap h>0 between the two thresholds, i.e. C �hð Þ ¼ C0
0
, so

that (Equation 1) becomes:

�s
q�
qz
¼D

q
2�
qz2

; if z<� h

�s
q�
qz
¼D

q
2�
qz2

� a0
q�
qz
; if � h<z<0

�s
q�
qz
¼D

q
2�
qz2

þ r0�; if z>0

8

>

>

>

<

>

>

>

:

(12)

Introducing a multiplicative constant A, � is then of the shape:

� zð Þ ¼ A BþEe
s�a0
D

h
� �

; if z<� h

� zð Þ ¼ A BþEe
� s�a0ð Þ

D
z

� �

; if � h<z<0

� zð Þ ¼ Ae��z; if z>0

8

>

>

>

>

<

>

>

>

>

:

(13)

With B¼ s�D
s�a0

, E¼ D�a0
s�a0

and ¼ sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2�4Dr0

p
2D

. We obtain the following condition, that establishes a

one-to-one correspondence between s and h:
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e
s�a0
D

h ¼ a0 s��Dð Þ
s a0��Dð Þ (14)

The equation on C becomes:

�s
qC

qz
¼ Doxy

q
2

qz2
� b0� (15)

With the assumption that that C be continuously differentiable, we can solve Equation 15 for C:

C zð Þ ¼ FAzþG; if z<� h

C zð Þ ¼HAzþ IAe
� s�a0ð Þ

D
zþ JþKe

�s
Doxy

z
; if � h<z<0

C zð Þ ¼ LAe��zþMe
�s
Doxy

zþCinit ; if z>0

8

>

<

>

:

With F ¼ b0
s

BþEe
s�a0
D

h
� �

, G¼C0
0
þFAh, H ¼ b0B

s
, I ¼ b0D

2E

s�a0ð Þ Ds�Doxy s�a0ð Þð Þ, L¼ b0

Doxy�sð Þ,

M ¼C0�LA�Cinit, J ¼C0 � IA�K and, by

setting D¼ s
D

H�F� I s�a0
D

� �

e
s�a0
D

h
� �

� HþL � s
Doxy

� �

� I s�a0
D

� �

� �

s
Doxy

e
s

Doxy
h

� �

, we have that

K ¼ 1

D

H�F� I s�a0
D

� �

e
s�a0
D

h
� �

s
Doxy

Cinit �C0
0

� �

and A¼ 1

D

s
Doxy

e
s

Doxy
h

� �

s
Doxy

Cinit �C0
0

� �

. This closes the system,

but one more constraint remains, which is:

C0
0
¼�HAhþ IAe

s�a0ð Þ
D

h þ JþKe
s

Doxy
h

(16)

The front speed s of a traveling wave must therefore satisfy the implicit Equation 16. Finding a

closed form for the solutions of Equation 16 seems out of reach. Nevertheless, we can approximate

the roots numerically, especially by noticing through numerical observation that Equation 16 is

monotone on the interval 2
ffiffiffiffiffiffiffiffi

r0D
p

;a0þ r0D
a0

� �

, where the root s is located. Hence through a dichotomy

search algorithm we can find the speed s of the traveling wave with arbitrary accuracy.
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Université de Lyon STARMAJ Satomi Hirose

European Research Council 639638 Vincent Calvez

Agence Nationale de la Re-
cherche

ANR-19-CE45-0002-02 Jean-Paul Rieu

GDR Imabio AMI Christophe Anjard
Jean-Paul Rieu

Cochet-Escartin, Demircigil, et al. eLife 2021;10:e64731. DOI: https://doi.org/10.7554/eLife.64731 30 of 34

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.64731


Centre National de la Re-
cherche Scientifique

MITI 2019 Vincent Calvez
Jean-Paul Rieu

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Olivier Cochet-Escartin, Conceptualization, Data curation, Formal analysis, Supervision, Investigation,

Visualization, Methodology, Writing - original draft, Project administration, Writing - review and edit-

ing; Mete Demircigil, Conceptualization, Formal analysis, Investigation, Visualization, Methodology,

Writing - original draft, Writing - review and editing; Satomi Hirose, Blandine Allais, Formal analysis,

Investigation, Methodology; Philippe Gonzalo, Resources, Methodology, Writing - review and edit-

ing; Ivan Mikaelian, Resources, Formal analysis, Methodology; Kenichi Funamoto, Conceptualization,

Resources, Formal analysis, Supervision, Investigation, Methodology, Project administration, Writing

- review and editing; Christophe Anjard, Conceptualization, Resources, Formal analysis, Supervision,

Investigation, Methodology, Writing - original draft, Project administration, Writing - review and

editing; Vincent Calvez, Conceptualization, Supervision, Funding acquisition, Validation, Investiga-

tion, Methodology, Writing - original draft, Project administration, Writing - review and editing;

Jean-Paul Rieu, Conceptualization, Data curation, Formal analysis, Supervision, Funding acquisition,

Investigation, Visualization, Methodology, Writing - original draft, Project administration, Writing -

review and editing

Author ORCIDs

Olivier Cochet-Escartin https://orcid.org/0000-0001-7924-702X

Satomi Hirose http://orcid.org/0000-0002-8594-8006

Philippe Gonzalo http://orcid.org/0000-0002-9763-0150

Kenichi Funamoto https://orcid.org/0000-0002-0703-0910

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.64731.sa1

Author response https://doi.org/10.7554/eLife.64731.sa2

Additional files
Supplementary files
. Source data 1. Detailed measurements for quantities presented in the text as means ± standard

deviations.

. Transparent reporting form

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

References
Adler J. 1966. Chemotaxis in bacteria. Science 153:708–716. DOI: https://doi.org/10.1126/science.153.3737.708,
PMID: 4957395

Aronson DG, Weinberger HF. 1975. Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse
Propagation. Berlin, Heidelberg: Springer. DOI: https://doi.org/10.1007/BFb0070595

Birzu G, Hallatschek O, Korolev KS. 2018. Fluctuations uncover a distinct class of traveling waves. PNAS 115:
E3645–E3654. DOI: https://doi.org/10.1073/pnas.1715737115, PMID: 29610340

Birzu G, Matin S, Hallatschek O, Korolev KS. 2019. Genetic drift in range expansions is very sensitive to density
dependence in dispersal and growth. Ecology Letters 22:1817–1827 . DOI: https://doi.org/10.1111/ele.13364,
PMID: 31496047

Chang WL, Chang YC, Lin KT, Li HR, Pai CY, Chen JH, Su YH. 2017. Asymmetric distribution of hypoxia-inducible
factor a regulates dorsoventral axis establishment in the early sea urchin embryo. Development 144:2940–2950
. DOI: https://doi.org/10.1242/dev.145052, PMID: 28705895

Cochet-Escartin, Demircigil, et al. eLife 2021;10:e64731. DOI: https://doi.org/10.7554/eLife.64731 31 of 34

Research article Computational and Systems Biology Physics of Living Systems

https://orcid.org/0000-0001-7924-702X
http://orcid.org/0000-0002-8594-8006
http://orcid.org/0000-0002-9763-0150
https://orcid.org/0000-0002-0703-0910
https://doi.org/10.7554/eLife.64731.sa1
https://doi.org/10.7554/eLife.64731.sa2
https://doi.org/10.1126/science.153.3737.708
http://www.ncbi.nlm.nih.gov/pubmed/4957395
https://doi.org/10.1007/BFb0070595
https://doi.org/10.1073/pnas.1715737115
http://www.ncbi.nlm.nih.gov/pubmed/29610340
https://doi.org/10.1111/ele.13364
http://www.ncbi.nlm.nih.gov/pubmed/31496047
https://doi.org/10.1242/dev.145052
http://www.ncbi.nlm.nih.gov/pubmed/28705895
https://doi.org/10.7554/eLife.64731


Chen X, Ling HF, Vance D, Shields-Zhou GA, Zhu M, Poulton SW, Och LM, Jiang SY, Li D, Cremonese L, Archer
C. 2015. Rise to modern levels of ocean oxygenation coincided with the cambrian radiation of animals. Nature
Communications 6:7142. DOI: https://doi.org/10.1038/ncomms8142, PMID: 25980960

Child CM. 1941. Formation and Reduction of Indophenol Blue in Development of an Echinoderm. PNAS 27:523–
528 . DOI: https://doi.org/10.1073/pnas.27.11.523, PMID: 16588496

Coffman JA, Denegre JM. 2007. Mitochondria, redox signaling and axis specification in metazoan embryos.
Developmental Biology 308:266–280. DOI: https://doi.org/10.1016/j.ydbio.2007.05.042, PMID: 17586486

Cotter DA, Raper KB. 1968. Properties of germinating spores of Dictyostelium discoideum. Journal of
bacteriology 96:1680–1689. DOI: https://doi.org/10.1128/jb.96.5.1680-1689.1968, PMID: 5749769

Cremer J, Honda T, Tang Y, Wong-Ng J, Vergassola M, Hwa T. 2019. Chemotaxis as a navigation strategy to
boost range expansion. Nature 575:658–663. DOI: https://doi.org/10.1038/s41586-019-1733-y, PMID: 316951
95
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