
HAL Id: hal-02999473
https://cnrs.hal.science/hal-02999473

Submitted on 20 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The effect of fracture roughness on the onset of
non-linear flow

D. Cunningham, Harold Auradou, S Shojaei-Zadeh, German Drazer

To cite this version:
D. Cunningham, Harold Auradou, S Shojaei-Zadeh, German Drazer. The effect of fracture rough-
ness on the onset of non-linear flow. Water Resources Research, 2020, 56, pp.e2020WR028049.
�10.1029/2020WR028049�. �hal-02999473�

https://cnrs.hal.science/hal-02999473
https://hal.archives-ouvertes.fr


The effect of fracture roughness on the onset of non-linear flow

D. Cunningham1, H. Auradou2, S. Shojaei-Zadeh3 and G. Drazer1

1 Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 
Piscataway, NJ, USA.
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Abstract

In  fractures  where  surface  fluctuations  are  large  compared  to  their  aperture  (narrow
fractures) the flow is forced to move in tortuous paths that produce additional viscous friction
and are subject to inertia effects. We consider the relation between the magnitude of surface
roughness and the onset of inertial effects in the pressure driving the flow through a single open
fracture.  We performed experiments  systematically  varying the average aperture of the open
fracture and covering a wide range of Reynolds numbers. For each aperture, we analyze the data
in terms of the Forchheimer equation and show that the critical Reynolds number, defined as the
Reynolds number at which inertial effects contribute 10% of the total pressure losses is highly
correlated  with  the  roughness  of  the  surface.  In  particular,  we show that  significant  inertial
effects appear early as the relative importance of surface roughness increases. Finally, we present
results showing that the magnitude of the deviations in the pressure field compared to a linear
profile, taken at different points in the fracture along the flow direction, are directly related to the
relative surface roughness of the fracture.
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1 Introduction

Flow  in  fractured  media  is  an  important  process  in  a  broad  range  of  engineering
applications  including  hydrocarbon  recovery,  subsurface  waste  repositories  and  geothermal
reservoir  exploitation.  When  open  fractures  and  fracture  networks  are  present  in  low
permeability rocks, they create long-range preferential pathways for fluids that would otherwise
remain mostly immobile. As a result, for example, hydraulic fracturing is a common approach to
enhance the flow of natural oil and gas. In general, the presence of fractures is key to a variety of
phenomena that depend on the underground transport  of fluids in rock formations,  including
CO2 sequestration and the dispersion of chemical and radioactive contaminants among others
(National Research Council, 1996). 

When fractures are narrow, that is, when surface fluctuations (or deviations from a flat
surface)  are  large  compared  to  the  average  aperture,  both  the  magnitude  of  such  surface
fluctuations (surface roughness) and the contact area between the two surfaces distort the flow,
forcing it to move in tortuous paths that produce additional viscous friction. In principle,  the
information  on  the  characteristic  aperture  and  surface  roughness  of  the  fractures  could  be
inferred from outcrops or samples collected from the field. However, these methods require the
reconstruction of the fracture void geometries - which generate uncertainties - and a flow model
to relate the geometry of the fracture to its hydraulic properties. Alternatively, hydraulic tests can
be performed in the field, but information is typically limited to macroscopic flow rates and
global pressure drops along the fractures. Therefore, it would be a great advantage to be able to
characterize fracture properties in addition to their hydraulic aperture, in particular, a measure of
surface roughness and its relation to inertial flow effects, from simple flow rate versus pressure
drop measurements. The purpose of our work is, in fact, to explore the importance of additional
pressure losses due to inertial effect on the hydraulic properties of a single fracture. 

At low Reynolds numbers, when inertia effects in the flow can be neglected, the relation 
between the flow rate through the fracture and the pressure gradient driving the flow is linear, as 
given by Darcy’s law (Bear, 1988),

q=
−k f

μ
∇ p

(1)

where kf is the hydraulic permeability of the fracture, μ is the fluid viscosity and q is the specific
discharge or  superficial  velocity of  the flow. In the case of an open fracture,  the superficial
velocity is identical to the average velocity of the fluid u=Q/Af, where Q is the flow rate and Af is
the cross-sectional area of the fracture perpendicular to the flow direction. Moreover, in the case
of a completely smooth fracture, the flow corresponds to that between two parallel plates with a
constant aperture h (the separation between the two plates), and the hydraulic permeability can
be  calculated  analytically  from  the  Navier-Stokes  equations,  k ¿∨¿=h2 /12 ¿.  Therefore,  if  we
approximate the flow in a fracture as that between parallel plates the dependence of the flow rate
on the pressure gradient  is  then given by the so-called  cubic-law (Witherspoon et  al.,  1980;
Schrauf & Evans, 1986; Brown, 1987),

Q
¿∨¿=−Ly

h3

12 μ
∇p¿∨¿¿ ¿

(2)

where Ly is the width of the fracture and A f=h× Ly.

In real fractures, however, the above expressions do not account for the effects of surface
roughness on the flow field. When roughness is present and is not negligible compared to the
aperture, it forces the fluid to follow tortuous paths (Brown, 1987). Clearly, the effect of surface
roughness on the permeability depends on its relative magnitude compared to the aperture, which



in underground fractures depends, in general, on the confining stress (Gangi, 1978). Numerous
experimental  and  numerical  studies  have  investigated  the  effect  that  roughness  has  on  the
hydraulic permeability of fractures (Drazer & Koplik, 2000, 2002; H. Auradou et al., 2005, 2006;
L. Talon et al., 2010; Laurent Talon et al., 2010; Mourzenko et al., 2018).  In analogy with the
cubic-law, a simple way to characterize the effect that surface roughness has on the permeability
of the fracture is to define the hydraulic or effective aperture, heff,

Q=−Ly

heff
3

12 μ
∇ p, (3)

where  heff  is  therefore  the  aperture  between  two  parallel  plates  that  would  have  the  same
permeability as the fracture under consideration. The effect of surface roughness can then be
quantified by the ratio of the effective aperture to the average one,  heff,/hm, where the average
aperture is the mean separation between the surfaces of the fracture. A recent study also looked
at spatial  fluctuations of the local pressure and its connection with the tortuosity of the flow
(Aminpour et al., 2018).  Most of the studies characterizing roughness effects are intrinsically
focused on low Reynolds number flows, also called Darcy flows or Stokes flows, in which inertia
effects are negligible, and Darcy’s law is valid. 

On the other hand, the presence of tortuous paths induced by the roughness of the fracture
may also result in an early onset of inertia effects in the flow field, and a nonlinear relation
between the pressure gradient and the flow rate. More than a century ago, Forchheimer proposed
an empirical quadratic relationship to describe the pressure gradient as a function of flow rate in
porous media when inertia effects are present  (Bear, 1988; Macdonald et al., 1979). The same
relationship has been used in numerous studies to describe the flow in fractures at Reynolds
numbers greater than one, and it is usually written as,

∇ p=AQ+B Q2, (4)

where  A and B constants independent of the flow rate. Clearly,  A=12μ /Ly heff
3  and the second

term is the correction to Darcy’s law to account for inertia effects in the flow. We note that we
are assuming that Eq. (4) is valid for the entire range of Reynolds numbers (Skjetne et al., 1999;
Zimmerman et al., 2004). We can re-write the equation in dimensionless form in terms of the
Reynolds  number  of  the  flow  ℜ=ρQQ /μL y,  where  ρQ is  the  density  of  the  fluid,  and  the
Forchheimer number Fo,

∇ p
¿¿¿

(5)

where the Forchheimer number,  Fo,  is defined as the ratio between the quadratic  and linear
terms, which can be interpreted as the ratio of non-linear, inertial contributions to the pressure
drop, to the linear term accounting for viscous resistance (Macdonald et al., 1979). In any case, it
is clear  that the Forchheimer number gives the magnitude of the relative deviation from the
linear regime and it is possible to use it to define the onset of non-linear flow  (Javadi et al.,
2014).  In  the  previous  equation,  we  have  also  introduced  the  dimensionless Forchheimer
coefficient β (Zimmerman et al., 2004), which, in principle, only depends on the geometry of the
fracture and not on the flow conditions or the fluid properties.

As we mentioned,  we can use the Forchheimer number to define a critical  Reynolds
number, ℜc, as the value of the Reynolds number at which the pressure drop due to the nonlinear
inertial contribution reaches a given fraction α  of the total,

α=
Fo

1+Fo
=

β ℜc

1+β ℜc

, (6)



where a 10% deviation is typically used, that is α=0.1 ; Fo=1/9 and ℜc=Fo/ β. Therefore, the
critical Reynolds number is expected to depend only on the geometry of the fracture and it could
provide  information  on  fracture  roughness  and  flow  tortuosity  besides  the  reduction  in
permeability characterized by the ratio of effective to average apertures. 

Only  in  recent  years  some work has  focused on exploring  the  values  of  the  critical
Reynolds number in fractures, and in many cases, its correlation with surface roughness was not
considered.  In  Table  1,  we  present  a  summary  of  representative  results  from the  literature.
Zimmerman et al. performed experiments with a rough fracture brought to contact and obtained a
critical Reynolds number ℜc∼10, but mentioned that this value would decrease with increasing
fracture roughness  (Al-Yaarubi, 2003; Zimmerman et al., 2004). Similar values of the critical
Reynolds number (ℜc∼5−30) were observed by Rajith and Darlington (2007), Ji et al.  (2008)
and Radilla  et  al.  (2013) in  granite  fractures,  by  Konsuk and  Kueper  (2004) in  a  dolomite
limestone fracture, by Nowamooz et al.  (2009) in a sandstone fracture and by Zoorabadi et al.
(2015) using artificial 2D profiles. These studies considered a single aperture of the fractures,
and did not consider the effect that variations in the relative roughness could have on the critical
Reynolds number. In contrast, Qian et al. (2015) presented data suggesting smaller values of the
critical Reynolds number and, more importantly, reported a reduction in the critical values as the
aperture value increases with a constant surface roughness.  However, they mentioned that they
could not accurately determine the values of the critical Reynolds numbers. 

There are also differing results in experiments studying nonlinear flow in field fractures.
Quinn et al. (2011) reported critical Reynolds number mostly below  ℜc∼1, and a clear trend
showing an increase in the critical Reynolds number as the hydraulic aperture of the fractures
increases. However, there is no information available on the roughness of the fractures. Chen et
al.  (2015)  reported  much  larger  critical  values  of  the  Reynolds  number  ℜc∼25−66,  in  an
extensive investigation of nonlinear flow in field experiments. We note that field experiments
pose  significant  challenges  and  limited  information  is  available  about  the  geometry  of  the
fractures.  In  addition,  these  studies  measure  the  flow  in  fracture  networks  and  a  direct
comparison with results obtained in individual fractures is not possible.

 Some studies considered the effect of confining stress on the onset of nonlinear flow.
Ranjith and Darlington (2007), for example, mentioned that an increase in the confining pressure
acting on the fracture would shift the response to an earlier onset of nonlinear effects. Although
no information is provided on the change in the aperture and relative roughness of the fracture it
is reasonable to assume that  an increase in the confining pressure would reduce the average
aperture of the fracture and increase the relative effect of roughness. More recent studies, have
investigated  the effect  of confining pressure more systematically.  Zhang and Nemcik  (2013)
studied nonlinear flow in mated and non-mated sandstone fractures. They did not observe non-
linear  behavior  in  the  case of  mated  fractures,  possibly  due to  the small  Reynolds  numbers
studied. 



Article Material F S R hm [μm ] heff [μm ] ~σh
~σ z

~
ξ /

~Rp
ℜc

Zimmerman et al., (2004) Sandstone • 148.9 117¿ 0.47 — ∼10¿

Konzuk & Kueper (2004) Dolomitic Limestone • 417 332 0.60 — ∼5¿

Ranjith & Darlington 
(2007)

Granite • — 70¿ — 15.8¿ ∼5¿

Ji et al., (2008) Granite • 760 — — — 15
Nowamooz et al., (2009) Sandstone • — 441 — — 30¿

Radilla et al., (2013) Granite • — 696 — — 25¿

Qian et al., (2015) Cement and sand • 500 – 2000 — — — ≾5¿∗¿¿

Quinn, et al.,
(2011) Dolostone •

— 25(smallest) — — 0.09

— 217
(largest)

— — 1.59

Chen, Hu, et al.,
(2015) Sanstone and Granite • — — — — 25 –66

Zhang & Nemcik
(2013) Sandstone

• — 265 –200¿ , ‡ — —
~
ξ ≈ 5.4 – 7.1¿ 3.5 – 4 .5

• — 215 – 185¿ , ‡ — —
~
ξ ≈ 8.6 –9.9¿ 13.1– 17.6

• — 175 –165¿ , ‡ — —
~
ξ ≈ 14.2 – 15.0¿ 19.3 – 24.8

• — 210 – 170¿ , ‡ — —
~
ξ ≈ 19.3– 23.7¿ 6.3 –8.6

Chen, Zhou, et al.,
(2015) Granite • — 49.7 – 2.2‡ — 15 – 1200¿ ~

ξ ≈ 60 – 3700¿ 0.04 – 11.74

Zhou et al. (2015)
Granite

• — 35 –2.5¿ , ‡ — 80 – 1200¿ ~
R p ≈230 – 3300¿ 0.075 – 9.24

• — 27.5 –2¿ , ‡ — — — 0.12 – 4.47
• — 30 – 2.5¿ , ‡ — — — 0.16 –5.11
• — 37.5 –2.5¿ , ‡ — — — 0.039 – 4.51

Sandstone
• — 35 –10¿ , ‡ — — — 0.19 – 4.09
• — 47.5−2.5¿ ,‡ — 40 – 730¿ ~

R p ≈15 – 245¿ 0.026 – 2.98

Rong et al., (2017) Granite

• — 278−211‡ — — — 8.61 –13.35
• — 238−176‡ — — — 5.46 –10.11
• — 218−174‡ — — — 4.18 – 5.98

Chen et al. (2019) Sandstone • — 42.5 – 7.5¿ , ‡ — —
~
ξ ≈ 75– 750¿ 0.05 –3

Javadi et al.,
(2014) Granite

• 0†(smallest) — — — — 0.001

• 1750†(largest — — — — 25



)

Rong et al., (2016) Granite • 35 –200¿ — — — 1.5 –13.0

Table  1: Representative summary of previous work on the critical Reynolds numbers in fractured rocks (F: field fractures; S: simulated model
fracture; R: real laboratory fractures). * The values are estimated based on available information. ** The reported value is an estimated upper bound.
† The reported aperture is the maximum vertical displacement measured upon shearing the fracture. At small shear displacements small negative
vertical displacements are typically observed. ‡ The aperture range as well as the range of relative roughness values and critical Reynolds numbers
corresponds to increasing confining pressures.



In the case of unmated fractures, however, they obtained a range of critical Reynolds
numbers  ℜc∼3.5– 25, depending on sample and confining pressure, but no clear trend
was  observed.  In  addition,  the  sample  with  the  largest  values  of  relative  roughness
exhibited intermediate values of the critical Reynolds number (see Table 1.) 

Zhou et al.  (2015) investigated different granite and sandstone fracture specimens and
found  an  initial  increase  in  the  critical  Reynolds  numbers  with  confining  pressure,
followed by a decrease in the critical Reynolds numbers at higher confining pressures.
They speculated that plastic deformation or brittle damage of the of surface asperities
could be responsible for the initial increase in critical Reynolds numbers with increased
confining pressure due to a reduction in surface roughness. A similar increase in critical
Reynolds numbers at increasing but moderate confining pressures was observed by Rong
et al., (2017). Also unexpected are the results reported by Chen et. al (2019) obtained in
sandstone fractures, showing that the critical Reynolds number decreases with increasing
hydraulic aperture. Overall, the effect of increasing the confining pressure on the fracture
geometry is complex, which makes it difficult to isolate the effect of relative roughness,
or other geometric parameters, on the onset of nonlinear flow.

In real cases, the aperture and the tortuosity of the flow paths are also affected by shear
displacements  between  opposite  surfaces  of  the  fracture,  and  a  few  studies  have
considered the effect of such shear displacements on the onset of nonlinear flow. The
observed  relation  between  the  magnitude  of  the  shear  displacement  and  the  critical
Reynolds number is complex, probably due to the non-monotonic change in the average
aperture with shear displacement  (Javadi et al., 2014; Rong et al., 2016). Javadi et al.
(2014) reported a large increase of several orders of magnitude in the critical Reynolds
numbers  as  the  shear  displacement  increases,  reaching a  value  ℜc∼15– 25 for  large
displacements.  They also observed an initial  decrease in the critical  value with small
shear displacements in one case. Rong et al. (2016) also reported an initial decrease in the
value  of  the  critical  Reynolds  number  for  small  shear  displacement  followed  by  a
significant increase, with values ranging from 1.5 to 13. 

In summary, a wide range of values of the critical Reynolds number in fractures have
been reported, depending on the geometry of the fracture. Some systematic studies considered
two of the main mechanisms affecting the fracture geometry directly, the confining stress acting
on  the  fracture  and  the  presence  of  a  shear  displacement  between  opposite  surfaces  of  the
fractures. However, the effects of contacts, deformation and possible damages to the surfaces
complicates the analysis of the results. Here, in a departure from most of the previous studies, we
performed a series  of  experiments  using  open fractures,  in  which  we control  the  separation
between two identical  fracture surfaces and systematically  investigate  the onset on nonlinear
flow. Therefore, we eliminate any possible influence of large surface deformations or fracture
damage, on the characteristics of the flow. In this way, we focus on the effects of inertia on the
flow and its importance depending on the relative magnitude of the surface roughness. As a
result, we are able to demonstrate a direct relationship between the relative magnitude of the
roughness  of  the  surface  fractures  and the  critical  Reynolds  number  indicating  the  onset  of
nonlinear flow.



2 Materials and Methods

2.1 Fracture model setup and surface roughness

The model fracture is first generated numerically from a 2D set of uncorrelated, Gaussian
distributed,  random numbers, representing an  N × N  discretization of the height of a fracture
surface without overhangs  (Brown & Scholz, 1985). The Fourier transform of this discretized
representation of a surface is then modulated by a decaying function of the frequency, that is, a
high wave-number filter. The Fourier transform is then inverted to obtain a fracture surface that
presents long-range spatial  correlations introduced by the filter.  Finally,  the surface height is
scaled with a constant factor that controls the amplitude of the surface height variations, i. e. the
magnitude  of  the  surface  roughness.  A  number  of  different  parameters  have  been  used  to
characterize the roughness of (fracture) surfaces  (Barton & Choubey, 1977; Poon & Bhushan,
1995; Wang et al., 2016). Two common parameters are the peak asperity height ξ, defined as the
peak-to-valley distance, that is the difference between the maximum and minimum heights of the
surface (similarly the peak-to-mean distance,  Rp, is also used) and the root-mean-square (rms)
roughness σ z, given by the standard deviation of surface heights (Poon & Bhushan, 1995; Wang
et al., 2016). For our surface fracture, we scale the peak asperity height to ξ≃15mm, resulting in
a rms roughness σ z=2.8 mm. The dimensions of the surface main plane are 100mm×100mm. A
contour map of the generated surface is presented in  Figure 1a.  In our discussions, we shall
consider  the relative  magnitude  of  the surface  roughness,  as characterized  by  

~
ξ (

~Rp) and  ~σ z,
corresponding to the peak asperity height (or peak-to-mean distance) and the rms roughness,
respectively, and both normalized by the hydraulic aperture of the fracture heff. 

It is important to note that the above statistical parameters may be scale dependent in real
fractures that present long-range spatial correlations (Brown & Scholz, 1985). On the other hand,
they provide a  means to  compare  our  work with previous  studies,  as  can be seen from the
summary presented in Table 1. Alternatively, a fractal characterization can be provided for some
fractures,  particularly  those  exhibiting  self-affine  surfaces  (Brown,  1995;  Drazer  &  Koplik,
2000). Such self-affine fracture surfaces can be generated using a power-law filter  (Drazer &
Koplik, 2000). We also used a power-law filter to generate our surfaces but, unfortunately, with
an exponent that is larger than those used to generate fractal surfaces. The final matrix of surface
heights  used  to  obtain  the  3D-printed  fracture  surface  as  well  as  the  corresponding  power
spectral  density  showing  the  high-frequency  filter  are  provided  in  the  supplementary
information). 



   
Figure 1: a) Contour map of the surface height. b) 3D printed surface.

The numerically generated surface is then 3D printed with a total length  Lx=150mm,
after adding a periodic replica of a portion of the original surface along what would be the flow
direction, and a total width Ly=100mm (see Figure 1b). A silicon mold of the printed surface is
then made, and is used to create a transparent epoxy cast of the surface. A silicon casting is then
made from the silicon mold and used to obtain an opaque epoxy cast that mates the transparent
epoxy surface. As a result, two mating, epoxy replicas are obtained for the flow experiments. In
the  experiments  the  two  surfaces  are  separated  by  a  normal  displacement,  resulting  in  a
nominally  uniform  aperture. We  note  that  small  deformations  could  come  from  the  epoxy
polymerization process and, as a result, the two surfaces are not expected to perfectly match at
small scales  (Harold Auradou et al., 2001). In fact, we shall see that contact probably occurs
when the vertical separation between the surfaces is of the order of hm ≈ 200 μm, or smaller. On
the other hand, the two surfaces do behave as highly correlated, mating surfaces at larger length
scales.

2.2 Flow experiments setup

A schematic  view of the setup used to perform the flow experiments  is  presented in
Figure 2. The opposite surfaces are placed inside an aluminum housing that creates a channel.
Surfaces  are  machined  to  fit  the  housing  and  the  final  dimensions  of  the  fracture  are
Lx × Ly=143.5 mm× 79.5mm. The average aperture is controlled by using flat shims of specified
thickness, with the largest value around  h=500 μm. This is nominally the constant aperture in
our  fracture  but  not  necessarily  the  average  aperture,  due  to  possible  imperfections  in  the
fabrication of the mating surfaces. We note that our model fractures are narrow fractures, where
the  vertical  variations  in  height  are  significantly  larger  than  the  average  aperture  in  all  the
experiments considered here. The flow is driven either by a pressure drop imposed using either a
Mariotte bottle or a syringe pump, depending on flow rate. We continuously monitor the flow
rate, measuring the liquid weight using a collection cup at the outlet of the fracture channel, and
the pressure drop, using pressure sensors. We also measure the local pressure inside the fracture
with a 5×8 rectangular array of pressure sensors, with 5 lines of 8 sensors each, parallel to the
average flow direction. The parallel lines of sensors are separated a distance Δ y=14mm in the
direction  perpendicular  to  the  flow.  The  sensors  in  each  line  are  separated  a  distance
Δ x=20.5mm in the direction of the average flow. Each pressure sensor is connected to a small



pressure tap drilled through the upper surface of the fracture (see supplementary information for
additional drawings).

Figure 2: Schematic view of the experimental setup used to perform flow experiments.
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Figure  3: Log-linear plot of the flow rate as a function of pressure gradient for fluids with different
viscosity  values.  The  results  in  this  figure  correspond  to  the  case  when  the  fracture  surfaces  are
nominally in full contact, that is  h=0 μm. The measured average aperture is  hm=(270 ± 30)μm and

the effective aperture is heff=(190± 10)μm. The open symbols correspond to measurements from the
central line of pressure sensors (obtained with 7 different glycerol aqueous solutions, ranging from
pure water (top curve) to ~80% glycerol by volume (bottom curve)). The solid symbols correspond to
experiments measuring the pressure on the entire array of sensors (obtained with 5 different glycerol
aqueous solutions). In this case, each group of points corresponds to measurements of the total pressure
drop from each of the five lines of sensors parallel to the flow. 

2.3 Properties of the liquids

In all the experiments, we used mixtures of water and glycerin (99% Glycerin, McMaster-Carr).
The viscosity of these aqueous solutions was controlled by setting specific ratios of glycerin and
water (Segur & Oberstar, 1951; Cheng, 2008). We also measured the viscosity and density of the
fluid before each experiment, and those are the values used to report the results. The viscosity of
the different solutions ranged from μ=0.95to 77mPa ∙s and the density of these solutions ranged
from ρQ=995to1210 kg /m3. We performed experiments over a wide range of Reynolds numbers,
covering several orders of magnitude 0.001 ≤ℜ≤ 500 . For example, in Figure 3 we present the
case where no separation is added between the two fracture surfaces, that is, when the fractures
are nominally in full contact, h=0. For perfectly mating fracture surfaces this would result in a
closed fracture and zero flow. However, as discussed above, our surfaces do not perfectly mate
and the fracture is effectively open to flow. We present different sets of results corresponding to
experiments performed with different glycerol aqueous solutions. We use different solutions in



order to cover a wide range of Reynolds numbers. The results reported in the figure correspond
to approximately 100 independent  experiments obtained for a single aperture of the fracture.
From these sets of data, we obtain a single value of the effective aperture and critical Reynolds
numbers. Similar sets of data are obtained for each of the apertures investigated here.
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Figure  4: Average aperture,  hm,  and effective aperture,  heff ,  as a function of the nominal  aperture
between the two surfaces of the fracture, h.

3 Results and discussion

3.1 Average and effective apertures

As discussed in the introduction, we performed experiments systematically varying the
aperture and, as a result, modifying the relative magnitude of the surface roughness. We
also mentioned that the nominal separation between the surfaces is not necessarily the
same  as  the  average  aperture.  Therefore,  we  first  determine  the  average  aperture,
calculated from the volume inside the fracture, as a function of the nominal aperture. The
volume is measured by injecting dyed water and monitoring the advancing front until the
entire  fracture,  placed vertically,  is  filled with the fluid.  The results  are  presented  in
Figure 4. First, it is clear that the average aperture hm is slightly larger than the nominal
separation  h.  Specifically,  a  nearly  constant  difference  of  approximately  120 μm is
observed  for  nominal  separations  h≥ 250μm.  We  can  therefore  assume  that  the
magnitude of the mating error in the process used to create the fracture model is of the
order  of  100 μm.  In  fact,  we  also  observe  a  clear  change  in  behavior  for  nominal
separations  h ≈ 250 μm.  Specifically,  the  change  in  the  average  aperture  becomes



shallower with a decrease in nominal separation bellow  h ≈ 250 μm. This suggests that
contact  between  the  two  surfaces  occurs  at  h ≈ 250 μm.  In  what  follows,  we use  the
measured average aperture as a better indication of the fracture aperture compared to the
nominal separation between the surfaces.

We  then  characterize  the  permeability  of  the  fracture  in  the  linear  regime  and  its
corresponding effective aperture. First, the data obtained for a given aperture in multiple
experiments using different fluids are made dimensionless as shown in Eq. (5), but using
the average aperture hm instead of the nominal aperture value h, that is: 

ρQ hm
3

12μ2 ∇ p=
~∇ p=(

hm

heff
)

3

(ℜ+β ℜ
2 ) . (7)

The data obtained for each aperture value with different fluids now collapses into a single
curve, as expected. This is shown in Figure 5, which corresponds to the same data already
presented in dimensional form in  Figure 3 above, but now plotted in nondimensional
variables.
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Figure  5: Nondimensional pressure gradient as a function of the Reynolds number for the case of
nominally mated surfaces, that ish=0 μm. The experimental data is the same as that plotted in Figure
3, made nondimensional as in Eq. (7). The dashed line corresponds to a linear fit (with no intercept) in
the region ℜ<0.5, shown in detail in the inset. The solid lines correspond to quadratic fits. The lighter
(blue) line corresponds to a quadratic fit  with no intercept.  The dark (black) line corresponds to a
quadratic fit with no intercept and a fixed linear term obtained from the linear fit for ℜ<0.5.

We fit a linear dependence of the pressure gradient on the Reynolds number for relatively
small values of the Reynolds number, ℜ<0.5.The data in this range of Reynolds numbers
and  the  corresponding  linear  fit  are  shown  in  the  inset  in  Figure  5.  The  linear  fit
determines the effective hydraulic aperture of the fracture and the results are presented in
Figure  4.  First,  we  observe  that  the  effective  hydraulic  aperture  is  smaller  than  the
average aperture, as usually observed in porous media. Then, it is also clear that the trend
of the hydraulic aperture as a function of the nominal aperture closely follows that of the
average aperture. That is, the effective hydraulic aperture also shows a nearly constant
region for  h≲250 μm,  consistent  with the presence  of  contacts  between the opposite
surfaces of the fracture, and a clear linear increase above that value. The relation between
the effective and average apertures is shown explicitly in the inset to Figure 4 and shows
a nearly linear relation over the range of nominal separations considered in this work.

3.2 Spatial variations in pressure

We also looked into the spatial  fluctuations of the pressure field at the local level. In
Figure 6a we first present the local deviations from a linear profile along the central line
of sensors. Specifically,  if  pi is the pressure at  the  i-th  sensor in the central  line,  we



normalize  the  pressure such that  p1=pinlet=1 and  p8=poutlet=0,  and subtract  a  linear
profile between inlet and outlet from the pressure values measured at each sensor. We
observe that the relative magnitude of the deviations from a linear profile decreases as the
aperture increases.

Figure 6: Spatial variation of the pressure field for different apertures. a) Normalized deviation of the 
pressure field along the flow direction with respect to a linear gradient; b) Normalized local pressure 
drop variance as a function of the nominal aperture, h.

In order to get a representative magnitude of these spatial fluctuations of the pressure, we
calculate the variance in the local  pressure gradient,  represented by the pressure drop
between consecutive sensors in a given line. Specifically, from the n=8 pressure sensors
in  a  given  line  along  the  flow  direction,  we  first  calculate  the  local  pressure  drops
between  sensors,  Δ pi=p i+1−pi.  Then,  we  calculate  the  variance  σ p

2
=⟨ Δ pi

2 ⟩i−⟨ Δ p i ⟩i
2
,

where ⟨ ∙ ⟩i is the spatial average along the line of sensors.  In order to average the variance
over different experiments we normalized it by the average local pressure drop,  σ p/ Δ p,
where  Δ p=⟨ Δ pi ⟩ is the average pressure drop between two consecutive sensors. Note
that, in principle, the normalized variance is constant in the linear regime at low Reynolds
numbers. Therefore, we calculate the average over all experiments with relatively small
values of the Reynolds numbers (ℜ<0.5),   ~σ p= ⟨σ p/ Δ p ⟩,  where  ⟨ ∙ ⟩ now indicates  the
average over independent experiments. 

In Figure 6b, we present the results on the spatial fluctuations of the local pressure drops
as a function of the aperture for the central line of sensors. We observe a trend that is
analogous to the variation in the effective aperture, in that the change in pressure drop
fluctuations is relatively small for nominal apertures h≲250 μm. This corresponds to the
range of nominal apertures in which the effective aperture is relatively constant, possibly
due to contacts. In contrast, for larger values of the nominal aperture (h>250 μm), there is
a significant decrease in the pressure drop fluctuations.
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Figure 7: Normalized local pressure drop variance as a function of the effective aperture, heff. The 
different symbols correspond to results for different lines of sensors along the flow direction. The 
dashed lines are linear fits to the data. 

This  is  confirmed in  Figure 7,  where the  normalized  spatial  fluctuations  of  the local
pressure drop are plotted as a function of the effective aperture. In this case, we observe a
clear decrease in the fluctuations over the entire range of values of the effective aperture.
We also show a linear decrease that compares well with the measurements. The same
trend is observed for all 5 parallel lines of sensors along the flow direction. Although
some of these lines of sensors present a smaller magnitude of the relative fluctuations in
pressure, they all present a clear reduction in the fluctuations as the effective aperture
increases.

These results show that, as the aperture becomes larger, the tortuosity of the flow become
smaller and the relative fluctuations in the pressure drop are reduced. Although these
measurements provide valuable insight into the flow field, it  is important to point out
their limitations. First, the length scale over which the pressure drops are measured is
arbitrarily fixed by the experimental setup and, second, the measurement is intrinsically
one-dimensional. 

3.3 Nonlinear flow and critical Reynolds number

The flow data in the entire range of Reynolds numbers is fitted with a quadratic equation
as  given in  Eq.  (7).  First,  we only  fit  the  coefficient  to  the  nonlinear  term,  using the same
effective hydraulic aperture as determined by the linear fit, i. e. only fitting the parameter  β in
Eq. (7). Second, we fit the data with a quadratic equation and determine both heff and β in Eq.



(7).  Both fits are shown in Figure 5 for the data corresponding to nominally mated surfaces. It is
clear that both quadratic fits describe the dependence of the pressure gradient on the Reynolds
number reasonably well and both give similar results. The corresponding values of the critical
Reynolds number for each aperture are presented as a function of the relative rms roughness in
Figure 8. A clear trend is observed, with the critical Reynolds number rapidly decreasing as a
function of the relative rms roughness. In fact, a decrease proportional to  ~σ z

−2 is presented in
Figure 8 and compares  well  with the reduction in critical  Reynolds  number observed in the
experimental data.
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Figure 8: Critical Reynolds number (ℜc¿ as a function of the relative surface roughness (~σz=σ z /heff ). 
Open circles correspond to the fit with Eq. (7) using the heff  value determined from the linear regime. 
Open triangles correspond to a quadratic fit with Eq. (7) and both heff  and β taken as free parameters. 

The dashed line is a fit with to ℜc=1.6×103~σ z
−2 .

These results show that the critical Reynolds number changes significantly depending on
the relative magnitude of the surface roughness, decreasing an order of magnitude as the relative
surface roughness triples. Our range of relative surface roughness complements the values found
in the literature (~σz>15 in Table 1) and the results are consistent (e. g. in  Table 1 we estimate
ℜc 5−10 when the roughness is ~σz ≈ 15). 



4 Conclusions

We have designed and performed a large number of independent flow experiments to
characterize both the Stokes regime as well as the onset of inertial effects in an open fracture.
Systematically  varying  the  separation  between  the  two  mating  surfaces  of  the  fracture  we
investigated the effects that the relative magnitude of surface roughness has on the characteristics
of the flow field, including spatial fluctuations of the pressure and the onset of nonlinear flow
due to inertia. 

First, we performed static measurements of the average aperture while controlling the
nominal separation between the two surfaces of the fracture and concluded that small nominal
apertures probably result in contact (h<250 μm¿. This conclusion was supported by the trend
observed in the average aperture, which shows a nearly constant value for small separations, with
a weak dependence of the average aperture on the nominal separation for  h≲250μm. This is
consistent with the trend observed in the measurements of effective aperture, that shows a nearly
constant effective aperture heff 200 μm for small nominal apertures. In fact, the effective aperture
shows  an  almost  linear  dependence  on  the  average  aperture  over  the  range  of  nominal
separations  considered  in  this  work.  We observe a  similar  change in behavior  in  the spatial
fluctuations in pressure. We considered the normalized variance in the local pressure drops and
observed  that  it  remains  nearly  constant  for  small  nominal  separations  (h<250 μm¿ and
decreases for larger separations. Moreover, the normalized variance shows a linear decrease for
the  entire  range  of  separations  when  plotted  as  a  function  of  the  effective  aperture.  Local
pressure deviations from a linear profile exhibit a similar behavior, in that they decrease as the
relative  magnitude  of  surface  roughness  decreases.  Although  expected,  this  confirms  that
increased surface roughness results in larger deviations in the local pressure gradients from a
uniform and linear profile.

For all nominal apertures, we also explored the nonlinear regime, when pressure gradient
grows faster than linear due to inertial effects. In all cases, the Forchheimer equation describes
the experimental data reasonably well and provides an empirical value of the critical Reynolds
number for each nominal  aperture.  The advantage of the Forchheimer description is  that  the
critical  Reynolds number is a dimensionless number that depends only on the geometry.  Our
results show that the critical Reynolds number decreases significantly as the relative roughness
of  the  fracture  increases.  In  fact,  a  factor  of  3  increase  in  roughness  results  in  an order  of
magnitude decrease in the critical Reynolds number. 

Overall, all the results point in the same direction: as the relative roughness decreases, the
fracture  approaches  the  geometry  of  two  parallel  plates,  the  pressure  gradient  approaches  a
uniform  value  throughout  the  fracture  and  the  inertial  effects  are  not  present  until  larger
Reynolds  numbers  are  reached.  Although  our  work  was  performed  on  a  single  fracture,  an
indication of the generality of our results is that similar behavior for the pressure fluctuations
was  observed  along  independent  lines  of  pressure  sensors.  However,  more  work  is  clearly
needed to investigate the behavior of the pressure fluctuations and critical Reynolds numbers in
different  fracture  surfaces,  including experiments  that,  in  contrast  to  our  work,  maintain  the
average aperture while exploring different magnitudes of the surface roughness. 

The results presented suggest that studying the onset of inertial effects in fracture flows
offers a relatively simple and non-invasive characterization method that can be performed above
ground. The critical Reynolds number provides complementary information to that given by the



effective aperture. In particular, the critical Reynolds number, in combination with the hydraulic
aperture could be a sensitive metric for assessing the relative magnitude of the surface roughness
in underground fractures and inform transport models used in such systems.
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